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ON THE PICARD NUMBER
OF A COMPLEX PROJECTIVE VARIETY

BY TETSUJI SHIODA

0. Introduction

Let X be a non-singular projective variety over C. The Picard number p (X) ofX, i. e. the
rank of Neron-Severi group of X, satisfies the well-known inequality:

(0.1) l^p(X)^hlfl(X)=b^X)-2h2'o(X),

where b^ (X) and h1^ (X) denote the 2nd Betti number and the Hodge numbers ofX. In
terms of the Lefschetz number ^ (X)=b^ (X)— p (X), (0.1) is equivalent to:

(0.2) 2A 2 ' 0 (X) ^ MX) ^ &2 (X)-l.

In this paper, we study the Picard number of a non-singular projective variety over C
having an automorphism of finite order. Given an automorphism g of finite order of such a
variety X, we shall introduce two numerical invariants L (X, g} and (p (X, g) of the pair
(X, g), which is defined in terms of the action ofg on the space H2 ' ° (X) of holomorphic 2-
forms on X (Def. 1.2), and prove the inequality:

(0.3) 2 /^ 2 ' 0 (X)^L(X,^MX),

and the congruence property:

(0.4) )i (X) = 0 mod (p (X, g)

{see Theorem 1.3, § 1). These results improve the familiar estimate (0.1) or (0.2), reducing
to the latter in case g is the identity. The proof will be given in paragraph 2 by considering
the action ofg on the group of transcendental cycles. As an application, we shall compute
the Picard numbers of certain surfaces in P3 (§3-6). Among other things, we prove the
following results:

(a) If X is a non-singular surface of a prime degree m in P3, defined by the equation:

wm+F(x, y, z)=0,
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304 T. SHIODA

then we have:
{ l ^ p ( X ) ^ h l ' l ( X ) - p , ( X ) ,
[ p ( X ) = Imod(m-l) .

(See Proposition 3.2 for more general statements.)
(b) Moreover the following surface of degree m:

w w +x^ w ~ l d-^"1 +zxw~ l =0,

has the Picard number 1 for any prime m ^ 5 (Thm. 4.1).
Obviously the above (b) gives an elementary proof of the classical Theorem ofM. Noether

in the case of prime degree. Actually, when we started the present work, our first guess was
that the Picard number of a surface with "many" automorphisms would be relatively big,
and the above example, at first, was a surprise to us.

Thus our method, simple as it is, gives some new information on the study of Picard
numbers. Still the problem of evaluating the Picard number is very difficult, and we
mention in paragraph 6 some miscellaneous results for quintic surfaces in P3.

The last section, paragraph 7, deals with the extension of some of the above results to
characteristic p . The extension to algebraic cycles of higher codimension is also possible,
but it will be discussed elsewhere.

Finally we thank A. Furukawa for providing us with the proof of Lemma 4.3 which is
given in the Appendix.

1. Invariants L (X, g ) and (p (X, g )

First we recall some elementary algebraic facts, fixing the notation. Let G be a cyclic
group of order d with a generator g , and let Q [G] or C [G] be the group ring of G over Q or
C. As is well-known, these rings are semi-simple and the decomposition into simple
components is given as follows:

Q[G]^©W^=Q[r] / (0^(0),
(1.1) "^

C[G]^ © U,, U,=C[r]/(r-oc),
a^l

where O^ (t) is the n-th cyclotomic polynomial and where multiplication by g in the group
rings corresponds to multiplication by t in the residue rings of Q [t] or C [t] on the right
sides. Moreover we have:

(1-2) W ^ ( x ) C ^ © U,,
aePn

where P^ denotes the set of primitive n-th roots of unity. These facts easily follow from the
relations:

(L3) ^-i=n^(o, ^(t)=v[(t-^
n\d aePn

and the irreducibility of 0^ (t) in Q [t] (see e. g. [3]).
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Now suppose that G acts on a vector space H of finite dimension over C. By the semi-
simplicity of C [G], we can write:

(1.4) H= © V(a), V^)^!;^^;
a'^1

that is, V (a) is the eigenspace ofg with eigenvalue a. In the following definition, (p ( . ) is the
Euler function, i.e. :

(p(n)= #P^=degOJr) .

DEFINITION 1 . 1 . — With the above notation, we set:

/ N (H, G)=[n | V (a) ^ 0 for some aePj,
(1.5) ] L(H,G)= ^ max{dimV(a)+dimV(a)}(p(n) ,

M € N ( H , G ) aeP,,

(p (H, G)=GCD {(p (n) \ neN (H, G)},

where a denotes the complex conjugate of a.
We have the obvious inequality:

(1.6) L (H, G) ^ 2 dim H,

because:

L ( H , G ) ^ ^ ^ {dimV(a)+dimV(a)}.
n aePn

Now let X be a non-singular projective variety over C and let g be an automorphism ofX of
order d. The group G generated by g acts on various cohomology groups of X or on their
invariant subspaces. In particular, considering the action of G on the space H2' ° (X) of
holomorphic 2-forms on X, we make the following definition:

DEFINITION 1 . 2 . — Using the notation of Definition 1.1, we set:

^X.^N^H^X^G),

(1.7) MX.^MH^X^G),

^>{X,g)=^>(H2'o(X),G).

