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HYPERSURFACES OF EINSTEIN MANIFOLDS

By Norinito KOISO (1)

0. Introduction and results

Let (M, g) be an Einstein manifold of dimensionn+1(n=2). We consider certain classes
of hypersurfaces in (M, g). First, let (M, g) be a totally umbsilical hypersurface in (M, g),
i.e., we assume that the second fundamental form « satisfies o= fg for some function f on
M. If we know completely the curvature tensor of (M, g), we can get much information on
M, g). Forexample, if (M, g) is a symmetric space, then (M, g) is also a locally symmetric
space, and so the classification of such pairs [(ﬁ, g), (M, g)] reduces to Lie group theory (see

Chen [4] (%), Chen and Nagano [5], Naitoh [10]). But if we know nothing about M, g), we
can only say that (M, g) has constant scalar curvature. In fact, we will prove the following.

THEOREM A. — Let (M, g) be a real analytic riemannian manifold with constant scalar
curvature. Then, there exists an Einstein manifold (ﬁ, g) (which may be non-complete) such
that (M, g) is isometrically imbedded into (M, g) as a totally geodesic hypersurface.

This Theorem means also that there exist many examples of totally geodesic Einstein
hypersurfaces in Einstein manifolds. But, if we assume that (M, g) is complete (or
compact), the situation changes drastically. In fact, we will show the following.

TuEOREM B. — Let (M, g) be a totally umbilical Einstein hypersurface in a complete Einstein
manifold (M, g). Then the only possible cases are:

(a) g has positive Ricci curvature. Then g and g have constant sectional curvature;

(b) g has negative Ricci curvature. If M is compact or (K/I_, g) is homogeneous, then g and g
have constant sectional curvature;

(c) g and g have zero Ricci curvature. If (ﬁ, g) is simply connected, then (ﬁ, J)

decomposes as (IVI, g) xR, where M, g) is a totally geodesic hypersurface in (ﬁ, g) which
contains (M, g).

(*) Supported by Sakkokai Foundation and C.L.E.S. (France).

(%) Theorem 1 is not true as stated, but Theorem 2 is true. See Proof of Proposition 15 in Naitoh [10].
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434 N. KOISO

To prove this Theorem, we need essentially a result of D. M. DeTurck and J. L. Kazdan
according to which all Einstein metrics are real analytic. In other words, the manifold

(M, g) in Theorem A is uniquely defined by (M, g) (Prop.4). Ifwe apply Proposition 4 to a

Kaihler-Einstein manifold (ﬁ, g), we can get much information on (M, g) and (_I\—/I—, g), even
without assuming anything on (M, g), since in this situation, the Gauss-Codazzi equations
imply many properties of (M, g).

THEOREM C. — Let (M, g) be a simply connected complete K ihler-Einstein manifold with
Ricci curvature e.  If there exists a totally geodesic real hypersurface (M, g) in M, g—), then
there exists a totally geodesic complex hypersurface (M, g) in (M, g), and M, g) decomposes

as (M, g)=(M, §)x (S, &), where (S, &) means the simply connected and complete Riemann
surface of constant Ricci curvature e. In this decomposition, M is contained in M < Imy,
where vy is a geodesic in S. ’

Remark that Theorem C holds locally even if (ﬁ, g)is not complete. Next, let (M, g) be

an orientable minimal hypersurface in an orientable manifold (M, g). By Corollary 3.6.1
in Simons [11], if g has positive Ricci curvature, then there is no orientable compact stable

minimal hypersurface in (M, g). By a similar method, we will show.

TueoreM D. — Let (M, g) be an orientable Einstein manifold with zero Ricci
curvature. Then all orientable compact stable minimal hypersurfaces without singularity are
totally geodesic.

Combining with Theorem C, we will get.

CoroLLARY E. — Let (ﬁ, g) be a Kiihler-Einstein manifold with zero Ricci curvature and
without local factor C. Then there is no orientable compact stable minimal real hypersurface
without singularity.

