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EXISTENCE OF GLOBAL SOLUTIONS
OF THE YANG-MILLS,

HIGGS AND SPINOR FIELD EQUATIONS
IN 3+1 DIMENSIONS

BY YVONNE CHOQUET-BRUHAT AND DEMETRIOS CHRISTODOULOU

Introduction

We prove in this paper the global existence on Minkowski space time of solutions of the
Cauchy problem for the coupled Yang-Mills, Higgs and spinor classical field equations in
3+1 dimensions.

Our proof relies on the transformation of the global Cauchy problem on Minkowski space
time into a local Cauchy problem on the Einstein static universe, by a conformal
transformation. The method applies to all conformally invariant systems (or more
generally conformally regular, cf. § 8). It has been already introduced in the pure Yang-
Mills case [9], and applied to the Maxwell-Dirac system [5]. Unlike the recent proofs of the
global existence of solutions for Yang-Mills-Higgs equations ofGinibre and Veto [15] (case
n=2) and ofEardley and Montcrief [11] (case n=3), it does not rely on a priori bounds or
"no blow up" estimates: these estimates are not available in the presence of spinor fields for
which there is no physically defined positive energy.

In paragraphs 1 and 2 we recall briefly the definitions of the classical Yang-Mills field
equations on a hyperbolic manifold, coupled with gauge invariant equations for spinor and
scalar multiplets. We give as examples the now classical Weinberg-Salam model, and the
chromodynamics. In paragraph 3 we define the norms, and the function^spaces which we
shall use. For the Cauchy data these spaces are the simple Sobolev spaces H^ or weighted
Sobolev spaces H^ g. In paragraph 4 we recall the local existence and uniqueness theorems
for the solution of the Cauchy problem. We use as in ([17], [4], [9]) the Lorentz gauge (1), as
an intermediate step. In paragraph 5 we state, in our notations, the conformal properties of
the considered field equations, and in paragraph 6 we consider the case of the conformal
mapping of Minkowski space time onto a bounded open subset of the Einstein, static
universe.

( !) For a solution in the temporal gauge, in the case of Yang-Mills field on Minkowski space time cf. [24].
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482 Y. CHOQUET-BRUHAT AND D. CHRISTODOULOU

In paragraph 7 we prove the global existence of solutions of our Cauchy problem in
Minkowski space-time for small data and study their asymptotic behavior, for systems
conformally invariant in the sense of paragraph 5; we extend the results to conformally
regular systems in paragraph 8. The global existence result also holds for space times
conformal to Minkowski space time: we treat in paragraph 9 the case of De Sitter space
time. Finally, in paragraph 10 we give some results about the solutions of the constraints
equation on a compact initial 3-manifold, since the space of global solutions we construct on
Minkowski space time originates from such data on the sphere S3.

1. Space time and fields

A space time is a C°°, n +1 dimensional manifold V endowed with a C°° hyperbolic metric g
of signature (+, — , — , . . . , — ) . We shall suppose that (V, g) admits a spin structure (2),
that is there exists a principal bundle SV with base V and structure group Spin (n +1), which
is the extension (cf. Lichnerowicz [19], § 10) of the bundle of orthonormal frames of(V, g).

We shall denote by y", a=0, . . . , n, a set of standard Dirac matrices, such that, in an
orthonormal frame:
1.1 y^+y^^ri0113!, r\^=dmg(l, -1, . . . , -1)

and denote by a^ the metric spin connection, which reads in a spin frame corresponding to a
Lorentz frame where the coefficients of the metric connection are co^p:

1.2 c^^pYaY^

A Yang Mills connection is a 1-form co on a principal (C°°) fibre bundle P with base the
space time V and structure group a Lie group G. The form co has its values in the Lie algebra
^. We shall suppose in this paper that P is a trivial bundle (as is always the case when
^^IR"'1'1), though this hypothesis is not necessary for the local existence theorem of
paragraph 4 to hold, if properly formulated.

We shall also suppose that G admits a non degenerate bi-invariant metric; a sufficient
condition is that G be the product of abelian and semi-simple Lie groups. The more
restrictive hypothesis of the compactness of G is required only in paragraph 10 on the
constraint's equation.

Given a "gauge", that is a section (3) s of P, the connection CD is represented by the Yang
Mills potential A=^*co, a 1-form on V with values in ^. Under a change of gauge
characterized by a mapping u: V -> G, A transforms by:

A^ad{u~l)A+u*Q^.
where 9^c ls tne Maurer Cartan 1-form of G.

(2) A necessary and sufficient condition in the case n+ 1 =4 is that the bundle of orthonormal frames admit a
global, C", section.

(3) A section is in canonical correspondance with a trivialization of P.
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GLOBAL SOLUTIONS OF YANG-MILLS 433

This transformation is usually written:

^ A — > M ~ 1 Au+u~1 du

and is self explanatory when G is a subgroup of a linear group.
The Yang Mills field, representing the curvature Q of the connection, is a 2-form F = ̂ * Q

on V, with values in ^, given by:

L4 FEEDA^A+^A.A].

IfVis the covariant derivative in the space time metric, and C^ the structure constants for a
basis (ej of ^, 1-4 reads in a coordinate chart on V, and for the basis £„:

F^V^-V^+C^A;,
>

The scalar'-multipletfield 0 is a section of a complex [or a real] vector bundle associated to P
by a unitary [or an orthogonal] representation p of G, its change under a gauge
transformation u : V -^ G is:

1 •5 0 -> p (u) 0, with p (u (x)) e U (m) [or 0 (m)].

The gauge covariant derivative of 0 in the connection represented by A is:

V(D=^D+SA(D,

where S = p' (1), 1 unit of G; the tangent space T, G being identified with ,̂ S is a mapping
^ ->^(m) [or (9 (w)]. The covariant derivative is, in coordinates:

V^V^+S^A^; I,J=1, . . . ,^ ,

with each S^=(S^j) an antihermitian [a real antisymmetric] matrix, and V^ the metric
covariant derivative (V^=^ if O1 is scalar valued).

Remark. - We denote by O the hermitian conjugate ofO [the transpose ifOis real] that is
Oj=0*1 where O* is the complex conjugate. It transforms under the change of gauge
characterized by u as:

(D—> p ( K ) <D = (|) p ( M ) = d> (p ( M )) ~ 1 ,

since p is unitary [orthogonal if 0 is real]. Thus 00 is invariant under gauge
transformations.

