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TOWARDS THE KAZHDAN-LUSZTIG CONJECTURE (*)

BY 0. GABBER AND A. JOSEPH

ABSTRACT. — Let U (9) be the enveloping algebra of a complex semisimple Lie algebra 9. Many questions
concerning U (9) (for example the ordering [14] in Prim U (9)) can be answered in terms of the multiplicities in the
composition series of the Verma modules. The main result of this paper shows that a conjecture of Jantzen
([9], 5.18) concerning a certain filtration of the Verma modules implies precisely the formula for these multiplicities
which was recently conjectured by Kazhdan and Lusztig ([10], Conj. 1.5). Its proof requires a study of the
appropriate generalizations of the so-called Bernstein-Gelfand-Gelfand (9 category which arise when the base field is
replaced by a commutative ring (denned over the integers). Several results on the corresponding extension groups
are also obtained.

0. Introduction

Let 9 be a complex semisimple Lie algebra. A basic problem in the representation theory
of g is the determination of the composition series for the Verma modules. Let t) be a Cartan
subalgebra of 9, I)* the dual oft), Re t)* the set of non-zero roots and B c= R a basis
forR. Then for each Xel)* the quadruplet 9, 1), B, ^ determines a Verma module
M (^). Denote its unique simple quotient by L (X,). For each a e R, denote by s^ e Aut t)*
the corresponding reflection, S: = = { s ^ : a e B} and W the subgroup of Aut t)* with generating
set S. For the moment to simplify matters assume that — 2 (X-, a)/(a, a) is a positive integer
for each aeB. Then after Verma each M (w'k) : weW has finite length with composition
factors amongst the L(w' ^): w'eW, Furthermore after Bernstein-Gelfand-Gelfand (in
short, BGG) the simple factor L ( w f ' k ) occurs in M ( w ^ ) if and only if w ' ^ w
where ^denotes the Bruhat ordering on W. (For further details see [6], Chapt. 7.) Thus
it remains to determine the multiplicity of each factor — a problem on which important
progress was made by Jantzen ([8], [9]).

(*) Shortly after the communication of this paper, we learnt that J. L. Brylinski and M. Kashiwara ([16], [17]) had
just announced a proof of what we consider here to be a special (but important) case of the Kazhdan-Lusztig
conjecture, namely for X, integral. (This generalization is so natural for representation theory that like Vogan [14]
we gave it without comment.) At the same time a similar result was announced by A. A. Beilinson and
I. N. Bernstein [15]. These authors establish an equivalence with a geometric problem solved for what corresponds
to the integral case by D. A. Kazhdan and G. Lusztig [11] using the hard Lefschetz theorem developed by
P. Deligne. This method does not at present resolve the case when B^ (see text) cannot be conjugated
into B. Again there has still to be a geometric interpretation of the Jantzen filtration in order to obtain the more
refined and important (cf. [19], Sect. 4) information concerning the multiplicities in each step of the Jantzen filtration
(c/.4.9). More recently the possibility of this more refined data was conjectured by S. Gelfand and
R. MacPherson [18] who refer to it as the generalized Kazhdan-Lusztig conjecture.
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262 0. GABBER AND A. JOSEPH

Recently, Kazhdan and Lusztig ([10], Sect. 1) have associated to each pair w, w 'eW a
polynomial P^ ^ (q) in an indeterminate q. This is determined by an algorithm involving
only the pair (W, S) viewed as a Coxeter group. Let WQ denote the unique maximal element
of W under the Bruhat order. They conjecture ([10], Conj. 1.5) that L (w '^ ) occurs
precisely P^ ̂  ̂  ̂ , (1) times in M (w ^). This was motivated by the role of the Hecke algebra
in "correcting" the failure of Poincare duality on Schubert cells [11]. Again during the
preparation of this work, Vogan remarked that their conjecture is equivalent to the formula:

'̂(^ E q(l(w')~l(w)~k)/2dlmExtk(M(w^L(w^)).
k=0

[Here Ext refers to the (9 category of BGG and I ( . ) denotes the reduced length
of weW.] Vogan further showed ([13], Sect. 3) that this was equivalent to a conjec-
tured semisimplicity of a module \J^L(w'k) defined as follows. To each simple root a
there is defined an exact functor 6^ on 0. Furthermore one has a
complex Q->L(w^)-^6^L(w'k)->L{w'k)->Q and U^L(w?i) is defined to be its
cohomology. (See 3.3, 3.11 for further details.)

The present work recalls an even earlier conjecture ofJantzen and shows that it implies the
semisimplicity ofU^ L (w K). Actually a more precise result is obtained. First recall that in
the work ofJantzen ([9], Chapt. 5) a certain contra variant form is used to define a filtration
on Verma modules. With respect to the embedding of M ( w ' ^) in M (w 'k) for w ' ^ w and
up to a shift determined by ^(uQ-Hw'), Jantzen's conjecture ([9], 5.18) asserts that this
filtration ought to be hereditary. Now 6^ M (w ̂ ), which is an extension of M (w ^) by
M (ws^ ^), also admits a filtration via Jantzen's construction. This leads to two identities
relating the multiplicities in c)r M (w ?i) and in gr M {u's^ X). The first [ 4 .3 (v ) j , which is
independent of the conjecture, can be viewed as an analogue of a corresponding identity
relating dim Ext* (M (w ^), L ( w ' 'k)) to dim Ext* (M (ws^ ?i), L (w' 'k)) given w ' s^ < w '
derived in [7], 2.2, and shown there to imply the BGG resolution for L(u;o^). Now
assuming this Jantzen conjecture, a second deeper relation [4.8(iii)] (which has also a
dim Ext* analogue) is obtained and taken together with the first determines the multiplicities
in each filtration step. These multiplicities which can also be specified by the polynomials
P^ ^ (q) are found to be consistent with the Jantzen sum formula ([9], 5.3) obtained from the
determinant of the contravariant form (4.10). At the same time the conjecture is shown to
imply the semisimplicity o f^rM(w^) . It is also noteworthy that we are able to recognize a
Hecke algebra in Jantzen's work (1.10.6 and 3.7).

Finally the Vogan method is used to partially compute
dim Ext^ (M (w ̂ ), M ( w ' X,)). One of the expected relations is obtained precisely (5.2.1),
the second deeper relation, up to an inequality (5.2.3).

We should like to thank D. A. Kazhdan and G. Lusztig for advance knowledge of their
conjecture. One of us (A.J.) benefited from the hospitality of the Sonderforchungsbereich,
Bonn and many stimulating discussions with J.-C. Jantzen. The results of this paper were
presented at a meeting on non-commutative harmonic analysis held in Marseille-Luminy
during 16-20 June 1980. We should also like to thank the referee whose careful reading of
the manuscript eliminated many ambiguities (due to one of us).
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KAZHDAN-LUSZTIG CONJECTURE 263

1. The BGG category over a commutative ring

1.1. SUMMARY. — In the light of the work of Jantzen ([9], Chapt. 5) the indeterminate
present in the Kazhdan-Lusztig conjecture motivates the replacement of the base field by a
commutative ring A. It is therefore natural to try to carry over the notion of the 0 category
of BGG (see [I], [2], [5]) to this situation. This is not entirely straightforward and we felt the
results may be of independent interest. Thus this rather long first section develops in a little
more detail than we actually need most of the natural generalizations. The main results
include: a comparison theory of Ext in various categories (1.5, 1.8.9), its relationship with
r^ cohomology (1.5.8), a change of ring formula (1.6), primary decomposition when A is a
local ring (1.8.4), a comparison of Ext with Ext in specialization when A is a discrete
valuation ring (1.9), and the definition of a symbol (1.10.5) for modules with a p-filtration.

1 . 2. THE CHEVALLEY BASIS.

1.2.1. Define 9, t), R, B as in the introduction. One can choose an involutory
antiautomorphism a of g satisfying a(H)=H for all He I). For each aeR pick a basis
vector X^ in the corresponding root space such that CT(XJ=X_^ and set
H^=[X^, X_J . Let 9j be the additive subgroup of 9 with basis (XJ^R, (HJ^e. Then
9^ 00^ C ^> Q and 9^ is a Lie algebra. Set R'^ = f^J B n R and

^=^ ZH,, n}= ̂  ZX^,, b,=t),©I);
aeB v.eR+

which are Lie subalgebras of 9^.
1.2.2. If A ^0 is any commutative ring and a^ any Lie algebra, we define

OA=A (g) ̂  a^. We shall always assume that A is a Q algebra. Define U (oj to be the
enveloping algebra of a^ and let Z (a^) denote its centre. Let S (aj denote the symmetric
algebra over a^.

1.2.3. Let p be the half sum of the positive roots. For each X, e ̂ , let A^ be the U (^)
module which is A as an A module and in which any H e t) acts through multiplication by
(X, H). Extend A), to a U (bj module by letting Xen^ act by zero. Define the U (9^)
module M (X) :=U (9^) 00u(b ) ^x-p- It is a free rank one U (n^) module with canonical
generator which we denote by i\_ p (or simply, v). It is called a Verma module over U (9^).

1.2.4. Set Q (R) : = Z R. Set a" = 2 a/ (a, a) and define

P ( R ) = { ? l e ^ : ( X , a u ) e Z } .

Define an ordering on P (R) through [i^ v given v — ^ e ^J B.
1.2.5. If M is a U (^) module and n e ̂ , we define

M ^ : = { m e M | Hm=(n, H)m,V He^}

to be its [i weight submodule. In particular [i is called a weight of M if M^O and we
let Q (M) denote the set of all weights of M. For example, Q (M (X)) = K - p - ̂ J B.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



264 0. GABBER AND A. JOSEPH

Define:
M(^)-:=©^M(H,_p.

1.3. THE HARISH-CHANDRAHOMOMORPHISM.

1.3.1. One has c^ = ̂  ® t)A © ̂  ^d all these algebras are free over A. Then by PBW
the A homomorphism u (X) h (x) v ̂  uhv of U (n^) (X) U (l)J ® U (n^) into U (gj is bijective
and we have a direct sum decomposition U (g^) = U (^) © (HA U (g^) + U (g^) ̂  )• Let p

denote the projection of U (g^) onto U (t)^) defined by this decomposition. Define an
automorphism T : U (^) -^ U (^) of A algebras through T (X) = X — p (X) for x e t)^ and set
P'=TP.

1.3.2. Consider U^) as an 1)̂  module through the adjoint action. Since t)^ is
commutative U(^)^S(^)- By taking contragradient action, W acts on ^ and hence
on I)A, D^, S(t)J.

LEMMA. -(i)P(U(gJ,)=0^^0.
(ii) 77^ restriction of? to U (c^)o ls an ^.-algebra homomorphism.
(iii) 77î  restriction of?' to Z (c^) is injective with image S (t)/^.
(i), (ii) follow as in case when A is a field ([6], 7.4.2,7.4.6). For (iii) we apply A 00^ to the

case A=Q, noting the isomorphisms Z(9o, OO^A) ^> Z(g^) and

S (^(8)0 A ̂ 8(1)^.

1.3.3. Extend a to an antiautomorphism ai—>a(a) of U(c^)- Let M be a U(gA)
module. A symmetric bilinear form m x n \—> ^F (m, n) on M with values in a commutative
ring A' is said to be contravariant if ^ (am, n)=^ (m, <j (a) n) for all m, ne M, aeU (c^).

1.3.4. Since <j interchanges n^ and n^" and operates by the identity on U (t)^), it follows
that P((7(z))=P(z) for all zeU(cu). Then ^ (a, b} :=P(o(a) b) is a symmetric
bilinear contravariant form on U (c^) with values in S (l)^).

1.3.5. Vkel)^ then ^ defines an epimorphism e^: S (I)J -> A through ̂  (H) = (X,, H) for
all Het)^. Define an A module homomorphism 1^:\J(^)-^A by X^=^P ' . Set
^: = ^^ [^ ^ which by 1.3.2 (ii) is an algebra homomorphism. As in ([9], 1.5) we obtain:

LEMMA. — For all a e U (9^)? z e Z (9^), m e M (X):
(i) ay-X,(a) i ;eM(X)- .

(ii) zm= X^ (z) m.

1.3.6. COROLLARY. — Set y^(a, b)= X^(a(a) fo). 77i^n ^r^ is a symmetric bilinear
contravariant form on U (g^) M^ values m A. J? defines by passage to the quotient a
contravariant form ̂ \ on M (^).

The first part follows from 1.3.4. Then if aeAnny we have by 1.3.5 (i) that
X; (U(cu )< ; / )= 0 and so ̂  (\J(^),a)=0 as required.

1.3.7. We call ̂ \ the canonical contravariant form defined on M (k). It is determined
uniquely as a contravariant form by the property 3F\ (i\-p, f^-p)= 1.
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KAZHDAN-LUSZTIG CONJECTURE 265

1.4. CATEGORIES.

1.4.1. If C c: ̂  is of the form ̂  + P (R) for some ̂  e ̂ , define Kc' to be the category of
U (9^) modules M such that:

M= ^ M,.
peC-p

Let Kc be the full subcategory of all MeObKc' such that for each meM, U (n^) m is
finitely generated as an A module. Let Kc be the full subcategory of Kc consisting of
modules which are finitely generated over U(c^). For example, if C=?i+P(R), then
M()i)eObKc.

1.4.2. Let A' be any commutative ring and {Jf},ei a family of ideals of A' such that

J ,+J^=A' , whenever i ^ j . Let K be the category of A' modules M=^M,, where
• " ' ' ' - • . ' • • . • • . ' . ' l e i

Mi : = { m e M |VxeJ; , ^ne^ s.t .x"m=0}. Observe that each M, is a A' submodule.

LEMMA. — M e Ob K if and only if for each m e M there exists a finite set F c= I such that for
all x ^ e J i : f eF , one. has n^ef^ satisfying:

]~[^im=0.
ieF

Necessity is clear. Sufficiency is by induction on card F.

1.4.3. Retain the hypotheses of 1.4.2.

• LEMMA. - (i) J/MeObK, then M ̂  ©,^i M,.
(ii) K is closed under subquotients.