Remark that we do not assume in Theorem A, B, C that (M, g) is complete. The paper is
organized as follows: In 1, we derive some fundamental formulae and prove Theorem D.  In
2, we consider the real case and prove Theorem A and Theorem B. In 3, we consider the
Kaébhler case and prove Theorem C and Corollary E. The author would like to express his
sincere gratitude to Professors J.-P. Bourguignon and R. Michel. Theorem A is an answer
to a question of R. Michel and Corollary E is a generalization of a remark of J.-P.
Bourguignon.

1. Preliminary and propositions

Let (M, g) be an Einstein manifold of dimension n+1=3 and M a hypersurface in (ﬁ, J)
with induced metricg. Inthis paper, riemannian manifolds are not assumed to be complete,
unless otherwise stated. The second fundamental form « is given by:

«(X,Y)N=D,Y-D, Y,

where N is the unit normal vector field, X and Y are vector fields on M, and D (resp. 5) is the
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HYPERSURFACES OF EINSTEIN MANIFOLDS 435

covariant derivative of (M, g) [resp. (M, g)]. The following formulae are known as the
Gauss-Godazzi equations:

E(X, Y;Z, U)=R(X,Y;Z, U)+aX, U)a(Y, Z)—a(X, Z)a(Y, U),
R(X, Y; Z, N)=(D, o) (X, Z)—(Dya)(Y, Z),

where R (resp. i) is the curvature tensor of (M, g) [resp. (—I\Z, g)] and the sign convention is
taken in such a way that R(X, Y; X, Y)=0 for the standard sphere. Set:

R(X, N; Y, N)=B(X, Y).

Then, the Ricci tensor 7 of (_I\Z, g) is given by:
rX, Y)=r(X, Y)+o?(X, Y)—pa(X, Y)+B(X, Y),
FX, N) = (dp) (X)+(32) (X), |
7(N, N)=tr B,

where r is the Ricci tensor of (M, g), puis the mean curvature defined by p=tr o, and «? and da
are defined by:

(az)ij':a? Ol js

(32);= —D*oy,.

Since g is an Einstein metric, i.e., r=eg for some real number e, we see that:

(1.1.a) eg=r+o®—po+pB,
(1.1.b) 0=du+da,
1.1.0) e=tr B,

and so:

(1.2) (n—1)e=u+tra’—p?,

where u is the scalar curvature of (M, g). Thus it is easy to check the following.

ProrosiTioN 1. — If (M, g) is a minimal hypersurface (i. e., p=0) of an Einstein manifold
M, 5), thenu=<(n—1) e. Equality holds if and only if (M, g) is a totally geodesic hypersurface
in (M,}).

ProrosiTiON 2. — If(M, g)is a totally umbilical hypersurface of an Einstein manifold M, 9),
i.e.,a= fgfor somefeC* (M), thenfisconstantandu=(n—1)e. Equality holdsif and only if
(M, g) is a totally geodesic hypersurface in (ﬁ,g).

Proof. — By (1.1.b),0=d tr(fg)+3(fg)=(n—1)df, so f is constant. Since p=nf and
tr a? =nf 2, the latter half is obvious by (1.2).

QED.
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436 N. KOISO

Without any further property of B, we cannot proceed any more. To answer the question
“What is the meaning of B?” we consider a one-parameter family of hypersurfaces in

(M, g). Denote by i and i, the mappings: M xR — M and M - M, defined by:
i(x, t)=exp,tN, i,(x)=i(x, t).

Then there is an open set R of M x R containing M x { 0 } such that g, =i¥ g is a riemannian

metric on {xeM; (x, t)eR}. We identify M with its image R (locally) and we see that
g, +dt* coincides with g. In fact, N extends as the vector field d/dt, whose integral curves

are geodesics in (ﬁ, g), and:
d _ - — Y = - — 1. -
Eig(X, N)=g(DxX, N)+g(X, DyN)=g(DxN, N)=-X(g(N, N))=0,

- where we identify Xe T, M with the vector field along the geodesic i,(x) defined by
X (i,(x))=i.X. Wederive the relation between g’,g’" and o, §, where ' means the derivative
with respect to t:

g' (X, Y)=(g(X, Y))'=g(DxX, Y)+4(X, D\ Y)
=X(@(N, Y))=g(N, Dy Y)+Y(@(X, N))—g(Dy X, N)= —2a(X, Y),
B(XX, Y)=g(R(X, N)Y, N)=g(Djy Y —Dyx Dy Y+Dy Dy Y, N)
=—g(DyD, N, N)+(g(Dy Y, N))'=§(Dx Y, DyN)
=—X(g(Dy N, N))+g(D, N, Dy N)+(a(X, Y)).