The spinor-mul tip let fields is a section of a vector bundle associated to P, with typical fiber
C^ x C1 where C^ is the fundamental representation space of the spinor group Spin(^+1)
(therefore k = 2^ +1)/2]), and C1 is the space of a unitary representation r ofG: under a change
of section in the associated principal bundle characterized by a mapping (A, u):

V -> Spin (n +1) x G, v|/ transforms by:

1-6 ^^(A-1,^))^,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



484 Y. CHOQUET-BRUHAT AND D. CHRISTODOULOU

(i.e. ^'^AB^r^M)^^).
The metric-and-gauge covariant derivative of ^ is:

V^^+^r'^A)^,

where a is the spin connection corresponding to the metric g. If we denote by T the linear
map r ' (1): T^ G ̂  ̂  -> ^U (/), and by V = d-\- a the metric covariant derivative we have:

V^V^+TA^F, V=^+a

(i. e. V,, ̂  L = ̂  ̂  L + CT^ ^F"'L + T^ A; ̂ M).

The Dirac adjoint of the spinor-multiplet ̂  is the cospinor multiplet ^F defined by:

^^p (¥A,I= lPB ' Ip^),
where ̂  is the complex conjugate transpose of ̂  and P a k xk matrix such that:

Py»P-l=y«.

We shall take a standard choice of Dirac matrices, that is we shall suppose:

Y^rTy01

and choose:
P=y°.

Note. — (1) Under the action of(A~1 , M)eSpin(^+l) xG, ^transforms by:

^^>^(?(u}. A)

and ^F^F is invariant.
(2) Recall that:

v¥=^¥-¥a-¥TA,
because T= -T. Thus V^F is the Dirac adjoint of V^F:

V^F=V^FP,

since (c/. [19])5p=-pa.

2. Equations

The Dirac gauge covariant operator on ̂  is defined by:

2.1 ^^V^y^V^+TA^).

While the wave operator on 0 is:

2.2 D 0=V'V,0=^V,V,0.
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GLOBAL SOLUTIONS OF YANG-MILLS 485

The Yang-Mills operator on F is D * F where * F denotes the adjoint 2-form of F in the
metric g. This operator may be written V.F^, where F^ is the contravariant 2-tensor
associated with F in the metric g, and it reads, in an arbitrary frame on V and basis in ^:

2.3 (V.F^^V^F^SEV^F^+C^A^F^

As a consequence of the Bianchi identities we have:

2.4 V^F^^SEO.

The classical equations for the coupled Yang-Mills, scalar and spinor fields are usually
obtained as the Euler equations of a Lagrangian, which must be invariant under isometries of
g and gauge transformations of A.

The equations are, for the Yang-Mills field:

2.5 V^F^^J^.

With P'fl a vector on V, with values in ̂  of type ad (u ~1), under a change of gauge, called
the Yang-Mills current, given by:

2.6 P'^f^y^S^+^T^^+V^T01^).

For the spinor and scalar multiplets the equations read:

2.7 ^^H,
2.8 DO>=K.

With H and K some given smooth functions of the fields 0, ̂  and T, ^F which must be such
that the equations 2.7 and 2.8 imply the generalized conservation law:

2.9 V^P'^0.

A possible choice, corresponding to the case where the fields 0 and T do not interact and
have no self interaction is:

2.10 H=0, K=0.

A more general, physical choice, is obtained by considering equations which derive from a
gauge invariant lagrangian:

2 . 1 1 ^=^F^F^+^•(¥NKXF-NKXFlP)+V,(pV,(p4-^.

The corresponding system 2.5,2.7,2.8 will satisfy 2.9 if the interaction lagrangian, JSf^,
is invariant (like the first terms) by a gauge transformation. The minimal (Yukawa)
coupling is:

2.12 J^^C^O+^FC^+i^OO)2.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



486 Y. CHOQUET-BRUHAT AND D. CHRISTODOULOU
if

where C is a given tri-linear map C1 x C1 x C"1 -> S}, where S\ is a 1-spinor, 1-cospinor.
In a given gauge and spin frame we have:

^int = ̂ A, i C;̂ B ̂ B'J ̂ L + complex conjugate.

We have then:

2.13 H^CO+OC)1?, K——^C^-^cDOO.

The interaction lagrangian is gauge invariant if:

2.14 TC+CT+CS=O

(vanishing of a map ^ x C1 x C1 x C™ -> S{).

Physical models of such interactions are:
(1) The Yukawa model of the nuclear forces, before the adoption of the quark model. The

equations reduce then to the wave equations 2.7 and 2.8 for the spinor field doublet (4)
^ = QPp, ^FJ and the scalar field triplet (5) 0 = (<Do, <Di, 02 )• The right hand sides H and K
are given by 2-13, with:

C=^Y5T,

where T=(T0), a= 1, 2, 3 are the 2 x 2 Pauli matrices, Ys =YoYi 7z Ys a 1-spinor, 1-cospinor,
and k a coupling constant. The corresponding interaction lagrangian is:

J^im =x? C ̂ PO + Complex conjugate

=^{(¥,Y5^+¥,Y5^)0,-/(¥,Y5^-^y5^)0,+(¥^

This lagrangian is invariant by "gauge" transformation associated with the group G = SU (2)
if the infinitesimal actions of SU(2) on the fields ^F and O are respectively given by:

T^'i0 (2 x 2 matrices),

S° = s0 (3x3 matrices (e0)? = 8^),

with s^ the totally antisymmetric structure constants of SU(2).
These equations can be coupled with an SU(2) Yang-Mills field.
(2) The Weinberg-Salam model fox unification of weak and electromagnetic interactions.
The group G is here the product SU(2) xU(l) .
The spinor field x? is a triplet, which is written (6) as a doublet L and a singlet R :

^(L.R), L=(L^,L2) .

(4) p for proton and n for neutron.
(5) Associated to the 3 pions Ilo, n+, n_ .
(b) Physically L=(l +75) C/), R=( l -75)^. One takes R as a singlet because right handed neutrinos are not

observed.
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GLOBAL SOLUTIONS OF YANG-MILLS 487

The scalar field 0 is a doublet; 0 = (O^, 0^ )• The infinitesimal operators S°, T" are given by
(k and k^ are two independant coupling constants):

/ j'L. ̂ a \

Sa^=^——^L,o), a=l,2,3,

S<->V=(-ik-^L,-ik,R\ a=4

and:
ikT"

^0=-^-, ^=1,2 ,3 ,

^0=^-0, a=4.