(iii) Mi—^M^ is an exact functor on K.

(i) Suppose F c I is finite and 0= ̂  m,: m^eM, . We must show that m^=0. The' • • • - ^p
proof is by induction on card F.

(ii) is an immediate consequence of 1.4.2 (iii) follows from (i), (ii).
Remark. - 1.4.2 and 1.4.3 still hold (and are easier to prove) when we define

M,={meM|J^ .m==0} .

1.4.4. In 1.4.2 and 1.4.3 take A'=U(^) and set J^=Ker e^.

COROLLARY. - If Me Ob Kc', then:
(i) M^©^c-pM^.

(ii) Mi—^M^ 15 an exact functor on Kc'.
(iii) Kc'fs closed under subquotients.
(iv) KC'IS closed under arbitrary direct sums.
It is enough to check that J^ + J^ = U (t)J when ̂ , ̂  are distinct elements of C - p. By

By hypothesis ^i —^ePW-"!^} and so we can find He^ sucrl that
(l^i (H)-H)--(H2(H)-H)=(^i-|^)(H)eZ-{0} (that is an invertible element of A).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



266 0. GABBER AND A. JOSEPH

1.4.5. For each ^ieC, we set Q (p) :=U (gj 0^) A^eObKc'. If M is any U (gj
module, the map/i->/(l (x) 1) of Horn (Q (u,), M) into M ^ _ p is a natural isomorphism of A
modules. Then by 1.4.4 (ii), Q (a) is projective in K^'and by 1.4.4 (iv) each M e Ob K^'is a
quotient of a projective object. Again by 1.4.4 (iii), (iv) it follows that K^'is closed under
direct limits and by 1.4.4 (ii) it follows that Horn (Q (a), -) commutes with direct limits.

1.4.6. LEMMA. - J/MeObKc', then MeObKc if and only if for all meM, there exists
se^ such that(n^)sm=Q.

Sufficiency follows from the fact that n^ and hence (n^)5 is finitely generated
over A. Conversely take meM. By hypothesis N: = U (n^) m is a finitely generated A

module. Then there exists a finite subset F c= C such that N <= ^ M^. Since
^eF-p

X^ M^ c: M^+^ for all oceR^ the assertion follows easily.
1.4.7. COROLLARY. — Kc is closed under subquotients and arbitrary direct sums.
1.4.8. LEMMA. — J/MeObKc, then M is a finitely generated U (n^) module.
This is immediate from U (9^) <^ U (HA ) ® U (t)^) ® U (n^).
1.4.9. LEMMA. — J/M e Ob K^, then M has a finite filtration with quotients isomorphic to

quotients of the M (a): \x e C.
By 1.4.8 we can assume M to be of the form:

i U(nn^_ , , ..EM,,
- 1=1

where we choose the labelling to satisfy i ̂  j => u. ^ u^. Set

F^M^ EU(n^_,.
j= i

For each aeR^ one has X^.eM,.^. If 1^7, then (U(nA)Ui )n+a=0 , for other-
wise we should have |^>H;. It thus follows from 1.4.4 (i) that X^^.eF^1 M. That is
each ¥jM is a U^) module and if we let Vj denote the image of Vj in ¥jM/¥j+l M,
then X^VJ=Q for all aeR^ Hence F^M/F-^M is isomorphic to a quotient
of M (j^.+ p) and { F7 M} 5=0 is the required filtration.

1.4.10. COROLLARY. — J/M G Ob Kc, then each M^ : p, e Q (M) is finitely generated as an
A module.

By 1.4.9 the assertion is reduced to the case M = M (p) [or equivalently for U (n^ )] for
which it holds easily.

1.5. COMPARISON OF Ext IN Kc' AND Kc. — Throughout this section we fix a P(R) coset
C c: t)^. By Ext we mean Ext ^».

1.5.1. Define categories Kc'(b), etc., of U(b^) modules by replacing c^ by b^. It is
immediate that these satisfy assertions analogous to 1.4.4, 1.4.6, 1.4.7, 1.4.8. Again if
[i e C, then Q^ (u) : = U (b^OOu^) A^ _ p is projective in Ob K^ (b) and satisfies the assertions
of l .4 .5 .
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KAZHDAN-LUSZTIG CONJECTURE 267

1.5.2. LEMMA. — Suppose NeOb K^(b) and as a U^) module is a finite direct sum of
some A _ : p^ e C. TTi^n N ^105 a projective resolution (X*, e^) in K '̂ (b) suc^i ?/u^ each X7 is
a finite direct sum of the QJv):veC and satisfies Q(X•/) c Q(N)+ ̂  B.

For each 7 e ̂ , the wedge product A-7 n^ considered as an ̂  module for adjoint action
is a finite direct sum of the A ^ : v e N B . Consider the standard resolution
(Y*, e) : Y^UO^)®^'^) of A as a U«) module. Endow \j with a b^ module
structure by identification with U(t>A)®u(t) ) ^ L j n ^ ' ^PP^Y tne functor R -> R®^N on
U(b^) modules which is exact because N is a free A module to get a resolution (X*, e^)
of N. For any U(^) module M we have a bijection of U^) modules:

U (bA)®U(I)A) (^A N |u(^)) ̂  (U (bA)®U(^) M)®A N,

denned by the universality of the tensor product.
It follows that Xj is isomorphic to the direct sum of the Qb (^ + v) : [i e Q (N), v e Q (A7 n^").
Hence the assertion of the Lemma.
1.5.3. Fix H e C. For each s e ̂  + let Q5 (^i) be the quotient of Q (p) by the submodule L5

with generator (n^ )5 (1 ® 1).
Let M be a U(c^) module. From the surjection QO^-^Q5^) we obtain a

monomorphism:

^ : lim Homu^Q^M) - Hom^(QOi),M).
s

LEMMA. — Suppose Me Ob K^. Then ^ is surjective.
Given (pe Honing )(Q(n),M),setM=(p(l(x)l). Since Me Ob K^ one has by 1.4.6,sef^

such that O^nA^M^cpO^l®!)) and so (p is in the image of ^.
1.5.4. LEMMA. — Suppose MeOb Kc. Then for all s sufficiently large, one has

Ext^Q^M)^: f>0.
Since Q(^i) is projective in K^ we have a surjection

Ext^^L^M) -> Ext^Q'^M).
Let N5 be the U (bj submodule of Q^, (n) with generator (n^ )5 (1 (g) 1). Let (X*, £1) be the
projective resolution ofN5 in Kc'(b) defined through the conclusion of 1.5.2. Since U (c^) is
a free right U^) module we have L^UteJOOud^N5 and (Ute^OOu^)^*' l®6i) ls a

projective resolution of L5 in Kc'. Since MeObKc applying 1.4.9 gives
(Q(NS)+ ^j B) n Q(M)=0, for all 5 sufficiently large. For such a choice of s we have by
1.5.2 that:

Homu^UteA)®^)^ M)^Homu^) (X1, M)=0, for all f^O.

Hence the assertion of the Lemma.
1.5.5. COROLLARY. — Suppose Me Ob K^. Then:

hmExt^Q^M)^, f>0.
s

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPEMEURE



268 0. GABBER AND A. JOSEPH

As in 1.5.4 it follows from 1; 5.2 that Q5 (a) has a projective resolution (Y*, c) in K '̂ such
that each Y-7 is a finite direct sum of the Q(v) : veC.

Choose E, e Ext1 (Q5 (u), M) : i > 0. Since Horn (Q (v), -) commutes with direct limits we
can find a finitely generated submodule M^ of M and ̂  e Ext1 (Q5 (a), M^) such that ^ is the
image of^i under the map Ext^Q^a), MJ -^ Ext^Q^a), M). Now Mi eOb K^, so for
all r sufficiently large we have by 1.5.3 that Ext^Q^a), Mi)=0. From the commuting
square:

Ext^Q^M) ^ ExtWa^M)

Ext^Q^^i^Mi) -^ ExtW^MJ

it follows that the image of ^ in Ext^Q^a), M) is zero, as required.

1.5.5. Let M be any U(g^) module. We denote by T M the unique largest submodule
of M such that rMeObKc'. Given NeObK^, we denote by F( N the unique
largest submodule of N such that T( NeObK^. Fix an injective A module J and for
each MeObK^ consider Hom^(M,J) as a Ute^) module through the action
(a(a).(p) (m)=(p(am),V aeL^Qj, meM. Given (^eC, set I(^i)=T(HomA(Q(u), J)).
Through the natural isomorphism:

Homu^)(M,HomA(Q(H),J))^Homu^)(Q(H),HomA(M,J)),

we obtain for each M e Ob K^' a natural isomorphism:

Homu^)(M,I(H))^HomA(M,_p,J).

Hence I (a) is injective in K^and each M e Ob K^'has an injective hull consisting of a possibly
infinite direct sum of the I (a) : n-peQ(M).

1.5.7. PROPOSITION. — Suppose M, NeOb KC. Let0 ̂ N -> IQ ->1^ -> . . . , be an
injective resolution of^N in K^.

Then:
(i) 0 -> N -> T| IQ -> T| Ii -> . . ., is an injective resolution o/N in K^.
(ii) Ext^(M,N)^Ext^(M,N).
It is standard that the T| 1^ are injective in K^. By definition of Ext and since r\ M = M we

have:

(*) Ext^" (M.N^H^Hon^M, T| 1^)).
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KAZHDAN-LUSZTIG CONJECTURE 269

Now for each (ieC and all i>0, we have:

H'ftTiI^^H^Hon^Q^.TiIJ), by 1.4.5,

^H'dimHon^Q^TiI^), by 1.5.3,
s

^lim H^Hon^Q^i^ri IJ), by exactness of direct limit, .
s

S Urn Exf (Q5^), N), applying (*) to M = Q5 (^i),
S

=0, by 1.5.5.

Hence (i). Combined with (*) we obtain (ii).
1.5.8. Given JST e Ob K '̂, then H* (n^, N) is by the standard complex a semisimple U (^)

module with weights in C — p . Furthermore:

LEMMA. — For all^eC, one has:

Ext*(M^),N)^H*(n^,N),_p. '

Set Y-^U^b^OOu^ ^^A^^A^-p. Then (Y*,c) is a projective resolution o f A ^ _ p
[considered as a U(b^) module by letting XenA act by scalars] in Kc'(b). It follows that
(U(QA)®U(I) )Y*» I®8) l s a projective resolution of M(^) in K '̂ and since:

Homu(^(U(gJ®u^)Y^N)^H O mu(l)A)<A*nA®AA,-p,N),- • •
^H*(n;,N),_p,: ' -

the required assertion follows easily.

1.6. CHANGE OF RINGS

1.6.1. Let (p : A -> A be a homomorphism of (non-zero) Q algebras. Fix a P (R) coset C
in J^A and let C be its image in t)^. Since A®^^^) -^ ^(9^)5 the functor k , /

M ^ T M . = U ( n A ) O O u ( ^ , M - t : • • . „ . - .- : , ;

sends K^ to K^ and the forgetful functor M l — ) > T / M : = M | u ( g ) , sends K^ to K^. The map

- ^o : Homu^(TM,N) ^ Homu^^M^'N) -

defined by t^ (/) = (m i-̂ - / (1 ®m)) is an isomorphism of A modules. Since T is right exact,
it follows that if P is projective in K^', then TP is projective in K^.

1.6.2. Let (X*, s) be a projective resolution: of Me Ob K^. By 1.6.1, TX* is a
projective complex over TM. If(X*,^) is a resolution in K^ ofTM then [4], Prop. 11, p. 76,
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F* ~
there exists a map TX* -> X* of complexes such that:

, -TX*:——^—- X*

' .\ /<
TM

commutes and furthermore any two such F* are homotopic. We take (X*, e) to be a
projective resolution of TM. Then for each N e Ob K^ the map Horn (F*, N) of complexes
Hom(X*, N) ̂  Hom(TX*, N) gives on taking cohomology a map

t, : Ext^(TM,N) ^ H^HomCrX^N)) ̂  H^Hom (X*, TN))=Ext^(M, TN).

One checks that the map ^ is independent of the projective resolution taken and is natural.

LEMMA. — If M or A is aflat A module, then ^ is an isomorphism of A modules.
It is enough to show that either hypothesis implies that (TX*, Tc) is acyclic. Let Q be

projective in K^. We show that Q is A projective. Since both c^ 2in(^ ^A are ̂ ree ̂  modules
it follows from PBW that Q(u) : peC is a free A module. By 1.4.5 Q is an image (and
hence a direct summand) of a suitable direct sum of the Q(u) : [ieC. Hence Q is A
projective. It follows that (X*, e) is also a projective resolution of M in the category of A
modules, so the f-th homology of TX* is Torf(M,A). The latter vanishes if f > 0 and if
either M or A is A flat.

1.7. SIMPLE MODULES. — Fix ^e^ and set C==^+P(R).
1.7.1. LEMMA. — Suppose ^et)^:
(i) J/N c M(u) is a maximal submodule, then there exists a unique maximal ideal m c= A

such that mM(u) c: N.
(ii) If m c A is a maximal ideal, there exists a unique maximal submodule N o/M(u) such

that mM(u) c= N.
(i) Set L=M(^i)/N. As L^O, the image v ofi^.pin L is non-zero, so L^_p^0 . By the

exactness of the functor M ̂  M^_ p in Kc', it follows that L^_ p is the image of M^_ p and so
equals A v. Pick m => Ann^ v maximal. Then A v ̂  A/Ann^ v and mv <^ m/Ann^ v, so
mv^Av. Hence mL^L, so m L = 0 because L is simple. This proves existence.
Uniqueness is obvious.

(ii) One has (mM(^i) )^_p=mi^_p ^Ai^_p.
Thus m M(u) is a proper submodule. Because M(u) is finitely generated, m M(u) is

contained in a maximal submodule N. By the maximality of mi^_ p as an A submodule of
Ai^_p it follows that N^_p=mi^-p. From this property, the uniqueness of N follows
easily.