Here, g(Dy N, N)=0 and g(D, N, X)= —a(X, Y). Thus we get:
(1.3) g'=—2a,
(1.4) B=au?—(1/2)g".
The Einstein equation becomes:
eg=r+(1/2)(g')? —(1/4)(tr g')g'—(1/2)g",
0=—(1/2)dtrg'—(1/2)8g’,
e=—(1/2)trg" +(1/4)tr(g")*.

We conclude that:

(1.5.a) g'=—2eg+2r—(1/2)(tr g')g'+(9')*
(1.5.b) dtrg’+90g'=0,
(1.5.¢) tr(g’)?—(trg’)>’=4(n—1)e—4u.

Remark that these equations hold on R, where r, tr, ( )?, 8 and u are defined by g, We
shall solve this equation in 2.
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HYPERSURFACES OF EINSTEIN MANIFOLDS 437

Before developing this equation, we point out some facts related to Proposition
1. Assume that M is compact without boundary and that i, is a stable minimal
immersion. (Here, stable means: the second derivative of volume is non-negative for any
variation.) Then, if the unit normal vector field N is globally defined on M:

1 ) )
0§<J vg> = —EJ tr(g')’ v, + EJ trg’v,+ ZJ (tr g')*v,,
M t=0 M M M

where v, denotes the volume element of g. By (1.3) and (1.4), we see that:
ogj (—2(a, o) —(tr B—tra))v,= —j (tra’+e)v,.
M M

Here, tra? +e=ne—u by (1.2), and we get:

ProrosiTioN 3. — If (M, g) is compact without boundary and immersed in an Einstein
manifold (M, g) as a stable minimal hypersurface with trivial normal bundle then:

j uv,Zne Vol(M, g).
M

Moreover, if e=0, then u=0 and (M, g) is totally geodesic.

Proof. — The integral inequality is obvious. Ife=0, then j uv,20. But Proposition 1

implies u<0, so u=0. Then the equality in Proposition iAholds, so (M, g) is totally
geodesic.
QED.
Proof of Theorem D. — It is obtained as a corollary of Proposition 3
QED.

Remark 4. — In Theorem D, if M is simply connected, then the assumption that M is
orientable is not necessary. In fact, Lemma4.5 and Theorem 4.6 in Hirsch [8] says that all
compact hypersurfaces in a simply connected manifold are orientable.

2. Solution of (1.5)—real case

Consider equation (1.5). Theorem 5.2 in DeTurck and Kazdan [6] says that all Einstein
metrics are real analytic with respect to harmonic coordinates. This implies that the
solution of (1.5) is unique for given initial data g=g, and g’=Hh, as long as ¢, is positive
definite. Moreover, we get the following global uniquness property. ’

ProrosiTioN 5. — Let (M, g) be a real analytic hypersurface of a simply connected and
complete Einstein manifold (ﬁ, g) with second fundamental form o. Assume that there is
another simply connected and complete Einstein manifold (ﬁl ,g1) such that (M, g) is imbedded
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438 N. KOISO

iﬁo (ﬁl ,91) as a real analytic hypersurface with the same second fundamental formo. Then
M, g) and (M,, g,) are isometric with one another.
Proof. — By the uniqueness Theorem 5.4 in DeTurck and Kazdan [6].

Q.ED.

Conversely, by Cauchy-Kovalevski’s existence Theorem, we can solve (1.5.a) locally for
any real analytic initial data, since the R)?cci tensor r is expressed in terms of the derivatives up
to the second order of the metric tensor g.

ProPOSITION 6. — Let (M, g) be a real analytic riemannian manifold and o. a real analytic
symmetric  bilinear  form on M which satisfies dtra+060=0 and

tra?—(tra)2=(n—1)e—u. Then, there exists an Einstein manifold (M, g) with r=eq in
which (M, g) is imbedded as a hypersurface with second fundamental form o.