The interaction lagrangian is the gauge invariant (7):

^=(L^)R+R(OL)+^i(0<D)2 .

(3) Chromodynamics. A classical model for quarks dynamics mediated by the Yang-
Mills field of the "gluons" is the Yang-Mills equation 2.5, with the group G=SU(3) [or
some higher group to include the charmed quark, or more recently conjectured quarks] - the
spinor field is a three or higher multiplet. There is no scalar field, and no self-interaction of
quarks.

More generally we shall denote by y a system of the type 2.5,2.7,2.8, with J given by 2.6,
and H and K some given smooth (for instance polynomial) functions of<I> and ^F such that the
system is invariant by an isometry ofg (preserving also the choice of a spin structure) and by
the gauge transformation:

A — > M ~ 1 A M + M " 1 du, 0—>p(K)0, x¥^r(u)x¥,
p ( M ) p ( M ) = l , ?(u)r(u)=l.

3. Norms and function spaces

(for analogous definitions cf. [8], [10])

(V, g) is now supposed to be globally hyperbolic, thus V = IR x S. We suppose the curves
[R x { x } uniformly time like [that is their tangent vector X such that g (X, X) ̂  a > O], and the
submanifolds S ( = { ^ } x S uniformly space like [that is their unit normal n such that
g (X, n) < p]. The quadratic form:

r=X®n+n®X-g (F^EEX^+X^-g41).

is then positive definite and is used to define the norm at a point ofV of vectors and tensors.

(7) Weinberg-Salam also introduce a "mass" term V<N) which we do not write here. It has been argued
(Coleman and Weinberg) that this term could be zero at the classical (non quantum) level.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



488 Y. CHOQUET-BRUHAT AND D. CHRISTODOULOU

The norm at a point of the derivative of order k, V <S>, of the scalar-multiplet 0 (in a chosen
gauge) is the coordinate invariant positive number:

|v fco^={^xl^ l...^' l ^ lv^,.^<DV^.,^(D} l /2.
Remark. - The number r^1.. .F^V^ ...^^V^ ^0 is also positive since we have:

v, ^o=v,^o

and is gauge invariant.
The norm of a spinor at a point is the positive, frame independent, scalar, linked to the

choice of submanifolds S^, given by:

|vp|=(vpy^vp)i/2^

In a spin frame such that the corresponding lorentzian frame has axis eQ=n, we have:

|^F|=CF^F)1/2,

The norm of the derivative VklF is given (in a chosen gauge and spin frame) by the positive
number:

|v^|=r^1 ...r^v^^v^ ^,
where the— denotes the hermitian conjugate in C^ x C1.

Remark. - We have the identity (cf. [18]):

(\^F)(3=V¥.
Thus:

iv^i^r^v^y^v^)172

and analogous formulas for the higher order derivatives: | V^ v|/1 do not depend on the spin
frame.

IfG is a compact Lie group it admits an Ad-invariant positive definite metric. This metric
can be used together with r to define at a point ofV, for ̂  valued tensors of type Ad, a norm
invariant by coordinates and gauge transformations. However, since the potential A is not
of type Ad we will work in a specific gauge. We choose a basis 6\ of ^ and we define the
coordinate independent norms of the (real valued) derivatives V^A by:

f N M/2

IV^AI^ Z ^^...^^^aPv^.,^Asv^.,^A^ .
I 0=1 J

This definition does not require that the group has a positive definite invariant metric (8).

(8) Such an hypothesis will be useful in the study of the constraint problem (and seems necessary for the
construction of Hilbert spaces in the quantum context).
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GLOBAL SOLUTIONS OF YANG-MILLS 489

FUNCTION SPACES. — Let h be a measurable section of a vector bundle over V (a measurable
field of tensor - spinor multiplets whose norms at a point we have previously defined). We
suppose that h and its distribution-derivatives of order ^s are also measurable and admit
for each t a restriction to S, which is square integrable in the metric g^ induced by g on
S(. We set:

c r s _ i^2

11^= E iv^i2^^ .
Us, k=0 )

We call (p) E, (I x S) a Banach space which is the closure of the space of restrictions to I x S of
Co3 (IR x S) tensor-spinor multiplets in the norm:

PIkdx^Supll/ill^.
f e l

Remark. — If g=(l ,g) with g a positive definite metric on S (i.e.
g^ dx^ dx^ = dt2 —gij dx1 dx\ g^ independent of t) then:

E,(IxS)=L ^eC0 (I, H,_,(S)),/;=(), . . . ^ l ,

i fgis (s, S) Sobolev-regular, that is if C^(S) is dense in H,(S).

4. Cauchy problem, local existence

The Cauchy problem for a system y (cf. § 2) is the data, on the submanifold So = { t = 0}, of
the potential A and the fields F, 0, n" V^ 0, ^P. The data cannot be independent, they must
satisfy the constraint:
4.1 V^F^'^J0 '0.

The electric Yang Mills field, relative to the slicing S x I is the vector, with values in ^,
F^^F"^?). In particular we set:

4.2 E=F.^,s,

In a lorentzian frame with time axis e^n we have:
"pi, a __ TiO, a

and the equations 4.1 reads:
4.3 dTvE=J.^,

that is on So:

4.4 V.E^^V.E^+C^A^'^J0 '0,

where V ^ denotes the covariant derivative in the metric go induced by g on So.

(9) The definition is more restrictive than in previous papers ([4], [10]) where quasi-linear (not semi-linear)
equations were treated.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



490 Y. CHOQUET-BRUHAT AND D. CHRISTODOULOU

The data of A and F on So is equivalent to the data of A and E. The data of A on So is
equivalent to the data of a ^ valued covariant vector a on So, projection of A:

fl=nA|^ (in a Lorentz frame a^=(^-n^ntl)\^)
and a ^ valued scalar (10):

a=^A^,s.
We set: ' °

4.5 Oiso-^ ^.V(D^=(p, ^so=^-

The system (^) being invariant by the gauge transformation 1.3,1.5,1.6, is not well posed,
we turn it into an hyperbolic system by imposing on A the lorentz-gauge condition:

4.6 V^'^0.
If 4.6 is satisfied, 2.5 becomes:

4.7 V^A^-R^A^+C^A^F^+V^'^.P1'01,

with R^ the Ricci tensor of g.
The system does not appear as strictly hyperbolic, due to multiple characteristics in the

Dirac operator, but will be proved to be equivalent (in the relevant spaces) to a quasi-
diagonal semi-linear, second order, strictly hyperbolic system, by replacing equation 2.7 and
Cauchy data ^=v^ by (cf. [5], \=rV^:

4.8 ^^p^v^xp^R^^Ty^^p^YH.

and ^g^vj; while \|/=^o^is<, is determined by the original equation 2.7.
It is also possible to write directly for equation 2.7 the energy estimates which lead to the

local existence theorem (for such a theorem for pure Yang-Mills fields (cf. [17], [24]), for
Yang-Mills field coupled with gravity (cf. [4]).