1.7.2. If u e C and m <= A is a maximal ideal, we let M (m, u)' denote the unique maximal
submodule of M (a) containing m M (u) and set L (m, u) = M (n)/M (m, u)'. If A is a local
ring, we simply write M(u)' and L(u).

46 SEftlE - TOME 14 - 1981 - N° 3



KAZHDAN-LUSZTIG CONJECTURE 271

1.7.3. LEMMA. — In KC, every simple module L is isomorphic to some L(m, \i) with
(m, ^i)e Max A x C, anrf ̂  pair (m, ^i) fs uniquely determined by L.

Obviously L e Ob Kc and so L is isomorphic by 1.4.9 to a simple quotient of some
M (^i) : 41 e C. By 1.7.1 one further has L ̂  L (m, ^i) for some m e Max A. Finally note
that p, is the unique maximal element of Q(L) and m=Ann^ L(m, ^i).

1.7.4. If Dc: C we let K^ (resp. K^) denote the full subcategory of Kc(resp. Kc)
consisting of all those modules whose simple subquotients are amongst the
L (m, n) : (m, \i) e Max A x D.

1.7.5. LEMMA. — Suppose Dc=C. Then:
(i) KD is closed under subquotients.

(ii) J/ M e Ob Kc ̂  M = ̂  M, : M; e Ob K^, t^n M e Ob K^.
ie I

(i) Follows from the definition and 1.4.7. If F is a subset of I, set Mp= ^ M^. Let
ieF

NicN^crM be submodules of M with N^/N^ simple. Given ueN^Ni, choose F<=I
finite such that veMy. Then N^ nMp^N^ nMp and we assume F minimal with this
property. Choose f e F and set F'=F\{ i}. Then N^ n Mp^N^ n Mp' and so by the
Zassenhaus Lemma, N^/N^ is isomorphic to a simple subquotient of M,. Hence (ii).

1.7.6. LEMMA. - If 0->Mi -^M-^M^ ̂ 0 is an exact sequence in K^ and M^,
M^ e Ob KD, for some D c C, then M e Ob K^.

By 1.4.6 it is obvious that M e Ob Kc. Now let N^ c= N^ c M be submodules of M with
N^/NI simple. Through the Zassenhaus Lemma N^/N^ is a subquotient of either M^ or of
M2andso MeObK^.

1.8. PRIMARY DECOMPOSITION.

1.8.1. In this subsection we assume that A is a local ring with m its unique maximal ideal
and k=A/m its residue field. For any A module M we denote by m\->m the canonical
projection (specialization) M -> M /m M. Identify ̂  /m ̂  with ̂ . Recall that the Weyl
group W acts on ̂  and observe that w\=w\, for all weW, ^el)^. Given j^e^, set
R^ = { a e R : 2 (a, ̂ )/(a, a) e Z }. This is itself a root system with Weyl group W^-generated
by the s^ : aeR^.

LEMMA [3]. - W ^ = { w e W :w^-^eQ(R)}.

1.8.2 Fix ^ie^ and set C=^i+P(R). Call D a Mock if D : = [^ : KeD} is a W
orbit. Since ^-(IeP(R) for all ?ieC, it follows that D is also a W^ orbit.

LEMMA. — Let D be a block. Then there exists ^-e^, vemh^ such that:
(i) s^-^eZa,/or a« oceR,,.

(ii) D=W^+v.
(i) Let AW denote the semidirect product W xi Q(R). Define an action of AW on ̂

through (w, ^) T|=WT|+^. Pick X^eD and let AW(^i) denote the stabilizer of ^ in
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AW. By 1.8.1, projection onto the first factor gives an isomorphism AW (^ -) ̂  W,,. . Set:

^=——————^— y ^ ^^ v='k i — X .
Card AW (^J^^

By construction ^=X- i and so vem^. Again for all 3;eAW(X,i) one has y ' k = ' k . By
1.8.1, this gives (i).

(ii) Take ^eD and define 'k as in (i). Pick ^eD. By definition of a block,
^-^^(R) and there exists weW^ such that w^=^- Set ^I^^^Y-

Then V^ == w ?i = wk i. Again ̂  = ̂  ̂  - ̂  + ̂ i where we have w ̂  - 'k e Q (R) [since it is
modulo m and trivially w^-'keQ (R)]. Now for fixed w e W^ there is at most one element
of ̂  + P (R) equal to w'k modulo m. Hence ̂  = ̂ 2 e ̂  ̂  + v? as required.

1.8.3. LEMMA (notation 1.3.5). — Suppose ^, ^ieC are contained in distinct
blocks. T^nKer^+Ker^=Z(gJ.

Consider ?i, ^ as elements ofl)^. The hypothesis implies that Ker ̂ , Ker ̂  are distinct
, maximal ideals ofZ(^). Hence Ker ̂  + Ker ̂  + m Z (gj = Z (9^). It follows that we can
choose zeKer ̂  such that ^(z) =1. Since A is local ring, ^(z) is a unit in A. Hence
X^Ker Xp)=A and so Ker x,+Ker ^=Z(gJ.

1.8.4. Let D c: C be a block and set JD = Fl Ker ̂ . Given M a U (gj module define
?.eD

MD with respect to J^ as in 1.4.2. We call M^ the primary component of M with respect to

the block D. Observe that C== -LLD,, that is C is a countable disjoint union of its distinct
ie I

blocks. When D=D, we simply write J,, M, for Jo, MD.

PROPOSITION (primary decomposition). - Given MeObK^ then M=©^M,. All but
finitely many Mi are zero if Me ObK^.

Take A'=Z(aJ in 1.4.2. By 1.8.3 the J, satisfy J,+J,.=A' i f f ^7. Then by 1.4.2 and
1.4.3 it is enough to prove the second assertion, that is to show that M e Ob K^ satisfies the
hypothesis of 1.4.2. This follows easily from 1.4.9 and 1.3.5 (ii).

1.8.5. COROLLARY (notation 1.7.4). - Let Dc=C be a block. Then:
(i) MeObK^oMeObKc and M=MD.

(ii) M e Ob KD <^M e Ob Kc and J^ M = 0, for all s sufficiently large.
For (i) it suffices to show that if 0 7^ M = M^ then it admits a simple factor L e Ob K^. It is

enough to take M finitely generated and then the assertion follows from 1.4.9 and
1.7.1. Then (ii) follows from (i), 1.4.9 and 1.3.5 (ii).

1.8.6. Let D c: C be a block. By 1.8.4,1.8.5 we have a functor F^ : K^ -^ K^ defined by
primary decomposition. It is exact on K^. If M e Ob K^, then F^ M e Ob K^.

1.8.7. LEMMA. - For each ?ieC, DcC the module F^Q'Pi) is independent of s for s
sufficiently large.
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Since F^ is exact it is enough to show that FD(QS+t(^)/QS(^))=0, for all teN and 5
sufficiently large. Now the |^eC, in the conclusion of 1.4.9 applied to Q^^VQ5^),
clearly lie in the set ^ + s B + ^J B. If D is fixed, then D n (k + s B + ^J B) = 0, for s suffi-
ciently large. In fact it is enough to prove the corresponding statement in k and this
is well-known. By 1 . 3 . 5 (ii) it establishes the required assertion.

1.8.8. Given ?ieC, Dc=C we set Q(?i, D)= lim F^Q5^) (which is defined by
s-»'oo

1.8.7). ThenQ(?i,D)eObKD.
1.8.9. Fix ^eC, DcC and recall once again that A is a local ring.

PROPOSITION. — (i) If MeObKc one has a natural isomorphism of A modules
Homu^(Q(^D),M)^(M^.

(ii) Q (^, D) is projective in K^, and every M e Ob K^ (resp. Ob K^) is the image of a direct
sum (resp. finite direct sum) of the Q(^, D).

(iii) Ext*^ (M, N) ̂  Ext^ (M, N), for all M, N e Ob Kc.

(i) Horn (Q(X,D) ,M)^ Horn (limFDQ^M), by definition,
s

^limHom(FD Q5^), M), by exactness of direct limits,
s

^limHon^Q^FDM), by 1.8.6,
s

^Hom(Q(?i),Fi,M), by 1.5.3,

^(M^, by 1.4.5.

The first part of(ii) follows froiri (i). The second part by 1.4.9 and 1.8.7. (iii) follows
from (ii).

1.9. COMPARISON OF Ext W^tH Ext IN SPECIALIZATION.

1.9.1. In this subsection we assume that A is a discrete valuation ring over Q. Let 71 e A
be a generator of the maximal ideal, k = A/TT A and ^ ̂  ?i denote specialization. Fix a P (R)
coset C c= ̂ . By Ext* we shall mean Ext^ [cf. 1.5.7 (ii), 1.8.8 (iii)]. By Ext* we shall
mean Ext^ (where C denotes the image of C in t)*).

1.9.2. Call ^et)* dominant (resp. regular) if (?i, a)^0 [resp. (^, a)^0] for all
aeR^ : =R^nR + . Suppose ^e^, l e N , and define differential operators
a^cEnd^S^) by identification of coefficients of t1 (t an indeterminate) in the expression
(notation 1.3.5):

ey^^x)=^tle^(x)\ ye^ xeS(^).
1=0

1.9.3. LEMMA. — J/^et)* is regular and O^zet)*, then there exists x€S(t)^ such that
^-(x))^0.
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We can take:

x= ̂  wy,

for some ^eS^) and then we require that:

Z ̂ (W^o.
W6W

Set J^=Ker ^-^, which is a maximal ideal of 8(1)^). Since ^ is regular, the points
{w'^^^aredistinctandsoJ^+J^^l^yw^w'. Nowthemap/^ : (pi-^-^(^-i;((p))
of S (t)J to fe is non-zero and vanishes on J^,. Then by say 1.4.3 we can choose ye S (t)J so
that all but one of the numbers f^(y) : weW vanish.

1.9.4. Let DcC be a block. By 1.8.2 we can write D=W^+VTI for some ^,
v e ̂ . A block is called semi-regular if the stabilizer of v in W^ is trivial and called regular if
in addition ^ is regular. Observe that if D c C is semi-regular, then every sub-block of C is
semi-regular.

Example. - Take A=C[r]^ and ?i, ^>et)*. Set ?i=?i(x)l , 8=8®1 and take
C = 'k + 61 + P (R). Then D = W^ + 81 c= C is semi-regular if 8 is regular and regular if both
^, 8 are regular.

LEMMA. — Let D be a semi-regular block. J/^i, ̂ E^ are distinct, then there exists
xeS(t)^ such that e^ (x)^e^ (x).

If ^ M=^ Qc) tor all xeS^^ then ^2=w^l ^OT some i^eW. Write
^^=W^+TCV : w^.eW^, f = l , 2. Then w^ ' 1 7c(wv—v)=W2' 1 wwi^-^eQ(R) and so both
sides must vanish. It follows that w v — v = 0 and w e W^. By semi-regularity w = 1 and so
X,=^. ^ " s ' •

1.9.5. PROPOSITION. — Let DczC be a regular (resp. semi-regular) block. Suppose ^4,
^2 e D are distinct and set J = Ker 7^ + Ker 7^. TTz^n /or a// j e ̂ ;

(i) 7i eJ (r^sp. Ti^eJ : ( sufficiently large).
(ii) Ext^M^i), N1(^2)) is annihilated by K (resp. n1 : I sufficiently large).
(iii) Hom(M(?ii), M(^))=0.
(iv) J/D is regular, there is a short exact sequence ofk modules:

0 -> Ext^M^i), M(^)) -^ Ext7 (M(?ii), M^^)) -^ Ext^1 (M(^), M(^)) -^ 0.

(i) IfzeZ(gJ,then:

(z - ̂  (z)) - (z - X., ̂ )) = X., (^ - ̂  (^) = ̂  (P' 00) - ̂  (P' (^)-

By 1.3.2 (ii) it is then enough to show that n = (e^ (x) - e^ (x)) u [resp. n1 = (e^ (x) — e^ (x))u :
I sufficiently large] for some unit u e A and some x e S (1 )̂̂  Thus the assertion for D semi-
regular follows from 1.9.4. For D regular we write ̂  = w^ 'k + TTV, ^2 = w! ̂  + Kv' Then
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setting v^=wi~ 1 v : f = = 1, 2 and using the W in variance of x, we obtain:
00

e^(x)-^W=e^^(x)-e^^(x) = ̂  Kl^(9[[)(x)-9w(x)).
1=0

It hence remains to show that e^(9^ _^ (x))^0. Now ^^—v^=w^l^—w^lv^Q, by the
hypothesis of regularity. Then since X- is regular the required assertion follows from 1.9.3.

(ii) Let M, NeObKc'. Take a projective resolution (X*, c) of M. The terms
Hom^g )(X-7, N) admit a Z(g^) module structure coming either from the action ofZ(c^) on
X7, or on N. Thus Ext7 (M, N) is a Z (g^) module, where the Z (c^) action is the one defined
by functoriality of Ext7 using the Z (9^) action on M or on N. By 1.3.5 (ii), Ker ̂  acts by
zero on M(^) : i= 1, 2. Hence J annihilates Ext-^M, N) and so (ii) follows from (i).

To prove (iii), (iv), consider the short exact sequence:

0 -^ M (?4) -^ M (?4) -^ M (^2) -^ 0,

in K^. This given an injection:

0-^Hom(M(?4), M(^))^Hom(M(?ii), M(^))

and so (ii) implies (iii). Again if D is regular, then the long exact sequence for Ext7 (M (X-i),
— ) decomposes by (ii) into short exact sequences:

0 -> Ext^M^i), M(^)) -^ Ext^M^i), M(^)) ̂  Ext^1 (M(^), M(^)) ̂  0

of A modules and hence, by (ii) again, of k modules. Now M (^i) is a free A module and so
taking (p to be specialization in 1.6.2 we can replace the middle term by Ext^M^i),
M^)). Hence (iv).