Proof. — There exists a unique real analytic solution g, of (1.5.a) with initial data g, =g
and go=—2a. We must check that this solution satisfies (1.5.b) and (1.5.c). By
standard tensor calculus, we see using (1.5.a) that:

(trg’) = —2ne+2u—(1/2)(trg’)?,
(8g') =(1/4)dtr(g')* —(1/2)(trg') 39’ — du,
(tr(g)?) =—4etrg’ —(trg")tr(g')’ +4(, 9'),

w=Atrg’+6dg'—(r,g’) (see Berger [1] (2.11)).
Therefore:

(dtrg'+38g’) =—(1/2)(trg’)(dtrg'+3g')+(1/4)d(tr (¢')* —(trg')* +4u),
(tr(g')? —(trg’)* +4u) =48(dtrg’+38g")—(trg')(tr(¢')* —(trg')* +4u—4(n—1)e).

Thus analyticity implies that (1.5.b) and (1.5.¢) hold for all ¢.
QED.

Proof of Theorem A. — In the above Proposition, set «=0 and e=u/(n—1).
QED.

Remark 7. — In the situation of Theorem A, the change t —» —t of the parameter ¢
preserves the solution. Therefore there is an isometry of (M, g) of order 2 such that all
points of M are fixed.

Let g, be an analytic solution of (1.5) with initial data g,=g and go=h. If the metric
g.+dt* on R does not extend to a complete metric, for example, if the sectional curvature of
g,+dt* diverges for t — t,, then we see that (M, g) cannot be immersed in any complete
Einstein manifold as a hypersurface with second fundamental form o= —(1/2)h. Weapply
this method to a family g,= f (¢)* g, where g, is an Einstein metric and f(¢) is a positive
function of ¢ such that f(0)=1. Let this family g, be a solution of (1.5). Then:

| g:=2(f"(0)/f ()9,
g/=2((f' O/ f O +f" )/ f (1) g,

4° SERIE — TOME 14 — 1981 — N° 4



HYPERSURFACES OF EINSTEIN MANIFOLDS 439

From now on, we will omit ¢ for simplicity. Since the Ricci tensor is invariant under
multiplication by a scalar factor:
r=ro=ego=eof *4,

where e, is the Ricci curvature of g,. As a result, (1.5.c) becomes:

n(f'1fP—4nP(f' 1)} =4(n—1)e—4dne, f 2,
2.1) (f')?=eo/(n—1)—(e/n) f2.
Further (1.5.a) becomes:
"=—ef?teo—(n—1)(f')=—(e/n) f* [using (2.1)],
2.2) "= —(e/n)f.

Equation (2.2) reduces to (2.1), except in the case where f is constant. We get the
following solutions.

(2.3.a) If e>0, then e,>0 and:
£(0)=(/eo/(n—1)/2/e/n) sin (+£/e/n(t+C)).
(2.3.b) Ife=0, then e, =0 and:
f()=£/eo/(n=1)1+C.
(2.3.¢) Ife<0, then:

f()=1(n/4e) exp (£/—e/n(t+C))+(eo/(n—1)) exp (F/ —e/n(t+C))|.
Therefore, if (ﬁ, g)is an Einstein manifold and if (M, g,) is an Einstein manifold which is

isometrically immersed into (M, g) as a totally umbilical hypersurface, then g is locally
isometric with f(t)?g,+dt?, where f(t) is one of the solutions (2.3). In fact, since the
equation expressing that a hypersurface is totally umbilical is elliptic, (M, g,) is analytically

immersed into (M, g). Now, we check completeness of the metric g= f (t)? g, +dt>.

Remark 8. — If (M, g, ) is a complete Einstein manifold with negative Ricci curvature, then
(2.3 ¢) gives a complete Einstein metric. This metric is not homogeneous by Theorem B, if
(M, g,) does not have constant sectional curvature.