THEOREM (local existence). — Suppose given on So the Cauchy data (p, a, a, v|/ e H^ (So) and
E, (peH^_i(So), with s>n/2, s^2 satisfying the constraint 4.3. Then there exists an
interval Ig=(-e, e)(= [R, and ^F, 0, AeE^Ig x S) satisfying the system y and:

^0=^ nA,^, ^.A,^=a, AZ.F|^=E,

^|So=<P. Vo^|So=<P-

The number c depends continuously on:

M=||CP||^+||^||H,+||^||H,+1|(PIIH^+1|E||H^+||OC||^

and tends to zero when M tends to zero (11).

(1 0) Note that a is not a "dynamical variable"- it can always be taken zero without restricting the generality of
solutions (c/. below, uniqueness theorem). It is known (Segal [24]) that on Minkowski space every solution of
Yang-Mills equations is gauge equivalent to a solution in temporal gauge.

( n ) The same result holds, when M is fixed and the coupling constants C, T, S, C, u... tend to zero.
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GLOBAL SOLUTIONS OF YANG-MILLS 491

Proof. — (1) Suppose that A satisfies the Lorentz condition:
4.9 V.A^'^O.

It implies V^A^s^O, which determines a^oA^^eH^i once a, a are given. The
Dirac equation 2.7 determines v| /=3o^s^eH^_i, in terms of the other data.

The system 4.7, 4.8, 2.8 is a second order, semi-linear, quasidiagonal strictly hyperbolic
system. The local existence, that is on a manifold Ig xS.ofa solution of the Cauchy problem
results from the general theorem of Leray [18], refined by Dionne in the space H^(Ig x S),
s>n/l^-l. The existence in EJI^xS), s>n/2+l for second order, hyperquasilinear,
quasi-diagonal systems has been proved by Hughes, Kato, Marsden [16] (S=[R") and
Choquet-Bruhat, Christodoulou, Francaviglia [7]. The existence in E^Ig x S), s>n/2, is a
consequence of the semi-linearity and the particular form of the right hand side (linear in the
first derivatives). It can be proved directly on 4.7,2.7,2.8 by writing energy type estimates
and using the multiplication lemma:

H^xH^-^H, if s ^ s ^ , s^s^, s < s ^ - { - s ^ — . ,

which gives:
H , x H , _ i ^ H , _ i if s>n/2.

(2) Let OP, 0, A)eE,(I, x S), s>n/2, ̂ 2, be a solution of 4.7, 4.8 and 2.8. Suppose
the corresponding Cauchy data for ^==0 satisfy 2.7, 4.3 and 4.9.

(a) We deduce from 4.8 that /^^^-HeE^.JI, xS) satisfies the linear hyperbolic
system:

4.10 ^V.+^Rl/^O.

The corresponding Cauchy data/^o and 8f /8t\^o are we^ defined if 5^2; they vanish by
hypothesis, and by the fact that 4.8 is satisfied. The distributions Y+ / [resp. Y_ /], with
Y+(^ , x)=l if t>0, \+{t, x)==0 if t<Q [resp. 1 if ^<0, 0 if t>0] satisfy 4.10 and have
support compact toward the past [resp. the future] they are therefore identically zero. Thus
the equation 2.7 is satisfied on 1^ x S.

(b) We know, that if QP, <I>, A) satisfies 2.7, 2.8 it also satisfies the conservation equation:

VpJ^^O.

We deduce therefore from the identity V^VpF^ '^O that every solution
OP, A , 0 ) e E , ( I , x S ) o f 3 . 6 , 2.7, 2.8 satisfies:

V^p^A-^O, V.A^eE^^xS).

The same argument as in a) on hyperbolic systems implies V^A^^O on I g X S if
VaA"s^=0 (satisfied by hypothesis) and Vo^A^s^O (satisfied as a consequence of the
constraint 4.3 and the equation 3.6 of index P=0).

The considered solution (^F, 0, A) of 3.6, 2.7, 2.8 satisfies therefore the original
system y. •

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



492 Y. CHOQUET-BRUHAT AND D. CHRISTODOULOU

We shall now give a theorem of uniqueness up to gauge transformations. ̂ A mapping
u: So -> co [resp. U: So x I -> co] with co c: G the domain of a chart ofG can be identified with a
mapping So ̂  ^N {resp. SoXl^^], and the space H,(So) [resp. E,(SoXl)] for such
mappings can be defined without the help of an invariant, positive, metric on G. On the
other hand if G admits such a metric (for instance G is compact) these spaces have been
defined, as Banach-Lie groups for mappings u: So -> G [resp. U: So x I -^ G] by I. Segal
[24], who has proved a global uniqueness theorem for Yang-Mills field equations in
Minkowski space time, using the temporal gauge. We enunciate in our context the
uniqueness theorem and sketch a proof using the Lorentz gauge.

THEOREM (uniqueness). - Let (A, 0, ^F) and{k^ O^, ^^) be two solutions of an y system
in E,(I x S), with Cauchy data on So differing by a gauge transformation: that is there exists
two mappings u: So -> G and u: So -> T^ G, u e H,, u e H,_ i such that:

{ a^=u~1 au+u~1 du, ^=u~1 a^+M" 1 u,

4'11 (p i=r(M)(p, (p i= r (M) (p+r ' (u )M(p ,
\|/i=p(u)v|/.

We suppose, if G is not compact, that u takes its values in a compact subset K of the domain co
of a chart at 1, unit of G.