1.9.6. LEMMA. - Let D, D'cC be distinct blocks. Then:
(i) Ext*(M, N)=0/or all MeObK^, NeObK^.

(ii) For eachjeN, Ext^M, N) : M, NeObK^ is a finitely generated A module.
(i) As in 1.9.5 (ii) this follows from 1.8.3 on taking account of the action of Z (g^) on

Ext* (M, N). Since any discrete valuation ring is Noetherian, (ii) follows from 1.4.10 and
1.8.9.

1.9.7. COROLLARY. - Suppose Ext7 (M (^ M (I^)) = 0,/or some ̂ , ̂  e CJ e ^J. Then
Ext^M^M^))^.

The short exact sequence Q->M{^)-^M(^)->M(k^->0, gives the long exact
sequence:

-.Ext^M^i), M^^Ext^M^i), M^^Ext^M^), M(^))->.

Under the hypothesis and 1.5.2, it follows that n is surjective. The assertion then follows
from 1.9.6 (ii) and Nakayama's Lemma.
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1.9.8. Let D be a regular block. Then 1.9.5 and 1.9.7 reduce the determination of
Ext*(M(?4, M(^)) ; ^i, ̂ eD as an A module to the determination of Ext* (M(XJ,
M (^2)) as a k vector space. In 5.2 we shall show how to get quite precise information on the
latter. For the moment we note that 1.9.5, 1.9.7 can be used with ([6], 7.6.23) to
determine Ext1 (M (?4), M (^)).

When Homu^)(M(^), M(^2))^0 we write Ii<^- By ([6], 7.6.23)< is a partial
ordering on C.

LEMMA. — Let Dc=C be a regular block. For each \^, ̂ eD one has:

dimExt^M^.M^))^15 ^17^2; ^1<^v \ ih \ in ^ otherwise.

Suppose ?4=^. By 1.9.5 (iii) one has Horn (M(^i), M(^))=0. Then by 1.9.5(iv)
with 7=0, we obtain the required conclusions. If ^1=^2, apply 1.9.7 observing the
obvious fact that Ext^M^i), M(^i))=0.

1.9.9. The Lemma fails for non-regular blocks; but we still have vanishing. This follows
from the corresponding result in specialization (c/. [5], Thm. 4) and 1.9.7.

LEMMA. — Let Dc=C be a block. For each X^ , X^eD and allj>Q one has:

Ext^M^i), M(^))=0 unless K^^ and Ii<<^2.

1.10. MODULES WITH A P-FILTRATION. — We assume from now on the hypotheses of 1.9 on
A. "" : ' ' " ' :

1.10.1. Fix a P (R) coset C and take M e Ob K^. A p-filtration of M (if it exists) is a finite
decreasing filtration {F^M}5.^ with factors isomorphic to Verma modules. Given an
exact sequence 0 -> M' -> M -> M (^i) -> 0 we obtain an exact sequence:

Torf (k, M (^i)) -^ k (x^ M' ̂  k ®^ M -> k ®^ M (^i) ̂  0.

Since M(^i) is A free, the term on the extreme left is zero. Again one has
k (x)^ M (p,) ̂  M (p,). Thus if M admits a p-filtration, so does k (x)^ M. Fix a p-filtration of
M and let [M : M(p,)] : \xeC denote the number of factors isomorphic to M(^i).

From our previous observation [k(x)^M : M(^i)]=[M : M(^i)]. Now given (A^, ^^C
onehasHi—^eP(R)andso(Ai ==[i^ifsindon\y[i^=[i^. Hence [M : M (^i)] is independent
of the p-filtration chosen, since this result holds for a field ([I], Sect. 6).

1.10.2. Let E be a finite dimensional simple U(g) module. Let O ^ r e E be a highest
weight vector and set E^=U(gz) v. One has Ez=U(n^) v and since (n^)1 v=Q for all /
sufficiently large, it follows that E^ is a-finitely generated torsion free and hence free Z
module. Then E^ : = A (x)^ E^ is a free A module of rank equal to dim E, Since A ̂  A** as
an A module, E^E^*.
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1.10.3. Let K'" denote the category of all U (gj modules. Given M e Ob K'", we define
EA®AM e o b K / / / through the diagonal action of U(gJ and let Gg denote the functor
M \-> EA ®A M • since Q (KA) c p (R) one has ̂  M e ob ̂ c whenever M e Ob K^.

LEMMA. — J/MeObK^ admits a p-filtration, then so does GgM.
Since Og is exact, it suffices to prove to the assertion when M ̂  M (^i). This obtains exactly

as in [6], 7.6.14.
1.10.4. Suppose M e Ob Kc admits a p-filtration. If M = Mi © M2, then

M.eObKc : f = l , 2 admit p-filtrations because any Verma module is
indecomposable. Now suppose that M itself is indecomposable. By primary
decomposition (1.8.4) it follows that M e Ob K^ for some block D c= C. Recall that the
map ̂ ^ 'k of D to D is injective and define a partial order << on D through X-i << K^ given
^<<?i2- By 1.9.9 we obtain the:

LEMMA. - Suppose MeObK^ admits a p-filtration. Then M admits a finite filtration
{F^M}^! such that F^M/F1^ M^M^)"' : n^e^ with the ^ pairwise distinct and
satisfying X-^ 'kj=>i>j.

1.10.5. In the remainder of section 1.10 we assume that the blocks of C are all semi-
regular (1.9.4). Let DcC be a (semi-regular) block. We can write D=W^+TIV for
some ^, v e t)A and we let W(k) denote the stabilizer of ^ in W (equivalently in W,,). To a
module M e Ob K^ with a p-filtration and equipped with a non-degenerate contravariant
form ^ we associate a symbol p(M, ^')eM [71, TI'^W^/W^) defined as follows. Let
{F'M}^! be a p-filtration of M satisfying the conclusion of 1.10.4 and set
^=W^+TIV. By 1.9.9 each factor F'M/F^M is a direct sum of n, copies of
M (w^ + Tiv) and we denote their canonical generators by v^ y : r = 1, 2, . . . , n,. By 1.9.5
(ii) we can choose I sufficiently large so that Tr^F'M is a direct sum of the Verma modules
M(w^+7rv) :j^i. This allows us to choose ^.eF'M, i^eF^M such that
v^ : ^^Tr"1!;^ is a canonical generator for M(w,X+7iv) and a representative of v^.
Since the X, are pairwise distinct it follows from 1.9.5 (ii) that the A module V, generated
by the v^ is uniquely determined by the following properties. One, V, is a free A submodule
ofjc '^F1 M of rank n,. Two, each veV, is a highest weight vector of weight ̂ - p. Three,
the image of V, in re"1 F ' M / n ' 1 F14'1 M is just the A submodule generated by the
v^ :r= 1,2, .. . ,n,. The form ^ extends to n~1 F'M and we consider its restriction to
V;. Let us show that this restriction is non-degenerate. Set II = {n1:1 e N}. It suffices to
show that Tr1]^®!!"1^! (^)"' is an orthogonal direct sum for ^ ' . By contravariance
it is enough to consider the restriction of ^ to weight subspaces. Suppose u belongs to a
highest weight subspace of M^y' and v to a weight space of M^)^ : ^•^^i having the-
same weight. The latter cannot be a highest weight space and so there exists a e U (n^ )^-^
such that v=av' for some highest weight vector i/eM^y^.Then a (a) u=Q and so
Q=^'{<J{a)u,v')=^(u,avr)=^'(u,v}. We conclude that ^(K, M^)"')^ and so
^(M(^y\ M(^)"Q=0, as required.

We can now define the symbol p (M, ^f). Since A is a principal ideal domain and in fact
every ideal of A has the form (n1) : I e I^J, we can choose bases { x^}, { y ^ } (see [9], 5.1 for
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example) for V\. such that:

^(^Vis)-
71 ,̂ r=s,
0, r^s,

with m^e Z. We define:

pM,^)=^nmirWi.
i, r

1.10.6. Let E be a finite dimensional simple U (g) module. Since E is a simple quotient of
a Verma module it inherits a non-degenerate contravariant form from the canonical
contra variant form defined (1.3.7) on the latter. This form restricts to E^ and extends to a
non-degenerate contravariant form ^ F ' on E^. Now suppose M e Ob K^ has a ^-filtration
and is equipped with some non-degenerate contravariant form ̂ . Then ^ ' (x) ^ is defined
as a non-degenerate contravariant form on E^®A^' ^Y contra variance, primary
decomposition (1.8.6) is an orthogonal direct sum with respect to ^ F ' (x) ^F and so we obtain
a non-degenerate contravariant ^\ on each primary component M^ by restriction. Since
each M, admits a ^-filtration, the symbol ^(M,, ̂ ) is defined. A basic problem is to
compute the p(M^, ^\) from j?(M, ^). A formula ofJantzen ([8], Sect. 5, formula for a^)
does just this in certain "multiplicity free" cases. It leads to operators defining a Hecke
algebra—a fact which we believe to be the key to understanding the Kazhdan-Lusztig
conjecture. Let 6 be some product of the Og and F^. When ^ defined on 9 M (w \) obtains
from the canonical contravariant form on the Verma module M (w 'k) by applying the above
procedure we simply write p(QM(w^)) for p(QM(w^), ̂ ).

1.10.7. For any ^ e C we consider (as in 1.2.3) A^_ p as a U (b^) module. Let N be a
11(5 )̂ module admitting a finite filtration with factors amongst the A ^ _ p : ̂ eC. Since
U^) is a free right U(b^) module M : =U(gA) ®u(b )N admits a p-filtration with factors
amongst the M (X) : ^ e C. In particular Q5 {K) (notation 1.5.3) admits a p-filtration and by
1.8.7 so does Q (^, D) for any block D c= C. Then by 1.8.9 every module projective in K^
admits a p-filtration. Now choose ^eC so that ^ is dominant and let Q be the projective
cover of M(?i) in Kc. By 1.9.9 and the above, one has Ext^M^), Q)=0 and so
Q^M(X-). Thus M(^) is projective and so is O^M^) for any finite dimension simple
module E. By [6], 7.6.14 which extends easy to the present situation it follows that every
indecomposable module projective in K^ is a direct summand of the DgM(X-) : ̂ eC, K
dominant and E finite dimensional. Again by 1.10.4, 9g M (^) has a p-filtration and by [6],
7.6.14 [OE M (^) : M (n)] = dim E^_ ^ for all X, [i e C. Assuming ^ dominant implies M (|^)
projective and hence the

LEMMA. — For all ^, [ieC : p dominant, one has an isomorphism Hom^g )(M(|^),
9EM(?i))^(EJ^ of A modules.

1.10.8 . Take XeC and set Z(^) := {z-^(z) : zeZ^)}. By 1.3.5 we have
Ann M (k) ̂  U (c^) Z (k) and we show that equality holds. Let Jf denote the image in U (g)
of the harmonic elements of S(g). One has U(g)=Z(Q) g^ Jf ([6], 8.2.4). Let { JT1}
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denote the filtration of JT which derives from the canonical filtration { U1 (g)} of U (g). By
([6], 8.4.3) Jf acts faithfully on M(X,). Choose teN such that (ad (n~)g=0. An
elementary argument shows that a\Jti(n~)v=Q : aeU1^) implies aU(n~)y=0 . Hence
JT acts faithfully on HomJU^n-)^ U^14'1^-)^). It follows that the free finitely
generated A module jr1®^ acts faithfully on the free finitely generated A module
HomAOJ^nA^, ̂ ^^^(n^v) and so Jf(x),A acts faithfully on M(?i).

Since U (9^) = U (9^) Z (X) © (Jf (g) ̂  A) this proves the required equality. Thus
U (X,) : = U (c^)/Ann M (X) is a free A module. Furthermore considered as a U (g^) module
for adjoint action it is a direct sum of the EA and by Kostanfs Theorem ([6], 8.3.11) we
obtain the

LEMMA. - For each X, G C one has an isomorphism Homy^) (EA, U (X)) ̂ (EA% of A modules.
1.10.9. We extend to case of a ring a result of Bernstein and Gelfand [2], 3.5. Let K^ '

denote the full subcategory of all M e Ob K" ' satisfying Z (k) M = 0, and Og (k) the restriction
of 9g to K^''. Call a functor K^ / -> K" ' a projective ̂ -functor if it is isomorphic to a direct
summand of Og^) for some finite dimensional U(g) module E.

1.10.10. Let 61, 62 be projective X-functors. Define a homomorphism:

i, : Hom(9i, 92)^Hom(9iM(X), O^M^)),

via I\((P)=(PM(?I) where (p^) : 61 M (^) »-> 62 M (?i) is the value of the functor morphism
(p : 611-^62 on M(k).

Consider EA(>OAU(?I) (notation 1.10.9) as a left U(9A) module and a right U(^)
module through (e®u}v=e®uv and X{e®u)=X e®u-}-e^X u for all Xec^ <-^EA,
M, r e U (^). As in the case of a field ([2], 3.5) we obtain the:

PROPOSITION. — Ifk is dominant, then i\ is an isomorphism.
As in ([2], 3.5) it is enough to prove the assertion for 61 = Og (K), 62 = 6^ (X,) with E, E' finite

dimensional simple U (9) modules. Now:

Homu^(9E M(?i), 9^ M(?i))^Homu^(M(?i),(E^®AEA)®AM(^)),

S(E^®AEA)O, by 1.10.7,
^Horn^EA^^U^)), by 1.10.8,

^Hom^(EA,EA(x)AU(^
^Homu^_u(x)(EA®AU(X),EA®AU(^)), by ([2], 2.2),

^Hom(9E(X),M^)), by ([2], 1.3),

since obviously OE M^EA®AU(^)®u(X)M. for a11 Me Ob K^''.

2. The Kazhdan-Lusztig polynomials

2.1. Let W be a Weyl group with generating set S and length function l(.). Following
Kazhdan and Lusztig [10] we define for each x, y e W a polynomial R^ y in an indeterminate q
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through the following relations valid for all s eS:

<•' R". •<'"-{ O,1 ' ot̂ ,

.... „ . ^ f ^sy(q\ l(y)^l(sx)=l(x}+l(sy\
{ ) x f y { q ) [(^-1)R,,^)+^R^^), otherwise.