By (1.6), we have:

(1.8) L (X , ^ )^ 2^ ' ° (X ) .

We are ready to state the main Theorem of this paper.

THEOREM 1 . 3 . — The Lefschetz number 'k (X) of a non-singular projective variety X over C
satisfies the following estimate and congruence:

(1.9) ^
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306 T. SHIODA

for every automorphism g of finite order. Equivalently, the Picard number p (X) ofX satisfies:

p(X)^(X)-L(X,^),
p(X)=b,(X)mod(p(X,<7).

(1.10)

The proof will be given in the next section.
We deduce some consequences:

COROLLARY 1.4. — If a non-singular projective variety X has an automorphism g of finite
order such that g * (co) 7^ + wfor any co e H 2' ° (X), co 1=- 0, then the Picard number ofX has the
same parity as the 2nd Betti number:

p ( X ) = ^ ( X ) m o d 2 .

Proof. - The assumption implies that N (X, g ) does not contain n == 1 nor 2. Then (p (n) is
even for all n e N (X, g), and hence (p (X, g ) is also even. The assertion follows from (1.10).

Q.E.D.

COROLLARY 1.5. — If a non-singular projective variety X has an automorphism g of finite
order such that all the eigenvalues ofg* on H2' ° (X) are primitive n-th roots of unity for some
fixed integer n, then:

p (X) = ̂  (X) mod (p (n).

Proof. - Under the assumption, we have N (X, g ) = {n} and hence (p (X, g ) = (p (n). Thus
the assertion follows from (1.10).

Q.E.D.
The above Corollary applies, for instance, to varieties with h2' ° (X)= 1. This has been

observed, among other things, by Nikulin for the case of K3 surfaces (cf. [5], §3).

2. The group of transcendental 2-cycles

Given a non-singular projective variety X over C, we denote by T (X) the group of
transcendental 2-cycles on X, which is defined as the quotient of H2 (X, T) by the Neron-
Severi group NS (X):

(2.1) T(X)=H 2 (X,Z) /NS(X) .

If G is a cyclic group of order d generated by w automorphism g of X, then we can view

NS (X)o =NS (X) ® Q and T (X)^ =T (X) ® Q,

as Q [GJ-modules. By the semi-simplicity of Q [G], we can write:

(2.2) ^X^CW;;^,
n\d
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for some r (n) ̂  0, W^ being as in (1.1). Then it follows from (1.2) that:

(2.3) T ( X ) c = T ( X ) ® C ^ © ( © ICT.
n\d aePn

This will be compared with the decomposition:

(2.4) H2 '0(X)= © © V(a), V(a)^Ud,mv(a),
neN(X, g ) aeP»

the notation being as in (1.4), (1.5) and (1.7).

LEMMA 2 . 1 . — With the above notation, we have:
(i) r(n)>0 o neN(X,^),

and

(ii) r (n) ̂  max {dim V (a)+dim V (a)}.
aeP,,

Proof. - By the Theorem of Lefschetz and Hodge, we have:

(2.5) N S ( X ) Q = H 2 ( X , Q ) n H l ' l ( X ) .

In particular, the natural map:

(2.6)
H 2 (X,C)/NS(X)c ^ H^X.CVH1 '^)

I I /!!
T(X)c H2'^)®^'^)

is surjective. Obviously this map \|/ is compatible with the actions of G on both
spaces. Recall that H °' 2 is the complex conjugate of H 2< °. By looking at the eigenspaces
with eigenvalue aeP^ we have the induced surjective map:

Ur,(")->V(a)©V(a),

which proves the assertion (ii). It follows from this and the definition of N (X, g ) that
r (n) > 0 if n e N (X, g). Now let:

T(X)Q=Ti©T^
where:

Ti^ © W^"\ T,^ © W;^.
neN(X,0) n^N(X,<?)

Then we see that \|/ maps T^ to 0 because of the compatibility of \|/ with the G-
actions. Therefore the inverse image of T^ in H2 (X, Q) under the natural map
H2 (X, Q) -. T (X)^ lies in H2 (X, Q) n H1' S hence in NS (X)^ by (2.5). This proves that
T^ =0, i. e. that r(n)=0 if n ^ N (X, g).