Then there exists, ij s > 1 + n / 2 an interval 1^ <= I and a gauge transformation U : 1^ x S -> G,
UeE,(I ,xS) such that V^=u, (n.^/\J)^=u and, on I, x S;

4.12 A^U^AU+U-1^,
(Di=r(U)0, ^1=?^)^.

COROLLARY. - If G is compact U exists on I x S.

Proof. — (1) We prove the local uniqueness by bringing the two solutions in the Lorentz
gauge:

We look for a gauge transformation V: So -> G such that the potentiel A, the transform of
A by V satisfies: '

V.A^O,
A necessary and sufficient condition on V is:

V^V^A^Q+V^V-^^^O.

There exists an interval I^=(-T|, r|)c=I such that this second order semi linear hyperbolic
system has a solution V e E, (1^ x S), with values in co, if v has values in K, if s > 1 + n / 2 (the
equation is not linear in V), with Cauchy data yeH,(S), with values in KcQ,
v e H,_ i (S). The potential A is then in E,_ i (1^ x S), the transforms <D and T ofO and ̂  are
inE,(I ,xS) .

We apply the same reasoning to (A^, 01, ̂ ). The transforms by \\, (A^, <Di, T^) are in
^-i (In, x S) x E, (1̂  x S) x E, (1̂  x S). They satisfy the same hyperbolic system on I, x S,
e=min(r|, r|i), therefore they coincide if their Cauchy data coincide, which we obtain by
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choosing appropriate Cauchy data for V and V^, for instance v=u and v=u, i^=l,
v^ =0. The required U is defined on Ig x S by U=V oVi"1.

Remark. — The given proof shows that one does not restrict the class of solutions by
choosing Cauchy data such that AO]^=O: we can always make 04 =0 by choice of u.

(2) To prove the global uniqueness we consider the set of numbers s>0 such that
UeE,( I ,xS) exists, satisfying 4.12 and taking Cauchy data u and u, with Ig=(0, 8)
[resp. I, =(-8,0)]. This set is both open (by the local uniqueness) and closed
(if G is compact, because then, by 4.12, U is uniformly continuous on UlJ in the
interval In { r > 0 } [resp. In { r < 0 } ] . •

The methods used to prove global existence on Minkowski space time in the case of
electromagnetic or Yang Mills field coupled to scalar fields (cf. Montcrief [20], Ginibre et
Velo [15] for /?=2,Eardley and Montcrief [II], for ^=3)donotapplyheresincetheyrelyon
the non blow up of the H^ norm, proved through the property of conservation of the physical
energy. This energy is not a positive quantity in the presence ofspinor fields, and cannot be
used to limit the H^ norms of the fields. We shall use an entirely different method in the
case n=3, the conformal mapping of Minkowski space time onto a bounded set of the
Einstein cylinder.

5. Conformal transformation of Dirac, Yang-Mills and Higgs operators

Let g and ^ be two conformal hyperbolic metrics on the manifold V :

5.1 g=^2^

where Q is a C00 positive function on V.
To a lorentzian frame on (V, g) corresponds a lorentzian frame Og on (V, g). The

associated coframes are such that:

5.2 g=(Q°)2- I (91)2, i=(6°)2- i (61)2,
1=1 i = i

5.3 e^oe".
We shall underline all operations relative to g and all indexes relative to the frame Og.

We denote by co^p [resp o)^p] the connection coefficients of g [resp. g\ in the

frame Og [resp. Og], by 9^ [resp. 3J the Pfaff derivative with respect to O" [resp. 9°'].

A straight forward and well known computation, gives:

rco^^=Q~ lco^^+Q~2(r|^^Q-r|p5,^Q),

1 <p=^co^, CO^=TI^O)^

(recall: ̂ =^=^=r^^ (^)=dmg(l, -1, .... -1)).
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The bundles of Lorentz frames on (V, g) and (V, g) are isomorphic. We identify them by

the bijective map 0, -̂  Og. Then, if SV is a principal spin bundle for (V, g), it is also a
principal spin bundle over (V, g), and conversely. A spinor field ^ on (V, g) is then equal
to a spinor field ^F on (V, g) if ^F and ̂  are the same C^ vector in a given (arbitrary) spin-
frame (12).

We choose for g and g the same Dirac matrices:

5.5 y»=y-.

The spin connections o- and a are then such that:

5.6 ^=^ - l ^+^Q- 2 (^yP-yP^)BpQ.

DIRAC OPERATOR. - We deduce from 5.6:

Vx^O^V^+^Q-^p^yP-yPY^;

thus, since y^y01:

5.7 ^^F^y^V ^P =Q.~{l+^/2)^^f

if v? is the spinor-multiplet given by:

5.8 \y^Q^n/2\y

If the potential A is unchanged on V we have also:

5.9 rTA^EEQ-^^y^TA^,

since T is linear and A^ = Q -1 A^. Therefore:

5.10 'V^EEQ-^"/2)'^?.

Note that if^O"/21? the Dirac adjoint is also such that:

5.11 ^P^Q"/2^,

HIGGS OPERATOR. — We have set:

5.12 DO^C^+SA^V.+SAJO,

(12) We could also choose (as Penrose [22]) to say that l? =^ on V if vectors of Ck representing them in a spin-

frame are related by ̂  = D1/2 ̂ A (which we can also write ^A = Q1/2 ̂ A). This identification is natural if one
wants to identify vectors (in an appropriate sense) with tensor products of spinors.
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that is:

5 . 1 3 D6=VaV^O+2SAaV^O+SV,AaO+(SAa)(SAJO,

For conformal manifolds of dimension n +1 the following identity holds for each component
of the scalar multiplet <D, and therefore for 0 itself:

V^O+^RO^Q^^fv'V O+^ARO^
4n \— — a— 4n ——/

with R and R the scalar curvature of g and g and:

5.14 (D^"-1)/2^.

Using 5.4, and since A01 = Q ~1 A", A^ = Q ~1 A^ we obtain:

V.A^O-2^ A" +(^-1)0-^^0,
while:

A^^Q-^^A'V.O+^Q-^^A^Q
- 2 ~-

and:
(SA^SA^Q-^SA'KSAJ.