Let f(t) be one of the solutions (2.3) and set g,=f(t)*g, and g=g,+dt*> on

M=MxI. Denote by E(V, W) [resp. Ko (X, Y)] the sectional curvature of (ﬁ, g) [resp.
(M, g,)] of the plane spanned by V and W [resp. Xand Y . Suppose that X and Y are unit

orthogonal vectors on (M, g,). Then, by the identification M =M x I and the formulaein1,
we see that: *

2.4) KX, Y)=R(X, Y; X, Y)/(g(X, X)g(Y, Y))
=f“‘(R(X, Y; X, Y)+a(X, Y)Z—oc(X, X)a(Y,Y))
=+ GR(X, )X, Y)—(1/4)g'(X, X)¢' (Y, Y))
=f (2 Ko (X, Y)—f2(f)))=f "2 (Ko (X, Y)+(e/n) f2 —eo/(n—1))
=e/n+ 2 (Ko(X, Y)—eo/(n—1)),
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2.5 K,X, N)=R(X, N; X, N)/g(X, X)
=f72((1/4)(g’ (X, X))>—(1/2)g" (X, X))
A =f 2SIV gKX) =S IV 1) g X, X)=—f"/f=e/n,
2.6) K,(X,N+aY)=R(X,N+aV;X,N+aY)/(g(X, X)g(N+aY, N+aY))
=f21+a> ) 'R (X, N; X, N)+2aR (X, N; X, Y)+a® R(X, Y; X, Y))
=f72(1+a f)TH(PK (X, N)+a® 4K (X, Y))
=(1+a®f2) 1 (K (X, N)+a2 f2K (X, Y)).

By these formulae, we see that g has constant sectional curvature if and only if g, has
constant sectional curvature. From now on, we assume that (M, g) extends to a complete

Einstein manifold, which we denote by the same symbol (M, g).

LEMMA 9. — Assume that g, does not have constant sectional curvature. Then, (a)f (t)#0
for allreal number t. (b) If f (t) converges to O for t—co or — oo, then the sectional curvature
of (ﬁ, g) is not bounded.

Proof. — Easy, by (2.4).

QED.

Denote by G the isometry group of (M,. g) and by d the metric on M induced by g.

LemMma 10. — Assume that there is a positive number D such that d(p, G(q))<D for all
p, ge M. If f (t) converges to oo for t — oo or — 00, then g, has constant sectional curvature.
Proof. — Without loss of generality, we may assume that f(t) converges to oo for

t—»oo. Let B be the closed ball with center xe M and radius r in (M, g,), where r is
sufficiently small so that Bis compact. By assumption, there exists ¢, such thatf (¢)r> D for

all t=t,. Then for all t>¢,+D, Bx(t, oo)(cﬁ) contains the closed ball ﬁ, with the
center (x, t)e M and the radius D in (_M, g). By (2.4), (2.5) and (2.6), the sectional
curvature of (K/I_, g) at the point (y, t) converges uniformally in B to e/n for t—>00. Thus the
sectional curvature of (ﬁ, g) is constant, since:
N GB)=M.
t>t,+D Q.E.D.

Proof of Theorem B. — Remark thatf’ (a)=0if and only ifi, ; (M, g¢,) — (ﬁ, g) is totally
geodesic.

(a) eg>0. There is a real number a such that f (a)=0. By Lemma 8 (a), g, and g have
constant sectional curvature.
_(b) eo=e=0. f'=0. Then (ﬁ, g) is the riemannian product (M, g,) xR locally. If

(M, g) is simply connected, then (M, g) decomposes globally as (M, ) x R, since g is real

analytic. Here (M, g)is a complete totally geodesic hypersurface of (M, g) which contains
M.
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(¢) eg=0,e<0. f(t)—>O0fort—ooor —co. ByLemma 8 (b), if the sectional curvature
of (M, g) is bounded, then g, and g have constant sectional curvature.
(d) ey, e<0. There is a real number a such that f (a)>0 and f'(a)=0. So i, is totally

geodesic. Moreover, f (¢) converges to oo for t—oo. If (M, g) satisfies the condition in
Lemma 9, then g, and g have constant sectional curvature.

By Proposition 2, these are the only possible cases.
QED.

3. Real hypersurfaces of a Kihler-Einstein manifold

In the general situation, we saw in Theorem A that we cannot get much information on
(M, g),evenif (M, g)is a totally geodesic hypersurface in an Einstein manifold (M, g). But

if (ﬁ, g) is a Kihler-Einstein manifold, the Gauss-Codazzi equations give more information
on(M, g). Let(M, g)be atotally umbilical real hypersurface in a Kédhler-Einstein manifold
(M, ). By Proposition 2, the second fundamental form o is expressed as o= ag for some
real number a. Then, the Codazzi equation and formula (1.1.a) become:

(3.1) R(X,Y; Z, N)=0,
(3.2) - r=(e+(m—1)a*)g—B.