Q.E.D.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Summarizing the above, we have proved the following:

THEOREM 2 . 2 . — With the same notation as above, the Q [G]-module structure o/T (X)^ is
given by:

(2.7) T(X)^ @ W^"\
" e N ( X , 0 )

/or som^ positive integers r (n) satisfying (n) of Lemma 2.1.
Proof of Theorem 1.3. - Comparing the dimensions of both sides of (2.7), we have:

dimT(X)Q= ^ r (n )d imW^,
n e N ( X , f i f )

that is:
(2.8) MX)- ^ r (n ) (p (^ ) .

n e N ( X , ^ )

Then, by Definitions 1.1, 1.2 and Lemma 2.1, we have:

M X ) ^ L ( X , ^ )
and:

^ (X) = 0 mod (p (X, 60,

which proves Theorem 1.3.
Q.E.D.

REMARK 2.3.- We have defined the group of transcendental 2-cycles T (X) by (2.1) to
consider varieties of arbitrary dimension. In dealing with surfaces, however, we may define
the group of transcendental 2-cycles T' (X) as the orthogonal complement of the Neron-
Severi group in H2 (X, Z) with respect to the cup product pairing. It should be noted that
the structure of Q [G]-modules on T (X)^ and T' (X)^ is the same, and hence Theorem 1.3 is
valid with T' (X) in place of T (X).

3. Application to surfaces in P3

In subsequent sections, we evaluate Picard numbers of some surfaces in P3 by applying
Theorem 1.3.

Fix m^4, and let X denote a non-singular surface of degree m in P3 or the minimal non-
singular model of a surface of degree m in P3 having at most rational double points. By the
theorem of simultaneous resolution, the diffeomorphism type of such a surface is uniquely
determined by m (cf. Brieskorn [10]).

As is well known, the geometric genus po(X) and the 2nd Betti number b^(X) are
respectively given by:

(3.1) ^(m)=(m-l)(m-2)(m-3)/6,
(3.2) f c2 (m)=m(m 2 -4m+6) -2=(m- l ) (m 2 -3m+3)+ l .
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If X is defined by the homogeneous equation of degree m F (x, y , z, w)=0, then the space
H2' °(X) of holomorphic 2-forms on X has the following basis {co^}:

Y1 V3W^ / 7 7 k>(} \/^ ^\ x y w i i / ^ j ? f c ^ ^ \
^ ^=-p^d^dy [^^_^

in terms of the inhomogeneous coordinates (x, ̂ , w) (z = 1), where F^ stands for (c¥/0w) (x, ̂ ,
1,^).

We shall mainly consider surfaces of the following types:

(3.4) ¥ ( x , y , z)-^wm=0 (§3 and 4),
(3.5) P (x , ^ )+Q(z ,w)=0 (§5),

where F, P, Q are homogeneous polynomials of degree m. In the following, we always
assume that the equation in question defines a surface in P3, say X\ which is either non-
singular or has at most rational double points, and that X is the minimal non-singular model
ofX'. For simplicity, we call such an X simply a surface of degree m defined by (3.4) or (3.5).

LEMMA 3.1. — LetXbe a surface defined ^(3.4), and let g be the automorphism of order m
ofX, defined by:

g : (x, y , z, w)i-^(x, y , z, ^w) [^==exp(27U/m)].

Then, with the notation of Definition 1.2, we have:

(3.6) N(X, g)={n\n>l and n |m} ,

and:

(3.7) L(X,^)= ^A,(m/n)(p(n),
n | m
n> 1

where:

(3.8) A,(r)=^(m-r-l)(m-r-2)+^(r-l)(r-2) (l^r^m-1).

Proof. — The 2-forms in (3.3) are eigenforms of^*, i. e.:

(3^) ^(co^)^1^.,, (0^k^m-4-i-j^m-4).

Hence the subspace V^^) of I-l^^X) corresponding to eigenvalue ^+1 has the di-
mension:

(3.10) dimV(^+l)=#{(f,J)|f,^0,l+7^m-4-^}

-^(m-k-2)(m-k-3) (O^fe^m-4),

0 (m-3^^m-l).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Since ̂ +1 is a primitive m/(A; +1, m)-th root of unity, the set N (X, g ) consists of all divisors n
of m different from 1. Let us compute the invariant L(X, g). We have, by (3.10)
and (3.8):

dimV(^)+dimV(^)=A,(r) (l^r^m-1).

As is easily seen, A^(r)=A^ (m—r) and A^ (r)>A^ (r+1) for l^ r<m/2. Hence, for all
neN (X, ^), we have:

max A^(r)=A^(m/n).
(r, m)=m/n

It follows from the definition of L {X, g ) that:

L(X,^)= ^AJm/n)(p(n),
n\m
n>\

proving (3.7).
Q.E.D.