Reassembling these identities we obtain:

5.15 Do+^RO^Q-^^fn^+^RoV
4n V 4n — — /

YANG-MILLS OPERATOR. — Let F be a 2-form on V, with values in ^, whose components
are F^ in the frame dual of Og. Let ¥# be the contravariant tensor associated to F in the
metric g. Its components in the frame Og are the elements of ^ given by:

F^=T1^71^F,p.
By using 5.4 one finds:

5.16 V,,F^=Q-"V^F^, with F^O^F^.

The contravariant tensor with components ¥^ in Og is associated through the metric g to the
2-form f_ with components in the dual frame:

F^T^T^F^Q^F.p;

the 2-forms F and ¥_ are therefore linked on V by the relation:

5.17 F^Q^F.

In particular, if n + 1 = 4:
5.18 F=F.
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In this case, we can set:

5.19 A=A

and we shall have both:

5.20 F=DA, F=DA
and:

V.F^Q^V.F7 ' ,

where F^ and ¥ * denote respectively the 2-contravariant tensors associated with F in the
metrics g and g.

When n-\-17^4 one cannot choose A such that the relations 5.17 and 5.20 both hold.
In the case ^ + 1 = 4, A = A, we deduce from 2.3:

V.F^Q^V.F^

We deduce from the definitions 5.8, 5.14, with n=3 that:

^^Sax¥=^~3^^Sa^

and:

0 T° V^ 0 + V^ 0 T° 0 = Q~ 3 (OT° V^ 0 +^^0 T° 0)

(because T° is a skew-hermitian linear operator, the term in 8^0. vanishes). Thus, on V,
with the definition 2.6 ofj:

and
J^^J

V.F^-J^-^V.F^-J).

If we take as source terms in the Dirac and Klein-Gordon operators the quantities 2.13 we
obtain (n=3):

H=Q- 5 / 2 H,
and:

K=Q.~3K.

the equations are conformally invariant in the following sense:

V^-H^Q^^V^F-H),

D ^ + ^ R O - K ^ O ^ D O + ^ R ^ - K ) ,-- 6 — — - ^ 6 /

0=00, lF=Q3/2VI /.
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We deduce from all these transformation properties the theorem:

THEOREM. - J/(A, ^F, 0) is a solution of the Yang Mills, Dirac, Higgs system, with H andK
given by2.13.on a four dimensional hyperbolic manifold (V, g) then (A, ^F, <D), with ̂  = O^2 ^F,
0=Q<D is a solution of this system on (V, g), with g=^l~2 g.

6. Conformal mapping from M4 into £4

We recall that the Einstein cylinder is the manifold R x S3 endowed with the metric
g=(l,g), with g the canonical metric of the S3 sphere. In canonical coordinates
(T\ a, 6, (p) on [R x S3 this metric reads:

6.1 ^=^T2-(^oc2+sin2a(^92+sin29^(p2)).

LEMMA (Penrose [22]). - The Minkow ski space time M^ =(V, rj), V diffeomorphic to [R4, is
conformal to a bounded open set (V, g) of the Einstein cylinder £4. One has:

6.2 g=^r{ on V.

In the canonical coordinates of'M^ the metric r| reads:

6.3 r[=dt2- ^ (dx1)2

i - 1

and V is represented by [t, x1) e R x [R3.

In the canonical coordinates of £4, V is represented by:

6.4 'v: o^oc<n, o^e<n, o^qx2n,
a-n<T<n-a.

The correspondance between the two coordinates systems is:

6 -5 x^=r sin 9 sincp, x2=r sin 6 coscp, x^rcosG,

with:
. . I / T+oc T-a\6.6 r = — t g — — — — t s — — —

2 \ ° 2 ° 2 /

.- I / T+oc T-aV
6-7 ^=2(tg-^+tg^-)

The conformal factor Q2 is expressed in coordinates (t, x1) by:

6.8 ^=^+u2rv{\+v2r\
3

where u= t-{-r, v= t—r, r2= ̂  (x1)2, and in the coordinate (T, oc, 9, (p) by:

6.9 Q2 = (cos oc+ cosT)2.
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The submanifold So of M4, with equation ^=0, is diffeomorphic to [R3. It is represented
on £4 by the submanifold T=0, minus the point Io of coordinates T==0, a=n.

The metrics T| and^ induce respectively on So the euclidean metric e and the metric gof S3,
they are linked on So by:

/ 1 -i-r2 V/2

6 .10 ^Q2^^-4^ CT=(1-^-) .

We denote by D | resp. V | the covariant derivation in the metric e \ resp. g\ of a tensor field
on S. If \|/ is the restriction to S of a spinor field ^P on V we define V \|/ to be the covariant
vector on S with spinor values, projection ofV^ on S, V\|/=11^13; V\|/ depends only
on \|/. In an orthonormal frame with time axis n it has components:

V^V.^Is^^+a^.

The Hs spaces on (S, g) [resp. S, e~] are defined as usual. For instance:

f s r — -11/2
lk(s.,-)=^ I |V^4^) ,

ik=0 JS J

with:

3 _
^ii/i2- y v ^^1 ^ — z^ ^•r..^/i,..., /k=iIV^I— Z V,,,,^YX^V/1•••^

(quantity invariant under a change of associated spin and Lorentz frame if the Lorentz frame
keeps n as time axis).

We also extends trivially the usual definition of H^ 5 spaces on (tR3, e):

DEFINITION. - A tensor [spinor] field (distribution) h on R3 with values in a vector space M^
or C^ is in H, s=H^ ^((R3 , ^) if, for 0^^, D^ is measurable and:

CT S + f e |D f c / ^ | ,=CT 6 + f e (£D^, ,^D ^ l • • • ^ k / ^ ) l / 2 eL 2 (R 3 , ^ ) .

LEMMA 1. - Ifh_ is a p-covariant tensor field on [R3, then /^=/^a aeHs(S3 , g) ifheH, §,
8=5'+2/?—3+a.

77^ same is true, with p=Q, if^ is a section S -> DV of a bundle of spinor s on (V, g).
Proof. - (1) If h is a ^-covariant tensor field on R3 it induces a ^-covariant, almost

everywhere defined tensor field on S3 (correspondance between canonical coordinates given
by 6.5 and 6.6 with T=0). The norms in the metric g and e are linked by the relation:

\hk=a2p\h^

The derivatives of h in the connexions V of g and D of e are linked by:

V/z=D/?+£S./z ,
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where £ S.h is a bilinear expression in h and the tensor S, difference of the connexions ofg
and ^, which is C00 on S3 \ Io ̂  R3, and has components in the orthonormal frame of e (i. e.
in cartesian coordinates on (R3):

S^.=§^,loga-5^1oga,
with:

B,a=x7(l+r2)1/2 .

