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REPRESENTATIONS OF ALGEBRAIC GROUPS
IN PRIME CHARACTERISTICS (1)

BY GEORGE R. KEMPF

Let G be a connected reductive group over an algebraically closed field k of prime
characteristic p. Building on the work ofCurtis [6], Steinberg ([4], [12]) developed the initial
theory of the (rational) irreducible representations of G. The special representations [11],
which bear his name, have played a critical role in later developments. The Steinberg
representations were used by Haboush [7] to prove Mumford's conjecture. More recently
Haboush [8] and Andersen [2] have discovered that a very important role in the study of the
cohomology of sheaves on homogeneous space is played by them.

In this paper I will rederive (with all deliberate hindsight) the basic Theorems ofSteinberg's
theory together with the above beautiful recent results, which motivated this work. The
central Theorem 3.1 is proven by a global to infinitesimal argument. Grothendieck's group
schemes are systematically exploited in connection with purely inseparable morphisms.
I hope this paper will make the current frontier of research more accessible to fresh recruits.

I will use the notations and definitions contained in [10]. Groups schemes are assumed to
be affine.

1. The main Lemma

We will work entirely in the category of fe-schemes of finite type. Points are assumed to be
Jc-rational. If X is scheme, k [X] denotes the fc-algebra of global sections of the structure
sheaf ^x- Varieties will be irreducible.

Given any variety X and positive integer n, we may define another variety X^ together with
a purely inseparable morphism F^: X -» X^. As topological spaces, X and X^ are the same,
but locally the regular functions on X^ are the p"-th powers of regular funct ions on X. For
any point x of X, the inverse image X^= F;1 (FJ.v)) is a closed subscheme of X, which is
concentrated at x, where q = p". So X^ is the q-th order thickening of X along x as the ideal
of X^- in (9^ is the ideal (^) generated by q-ih powers of elements of the ideal 3 of x.

( 1) Research partially supported by N.S.F. Grant No. MCS-7900965.
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62 G. R. KEMPF

If H is a group variety, then F^: H -^ H^ is a homomorphism of algebraic groups. In
particular, its kernel ^H = F^1 (e) == H^g is a group scheme with only one point, where ^H is a
characteristic subgroup scheme of H. Furthermore we have an induced isomorphism
H/,,H%H^ where H/^H is the quotient group scheme. Thus the regular functions on H^
are exactly the regular functions on H, which are invariant under the translation action
of ^H. Explicitly:

fe[HJ={/e/c[H] |a*/=7i*/ inkLHxH]},

where a: ̂ H x H -> H is the translation action and 71: ^H x H -> H is the projection.
More generally let M be any (algebraic) representation of a group scheme K. Thus M is a

left-comodule over the Hopf algebra k f K ] , where the coaction M-^fe [K)®M will be
denoted by a^. An element m of M is called invariant under K if a^(m)==l(g)m.
A representation is called trivial if it consists entirely of invariant elements.

A group scheme U is unipotent if it is isomorphic to a closed subgroup scheme of the group
LJ^ of strictly upper-triangular mxm matrices by some m. Trivially a closed subgroup
scheme of a unipotent group is unipotent. The main tool in this paper is a direct
generalization of the Engel-Kolchin theorem. I will give its proof although it should be
well-known.

THEOREM 1 . 1 . — Let U be a group scheme. The following statements are equivalent:
(a) U is unipotent;
(b) any irreducible representation of U is trivial;
(c) any non-zero representation of U possesses a non-zero invariant element;
(d) there is an increasing sequence of \J-subspaces 0=Vo<=V\c= . . . c:fe[U] of the left

regular representation such that k[U]==Uv^ and the quotient representations of U on
Vf+i/V\. are trivial.

Proof. — (b) => (c). By Carrier's Lemma, any representation M is the union of finite
dimensional subrepresentations. Thus to prove (c) we may assume that the given
representation is finite dimensional and, hence, possesses an irreducible
subrepresentation. From here the implication is evident.