PROPOSITION 3.2. — If a surface X is defined by the equation:

w'+F^.z)^,

then its Picard number has the following estimate:

(3.11) p(X)^b,(m)- ^A,(m/n)(p(n),
n|m
n>l

where A^(r) 15 defined by (3.8). In particular, ifm is a prime, then:

(3.12) p(X)^(m)-3^(m)=l+^m(m-l)2 ,

and furthermore the following congruence holds:

(3.13) p(X)=lmodm-l .

More generally, ifm is odd, then:

(3.14) p(X)=lmod2.

Proof. — The first assertion is an immediate consequence of Theorem 1.3 and
Lemma 3.1. If m is a prime, then N (X, g), (3.6), consists of {m} alone, and hence we have
in this case:

L(X,^)=A,(l)(p(m)=^(m-2)(m-3).(m-l)=3^(m) [^(3.1)],

4" SERIE - TOME 14 - 1981 - N° 3 .
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and:
(p(X, ^)=(p(m)=m-l .

Thus the second assertion follows from Theorem 1.3 and (3.2). Finally, if m is odd, then
N (X, g ) does not contain n = 1 or 2, so that (p (n) is even for all n e N ( X ^ ' g ) . Hence (p (X, g)
is even, which proves the last assertion (cf. Cor. 1.4).

Q.E.D.

REMARK 3.3. — (i) Contrary to the last statement of Proposition 3.2, we do not know
whether p (X) is always even if m is even and m > 4. For m = 4, this is the case. In fact, the
above proof shows that N (X, ^ ) = = { 4 } and (p(X, ^)=cp(4)=2 in this case.

(ii) For non-prime m, the estimate (3.12), which is stronger than (3.11), does not hold in
general. A counter-example is given by the Fermat surface of degree m=4 or 6, for which
p=h1 ' 1 holds (cf. [7]).

Now, as a supplement to Proposition 3.1, we prove:

PROPOSITION 3.4..— IfX is defined by the equation:

(3.15) w"+ [] (^+^+c,z)=0,
l^i^m

where no three ofm linear forms in the product have a non-trivial common zero, then:

(3.16) p(X)^l+^m(m-l) 2 =^(m)-3^(m),

with the equality holding in case m is a prime.

Proof. — Denote by X' the surface in P3 defined by (3.15) so that X is the minimal non-
singular model of X\ Under the assumption, X' has m ( m — l ) / 2 singular points
corresponding to the intersection points of m lines a,:x + fc,;y + c,-z = 0 in P2; each of them is a
rational double point of type A^_ ^ (locally like ^w = uv). As is well known, such a singular
point is resolved into (m—1) rational curves on X, and the latter are numerically
independent. Thus NS (X) contains (m — 1). m (m — 1 )/2 independent curves, in addition to
the pull back to X ofahyperplane section ofX' in P3. This proves the inequality (3.16), and
the equality statement for m prime follows from (3.12) of Proposition 3.2.

Q.E.D.

4. An explicit example of a non-singular surface in P3

with the Picard number one

As is well-known, the generic surface of degree m^4 in P3 has the Picard number 1
(Noether's Theorem, cf. Deligne [1]). It is, however, of independent interest to have an
explicit example of a surface with this property. We shall give such an example below in
case m is a prime.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



312 „ T SHIODA

For any m, let Y^ denote the non-singular surface of degree m with the equation:
(4 .1) wm-^xym~l+yzm~l+zxm~l=0.

It has the following automorphism of order d:

' g : (x, y, z, w^^-^x, ̂ -1^ ̂  ̂ )
Kd=exp(27ii7^), ^=exp(27if/m)],

(4.2)

where:

(4.3) ^(m-^+l^m^o, . do=m2-3m-^3.

THEOREM 4.1.- L^ m be a prime ^5. TT^n r^ Picard number of the surface Y^ is
equal to 1.

Before proving the Theorem, we note that it implies (by standard specialization argument)
the following result, which is stronger than Noether's Theorem in the case of prime degree:

COROLLARY 4 . 2 . — J/Y is any surface of prime degree m ̂  5 which specializes to (4.1) (e. g.
generic surface of degree m in the sense o/[l]), then the Picard number o/Y is equal to 1.

To prove the Theorem, let us first look at the action of g on the holomorphic 2-forms of
(3.3). Noting that g takes the following form in terms of inhomogeneous coordinates
(x, y, w):

(4.4) g ' - ^y.^-^G^'^^^y.Um^
we have:

(4.5) g^^)^1^^

by setting:

.4 ^ fB( i ,7 , ^ )=m(2-m) ( i+ l )+m/ -+(^+ l ) (^+ l )
I (O^f, ; ,^ f+j+^m-4).

LEMMA 4.3.- Assume that m is a prime ^ 5. Then, for any divisor n of do = m2 - 3 m + 3,
there exists some B(iJ, k) such that GCD (d, B (1,7, k))=n.