There is therefore a constant C such that on R3:

j D ^ S I ^ C a - ^ ^
and a constant such that:

I^I^——^^IV^I^C f; O^^ID^I,
z f =o

The conclusion follows from the fact that:

^(g)=a-6d[i(e),
and that/^eH^ if /zeH^+^.

(2) If\|/ is asection S -> DV of a bundle ofspinors on (V, g) (which we have identified with a
bundle of spinors on (V, rj) through identification of the spin bundles), we have, by the
definitions (13):

IU-IU
and:

IV^I^C f: CT^ID^L.
; = o

The conclusion follows as before.

Remark. - The condition heH, ̂ , 8==s+2p-3+oc is not necessary for h=h^ to
be in HJS3, g). The tensor [spinor] field k=h a" +/with/a C5 tensor [spinor] field on S3 is
inH,(S3, g) if _^ e H,, 5; the corresponding A; are of the form h+ fa "".^eH, §. For instance
if we take a e C2 (S3, ^) then a e H^ (S3, ^) but^ = ̂  e H^, i ([R3)ifa does not vanish at Io, since
|a | ,=2/ ( l+r 2 ) | f l | ^

7. Global solutions of the Cauchy problem on M4

THEOREM. - The Cauchy problem for the Yang-Mills Higgs Dirac conformally invariant
system 2.5, 2.7, 2.8 with 2.6, 2.13 and 2.14 with data \(/, ̂ , a, (p, E, (p ^ R3 such that:

a2^ a3^,^, c^cpeH^S3); a2^, a'^^eH^S3),

(13) With Penrose identification [cf. Note, § 5) we would have:

i+i^Ay^—^A 7^,^=01^^.
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satisfying the constraint divE^^ (a, (p, (p, vj/) admits on M4 a global solution A, 0,
^ e H^ (R4) if the number:

^=||a3^||H^S3)+||a||H,(S3)+11^2a||H,(S3)+11^2(plk(S3)+||CT2E||^(S3)+|l^

is sufficiently small.

Remark 1. — Recall by the lemma of paragraph 6, a sufficient condition for o3 \|/,a, a2 a,
a^eH^S3) is vj /eH^^tR3) , a, a, ( p e H 2 , i ( t R 3 ) . Also c^E, a^eH^S3) if E,

(peH^(^3).

Remark 2. - Ifmoroverthe data \j/, a, a, (peH^tR3), E, (peH^i (R3), 5^2, then the
solution A, <D, ^eH^R4).

Proof. — We consider the Cauchy problem for the system on £4. The Cauchy data are
defined almost everywhere on S3 by:

il^cT3^, a=a, a=(72a, (p^a2^, (p^^.VcD^s^cr4^)

and E=a 2 E (covariant vectors).
By the hypothesis of the theorem we have, on S3, a, a, cp, vj/eH^ and (p, EeHi. The

problem satisfies the hypotheses of the local theorem; there exists therefore a number M > 0
such that if the norm of the Cauchy data is less than M a solution ^F, 0, A exists in E^ (S x I)
withl=]-n, n[. Since Sx I= )V , the fields ^P^Q^21?, ^=QO, A = A satisfy the system
on Minkowski space M4^^, ri) and take on ^=0 the given Cauchy data (note that
(aO/3T)|s, =(/2. VQ)is, =(sin T)|T=O =0). Since Q is a C00 function on V^ [R4 the solution^,

O.Ais inH^^IR 4 ) .

DECAY PROPERTIES. — By the continuous inclusion property:

7.1 E2(SxI)c=C°(S"xT).
0, ^eE^ (S x I) imply that 0 and l? are uniformly continuous on S x I. Hence there is a
constant c such that:
7.2 (OO)^2^^^
and
7.3 OPy^1?)1^^372,

7.2 shows that (O^)^2 decays like | s \ ~ 2 along a spacelike and timelike geodesies and like
\s\~1 along null geodesies, where s is an affine parameter on the geodesic. Expressing
n = e / 8 T in the form:

"=/^,
where k is a future directed null vectorfield, and taking into account the fact that:

Ty^^O,

we conclude from 7.3 that (XFlF)l/2 decays like | s \ ~3 along spacelike and timelike geodesies
and like \s |~1 along null geodesies.
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If in the proof of the theorem we assume \|/, a, a, (pEHs(S3), E, (peH^-i(S3) , s^l, we
obtain ^F, 0, AeEJSxI) . Hence taking ^=3 we conclude by property 7.1 that F is
uniformly continuous on S x I. We shall deduce from this the decay properties of F in
Minkowski space.

We introduce on M4 the null tetrad:

l=——du, m=—^dv, ^=rdQ, E,==rsin9^(p.
v . v

The corresponding null tetrad on 2^4, given by l = l / ^ / 2 d U , m=l/^/2dV, ^= sin a ̂ 9,
^=sina sin6Ap, U = T — a , V=T+a, is orthogonal with respect to the positive definite
metric F of paragraph 3:

^^=g^+2n[lnv.
The relation between the two tetrads is:

/=(l^"2)/, ^n=(1^2)., i=n-1^ ^-^.
Therefore we have:

(F^F^)=(2Q/(1+^))(F^F^)

7.4 < (F^F^Q^F^J

(F^F^^QAl+^KF^F^

By the uniform continuity of F on S x I the components of F in the F-orthonormal tetrad
(/, m, ^, ^) are uniformly bounded on V. Then the decay properties of F in Minkowski
space follow from relations 7.4.

UNIQUENESS. — The local uniqueness theorem (§ 4) applied to 24 gives the following
corollary, which can be translated into a global uniqueness theorem for small data in
Minkowski space.

COROLLARY (uniqueness). - If the data (a, a, (p, \|/)eH,(S3), ((p, E)eH,-i(S3), s^3 are
small enough in the H^ (S3) <D H^_ ^ (S3) norms [or if the group G is compact}, then every solution
(A, 0, ^eE^— T, T), S) taking these Cauchy data on SQ coincides by a gauge
transformation with the one previously constructed in the Lorentz gauge of Z4.