Let ^ denote the matrix with entries R^y. Then ^(1) is the identity matrix and
R^ y ̂  0 o x ̂  y , that is ̂  is upper triangular (with respect to a basis {x"J of C W satisfying
Xi-^Xj => i<j) with ones on the diagonal. We call such a matrix unipotent. Let prime
denote differentiation. For the choice of the set of positive roots R+ defined with respect
to S one has for all xeW, oceR'^ that l(s^x)>x o x~1 oceR".

2.2. LEMMA. — For each x, yeW one has:

/ i ^ f 1 ' y^8^^ oceR4 ', ;(s^x)>x,
xfy \ 0, otherwise.

The proof is by induction on l (y ) . By (i) it holds if l(y)=Q. Noting that R^ ^y( l )=0
unless x=y, (ii) gives:

(^ p, .i.J^.^1)- l(y)+l{sx)=l(sy)+l(x\
xfy [ R;^(1)+R^(1), otherwise.

Assume l(y)>l(sy). I fR^^( l )^0 , then x=sy [which implies that l(x)<l(sx)] and so
R^ ,y(l)=0. Then (*) gives the assertion for R^y y(l) . Now assume x^sy. Then
Rx, y (1) = Rsjc, sy (1) ̂ d by the induction hypothesis the right hand side equals 1 if and only if
sy=s^sx for some oceR'^ such that (sx)~1 aeR'^. Yet y=ss^sx=s^x and saeR"^ (for
otherwise s=s^ and x=sy) and x~ 1 (s a)eR+ which proves the assertion in general.

2.3. For each x, j^eW, set S^y(q)=q(l(x)~^y))/2 R^y(q) and write <?=^ 2 ,
p = t —1~1. From the defining relations for R^ y it follows that each S^ y is polynomial in p
and that the matrix y with entries S^ y is unipotent. Then ^~ : = log ̂  is defined and has
entries polynomial in p. From the definition ([6], 2.1(i)) of ^ one has that
y(p)<y(—p)=U and so ^~(p)-}-^~(—p)=Q. Hence we may write in a unique fashion
^~(p)=i^(t)—i^(t~1} where V is a strictly upper triangular matrix with entries polynomial
in t. Define strictly upper triangular matrices ^(l) : ie^J with entries polynomial in t
induct! vely though i^^^i^ and:

exp(-r ( l )(o--r ( i )(^- l))=exp-^ ( l- l )(Qexp(-r ( l- l )(o--r ( l- l )(?- l))exp /r ( l- l )(^- l).
(Note that by Baker-Campbell-Hausdorffthe right-hand side takes the form exp °£ where by
triangularity °£ has entries polynomial in t, t~1 and satisfies ̂ (t)= -^(r~1).) Eventually
y<^=0 and we set j?=exp i^(l) exp ^(2). . .exp ̂ 0) which is a unipotent matrix with
entries Q, , polynomial in t. By construction ^ ( p ) = ^ { t ) ( ^ ( t ~ 1 ) )" l and ^ ( r ) is uniquely
determined by this relation and the requirement that it be polynomial in t with Q^ , ( 1 )=^ 1,
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Vx6=W. Thus the expressions P ^ y ( t ) : ^t1^-1^ Q^y(t~1) are polynomial in r, r ~ 1 of
degree ^f(y)-J(x), satisfy P^(l)=l, xeW and the relation:

(*) P^^-^^^^E^^R.^^P^to).
; : . . : : ' 26W

By the construction these properties determine the matrix ^ with entries P- ,.{q}
completely. From the last relation P ^ y is polynomial in q and coincides with the
polynomial defined through ([10], 2.2 c).

LEMMA. — For all x, ^eW, one has:

2P^(l)=(l(y)-l(x))P^(l)- E R^(1)P^(1).
Z£W

Differentiate (*) and apply 2.2.

3. Operators of coherent continuation

3.1. We work from now on in the context of example 1.9.4. ThatiswetakeA=C[r](o
and X-, 8 e I)* regular with C = ̂  + 8^ + P (R). (For convenience the bars have been omitted
and we identify ^ with ^(x)l.) Then the blocks ofC are at least semi-regular. Assume
further t h a t — ^ is dominant.

3.2. For each [ie t)* define R^, W^ as in 1.8.1. Set R^" =R+ n R^ and let B^cR^ be a
set of simple roots. Set S^ = { ̂  : a e B^}. We view the pair (W^, S^) as a Coxeter group
and define the length function and Bruhat ordering accordingly. Let w^ be the unique
maximal element of W^.

3.3. Given v e P (R), let E (v) denote the unique up to isomorphism simple U (9) module
with extreme weight v. Now recall that for each a e B^ we can choose v^ e P (R) such that
— ^ + v ^ is dominant and that (P, — ^ + v J = 0 : (3eR+ is equivalent to (3= a. That is
(-?i+vJ "lies on the a-walF. Set D=W^ ?i+8r, D^W^-vJ+8^. Define an exact
functor v)/^ on K^ through:

vKM=F^(E(-v^®AFDM).

It is called the translation functor to the a-wall. Define an exact function (p^ on Kc through:

(P,M=FD(E(V^®AFD,M).

It is called the translation functor from the a-wall. Finally define an exact functor 9^ on K^
through O^cpaVK- It is called the reflection functor (coherent continuation) across the
a-wall.

3.4. Let M, N be U(c^) modules. We have a natural isomorphism
Homu^)(EA(g)AM,N)^Homu^(M,E^®AN) of A modules. Since E(v,)^E(-v,)A it
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follows that cpa is a left and a right adjoint to v(/a. In particular on taking projective
resolutions of any pair M,NeObK(- we obtain the natural isomorphism
Ext*(9, M,N)^Ext*(M, 6, N). Set ̂ =X-v,.

3.5. In the remainder of Section 3, we fix a pair weW^, aeB,, such that ws^>w. By
1.10.3 the module \|̂  M (w ̂  + St) has a p-filtration and as in ([9], 2.3) it follows that for all
u/eW^M^M^^^O : M(w'^+80]=dimE<-vJ_^ where v^w^-w'^. By([9],
2.9) the latter equation has the unique solution namely w ' ̂  = w ̂  and v' = w v,,. A similar
calculation applies to v|̂  M(ws^ X-+8Q and so we obtain:
(1) ^M(w?i+8t)^M(w(?i-vJ+8t),
(2) v|/,M(ws^+80^M(w5j?i-vJ+80.

Since ^-v^=5^(?i-vj the modules on the right hand sides coincide and we denote the
common module by M. Since 8 is regular, the canonical contravariant forms on
M(w?i+8r) and on M(ws^+8Q are non-degenerate.

Now the procedure described in 1.10.6 defines via (i): f= l , 2 , a non-degenerate
contravariant form ^\ on M. Let w denote the image of w (or of wsj in
W\/W (k - vj. Since the p filtration of M is multiplicity-free Jantzen's formula (for a^ [8],
Sect. 5) determines p (M, ̂ ,) : i = 1,2, as below.

Take i = 1. We show that ̂  (w 'k + 8t - p) is a unit in A. Its numerator gains a factor of
t" : n=dimE(-vJ_(^-^ for each r : ^(^w^/OB,?)^"' and each peR-".

Set v '=Sp(wv^-rp). Then:

(*) wX—v^w^—SpWv^—r^SpU^—SpWV^SpW^ .

For /?>0, (*) has the unique solution s^w^k^w^^ (as above) and so s^w=wSy_.
Since ws^>w, this gives w~1 ReR'^ and so (P,u;?i)<0 which contradicts the positivity
of r. The denominator gains a factor of t " :^=dim E(—VO()_(^_ , .P) for
each r = = - 2 ( P , w ( X - v J ) / ( P , P ) e N + and each peR"". Set v ' = u - v , - r ^ . Then
u ;^ -v / =w(X- -v^ )+ rp=So^w^ . For n>0, this has (as above) the unique solution
v'=wv^ and so r=0. This contradicts the positivity pfr , so the required assertion is
proved.

Take i=2. We show that a,, (u -.s.^ /, + (S/ - p)= tu, where u is a unit in A. Its numerator
gains a factor oft" : n=dim E(-vJ-(ws,v,-r p) for each r : =^2(P, ws, X) / (P ,P)e^ + and each
PGR"'. Set v / =5p(ws^v^- rp ) . Then:

ws^ K - v' = ws^ ^ - Sp ws^ v^ - r P = Sp ws^ X - Sp ws^ v^ = Sp ws^ ̂ .

For n > 0 we obtain the unique solution Sp ws^ ̂  = w X^ and so 5p M; = ws^. Since ws^ > w,
this gives w ~ 1 P=a and so 2(P, ws^AP,?)^"'. As v 'eWv, we have n=l , so the
numerator has a factor of t. A similar calculation to the above shows that the denominator
has no factor of t and so we have proved the required assertion. (We remark that of course
these computations are embedded in Jantzen's work.) We conclude that:

(1) p(M,J^)=w;
(2) p(M,^^)=tw.
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3.6. Retain the above notation and set X=M(ws^+5t), Y=9^X, Z=M(w'k+St).

LEMMA. - (i)9,X^Z^Y.
(ii) 9,L(w5^)=0.

(iii) TTi^r^ is exact sequence O - ^ X - ^ Y - ^ Z - ^ O .
(iv) Y has a unique simple quotient. This is isomorphic to L(w ^).
(v) 6^L(w X,)^0. In particular (?„ 15 faithful.

(vi) 9^=9,©9,.
(i) Obtains from 3.5. For (ii) observe that L {ws^ 'k) is a quotient of M (ws^ X)/M (w K}

and apply (i) (for t = 0) using the exactness of 6^. Set a = X, - v^. By 1.10.3 the module
(p^M(wu4-§Q has a p-filtration and as in [9], 2.3, it follows that for all w'eW^,
[(p^M(u;u+8?) : M (w' )i + 5Q] = dim E (v J,/ where v ' = w ' ^ - w u . By [9], 2.9, the latter
equation has just two solutions namely w ' = w, v' = w v^ and w= w5^, v' = ws^ v^. In both
cases v' is an extreme weight of E (vj and hence occurs with multiplicity one. Thus Y has a
two-step p-filtration with factors X, Z. Finally by 1.9.8 it follows from ws^ > w that Z is a
quotient of Y. Hence (iii).

By (iii), L(w^) is a simple quotient o fY and by 1.7.1 any other simple quotient is
isomorphic to L{ws^ K). Yet by 3.4 and (ii), one has:

^ Hom(e,X,L(ws^))^Hom(X,e^L(u;s^))=0.
Hence (iv). Furthermore we also see that 6^ L (w ^) ̂  0. • Since every simple object in Kp is
isomorphic to some \ | /^L(w?i) with ws^>w we obtain (v). By 1.10.10 it is enough to
show for (vi) that O^Y^Y'CY' where Y^e^M^+SO and u+5^eC with [i
dominant. Applying 9^ to (iii) and ;using (i) we obtain an exact sequence
0 -> Y' -> G ^ Y ' -> \' -> 0. YetM^+SOandhenceY' isproject ivemKcO.lO^and
so this sequence splits.

3.7. Define M,Y as in 3.5, 3.6. Let ^ ; : f = 1,2, be the form on Y which obtains from
the form J^, on M defined (in 3.5) by applying the procedure of 1.10.6. Jantzen's formula
for a\, ([8], Sect. 5) gives as in 3.5:

(ly^Y.^^u^+r1^
(2) p(Y,^)=tw5,+w.
3.8. We can interpret 6^ as a linear map 6^ on 1̂ [t, t~1] \\\ defined as follows:

vs.,+t 1 v : vs^>v,
(*) 9^=-

Set T^= t^^-1 and q= t2. Then from (*) we obtain (T^-g)(T^+1)=0. Given weW^
with reduced decomposition w= s ^ s ^ . . . Si where s,=s^ : a,eB^ we set
T ̂  = T, T, . . . T,. From (*) it is a simple exercise to show that T ̂  is independent of the
reduced decomposition chosen. It follows that the T., : weW\ generate over Q [g, q~1] a
Hecke algebra in the sense of [10], Sect. 1. Set 9^=9^ 9^ . . . 9^; 9^=9^ 9^ . . . @oc, and

M^ : =9^M(w^+8Q which is projective in K^. An open question (Ql) is to show that
p (M J == g ̂  ̂ . We have shown this for the case I = 1 and it also holds if the oc^ are pairwise
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distinct. Indeed the "only" difficulty in the proof that can arise is that at some step M^
admits two non-isomorphic factors in its p-filtration which on translation to the appropriate
wall become isomorphic. Unfortunately this difficulty is a very real one since by (*) one has
^ = r 9 a +1 ~19^. Owing to the factor of t ~1 one cannot have say:

p(QiM(w^)=Q2,w=tQ,w+t~lQ,w=tp(6,M(w^))+t~lp(Q,M(w^).

Indeed this would contradict the splitting 9^ M(w X)=9^ M(w ?i)©9^ M(w 'k) implied by
3.6 (vi) and in fact p(Q2^ M(w ^))=2p(Q^ M(w ?i)). Any proof of (Ql) must thus take
account of the fact that M(w^ X,+8r) is projective and w is reduced.

3.9. For each w e W^ let P (w ̂  + St) denote the projective cover of L {w ^k) in Ob K^. It
follows from 3.6 (iii) that M^ admits P (w^ w -1 ̂  + St) as an indecomposable summand and
furthermore the remaining summands are just the P(u^u/~1 ^+8^) : w'<w (with
appropriate multiplicities). A further open question (Q2) is to show that this sum is an
orthogonal direct sum for the form on M ̂ . If we further assume the truth of the Kazhdan-
Lusztig conjecture (which would determine the above multiplicities) positive answers to (Ql)
and (Q2) would give the following result which we state as a conjecture.