(c)=>(rf). We will define the V^s successively. Let V^i be the inverse image of the
maximal trivial submodule of k [U]/Vf. To show that the V^s exhaust k [U], by Carrier's
Lemma we need to show that any finite dimensional subrepresentation Nek [U] is contained

•in some V\.. By applying (c) to the image of N in k[U]/Vf, we see that NC:V^N-
(d) => (fc). Let M be an irreducible representation. Let L be a non-zero linear functional

on M. Then the composition:

\|/: M^k[U]®M^k[U](x)kwk[U]

is a non-zero homomorphism of U-modules from M to the left regular representation. As
M is irreducible, v|/ is injecrive. Better yet, if(d) is true, M is isomorphic to a submodule of
the quotient V;/V^_i for some i. Thus M is trivial as the quotient is a trivial U-module.
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REPRESENTATIONS OF GROUPS 63

[a) => (d). Assume that U is a closed subgroup scheme of the triangular group U^. An
explicit calculation involving polynomials in matrix coefficients shows that the statement (d)
is true for U^. As the restriction k [UJ -> k [U] is a surjective U-module homomorphism,
the subgroup U inherits the property (d) from U^.

(c)=>(a). Let M be a faithful finite dimensional representation of U. By (c) and an
evident induction, we may find a complete flag M^ czM^cz . . . c:M^=M of U-subspaces
such that the action ofU on the quotients M,/M, _ i are trivial. Choose a basis m^, . . . , m^
of M such that each M, is spanned by m^ . . . ,m,. Let aM(m,)=^^®m^ Thus the
matrix (o^) of functions on U defines a closed embedding Uc=U^.

Q.E.D.
Now we are in a position to understand the main result of this section.

LEMMA 1.2. — Let U be a unipotent group variety. Let W be a subspace of k [U] which is a
sub-representation as a ^3-module. We have two mutually exclusive possibilities',

(a) the restriction W -> k [^U] is injective, and
{b) W contains an element of the form fq for some non-zero regular function f on G, which

vanishes at the identity, where q=pn.
Proof. — Assume that (b) is true. As / vanishes at the identify, /4 vanishes at the identify,

/4 vanishes when it is restricted to the subscheme ^U. As 0^/^eW, (a) is false.
Conversely, assume that (a) is false. Let K be the kernel of the whole restriction

r:fe[U] -> k[^U]. By assumption, the intersection W n K is not zero. Furthermore,
because r is a homomorphism of ^U-modules, K and, hence, W n K are
^U-submodules. As U is unipotent, its subgroup scheme ^U is also unipotent.
Therefore, by (c) of Theorem 1.1, we may find a non-zero regular function g in W n K,
which is invariant under ^U. As g is contained in K, g has to vanish at the identity.

As g is invariant under ^U, g is a regular function on the quotient U^=U/^U. By the
definition ofV^,g has the form /^ for some regular function / on U. Now / vanishes at the
identity and is non-zero as with g. By construction, /^^eW. Hence (b) is true.

Q.E.D.

Remark. — The kernel K of the restriction consists of the regular functions on U, whose
terms of degree <q in their Taylor series at the identity vanishes. The restriction
W -> k [nU] being injective means that an element ofW is determined by certain terms of low
degree in its Taylor series expansion at the identity.

2. The injectivity Theorem

Let U be a unipotent group variety. First we will consider one procedure for producing
^U-subrepresentations W of k [U] geometrically. The basic idea is to look for all regular
functions on U that satisfy some type of linear ^U-in variant conditions on their behaviour at
infinity. Although we will need only a very concrete form of this idea, I will present it in a
general form at first.
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64 G. R. KEMPF

Let /: U -> X be an arbitrary continuous mapping to a topological space X. As the
structure sheaf 0^ is a sheaf of ^-modules, its direct image f^O^ is naturally a sheaf of
^U-modules on X. Let i^ be a sheaf of ^-modules which is contained in /^u-
Then W=F(X, -T) is a ^U-submodule of F(X, /^u)^F(U, ̂ )=k[\J].