Proof. — Here we prove this under the assumption that do is also prime; the general case
will be proven in the Appendix due to A. Furukawa. If do is prime, only divisors of do are 1
and do. Now we note:

f B(0, 1, 0 )=m(2-m)+m+(^o+l) = = 4,
[B(0, 0, m-4)=m(2-m)+(^o+l)(m-3)= -4do+d,

and hence, for m and do both odd, we have:

f GCD(^, B(0, 1, 0))=(m^o, 4)=1,
\GCD(d, B(0, 0, m-4))=(d, -4do)=do,

proving the Lemma.
Q.E.D.

4e SERIE - TOME 14 - 1981 - N° 3
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Proof of Theorem 4.1.- The above Lemma implies that, for the pair (Y^, g) given by (4.1)
and (4.2), the set N(Y^, g ) contains all integers of the form mv where v is arbitrary divisor
of^o. Then:

(4.7) L(Y^)^ ^(p(mv)=(p(m)^(p(v)==(m-l).^o=M^)-l (cf- (3.2)).
v|^o v|^o -

Since ^(YJ^L(Y^, g ) by Theorem 1.3, this proves:

X(YJ=L(Y^)=fc^)-i.
and:

p(YJ=L
Q.E.D.

REMARK 4.3. - The Picard number of the surface (4.1) can be "large" if m is not a
prime. For instance, we can show that, for m = 4, p (Y4) = 20 (this is the maximum of Picard
numbers of K3 surfaces) and for m=6, p(Y6)==32.

5. Further application to surfaces in P3

Now we consider surfaces in P3 of the second type (3.5).

LEMMA 5 . 1 . — Let X be a surface of degree m defined by:

(5.1) P (x ,^ )+Q(z ,w)=0 ,

where P and Q are forms of degree m without multiple factors, and let g be the automorphism:

g : (x, y, z, w)h->(^x, ̂ y, z, w)
[^==exp(27ii7m)].

(5.2)

Assume that m^7 or m==5. Then we have:

(5.3) N(X,^)={n|M>l and n|m},

and:

(5.4) L(X,^)=2^ max {(r-l)(m-r-l)} (p(n).
n| w 2^r^m—2
n> 1 (r, m)=m/n

In particular, ifm is a prime ^5, then N(X, g)= {m} anA'

(5.5) L(X,^)=^(m-l)2(m-3)=3^(m)+^(m-l)(m-3).

Proof. — With respect to the 2-forms (D^ in (3.3), we have:

^(co^^2^ (i,7^0,i-H+^m-4).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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and hence:

™)^_^_^°^^
Then the Lemma is proven by a simple computation, as in Lemma 3.1.

Q.E.D.

PROPOSITION 5 . 2 . — The notation being as in Lemma 5.1, the Picard number of the surface X
defined by (5.1) satisfies the inequality:

(5.7) (m-l)2+l^p(X)^b,(m)-L(X,g).

Jn particular, ifm is a prime ^5, ^n;

(5.8) - ( / H - l ) 2 4 - l ^ p ( X ) ^ l ( m - l ) ( w 2 - 2 w + 3 ) + l ,

and furthermore, the following congruence holds:

(5.9) P(X)=1 modm-1.

More generally, if m is odd, then:

(5.10) p(X)=l mod 2.

Proof. — Except for the lower extimate of p(X), the assertions follow from Theorem 1.3
and Lemma 5.2 in the same way as in the proof of Proposition 3.2. This lower estimate is a
consequence of the "inductive structure" of the equation (5.1). Let us briefly recall it (for
the detail, see Sasakura [6], § 1, or Shioda-Katsura [8], Remark 1.10). Let C and C' denote
the following plane curves:

um=P(x,y) and ^=0^, w).

Then the surface X is obtained from the product C x C' by the following three steps: (1) blow
up m2 points of C x C' defined by u=v=0, (2) form the quotient surface of the blown-up
surface by the cyclic group a^ of order m generated by:

(x, y , u, z, w, v)\-^(x, y , ̂ u, z, w, ̂ v),

and then, (3) blow down certain 2m non-singular rational curves in the quotient
surface. This gives: ^

(5.11) p (X)=r+2+m 2 -2m^(m- l ) 2 +l ,

where r is the rank of the group of classes of correspondences from C to C' which are
compatible with the a^-actions on C an' C'. - \

Q.E.D.
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REMARK 5.3. — (i) The relation (5.11) can be used to give another proof of the congruence
(5.9), by showing that the said group of correspondence classes spans over Q a vector space
over the cyclotomic field Q (^) (cf. [6], § 5). In this approach, the connection of the Picard
number and the periods of 2-forms is more explicit. Sasakura ([6], Thm. 4.2) proved, for
example, that if m is a prime, then:

„ f (m -1 )2 +1 for generic P and Q,
p( ' { ( m - ^ + m for generic P, Q= P.