CONJECTURE. — For each yeW^ one has:

p(P(^+5t))= Y "^-^P^,^-1).
W6W,

Observe that ifp(P(}^+8?))is so given then it is polynomial in t and the coefficient of t° is
just y . Conversely if(Ql) and (Q2) hold then this property determines the p(P(y?i+8t))
uniquely and implies the Kazhdan-Lusztig conjecture.

3.10. Let Me Ob K^. Give M* a U(g) module structure through (am,n)=(m, a(a)n)
for all meM, neM*, aeU(g), - Let 8 (M) denote the submodule of M* of all I) finite
elements. (It is sometimes known as the (9 dual ofM.) Then 8(M)eObKc. If M
admits a non-degenerate contravariant form then 8 (M) ̂  M. In particular 8 (L (^)) ̂  L (u),
for ^eC. By 1.4.9 and [6], 7.6.1, each MeObK^ has finite length and we let [M : L]
denote the number of times the simple factor L occurs in M. Clearly
[8(M) : L(^)]=[M : L(u)] for each ^eC.

3.11. Take ^, w, a as in 3.1, 3.5. Let ^ denote the non-degenerate contravariant form
defined on L(w^) through the canonical form on M(w^+8r ) and passage to
quotient. Let ^ ' be the non-degenerate contravariant form defined on 9^ L(w ^) by the
procedure of 1.10.6. By 3.6 (iii), (iv) the module 9^ L (w \} admits a unique simple quotient
and this is isomorphic to L(w X). By 3.6 (vi), L(w \} cannot be all of 6^ L(w "k). Let
(6^ L(w Xjy be the unique maximal non-zero submodule of 9^ L(w ^) which results. By
3.10 one has 8 (9^ L (w ?i)) ̂  9^ L (w X) and so (9^ L (w ^))' admits a unique simple submodule
and this is isomorphic to L(w X). Set U^L(w ^)=(9^ L(w ?i))7L(w ?i) which inherits a
non-degenerate contravariant form from ^'.
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LEMMA (Vogan [12], 3.7). - (i) GJU,L(wX))=0.
(ii) [U^L(w ^) : L{y ^)]>0, implies l(y}—l(w)^l and y=ws^ if equality holds, otherwise

l(y)<l(w).
(iii) Fix ^eW^ such that y>ys^. Then:

Hom(L(y ?i), U^L(w ?i))^Ext1 (L(^), L(w ^)).

(iv) [U,L(wX):L(w5^)]=L
We can take ^ = 0 in 3.6. Then (i) follows from 3.6 (vi). (ii), (iv) follow from 3.6 (iv), the

exactness of 9^ and [6], 7.6.23. (iii) follows from [12], 3.9 c, and 3.6 (ii).
Remarks. - Vogan has conjectured ([12], 3.15) that L^L(w ?i) is always semisimple and

has shown ([13], 3.5) that this conjecture implies the truth of the Kazhdan-Lusztig
conjecture. We shall show that both are also implied by the Jantzen conjecture
(Sect. 4). At present it is not even known if L(ws^) is a direct summand of
L^L(wX-). Vogan pointed out that the latter would give the implication
Ext7 (M (y K\ L (w K)) ̂  0 => I (w) -1 {y) -j even.

3.12. Fix MeObKc. From the natural isomorphisms:

Hom(v|/, M, \K M)^Hom((p,v|/, M,M)^Hom(M, (p,v|/^ M),

the identity map Id on \1^M induces maps 1^ : M ^ G ^ M , 1^ : G ^ M - ^ M (or simply
F, I").

LEMMA. - (i) Ker 1̂  is the largest submodule N ofM satisfying G^N==0.
(ii) Coker 1̂  is the largest quotient Q ofM satisfying G^ Q=0.
Let N be a submodule of M. By functoriality we have the commuting square:

Hom(v|/,M,v|/^M) ^ Hom(M,G^M)

<)/, N -* i|/, M N ^ M .

Hom(v|/,N,v[/^M) ^ Hom(N,G,M).

From this it easily follows that I ^N=0 o\|/^N=0. Since (po, is faithful [3.6(v)] we
obtain (i). A similar argument gives (ii).

Remark. — A corresponding result holds in K^.

3.13. Define X, Y, Z as in 3.6.

LEMMA. — The sequence:

ix iz
0 - ^ X - ^ Y - ^ Z - ^ O is exact.

By 3.6 (iv), (v) and 3.12 (ii), I^ issurjective. Since Y is n^ free either Ix=0, or 1̂  is
injective. Now Q^ X ̂  0 by 3.6 (i), so 1̂  is injective by 3.12 (i). In particular Im 1̂  has a
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unique simple quotient and this is isomorphic to L (ws^ k}. Yet L (ws^ ^) is not a subquotient
of Z and so Izlx=0- By 3.6 (iii) it remains to show that (Iml^o^O. Since .(?„, v|̂
commute with specialization we have (lml^\=Q=lml^^M{ws^'k)^0, as required.

3.14. Assume -Xel)* dominant and regular. Take w, w'eW^ with w<w' and set
X=M(u/X,+8r), Z=M(wX,+5Q. A non-zero homomorphism J^ ^ o fM(w^)
into M (M/ ?i) defines by 1.9.5 (iv) a non-split extension Y of X by Z. By 1.9.5 (ii) we can
identify Y with a submodule of t~1 X©Z. The precise submodule is given by the following
lemma in which a \—> a denotes specialization at ^==0.

LEMMA:
\={(t-la,b)eXxZ:J^^(b)=a}.

Let P be a projective cover of Z. We have a commutative diagram:

with row and column exact and/i =/|N. By 1.9.5 (ii), Ext1 (Z, X) is annihilated by t, so tf^
can be extended to a map/' ofP into X. Given ye\ we can choose peP such that
7i'(p)=-?r(y). Then the map g'.y^y-f^—t'^f^p) o fY into t^X is independent of
the peP chosen and coincides on X with the identity on X. Consequently the map
h ' ' y [ - > ( g ( y ) ^ ( y ) ) of Y into r^OZ is injective. Set a' =-/'(?), b=n'(p). I f f c=0 ,
then ;?eN and a'= - tf^(p), so a'=0. Thus we have a mapj : fci-^a' of Z into X/tX. It is
non-zero for otherwise/' ( p ) e t X and we should have Y ̂  X © Z. Obviously Ker j => t Z and
so j defines by passage to the quotient an embedding J:M(w'k) -^ M(w"k). If
( t ~ 1 a,b)elmh, then writing b==n'(p)=n{y), we must have a=t(y -/(?))+ a. Then
J(b)=af=a. The converse obtains on noting that ^-/(p)eXcIm h. Finally 7 identifies
with ] ^ ^ , through the definition of the extension Y.

3.15. Take w' = ws^ in 3.14. Since [1.9.5 (ii), 1.9.8] Ext1 (Z, X) is a k vector space of
dimension one we may regard Y to be the extension constructed in 3.6. Let ^ denote the
canonical contravariant form defined on X or on Z and ^F\ the form on Y defined
in 3.7. Then with respect to the presentation of Y gives in 3.14 we may reformulate 3.7(1)
through the:

LEMMA. — For all x=(a, b), y^(af, ̂ )eY one has:

^(x, y)=^(a, fl^+r-1^,^).
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3.16. Assume -^ el)* dominant and regular.

LEMMA. — For all w, u/eW\;
(i) Ext* (L (w X), L (w' \)} ̂  Ext* (L (u/ ?i), L (w ?i)).

(ii) For w^w'the natural map:

Ext^LQ^), Mu/^-.Ext^MO^), L(w^))

15 infective.
(iii) Ext^I^w^), L(u/^))=0, unkss w<w' or w>w'.
(iv) I f w ^ w ' , then (notation 1.7.2);

Ext^LQ^), Mw'^^Hon^M^y, L(w'?i)).

(i) obtains by duality and the isomorphism 8(L(^))=L(^i): [ieC. From the exact
sequence:

0 - > M ( w ^ y ^ M ( w ? i ) ^ L ( w X ) ^ 0

we obtain the exact sequence:

(*) -> Horn (M (w ?i), L (w' )i)) -^ Horn (M (w ?i)', L (w' ?i)) ̂
-^ Ext1 (L (w ?i), L (w' ^)) -^ Ext1 (M (w ?i), L (w' K)} -^.

Under the hypothesis of (ii) the second term in (*) vanishes and gives (ii). Then (iii)
obtains from (i), (ii) and [5], Thm. 4. Under the hypothesis of (iv) the first and last terms
of(*) vanish ([6], 7.6.23; [5], Thm. 4). Hence (iv).

Remark. - Take w'^ws^ but reverse the roles of w, w' in (iv). By 3.6 one has
dim Ext^MQ^), L(ws^))^l and in fact equality holds. Then by 3.11 (iii) the map
defined in (ii) is bijective o L (ws^ X,) is a direct summand ofU^ L (w ?i) <=> L (w ?i) is a quotient
of M(w5^y. The latter is an obvious consequence of assuming the Jantzen filtration
(see Sect. 4) to be hereditary (see Sect. 4).

4. The Jantzen conjecture and main Theorem

As in 3.1 we take A=C[^) and C=?i+5t+P(R) with both X, 8et)* regular and -?i
dominant. Bar denotes specialization at t=0.

4.1. Given MeKc equipped with a contravariant form F we define
M^^aeM-.J^Mye^)}. Then {M^}^ is a filtration of M by U(cu)
modules. Define a filtration of M: = M/ tM through MJ''= Wl(t M n M3). Itiscanedthe
Jantzen filtration of M relative to the form ^ ' . If M is a Verma module we shall always
assume that ̂  is its canonical form (1.3 ..7). ;
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4.2. For each w e W^ the filtration { M (w 'ky }̂  of M (w /^) is defined through 4.1 and
the identification M (w X-) = M (w }. + 5r). As suggested by Deodhar ([9], 5.3) one expects
the M(u;X-)-7 to be independent of the choice of 8 regular; but this is still an open question.

Now fix aeB^, weW^ such that ws^>w. By [6], 7.6.23, there is an embedding
J^^:M(wK)->M(ws^) unique up to a scalar ([6], 7.1.8). Identify M(w^) with a
submodule of M (ws^ X).

CONJECTURE. — For each j e N , one has:

(^) M(wfk)j^M(ws^)j+l^M(w^).

We take 3^^ (or simply, J) to define the extension Y of M(w^?i+51) by M(w?i+81)
in 3.14.

(^) is an old conjecture ([9], 5.18) ofJantzen who suggested in fact that equalityshould
hold. 'In this stronger form the conjecture is equivalent to either:

M(u;?l)J=M(w^y+^ )-^w)nM(w?l),

for all7'e^J, weW\, or:

M(w^) J =M(5„w^) J + l nM(w^) ,

for allje f^J, weW\ and aeB^ such that s^w>w. It is latter which should prove the easiest
to establish. Here we shall show that (^) implies the Kazhdan-Lusztig conjecture for the
multiplicities of composition factors o fM(w^) and Vogan's conjectural semisimplicity
ofU^L(w^) .

We set M(w'k)j=M(w'k)j/M(w'k)j+l on which the induced form is non-degenerate
([9],5.3).

4.3. (Notation 3.3, 4.1, 4.2). - With v^ as in 3.3. Set |LI=^-V^.

LEMMA. — Suppose Me Ob K^ admits a contravariant form, define a contravariant form
on \|/^ M, (p^ M through the procedure 0/1.10.6. Then for allj e N, y e W^: y < ys^ one has:

(i) (vl/,M)^=v|/,M^.
(ii) (9,My=9,M^.

(iii) ^^M(w^+6t)j=M(w[i-^6t)j.
(iv) \|/„M(u;5^+8r)J+l=M(M;^l+8QJ.
(v) [M(ws^y+l:L(y^]==[M{w^y:L(y^

(i), (ii) are immediate from the definition of the forms on v|/^ M, 9^ M. Then (iii), (iv) follow
from (i) and 3.5 (1), (2). Since \|^L(}^)=L(}^), when y<ys^([9], 2.11) we obtain (v)
from (iii), (iv).

Remarks. — (v) expresses the fact that (^) holds with respect to the simple factors which are
not annihilated on passage to the a-wall. It easily follows that
M(w}.)l(w)=SocM(w).)^M^). This is an old result of Jantzen ([9],.5.3). One has
M(zX)o^L(z? i ) , zeW, ([9], 5.3). Then by (iv) ^ L(ws, X)=0. The proof of the
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corresponding result in positive characteristic needed Jantzen's formula ([8], Sect. 5) for the
behaviour of the contravariant form, whereas in zero characteristic we already have this
result (cf. 3.6 (ii)); so Jantzen used to say that there was no. need of his formula in
characteristic zero!

4.4. Define X, Y, Z as in 3.6. Let ^ be the canonical form defined on X or on Z. Let
^i the form on Y defined in 3.7 (1). In all three cases we shall simply denote the form
by < , >. Both canonical surjections Y -> Z, Y -> Z will be denoted by n which then
commutes with specialization. We use (^) to denote that conjecture 4.2 is assumed to
hold.

LEMMA. — For each jeN one has:
(i) 7r(Y^Z^.

(ii) X^cY7.
(^) (iii) Z^c^').
(^) (iv) Y^nXcX^ .
Recalling 3.14, consider Y as a submodule of t^XOZ. If y;. =(x, ^eY7, 3.15 gives

<x, jQ+^-^z, z^e^') for all (x', z')eY. Now for each z'eZ one h^s by 3.14 that
(0, ?z')eY and so < z, z' > e(^), which gives zeZj and hence (i).

I fxeX^ 1 w e h a v e ( x , 0 ) e Y b y 3.14 and <(x, 0), (r^', z^^t-1 <x, x / >e(^) , by
3.15. Hence (ii).

IfzeZ^S then by (^) we have ^zye^Z^^cX^2, so there exists xeX^2 such that
J (z) = x. By 3.14 we have (t~1 x, z)e Y and so by 3.15 we obtain for all x' e X, z' e Z, that:

<(r lx,z),(r lx',z /)>=r2<x,x />+r l^z,z />e(^).