Specializing further consider the case where / :U->X is a U-equivariant open
embedding. This means that X is a variety with a morphic U-action and / is an open
immersion such that f(u^ u^)=u^f(u^). In this case f^ is just the sheaf of rational
functions on X, which are locally regular on U. In this algehro-geometric s i tua t ion . /,. ( ' ,
possesses a natural U-linearization. One naturally examines at first the coherent
U-linearized subsheaves ^ of /^u- Next we will discuss the most obvious type of
such sheaves for simplicity.

Consider the case where X is a smooth variety and the complement X - U consists of a
finite number of irreducible divisors D, for i in an index set I. As U is irreducible, each of the
divisors D, are invariant under U. For any integral-valued function m on I, we have an
invertible sheaf (P^(^miDi) on x- ^ the divisors are invariant, this sheaf possesses a
natural U-linearization extending the U-linearization of its restriction 0^ to U. Thus the
space W(m)=EF(X, ^(Z^fD,)) is a U-subrepresentation of fe[U].

With these notations we may proceed to:

PROPOSITION 2 . 1 . — We have two mutually exclusive possibilities;
(a) the evaluation mapping W(m) -^ k[^U] is injective, and
(b) there is a non-zero regular function f on U, which vanishes at the identity, such that

q.ord^ (/)+m,.^0 for all i.

Proof. — This is straightforward translation of Lemma 1.2 as the condition on the order
of/ along the divisors D, is equivalent to /g being contained in W(m).

Before I continue, I want to make a clarifying remark about the space W(m).

LEMMA 2.2. - (a) the space W(m) is not zerooW(m) contains the constant
functions o each m^ is not negative;

(b) the space W (m) contains a non-zero function which vanishes at the identity o k c= W (m).

Proof. — For (a), the second equivalence follows directly from the definition ofW(m). In
the first equivalence, the implication => is evident. Conversely, if W(m) is not zero, then
W (m) contains a non-zero function which is invariant under U by Theorem 1.1. As such a
function must be a non-zero constant, W(m) contains the constants. So (a) is true.

For (fc), clearly we have the implication =>. Conversely, if/ is a non-constant function in
W(m), /-/ (identity) is a non-zero function in W(m), which vanishes at the identity, as
/cc=W(m). So (fc) is true.

Q.E.D.

With this result, we may understand a less ambiguous consequence of the last Theorem.

THEOREM 2.3. — Assume that F(X, ̂ )=k and m^<q for all i. Then the restriction
W(m) -> k [^U] is injective.
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REPRESENTATIONS OF GROUPS 65

Proof. — By Theorem 2.1, we need to show that there is no non-zero regular function /
on U, which vanishes at the identity and satisfies q. ord^ (/) + m^ 0 for each i. Assume that
/were such a function. Let n be the function on the index set I given by n, = - ord^ (/). By
definition, / e W (n). As / + 0, by Lemma 2.2 (a\ each n, ̂  0. Thus the above system of
inequalities becomes m^ qn^ for all i. By the assumption on m, we must have 0 = n, for all i;
i. e., n = 0. As r (X, (9^) = W (0) = W (n), / must be constant by the other assumption. As a
non-zero constant function cannot vanish at the identity, we may conclude that no such /
exists.

Q.E.D.
Let J2f be .an arbitrary invertible sheaf on X. As k [U] is a unique factorization domain,

^ lu^^u- ^s ^e units in k[\J] are constants, this isomorphism is unique up to constant
multiple. Thus we have an isomorphism J^^^E^1^) ^or some uniquely determined
function m. The integer m, will be called the moment, mo(^f, D^.), of Jzf along the
divisor D;. With these definitions, we can obviously reformulate the last theorem as:

THEOREM 2.4. - Assume that r(X,^)=k and mo(^f, D,)<^ for all i. Then the
restriction:

F(X, ^) -^ F(X^, ^ \^) is injective,

where x is any point of X which is contained in the dense U-orbit.