(ii) In contrast to the last statement (5.10) for m odd, it is not true in general that p (X) is
even in case m is even. For example, if P(x, y } = x 4 ' - { - y 4 ' - } - ' k x 2 y2 and if X^ is defined by
P (x, y ) + P (z, w) = 0, then p (X,,) = 19 holds for all ̂  except for some countable values of^(c/.
Mizukami [4]).

(iii) The upper bound of (5.8) is attained, for example, by the Fermat surface of degree
m=5, for which p(X)=37 (cf. [7]).

6. Remarks on Picard numbers of quintic surfaces

When a surface (or a variety) varies in a family, the Picard number takes various values in
general, and it is usually not easy to determine which values are actually taken. In this
section, we make some remarks on this problem for the family of surfaces in P3 of degree m,
especially for m= 5. (By the convention of paragraph 3, we mean by a surface in P3 either a
non-singular surface in P3 or the minimal non-singular model of a surface in P3 having
rational double points.)

For m^4, the solution to the above problem is well known. In case m^3, surfaces of
degree m are rational surfaces and hence p (X) = b^ (X) for all such X. For m = 4, the local
Torelli Theorem for K 3 surfaces implies that the Picard number ofaquartic surface takes all
values in the allowable range (O.I):

l^p(X)^hl'l=20.

For m^ 5, however, very little has been known. Let us consider the case m= 5 in some
detail/though analogous results can be obtained for any fixed prime m. For a quintic
surface X, we have:

l^p(X)^hl-l=45 (b,=53,p,=4).

Now the following Table shows some explicit examples of quintic surfaces for which the
Picard number can be determined.

The verification of this table will be left to the reader. Roughly speaking, each surface X
given below has a fairly large group of automorphisms (1) , and the application of Theorem
1.3 gives sharp upper bound for p ( X ) . On the other hand. one has to find some

(1) For a systematic study of hypersurfaces in P" with an automorphism of large order, we refer to a paper ofK.
Ishii (in preparation).
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independent algebraic cycles on X. This is done either directly as indicated in the Table for
the case p=5, or by computing Hodge classes on X via the action of some automorphism
group, as in the case of Fermat varieties (cf. [7]).

TABLE 6.1
Equation of X Remark

p= l . . . . . . . . . . {xy4r-}-yz4r-\-zx4r}-\-w^=Q Theorem 4.1
NS(X)Q=<5 lineson3;=0>

NS(X)o=<5 lines on z=0>

Remark 5.3 (i)

Remark 5.3 ( i )

(x5+x^4+^^4)+w5=0
p=5. . . . . . . . . . ' or

X5-\-Xy4•+yZ4•-{-ZW4=0

p=9. . . . . . . . . . ?
p=13.. . . . . . . . . ?
p=17.. . . . . . . . . P(x, }Q+Q(z, w)=0 (P, Q generic)

; P(x , j ; )+P(z ,w)=0 /P generic)
p = 2 L . . . . . . . . . or

xy4' + yz4' + zw4' + wx4' = 0

! {x5 +x^4)+(z5+w5)=0 \
p = = 2 5 . . . . . . . . . . or [

(x5+x^4)+(z4M;+zw4)=0 )

p=29.. . . . . . . . . (x5:+x^4)+(z5+zM;4)=0
p=33.. . . . . . . . . ?

{ ^_^y5^^5_^^5^Q Fermat quintic {cf. [7])
p=37.. . . . . . . . . or

(x^y^xy^^^w^-zw^^O

_ i w5 -\-xyz{x-\-y-\-z}{ax-\-by-\-cz}=Q \
p- • • • • • • • • • • •j (a.b.c: distinct, ^0) (
p=45.. . . . . . . . . ??

Proposition 3.4

Among the missing values of p with p=. 1 (mod 4) in the above table, it will be not too
difficult to find some example of quintic surfaces with p=9,13or33. , For example, a non-
singular quintic surface X, invariant by the automorphism (x, y , z, w)\—>(x, ^ y , ^z,
^w)(^=^5), is the universal covering of a Godeaux surface Y, and so
p (X) ̂  p (Y) = b^ (Y) =9, and it is likely that a generic such X will have p = 9. Also a quintic
surface defined by w5 + LQi Q^ = 0, where L (or Qi, Q^) is a linear (or quadratic) form in x, y ,
z, has p ̂  33 (cf. the proof of Proposition 3.4), and a generic surface of this type seems to have
p=33. We have no idea for the case p==45.

Concerning the above, we raise some questions:

QUESTION 6.2. — Let X be a surface of prime degree m^5.
(i) is there any X with p(X)=/i1 '1?;

(ii) is there any X with p(X)^l (mod m-1)? (2).