Hence ( r~ 1 x, z) e Y7 and so z e 71 (P), which is (iii).
Now take xeXsuch that:

xeY^YV^YnY7).

By 3.14,(x, 0)eY and there exists (t~1 x^ z^^j such that (x -1~1 x^ zj e rY. By 3.14
again, there exist x^ e X, 2^ ^ Z such that x^ = r^, z^ = tz^ and J (z^) =3c-x"2. By 3.15, we
have:-

. < ( r l x l , z l ) , ( r l x ' , z / ) > = r l < x 2 , x / > + ' < z 2 , l ^ > e ( ^ ) , .
for all x'eX, z'eZ such that J (?')== x'. Taking x'==^x", X"GX, z'=0 gives
x^eX7 . Taking x^O, z ' ^ t z ^ . ^ e Z gives z^eZ7"1 and so by (^) we have
.nz^e.UZ^^cX^. Through our previous observations we m^iy conclude that xeX^, as
required.

4.5. Assume that (^) holds. Wfe set:

X^-X^^Y^nX), X^i^^nXVX^2,

^^(Y^nX)^^1^^),
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which give the exact sequences:

(1) o^X^-^X.^^X^^O,

(2) o-^X^-^Yj^X^O.

Again we set ZJ= TI (Y^/Z^1 and:

Z^^Z^MY^1), 'Y^n^/n^^1),

which give the exact sequences:

(3) o^Z^->Z^-^Z^^O,

(4) o-.Z^-YJ-.Z^O,

(5) O-^-.Y.-.YJ-^O.

From (2), (4), (5) we get a four-step filtration (see p. 300) on Y^ We wish to relate this to
the non-degenerate form on Y^ (denoted by < , » defined by passage to quotient.

(^) LEMMA. - For all je^:
(i) <XJ^,Yp=0.

(ii) <X^ ,Ker (Y^ZJ )>=0 .

Take x e X J + i , ̂  e Yj. Let x (resp. y ) be an element ofX^1 (resp. Y-7 r\ X) whose image in
XJ+i (resp. YJ) is x (resp. .y). By 3.14 we have (x, 0), Cy,0)eY and by 3.15 that
^OU^O^^x^/e^"'1), since xeX-7"'1 . Hence <x^>=0 , which proves (i).

For (ii) we fix x, x as in (i). By (i) it is enough to take zeZ^ and to show that
<x, z>=0 . Choose zeZ^1 whose image in Z^+i is Z By 4.2 (hi) there exists x'eX^2

such that ( r^x^z^Y. Then by 3.15 we have

((x^OUr-^z^r-^x^e^4-1).

That is <( x, z)=0, which proves (ii).

4.6. Take M e Ob K^. Since 9, is exact we may define M + (resp. M ~ ) to be the smallest
(resp. largest) submodule of M such that 6^ (M/M +) = 0 (resp. 6^ M - = 0). We remark that
by 3.6 (ii), (v), 9^ L = 0 for a simple object L e Ob ̂ 5 is equivalent to L ̂  L (y X) with y e W^
andy>ys^.

(^) LEMMA. - For each j e N +:
( i )Z;=ZJ.
( i i )X7=X?.

By 4.3 (ii), (iii) we may identify O^Z7) with Y7 and then the map ^tj:Vj -> Zj defined by
restriction of7i and 4 .4( i ) identifies with the map 1̂  defined in 3.12. By 3.12(ii),
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T^Y-O^Z7)-". Hence (i). Again by 4.3 (ii), (iv), we may identify ^(X^1) with Y-7 and
then the map X^1 ->\j defined by 4.4 (ii) identifies with the map I^.i defined in 3.12
(cf. 3.13). Thus (ii) follows from 3.12 (i).

4 .6.1/2. Take MeObKo. Call M a-plus (resp. oc-minus) decomposable if every
simple factor L of M-^ (resp. of M/M~) satisfies G^L^O, and set M _ = M / M +

(resp. M+ =M/M~). Recall the definition of 8(M) given in 3.10.

LEMMA. — (i) M is both a-plus and en-minus decomposable if and only if the exact sequence:

0-^M+-^M^M_^Q
splits.

(ii) M is ^-plus decomposable if and only ifS(M) is d-minus decomposable.
{iii) M^8(M) ifM admits a non-degenerate contravariant form.
These are immediate from the definitions and 3.10.

4.7. When 4.6.1 /2 (i) holds we call M a-decomposable. Note that we can then identify
M~ with M_. Extend U,, (3.11) to any finite direct sum M of simple objects LeOb K^
satisfying G^L^O through U^(M©N)=U^M©U^N.

(^) PROPOSITION. — For eachjeN, assume that Zj is ^.-decomposable. Then:
i ) Z ? = Z 7 .

(ii) Xj is ^-decomposable and Xj=X^.

If in addition Z^ 15 semisimple, then U^Z^t 15 defined and:
(iii)X^^Z;,

and:
(iv) There is an exact sequence:

o-X7-.u^z;-.z^-o.
The hypothesis and 4.6 (i) gives (i). Through the non-degenerate form on Y^ and 4.5 (ii)

it follows that XJ+1 is isomorphic to asubmoduleof5(Z^). Thus every simple factor Lot
XJ+1 satisfies G^ L 7^ 0. Then by 4.6.1 /2 (ii), it follows that Xj+1 is oc-minus decomposable,
which through the non-degenerate form on X ^ + i and 4.6 gives (ii). Consequently
X J + i = X ^ + i 8(Z^) through 4.3 (v). The semisimplicity o f Z ^ then implies (iii). By
3.5 (ii),4.3 (ii)anda-decomposabilityonehasG^Z^=G^Z^ =Y^. SinceZ^ issemisimple
by hypothesis we obtain from 3.11 a complex 0 -> Z^ -> G^ Z^ -> Z^ -> 0 with
cohomology U^ Z ̂  satisfying 6^ (U^ Z ̂  ) = 0. Thus (iv) results from (iii) and the middle two
terms of the four-step filtration of Y^.

4.8. We may now give our main result. Recall that -?iet)* is dominant, regular.

(^) THEOREM. — Suppose — \ e t)* is dominant and regular. Then for each w e W^, a e B^
satisfying ws^>w one has:

(i) \J^L(wK) is semisimple.
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For each je^:
(ii) M(w^)j is semisimple.

For each yeW^ such that y > y S y

(iii) [U,M(w?i),:L(^^)]=[M(ws^),:L(^^)] +[M(wX),^ :L(^)].

The proof is by induction on / (w). Recalling that M (k) is a simple module, take I e M and
assume that (i) [resp. (ii)] holds for all w e W^ such that l(w) < I [resp. J (w) ̂  I]. Under ffiis
hypothesis each Z^. is semisimple and so the conditions of 4.7 are satisfied. By 4.7 (iv) we
obtain the exact sequence:

0 -> L (w^X) -^ U^ L (w ?i) -^ Zi~ -. 0.

By 3.11 (iv) and the non-degenerate form on U^ L (w X), it follows that the above sequence
splits, from which (i) results. Again since the simple factors L (z ̂ } of M (w ?i) satisfy z ̂  w, it
follows by (i) and the hypothesis on Zj that each U^Z^t is semisimple. By 4.6(ii),
4^.6.1/2 (i), 4.7 (ii), M(ws^.=X,.=X^©X7. By 4.7 (iii) and the induction hypothesis
X^ is semisimple. By 4.7 (iv) and the semisimplicity of U^Z^ it follows that X^ is
semisimple. Hence M(i^ X ) / is semisimple. Finally (iii) obtains from 4.7 (iv).

4.9. It is clear that 4.3 (v) and 4.8 (iv) determine the composition factors of each
M{w'k)j. More precisely let q be an indeterminate and set:

00

^u.^)- Z ^ ( w )-^ y )- J ) / 2tM(w^),:L(^^)].
J=0

(^) COROLLARY. - The P y , ^ ( q ) : y , weW^ are the polynomials in q defined in
2.3 or equivalently by the recurrence relations ([10], 2.2c). In particular
P^u;,w^(l)=[M(wX):L(^^)] takes the form proposed by Kazhdan and Lusztig ([10],
Conjecture 1.5b).

By 4.3 (v) we obtain:

(*) pw^,w,yW=pw,w,w,yW ^ Y<yS^

Now suppose y>ys^ Given ^eW^ : zs^>z we define

u<u^,w^)=[M(2^)i : L ( v X ) j .

By 4.8 (iii) with 7 =0 and recalling that M(w ?i)o^L(w X) we obtain:

[U,L(z^):L(^X)]=[L(z5^):L(^^)]+u(u;,z,w^).

Resubstitution in 4.8 (iii) gives:

Fw^w.yW+qFw^w.yW

= ^ u(w,z, w,y)^/2>^2)- f^+l)p^^^te)+P^ ̂ , (^
zeW,Jz5,>z
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Now set x=w^w and replace w^ y (resp. w^ z) by y (resp. z). Then (*) can be incorporated
into the above equation to give for all j^eW^ :ys^>y,

P^)=^P^)+^l~MPx,^) - E ^y)^^^-1^^?^^
z e W^ | zSy < z

where:
^ f 1, xs^>x,
\ 0, xs^<x.

This is just ([10], 2.2c). Since M(w^)o^L(w^) and [M(w^.:L(w^)]=0 unless
w=u\ and j'=0 we also obtain:

f 1, x=l ,
^^{o, ? otherwise.

These lead to the correct boundary conditions on P^ y(q), so the corollary is proved.

4.10. We may regard 4.9 as a conjecture for the multiplicities in each filtration step of
M (w X-). Let us show that this is consistent with the Jantzen sum formula ([9], 5.3). Using
prime to denote the derivative we obtain:

?.....„(')- ^"•'"-^-^W^L^)].

-('^)p.__,(l,4SlM(^)-:L(,W
\ / / z J-l

Substituting from 2.3:

i [M(w^:L(^)]= ^ R^,^(1)P^^(1),
J'=l Z6W,,

E ^.^(l), by 2.2,
aeR»1" :w 1 w^aeR

^ [M (s^ w X,): L (^ X-)], as required.
aeR^ :w - laeR -

4.11. The last result of this section would also be an immediate consequence of the truth of
4.9; but we show that it holds even without assuming the Jantzen conjecture.

LEMMA. — Assume—^et)* dominant and regular. Then for all w, yeW\, one has:
(i) j>l(w)-l(y)^[M(w^'.L(y).)]=Q.

(ii) If j=l(w)-l(y), then [M(w^),:L(y?i)]^l.
The proof is by induction on / (w). It is trivial ifJ (w) = 0. Choose a e B^ such that ws^ > w

and assume the assertion holds for M (w X-) and establish it for M (ws^ ?i). If y < ys^ then the
assertion follows from 4.3 (v) and the induction hypothesis. Assume y>ys^.

Set M = M ( w ^ ) : ^ i = ^ — v ^ (notation 3.3) and fix a composition series
M=Mo^Mi f.. .. ^M(+I=O. Each factor M^./M^i is isomorphic to some
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\|^L(xX) :xeW^, x<xs^. Then {(p^Mj^ is a normal series for Q^M(w^) with factors
isomorphicto the Q^L(x'k). Set N,:=((p^M,.)n M(ws^).

Then { N , };̂  is a normal series for M (ws^ ̂ ) with each quotient N^/N^+1 isomorphic to a
submodule Q, ^ of some 6^ L (x ^).

Set Nf:=(((p,M,)nM(ws^)J)/(((p,M,)nM(ws^)J+l). For each 7, {N^'}^ is a
normal series for M (ws^ ̂ . with each quotient Q{̂ 1 being a subquotient of Q, ^. Assume
that Q{̂ 1 is a submodule of Q, „. We show that:

W [O^L^U05 'T?^[ ^1, 7=;(w)-?(x)-l.

Set X = M (w^ ?i), Q = Q{^1. By the hypothesis Soc Q ̂  L (x ?i). Since X admits a non-
degenerate contravariant form we have 8X^X and this module admits 5Q as a
subquotient. Now 5Q admits L(x?i) as its unique quotient and so arises from the
embedding M (w ^)c-4M (ws^ X). Furthermore this L (x X) arose from M (ws^ ̂ J+1 and so
as in 4.3 (v) it follows that 8Q is isomorphic to a subquotient of M^^'. (Observe that
[M(ws^)j+l/l(M{w'k)j):L(w'k)]=0.) Then

[Q : L(xs^)]=[8Q : L(xs^)]^[M(wXy : L(x5,l)].

Since l(xs^)=l(x)+1, we obtain (*) from the induction hypothesis.

Now consider (i). Suppose Q{̂  is a subquotient of M(ws^.+i. If Q{̂ 1 is not a
submodule of Q, ^ we must have [^(ws^)^2 :L(x'k)]>0. Then by 4.3 (v) and the
induction hypothesis 7+l^(w)-;(x). By 3.11(ii), [Q{^ :L(^)]>0 gives either,
l(y)<l(x) and so j+l<l(ws^-l(y) or, ^=xs^ and 7+l^(w5j-?(^). If Q{̂ 1 is a
submodule of Q^, then j^l(w)-l(x). If the inequality is strict we argue as
above. Otherwise we use (*) to show that [Q^ :L(y'k)]>0 implies l(y)<l(x) and so
j-{-l<l(ws^)-l(y). This gives (i). Finally we observe that 7+1= l(ws^)-l(y) only if
j +1 = l(w) — I (x) and y = xs^. This gives (ii).

Remarks. - This result can be interpreted as saying that P^ y(q) defined through 4.9 is
polynomial in q112. For the corresponding expression defining Ext^M^X,), L ( y ' k ) ) (see
introduction) the corresponding assertion is that the non-vanishing of this Ext group implies
k^l(y)-l(w). The latter is a result of Casselman and Schmid (cf. [5], Thm. 4). When
equality holds in (ii) it is clear that the unique smallest submodule of M(w^)j admitting
L(y^) as a factor is isomorphic to M(y'k). The question of equality in (ii) is apparently
quite deep for it would lead to a considerable simplification in the proof of ([9], 5.17).