3. Applications to reductive groups

Let G be a reductive group variety. Let / be a point of a complete homogeneous space X
of the form G/P, where P is a parabolic subgroup of G. Let T be a maximal torus contained
in the stabilizer P^ of/. Recall (in the notation of [9]) that there is a unipotent group variety
Uy normalized by T such that the morphism f : U y - ^ X given by i(u)=u.f is a
U^-equivariant open embedding. Furthermore, as X is complete, an everywhere
regular function on X must be constant. Hence the assumption k==r(X,^x) of
Theorem 2.4 is verified in this situation.

Given an invertible sheaf ^ on X, one defines a weight pf(^) of the root system ofG with
respect to T. This process gives an isomorphism between the group of Jzf's upto
isomorphism and the group of weights which are invariant under the subgroup W y of the
Weyl group W that fixes /. The irreducible divisors D^. correspond to fundamental
weights CD,. I n terms of weights, the moments are determined by the equation
Pf(^)= ̂ mo[^\ D,.)co,. A weight ^m,.(o, is said to be dominant if all of its moments m,
are non-negative. By Lemma 2 .2 , /^ ( ^ ' } is a dominant weight if and only if V possesses a
non-zero global section.

We will work with G-linearized invertible sheaves to avoid the minor difficulties of
projective linearizations and representations. Let ^ be a character of the parabolic group
Pf. We have a G-linearized invertible sheaf ^^ (7) whose value ^/W\f at/ is the ground
field k on which P^. acts by the character ^. The weight p(^) of the sheaf ^y(x) is easily
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66 G. R. KEMPF

computed in terms of the action of the Weyl group on the restriction of % to T. The space
Mf(x) of global sections of ^(7) is naturally a G-module which is called an induced
representation.

Similarly we will denote the space F (X^ p ^ y Qc) |x ) by M} (^). We want to study the
group-theoretic properties of the restriction homomorphism p : M^(^) -> M}(^). Let P
be the subgroup scheme of G, which is the stabilizer of the subscheme X of X. Before I
discuss P^y in detail, at least Pq j acts on X^ morphicly. Furthermore, the G-linearization
of J2ff (/) induces a natural Pg ^-linearization of J^ (7) |x . Taking global sections, we see
that the restriction p is a homomorphism of P^ ^-modules.

Summarizing what we have proven so far about induced representations, we now know the
truth of:

THEOREM 3.1. — If the moments of the weight p(%) are all strictly less than q, then the
restriction p: M^-(^) -> M}(/) is an injective homomorphism of Pq ^-modules.

To put our picture of the group scheme Pq j in proper perspective, we need to examine the
inseparable morphism F^: X -> X^. As X is a homogeneous space under G of the form G/P
for some parabolic subgroup P ofG, X^ is a homogeneous space under G^ of the form G^/Pn
for the parabolic subgroup ?„ of G^. Furthermore the morphism F^: X -> X^ is equivariant
with respect to the homomorphism F^: G -> G^ of groups [i.e., F^ ( g . x) = F^ (g). F^ (x)]. If
we regard X^ as a G-variety via the action of G^ on X^ composed with the homomorphism,
the morphism is G-equivariant and X^ is a homogeneous space under G of the form
G/F^1 P^, where F^1 P^ is the scheme-theoretic inverse image of P^. Thus the fiber of the
morphism is a homogeneous space under F^1 ?„ of the form (F^1 PJ/Pn.

With these facts in mind, we see that the stabilizer P^ j ofX^ should be regarded as the
closed subgroup scheme F^1 (F^ (P^.)) = F^1 ((P^)J of G. In other words P^ is the q-th
order infinitesimal thickening of P^ in G. Furthermore X^ ^ should be regarded as the
homogeneous space Pq.//P/ using the action of Pq ̂  on the point /. This quotient
representation actually gives much information.