8. Higher couplings

If the right hand sides H and K of the Dirac and Higgs equations of an y system on (V, g)
are polynomials in x?, ̂ , 0, 0 such that when ̂  = Q3^ ^F, 0 = QO we have H = Q512 + a H,
K^Q^'^K, then (A, ^F, 0) will satisfy the system on (V,^) if and only if (A, ^F, €>) satisfy on
(V, g), g=Q,2 g, the Yang Mills equations 2.5 with J given by 2.6 and:

V^^H, [:]0+^RO=QPK.
6
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If we have oc^O, P^O then Q01 and Q13 are C00 functions on E4, and the global existence
theorem on Minkowski space time proved for conformally invariant systems in paragraph 7
is valid without change.

An example of such a coupling is the "four fermions coupling", combined or not with a
higher degree interaction of the scalar multiplet, that is:

H^^Ci^C^+^C^Ci1?},

K^OO^O,

where 7?^ 1 and Ci, C^ are linear hermitian maps C1 -> C1 such that, to insure VJ=0:

SCi-CiS=0, SC^ -C^S^O,

where S is the map defined paragraph 2 for the spinor representation of G.
More generally the coupling of an y system on M4 will be said to be "conformally

regular" if the conformally transformed equations from M4 to S4 are again an ^
systen^ The global existence theorem applies to conformally regular y systems.

9. Existence in other conformally flat space times,
for instance De Sitter §pace time

The method obviously applies to prove existence in various conformally flat space-
times. We give the details in the case of De Sitter space time.

De Sitter space time is the manifold R xS3, with the metric where a is some positive
constant:

g=ds2_=dt2-a2ch2(a~l ^a2+sin2a(^e2+sin2e^p2)),

-oo<r<oo, 0^a<n, 0^9<n, 0^(p<2n.

It satisfies the Einstein equations with cosmological constant a:

R^+^p-o.
De Sitter space time is conformal to M4 and to a bounded open set (V, g) of the Einstein

cylinder I4. The correspondance between the canonical coordinates (t, a, 9, (p) of
De Sitter, and (T, a, 6, (p) of Z4 is, in V:

n n n
T=2Arctg(exp^ - l ^))-y , ~~^<^T<^^

that is:
/T n \

t = a l o g ^ l y + ^ - j , -oo<r<oo.

We have, on V:
g=^§.
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with:
^2=a-2ch-2{a~lt)=a~2sm2(T+^\

The image of /==0 is T=0 and the image of t= constant is also a submanifold T= Const.
of S4.

On S O = { ^ = T = O } we have the relation between induced metrics:
g^g^^a-2^^2^^

the norms in the metrics g and g are therefore equivalent. Moreover:
^k-0,

the connections V and V are therefore identical on So.
The results of the previous paragraphs give the following theorem:

THEOREM. — The Cauchy problem for the Yang-Mills equations, coupled with scalar and
spinor fields, 2.5, 2.7, 2.8 with 2.6, 2.13 and 2.14, with data on S3:

\ j / , a , a , ( p e H 2 ; E^, (peHi ,

satisfying the constraint divE_=n.J((^, (p ,̂ \j/01), admits a global solution on the De Sitter
space-time if the norms of the Cauchy data, or the coupling constants are small enough.

10. Initial value constraint on a compact manifold S

The Cauchy data a, a, E, (p, (p, v|/ must satisfy on the initial manifold S the constraint (we set
^.J,s=^):
10.1 drvE=^.
q is a given smooth function of a, (p, J(p, cp, v(/ and their hermitian conjugates, while div E is a
linear operator on E depending on a:

10.2 drv : Ei-^div E+[a, E].

where div is the divergence in the metric g induced by g on S.
We recall that, for a ^-valued fonction of type Ad we have defined:

10.3 . grad/=^+[fl,/].

The operators grad and div are formal adjoints.

The operator A=div grad is self adjoint, elliptic, quasi-diagonal with principal part the
classical laplacian A FEW;.

The kernels of A and grad coincide if the Ad-invariant metric on ^ is positive definite,
therefore i f G i s the product of^an abelian Lie group by a compact semi-simple Lie
group. The Fredholm alternative leads then, as in the classical Berger-Ebin case, to the
continuous decomposition:

/\
Hs= range div@ker grad,

^\ ^H^= range grad©ker div.
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the sumands are L2 orthogonal in the sense of the integral over (S, g ) of the scalar product in
both the metric g and the metric of^; these decompositions can be formulated as a lemma.

LEMMA. — IfG is a product of an abelian Lie group by a compact semi-simple Lie group the
constraint on a compact manifold S:

div E==^,

admits solutions ^,for a given q, if and only if this q is orthogonal to the space ker1 grad.

If q is L^-orthogonal to ker grad, then the space of solutions of 10.1 is the affine space:
E=grad7'®E,

where/is the unique solution orthogonal to ker grad of:

A/=^,
and div E=0.

A potential a on S is called generic if is such that ker grad = 0. By the lemma the equation
div E = q have solutions for arbitrarily given q if and only if a is generic.

We know that fe ker grad, if and only if it generates a 1-parameter group of
automorphisms of a since, by the gauge transformation law of a connection:

5^=[^/]+^=grad/

As a consequence, if/eker grad then:

10.4 [/,H]=0,

where H is the Ad-invariant magnetic Yang Mills vector field:

H=i.(da+^[a,a\\

with * the duality Hodge operator in the metric g. We have moreover, if/e ker grad:

10.5 /./= (Const.) on S.

If the structure constants are totally antisymmetric (which can be always supposed if G is
compact and semi-simple) the equation (1) implies that H must be of the form:

10.6 H=^®^f,

where ^ is a vector field on S and ^f a ̂  valued function. The solutions are then given by,X,
being a constant: ,. ^_X____

\^.^Y'2'J ( ̂  ^\1/2 •>

The kernel of grad is non empty (and coincides with the/ ' ' s of the above type) if and only if

(^f. ̂ f) grad ^ - ̂  (^f. grad ^f) = 0.
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AN EXAMPLE OF A GENERIC POTENTIAL (14). - Take as a potential a on the 3-dimensional
manifold S:

3

a= E H(A)^(A),
A = l

where J^(A) are three linearly independant elements of^, and H(A) three linearly independent
1-forms on S which we suppose to be closed. The corresponding magnetic field is:

H=*(<^+,[(3, a\\=^^[a, a},

of the form, non compatible with 10.6:
3

H= E V(A)®J^(A),
A = l

where the V(A) are non zero 2-forms, if G is semi-simple.
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