5. Extensions of Verma modules

5.1. ADJOINTS. — In this first subsection we develop a property of 6^ used by Vogan ([13],
Sect. 4) in his analysis of the Kazhdan-Lusztig conjecture.

5.1.1. Let K be an exact category. Given X, Y e Ob K, let Horn (X, Y) denote the set of
all morphisms X-^Y. Take ZeObK. Given /eHom(X, Y) we denote by S /̂ the
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covariant morphism functor ^z f '.g^fog of Hom(Z, X) to Hom(Z, Y) and by S^f the
contravariant morphism functor S^/^i—^o/ of Horn (Y, Z) to Hom(X, Z).

5.1.2. Let v|/ be a functor on K with left adjomt (p. That is we have a functorial
isomorphism:

F( , ): Hom( ,^( ))^Hom((p( ), ).

/ 9LEMMA. — Given morphisms X -> Y -> \|/ Z of objects of K one has:
(i) (J"(Y, Z)^)o(p(/)=J"(X, Z)too/).

(ii) ^(J-Oj/X, Y)vK/))=(J'WX), v|/(Z))^/too/).
(i) By functoriality the diagram:

Horn (Y, v|/ Z) ———^ Horn ((p Y, Z)

Hzf s^z<p(/)

Hom(X, v|/ Z) J (x;z) ^Hom((p X, Z)

commutes. Then:

(J / '(Y,Z)^)o(p(/)=(S^(p(/))"(J / /(Y,Z)^)=((S^(p(/))oJ / /(Y,Z))^

=(^/(x, z)o(s^/))^= J"(x, z)o((s^/)^)=J"(x, z)foo/).
(ii) Follows similarly.
5.1.3. Let v|/ be a functor on K with right adjoint (p. That is we have a functorial

isomorphism:

F( , ): Hom(v|/( ), )^Hom( , (p ( )).

f g

LEMMA. — Given morphisms \|/ X -> Y -^ Z o/ objects of K on^ ^05;
(i) (pto)o(J /(X,Y)/)=J /(X,Z)too/). .

(ii) (F(Y, v|/Z)v|/to))o/=r(v|/X;v|/Z)v|/too/).
(i) By functoriality (S^^oJ^X, Y)=J'(X, Z)o(S<lrx^).
Applied to the element /eHom(\|/X, Y), this gives (i). (ii) follows similarly.
5.1.4. From now on we suppose that \|/ is a functor on K with left and right

adjoint (p. Set9=(pv|/.

LEMMA. - Fix X, Y, X', Y'eObK. If the diagram:
f.

X -̂  Y

4 1 .
X' ^ Y'/
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commutes, then so does:
f

X -̂  Y

J'(X^X')^(fc) \ I J ' (Y,4/Y')<| / (^) • -

9X' -^ 9Y'
6(0

By5.1.3:

(J'(Y, ^Y')vl/to))o/=.r(X, vmW)^^, v|/Y')^(Jfe)

=r(X, ^Y /)(vl/(/)ov|/(fe))=9(Oo(J /(X, vl/X')^^)).

5.1.5. Given XeObK, we define (as in 3.14) Ix :X->9X by J'(X, v|/X)Id.x and
Ix :eX^XbyIx=J" (^X,X) Id^ .

LEMMA. - For all X, Y e Ob K, / e Horn (\)/ X, v|/ Y) the diagram:
J'(X,<(/YV

X . 9 Y

9X ————^ Y
J " < » k X , Y ) /commutes.

By5.1.2(i) , (J / /(v^Y,Y)Id^)o(p(/)=J / /(v) ,X,Y)/ . By 5.1.3 (i),

(p(/)o(J /(v)/X,^X)Id^)-J '(X,^Y)/.
Hence

(J / /(v | /X,Y)/)oIx=IY'o(p(/)oIx=IY'o(J /(X,v| /Y)/) . -

5.1.6. COROLLARY. - For all X, YeObK, the diagram:

Horn (v|/ X, v|/ Y) ^^^ Horn (X, 9 Y)

J"^X,Y) Js x IY ^.,

Hom(9X,Y)———————»-Hom(X,Y) '
SY ̂

commutes.

For each/e Horn (\|/X, \|/Y) one has:

((SXIY /)oJ /(X,^Y))/=Iyo(^(X,vl /Y)/)=(J / ' (v | /X,Y)/)oIx, by 5.1.5,

^(SYlxyo.r^X.Y))/.

5.1.7. Take M e Ob K. From now on M -^ 9 M (resp. 9 M -> M) denotes 1̂  (resp. 1^)
and the functors S^, ^M are to be understood. Composing J\ J" we have a functorial
isomorphism:

J( , ) : Hom( , 9 ( ))^Hom(9( ), ).
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Now assume that K has enough projectives. Taking projective resolutions we obtain a
functorial isomorphism Ext*( , 6( )) ̂  Ext*(9( ), ) which we also denote by J( , ).

5.1.8. Take M, N e Ob K. Assume that \|/, (p (hence 6) are exact functors on K with (p a
left and a right adjoint to \|/. Assume that K has enough projectives.

PROPOSITION. — There is a commuting diagram of maps:

-> Ext^N.GM) -> Ext^NJn^OM ̂  M)) -^ Ext^1 (N,Ker(6 M ^ M)) -^

J ( N , M )

^ Ext^eN.M) -> Ext^Coin^N-^ 6 N ) , M ) -^ Ext^1 (Coker(N-> 6 N) ,M) ̂

with the rows exact. J/Ker(N -^ 9N)=0, ^n ^=Im(9M -> M) -^ M.

Let X* be a projective resolution of N. Then 6 X* is a projective resolution of 6 N. Set
C*=Coker (X* -> 9X*), D*=Coim(X* -^ 9X*). By 5.1.4 the diagram:

X* -^ N ^ 0i i
ex* -^ O N -^ o

has exact rows and commutes, so C* (resp. D*) is a resolution of Coker (N -> 6N) [resp.
Coim(N-.9N)]. Let:

0 ̂  E* -. F* -^ G* ̂  0

be a projective resolution of the exact sequence:

0 -^ Coim(N -^ 9N) -^ 9N ̂  Coker (N -^ ON) -^ 0.

By [4], Prop. 1.1, p. 76, we obtain for any MeObK the commuting diagram:

0 -^ Hom(C*,M) ^ Hom(9X*,M) ^ Hom(D*,M)

0 -^ Hom(G*,M) ^ Hom(F*,M) -^ Hom(E*,M)

with exact rows.
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By 5.1.6 and the projectivity of X* we obtain the commuting diagram:

0 -^ Hom(X*,Ker(9M ^ M)) -^ Hom(X*,9M) -^ Hom(X*,Im(9 M -^ M)) -> 0

(**) J(X*,M) Im(9M -^ M) -^ M

0 ^ Hom(C*,M) -^ Hom(9X*,M) -. Hom(X*,M)

with exact rows. It follows that J(X*, M) defines by restriction an isomorphism
Hom(X*, Ker(9M-^M))^Hom(C*, M). Composing the diagrams (*), (**) gives
through ([4], Prop. 4.1, p. 85) the conclusion of the proposition.

5.2. With the conventions of Section 3, take C=?i+8^+P(R) : ̂ , Set)* with -A-
dominant and regular. For the moment we do not assume 5 regular. Fix w, y e W^, a e B^
satisfying ws^>w, ys^<y. We apply 5.1 with K=Kc, 9=6^ (notation 3.1). Set 5==^.

5.2.1. LEMMA:

Ext^MC^+Sr), M(ws?l+§^))^Ext• /(M(^+5^), M(wX+5r)) .

By 3.13 we have the exact sequences: /

(0 Q^M(yK+6t)^QM{yK+6t)]-^M(ys'k+6t)->Q,

(r|) 0-^M(u;s?i+§0^eM(ws?i+8Q^M(w?i+50^0.

TakeM=M(w?i+80,N=M(^?i+8Qin5.1.8. Since J(N, M) is an isomorphism and ̂
is the identity map, it follows that ̂  is required isomorphism.

5.2.2. The exact sequences (Q, (r|) of 5.2.1 are of couse equally valid in specialization
(equivalently setting 5=0). Recalling 3.6 (i) we let:

^ : Ext^OMC^), M(w^)}^Extj(M(y^ M(wX)),
ri7 : Exij(M(ys'k), 9M(w?i))-> Ext^M^sX), M(w?i)),

be the resulting natural maps.

LEMMA. — For each j one has:

dim Ker^^dim Ker ri7.

Recall that we have an embedding J y , y : M(ys'k)->M(y'k) and by 3.6 (i) that
6 M (y 'k) = 9 (Jy^ y M (ys ̂ )). By functoriality the diagram:

^o'X)
M(y^\ —^ QM(y^)

M(ys^) -^ QM(ys^)
'MQ'^)
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commutes and as in 3.13 one checks that both maps I' are injective. Apply the functor
Ext7 (-, M (w X)). Again take M = M (w ̂ ), N = M (ys 'k) in 5.1.8. Together these give the
commuting diagram:

Extj(M{ys'k),QM(w^)) ^ Ext^M^s ?i), M(w\))

J(M(>'sX)r ,M(u;X)) id

Extj(QM(ys^M(w).)) -^ Ext^M^s X), M{w ).))

9J- ' ' \,,.

Exij(QM(y^M(w^)) -^ Ext^M^ X), M(u;X))

Up to identifications defined by the isomorphisms J (M (ys X), M (w ^)), 9 Jy^ Id we have
Jys,;^^^- Hence the Lemma.

5.2.3. COROLLARY. — For alljeN one has:

dim Ext^1 (M(ys'k\, M (ws'k))-dm Ext^M^s^), M(wX))

^dim Extj+l(M(ys^\ M(wX))-dim Extj(M(y^), M(w?i)),

wft/i equality if and only ifKer ^^Kerri-7, Ker ^^^Ker ri^1.

Applying the functor Ext^-, M(w^)) to (i;) (with 5=0) gives:

dim Extj+l(M(ys'k), M(w^))-dim Ext^M^X), M(u;X)) ==dim Ker ^'-'^dim Im ^.

Applying the functor Ext^M^^), -) to (r|) (with 8=0) gives:

dim Exij+l(M(ys^ M(wsfk))-dim Extj(M(ysfk\ M(w'k))

=dim Ker r | J + l—dim Im ri7.

Since ̂ \r[J act on isomorphic modules we have:

dim Im r^+dim Ker ri^dim Im ^4-dim Ker ^

and so by 5.2.2 the required assertion.

5.2.4. By the choice ofw, y , s one has ys^woys^ws, so by [6], 7.6. 23, 7.1.8, the
validity of 5.2.3 extends to j = -1 if we set Ext~ l =0. We define:

Rx,yW= Z ^(-l^^^dim Ext^M^X), M(y^)).
j=o

LEMMA. - The expression R^ y(q) satisfies 2.1 (i) and the first relation in 2 A (ii). The
second relation is equivalent to equality in 5.2.3.
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By say 1.5.8 one has:

(*) Ext^M^), M^O^H^n^ M^))^_^IP(n-, 8M(X))^_p.

Yet M (?i) ̂  L (?i) and so 8 (M (?i)) ̂  M (?i) which is n~ free. Hence 2.1 (i). The first relation
in 2.1 (ii) obtains from 5.2.1 and the second from equality in 5.2.3.

5.2.5. Now take 8 regular and set (recalling 1.9.5):

^ °°
^y^)- Z ^(-l) f ( y ) - ! ( ' ) - JdimExt J(M(x^+8^),M^^+80),

j--i

where we have formally defined:

dimExt-^MCx^^r), M(^X+8r))=<| 1? x=y,
otherwise.

LEMMA. - R^y(q)=q~l{q-l)R^ y,for allx.yeW^.
Apply 1.9.5 (iv) with ?4=xX+8r , ^=J^+§^

5.2.6. We may regard 5.2.3 as a lower bound on dim Ext^^M^sX-), M(ws^)) and
ultimately a lower bound on Ext^1 (M (x X), M (w^ ̂ )). By (*) of 5.2.4, equality holds if
and only if dim H^n^, M(w^)) equals precisely this lower bound.

-x^' - z 7

.Y^'nX .71 (Y^)

X^1 .Z^1

.Y^^X -^(Y^ 1 )

.X^2 .Z^2

X^

Schematic presentation of the filtration of the modules X=M(ws^+§t), Z=M(w'k-^-6t) derived from the
conclusion of Lemma 4.4 and of the four-step filtration of Y^.. The module Y is the extension of X by Z. Bar
denotes specialization, superscripts (resp. subscripts) denote filtration (resp. gradation).
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Index of notation

Symbols used frequently are given below in order of appearance. In addition, f^J+

denotes { 1 , 2, . . . } and ^J = ^J+ u { 0 } .

0. 9^, t )*,R,B,M(^) ,
L(^),5, ,S,W,u;o.

1.2.1. a . X ^ H ^ R ^ f c .
1.2.2. A,a^,U(aJ,Z(aJ,S(aJ.
1.2.3. p ,A, ,M(^) , i ; ,_p.
1.2.4. Q(R),P(R).
1.2.5. M^Q(M).
1.3.1. P,P\
1.3.5. ^,^.
1.3.6. ^.
1.4.1. K^K^Kc.
1.4.5. QOi).
1.5.1. KC^Q.OI).
1.5.3. Q-OI).
1.7.4. K^K^.
1.8.1. fe,R^W,-.
1.8.6. F^.

1.8.8. Q(?i,D).
1.10.1. [M : M(^)].
1.10.2. EA.
1.10.3 BE.
1.10.5 p(M,^).
1.10.6. p(M).
2.1. R,^.
2.3. P,,,.
3.2. R ^ B ^ w ^ .
3.3. E(v),^,(p,,6,
3.6. X , Y , Z .
3.9. P(w?i+§0.
3.10. 5(M).
3.11. (e,L(w^)y,U,L(w^.
3.12. IM,IM.
3.14. J,,,,.
4.2. M^^M^^),.
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