By the big cell Theorem, multiplication in G gives an open immersion
\JJ x P^ -> G. Consequently, multiplication induces two compatible isomorphisms of
schemes JJ^x^P^^G and ^ J f X P j - w P ^ ^ . Hence we have natural isomorphisms
P q ^ / P f W ^ G / ^ P f W ^ J j . Therefore we may regard X^ ^ as the homogeneous space
^G/^P^ under the action of^G or as the principal homogeneous space ^ U y under the action
of ^Uf . The first representation is of course equivariant under the action of P^, which acts
on X^ ^ by translation and on ^G/^Py via the conjugation action by P^ on ^G. The
isomorphism ^JJ ^^.fls equivariant under the Levi factor L^. (and, hence, T) of P^ with
respect to T, which operates on ^\JJ by conjugation.

Thus we may regard the space M}(^) as the representation of P^ . (or ^G) induced by the
restriction of ̂  to its closed subgroup scheme P^ (or ^P^). In the alternative case, we may
simply call M}(/) the infmitesimally induced representation of ^G.
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REPRESENTATIONS OF GROUPS 67

4. More applications

The infmitesimally induced representations M} (7) are very concrete objects and they have
some properties analogous to those of the globally induced representations M,. (7). First I
will mention some of these properties. Then I will show how the injectivity Theorem is
related to Steinberg's Theorem concerning the infinitesimal irreducibility of certain
irreducible representations of G.

Recall that, if the weight pW of 7 is dominant, the induced representation M^) has a
canonical element \|/y0c), which is invariant under U^ and has value 1 in
^(X)l /=fe(x) . Furthermore ^(7) spans the space of all U^-invariants in M^(^) and
v|/^ Oc) is a T (or even L^) eigenvector of weight equal to the restriction ̂  of 7 to T. Even if we
drop the dominant assumption, we have a section, say vj/^. (7) again, in F (U^ ./, J^ (7)) with
similar properties.

Let \|/}0c) denote the image of v|^(x) in F(X^, ^(x)lxJ=M}Oc). Then ^/} is
n\Jf -invariant and we may write any element ofM} (7) uniquely in the form g . \|/} (^), where g
is an element of k [X^] = M} (1). As \|/} (50) is ̂  -invariant and X^ % ̂ 7, we have a
natural isomorphism of ^U^-modules between M} Qc) and the left-regular representation on
^LU^]. Formally we have:

LEMMA 4.1. — (a) the space of ^J ^-invariants in M}(^) 15 the line fev|/}0c);
(b) kv|/}0c) is also the ^-weight space for the action ofT on M}(^);
(c) the characteristic o/M}(/) as a T-module is given by:

Ix'].n( ^ [a^^^znf11!-^
o^<q \ [l]-[a] .0^<9

where the products are both taken for all roots a lying in U r .

Proof. — For (a), the only ^U^-invariants in its left regular representation are the
constants. In terms of the isomorphism M}(/)%fe[^U7], this means that fcv|/}0c) is the
space-of invariants in M}(^).

For (fc), as \JJ is the unipotent radical of the parabolic subgroup L^.U^ of G, the set
R (U7) of roots in Vj all lie in an open half space in the usual additive picture of the root
system. Thus the trivial character 1 of T is not a product II a^ with a in R (U^) and positive
exponents m,. Therefore (b) follows directly from the formula in (c).

For (c), let k (^) denote the submodule ofk [T] spanned by a character 7 ofT. As \|/^. (^) is a
T-eigenvector of weight ^f, the above isomorphism actually gives a T-isomorphism
M} 00 w k Wf] ® fc k (/') where T acts on k [JLJ^] via conjugation. Therefore to prove (c) it
will suffice to determine the characteristic of^U^]. Recalling that k [U^] is T-isomorphic
to the symmetric algebra on the T-module K = © k (a) for a in R (U^ ), where K generates the
ideal of the identity. Thus from the definition of ^U^, fe[JJ^] is T-isomorphic to Sym
K/(K4)^ C Sym^K^r® ^(oc1)). Hence (c) is evident.