(2) According to P. Griffiths (oral communication), the answer to (ii) is YES in general. In fact, Picard numbers
of surfaces of degree m can take any values 1,2,3... which are "not too close" to h1'1, at least for sufficiently large m (m
need not be prime). For instance, an example of a surface with p = 2 can be given as follows. Fix a line L in P3 and
look at the family of surfaces of degree m which contain L. Then the general member of this family will have p = 2, at
lenst if ni is sufficicntiv hir^e.
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It will be an interesting problem to study the period mapping of these surfaces in
connection with the above question.

7. Extension to characteristic p

As is well known, the familiar estimate (0.1) of the Picard number fails in general in
characteristic p > 0, but the weaker inequality p (X) ̂  b^ (X) continues to hold, where b^ (X) is
the Betti number in /-adic cohomology ( I : a prime 7^ p). In this section, we note that, though
the estimate of p in Theorem 1.3 also fails in characteristic p, the congruence property of p
holds in a certain sense.

Let R be a discrete valuation ring with quotient field K of characteristic 0 and with residue
field k of characteristic p>0. Let ^ be a scheme, smooth and projective over S=Spec R,
and let y be an automorphism of finite order d of °K overS. Assume that di=0
(mod p). Let (X, g ) and (X\ g ' ) be respectively the generic fibre over K and the special fibre
over k, of the pair (^, y); we also write X' = X (p). We regard X defined over C by taking a
suitable subfield of K, finitely generated over Q, and then embedding it into C. By the
Picard number p(X') ofX' we understand the rank of Neron-Severi group of X' considered
over the algebraic closure k of k.

PROPOSITION 7.1. — Let (X', g ' ) be a pair of a non-singular projective variety in
characteristic p and its automorphism of order d, which lifts to a pair (X, g ) in characteristic 0
as above. Then p(X') and p(X) are related by the following congruence:

(7.1) p (X / )=p (X)mod(p , (X ,^ ) ,_ ,

where (p^(X, g)for any prime I not dividing p.d is defined by:

^ ^ f ^ (X,^)=GCD{(p , (n) |neN(X,^)} , . : , :
[ (P( (n) = the least positive integer / such that I f = 1 (mod n).

Proof (oui\me). — Let G be a cyclic group of order d. Via g and g ' , G acts on X and X',
and hence on their /-adic cohomology groups for any prime I ̂  p . By the general theory

(cf. [2]), H^X, Qi) and H^X', Qy)(X=X®C, X^X'0'fc) are isomorphic under the
k

specialization map, and moreover this isomorphism is compatible with the actions ofGby
functoriality. Furthermore we have the commutative diagram of Q^ [G]-modules:

H^X.Q^H^X',^) '
(7.3) ^ IT_

NS(X)®Q^NS(X')®Q,.

By the comparison theorem, we have:

(7.4) H^X.Q^H^X, Q)®Q;,
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the isomorphism being again compatible with the actions of G. By Theorem 2.2, the
Q [Gj-module structure on H^X, Q) is given as follows:

(7.5) H 2 (X ,Q)^NS(X)QeT(X)Q^NS(X)Q©( © W;^).
neN(X,0)

Now, for any prime l^n, W^®Q; decomposes into a direct sum of simple Q; [G]-modules, say
W^ „ each of which has rank cpj (n), the latter being denned by (7.2).' This is immediate by
considering the irreducible factors of the cyclotomic polynomial OJQ in QJt] (say, by
HensePs lemma). Therefore it follows from (7.3) and (7.4) that the <Qi [G]-submodule
NS [X\ of H2 (X, Qi) has the following form:

NS(X%^NS(X)^©( © ©W,^)
neN(X,0) i

for some ^(n)^r(n). This proves:

(7.6) p(X')=p(X)+ ^ ^s,(n)(p,(n),
neN(X,0) i .

which implies (7.1).
Q.E.D.

COROLLARY 7.2. — With the same notation as in Proposition 7,1, assume further
that N(X,^) ̂ 1,2. Then:
(7.7) p(X' )=^(X)mod2.

Proof. - We choose a prime number l ^ p such that 1= -1 (mod d), d being the order
of g . Then, for any neN(X, g), 1= -1 (mod n), but li=\ (mod n) since n^ l or 2 by
assumption. Hence (p^(n) is even for all neN(X, g), and (p;(X, ^) is also even. The
assertion now follows from Proposition 7.1 and Corollary 1.4.

Q.E.D.

COROLLARY 7.3. — With the same notation as in Proposition 7.1, assume that N(X, g )
consists of a single element n which is of the form n=mv or 2 mv with m odd prome. Then:

(7.8) p(X')=fo2(^)mod (p(n).

Proof. — By assumption on n, the group (ZV^^ is cyclic. Hence (by Dirichlet's
Theorem) we can find a prime number / such that I mod n is a generator of this group and
such that Hp.d. For this choice of /, we have:

(p^(X, ^)=(p;(M)=cp(n).