Denote by J the almost complex structure of (M, g)and set H=JN. Inequation (3.1),if
X is orthogonal to H, then JX is tangent to M, and we see that:

(3.3) B(X,Y)=R(X,N; Y, N)=—R(JX, H; Y, N)=0.
Then equation (1.1.c) implies:

(3.4) B(H, H)=e.

ProposiTioN 11. — Let (M, g) be a complete Kdhler-Einstein manifold with zero Ricci
curvature. Assume that there exists a totally umbilical but not totally geodesic real

hypersurface (M, g) in (M, g) (i.e., a#0). Then both (M, g) and (M, g) have constant
sectional curvature. C
Proof. — By equations (3.2), (3.3) and (3.4), g is an Finstein metric with positive Ricci
curvature. Thus the proof reduces to Theorem B (a).
QED.

Lemma 12, — Let (M, g) be a Kiihler-Einstein manifold. ~Assume that there exists a totally
geodesic real hypersurface (M, g) in (M, g). Then there exists a totally geodesic complex
hypersurface (M, g) in (ﬁ, ) which is contained in (M, g). Moreover, (M, g) is a Kdhler-
Einstein manifold and (M, g) decomposes locally as (M. g)=(M, g) x R.
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Proof. — Since (M, g) is totally geodesic, 6XN=O holds for any tangent vector X of
M. Then we see that:

(3.5) D,H=D,H=D,(N)=J(DyN)=0,

which implies that there is a hypersurface (M, g) in (M, g) and (M, g) decomposes locally as
(M, g)=(M, g)xR. Here J preserves the tangent space of M. This implies that M is a

complex submanifold of M. Moreover, equations (3.2)and (3.3)imply that g is an Einstein
metric.

QED.
Proof of Theorem C. — Let y be a geodesic in (S, ). By Lemma 12, (M, g) may be

immersed into (M, g) xIm y. On the other hand, since g is an Einstein metric with Ricci
curvature e, (M, g) x (S, ¢) becomes an Einstein manifold and (M, g) xIm y is totally
geodesic in (M, g). Then Proposition 4 implies that (M, §)x (S, €) is an open set of
(ﬁ, g). Remark that this identification preserves the complex structure. Since (M, g)is
real analytic, this decomposition extends globally. That is, (M, g) extends to a complete
complex hypersurface of (ﬁ, g) and we get a global decomposition.

QED.

Remark 13. — Even if (ﬁ, g) is not complete, the above decomposition holds locally.

Proof of Corollary E. — Assume that there is a compact stable minimal real hypersurface
(M, g)in(M, g). Then by Theorem D, (M, g)is totally geodesic. Therefore we can apply

Theorem C to the universal riemannian covering of (_I\—/I—, g) and get a global
decomposition. This contradicts the assumption.

Q.ED.

Remark 14. — In Corollary E, if M is simply connected, the assumption that M is
orientable is not necessary. See Remark 4. '

Remark 15. — In particular, there is no compact stable minimal hypersurface in the K3-
surfaces M with zero Ricci curvature. By Theorem 2.9 in Bourguignon [2], there is no
stable closed geodesic in M. We may say that these results are dual with one another.

COROLLARY 16. — Let (M, g) be a compact Kihler-Einstein manifold with zero Ricci
curvature of complex dimension <3. Ifn, (M) is not finite, then (M, g) has a local factor C.
Proof. — Since =, (M) is not finite, H,,(M, Z) is not trivial by Poincaré duality. For
dimkﬁg 6, a non-trivial homology class in H, (M, Z) can be represented by stable minimal
real hypersurfaces M without singularity (Federer [7], Thm. 5.4.15, Lawson Jr. [9], Remark
3.4). Then by Corollary E, (M, g) decomposes locally with a factor C.
QED.

Remark 17. — We can get Corollary 16 in more general situation by Theorem 3 in Cheeger
and Gromoll [3]. But the proof is different.
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