Then (7.8) is immediate from Proposition 7.1 and Corollary 1.5.
Q.E.D.

As an application of the above, let us consider the cose of surfaces in P3 as in
paragraphs 3-6.
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PROPOSITION 7.4. - Assumem^Q(mod p). Let X be a non-singular surface of degree m in
P3 defined by the equation (3.4) or (3.5) over an algebraically closed field of
characteristic p. Then:

(7.9) P(X)=1 (mod 2) if m is odd

and:
(7.10) p (X) = 1 (mod m — 1) if m is prime.

Proof. - This follows from Corollaries 7.2 and 7.3 (c/. Prop. 3.2 and 5.2).
Q.E.D.

REMARK 7.5. — It should be remarked that the congruence (7.7) or (7.9) is compatible
with a consequence of the Tate conjecture, according to which the Picard number of a non-
singular projective variety over a finite field should have the same parity as its 2nd Betti
number (cf. [9]). ' -

APPENDIX. — Proof of Lemma 4.3, by Akio Furukawa.
Let us recall the notation. Let m be a prime number ^ 5 and set do = m2 — 3 m + 3 and

d=mdo. Put:

B( / , / c )=m(2-m)4-m/+(^o+l ) ( fe+ l ) ,

for7^0,fc^0,j+^m-4. With the notation of (4.6), B(/, k) equals B(0,7,/c). Now we
shall prove:

LEMMA. — Let n be arbitrary divisor of'do. Then there exist some (/, k) such that] ̂  0, k ̂  0,
j + k ̂  m - 4 and GCD (B (j, k\ d) = n.

Proof. — First note that B(/, ^;)=4(/c+l) mod m. Since m is a prime' ^5 and
l ^ ^ - h l ^ m — 3 , B(/, k) and m are relatively prime. Hence we have GCD (B(/, fc),
rf)=GCD (B(/, fe), ^o), and we have only to consider B(/, fe) mod ^o. We have then:

B(/, f e )=( / - l )m+( /c+4) mod ^o-
We set: ,, - . , .

N={n | l^n^^o},
M={Q'-1) m+(^+4) |0^7^m-4, 0^^(m-4)-j}.

Moreover, for a subset S of Z, we set:

D(S)={(5,^o)I^S},

which is a subset of N. With this notation, we have to prove:

(*) Nc:D(M).

(1) First of all, we know that D(M)9l and ^o (see the proof of Lemma 4.3 in the
text). In particular, when do is a prime (e.g. for m=5, 7, 17, 19, . . . . do=13, 31, 241,
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307, . . . ) , (*) is true. Thus we may assume that m^ 11. Under this assumption, we have
do/2<(m-5) m+4=B (m-4, 0), and hence it suffices to show:

(*') D ( { 1 , 2 , . . . , ( m - 5 ) m + 4 } ) c = D ( M ) .

(2) Considering the subset of elements of M with 7=0 or 1, we see:

D ( { 1 , 2 , . . . ,m- l} )cD(M) .

(3) Now any element o f { l , 2 , . . . , (m-5) m+4} which does not belong to M has one of
the following forms:

(i) jm+1, jm-\-2 or jm-\-3 ( l^ /^m-5)
or:

(ii) jm-s (l^j=m-5,0^5^7-1).

For an element of type (ii), ifs=0, then (jm, do)=(j, ̂ o)eD(M) by (2). If 1 =s^j -1, then
we have:

^o-Ow-5)=-(w-7-3)m+(5+3)=(/-l)m+(^+4)6M,

where/==m-/-2 and k ' ^ s - l ^ O . This implies:

(jm-s,do)={do-(jm-s),do)eD(M).

(4) It remains to consider elements of type (i) and to show:

(*") D ( { 7 m + / c | 1 ^ 7 = m - 5 , ^ = l , 2 , 3})c:D(M).

Here we observe that N ^2, 3 or 5 since m is a prime =5. Hence, for any neN with n+d^
we have n^d^/l. Thus, instead of (*"), it suffices to prove:

(* / / /) D({^+^|1^7^[(m-3)/7] ,^=l ,2 ,3})cD(M).

(5) Let; be any integer such that 1^7^(m-3)/7. Since m = l l , we have:

47=4(m-3) /7=m-5 and 27^(m+2)/3=m-7.

Hence, recalling that do is relatively prime to 2 or 3, we see:

Qm+l, Jo)=(4 O'm+1), do)=((4j) m+4, ^o)eD(M),

O-m+2, ^o)=(20m+2), ^o)=((27) m+4, ^o)eD(M),
O-m+3, rfo)=(2 (7^+3), do)=((2j) m+6, ^)^D(M).

This proves (* / / /), and hence (*).
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