0^i<q ' l^i<<?

Q.E.D.
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68 G. R. KEMPF

For a representation My Qc) globally induced from character ^ of dominant weight, the fact
that it has a unique Uy-invariant line together with Theorem 1.1 implies the following two
facts; My(^) is an indecomposible Uy-module and My(^) possesses a unique irreducible
G-submodule Ny(/). The same arguments apply [cf. Lemma 4.1 {a)] to the infinitesimal
case for any ^. Thus M}(^) is an indecomposible ^J -module and M}(^) possesses a
unique irreducible ^G-submodule N}(^). {Actually Ny(^) [resp. N}(^)] is the smallest
Uy(resp. ,,Uy)-module containing \|/y(x) [resp. \|/}(x)], where Uy denotes the unipotent
radical of Py.}

We will discuss Steinberg's Theorem which relates these two kinds of induced
representations.

THEOREM 4.2. — Let / be a character with a dominant weight which has moments strictly
less than q. Then the restriction mapping induces an isomorphism Ny (^) -> W (^). In other
words, Ny(^) remains irreducible when it is regarded as a ^G-module.

Proof. — For any group scheme H and any element m of an H-module M, we may compute
the minimal H-submodule k H m of M containing m in a simple way. Write a^ m = ̂  /i®m^
where the //s are linearly independent elements offe[H] and the m/s are linearly independent
elements of M. Then the m/s are a basis for the vector space k H m. In particular, if M is
the left regular representation of H on k [H], the m/s (resp.//s) are a basis of the left (resp.
right) H-submodule spanned by m in k[H] ( see [3]).

As usual we may identify the induced representation Ny(^) with the G-subspace

{f^=k[G]\f(gp)=f{g)^(p) for all g in G and p in Py} = [fek[G] |x*/=/.x},

where x* is the cohomomorphism of the multiplication x : G x P^ —>• G, of the left regular
representation. The analogous statement is true for the infinitesimally induced
representation.

The element \|/^0c) in Ny(^) is identified with a regular function 5cfPy on G, which
satisfied a two-sided functional equation:

(x t Pf) { p ' gp) = / - ( p ' } . x T P/ {g}. X (P),

for p ' in Pj = L^. U j ' , g in G and p in Py, where ^ - is the character of the opposite parabolic
subgroup Pj with the same restriction as % to the Levi subgroup L^=Py.nP^. Now
write ^(xTF./^Z/i®^ where the //s (resp. m/s) are linearly independent regular
functions on G. By the above remarks, the m/s are identified with a basis of the irreducible
G-submodule N^ (^) of M^ (^). If we can prove that (f) the images //s (resp. m/s) in k [^G]
are still linearly independent, the m/s are identified with a basis of the irreducible ^G-
submodule N^. (/) of M^ (/). Therefore the statement (f) implies that the restriction gives an
isomorphism Ny(^)%N}(^).

Thus it will suffice to prove the statement (f). By Theorem 3.1, the restriction
My (7) -> M} (%) is injective. Hence the m/s are linearly independent as the m/s are. The
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REPRESENTATIONS OF GROUPS 69

linear independence of the /i'8 follows by the same reasoning using left-right
symmetry. Explicitly we may identify the right G-subspace

{f^k[G]\f(pf.g)^(pf)f(g)}

with the space of sections of a right G-linearized invertible sheaf ^ on the right homogeneous
space P7/G. As the moments of ^ are the orders of x IP/to) along the divisors in
G-U^ L^-Uy, they are the same as the moments of J2fy0c). Thus the assumptions of
Theorem 3.1 are verified for ^ on Py\G. Hence the same reasoning shows that the //s
are also linearly independent. Therefore (f) is true.

Q.E.D.

Remark. — This Theorem shows that the original injectivity Theorem 2.4 has significant
content. The Theorem 2.4 could be generalized to a statement about the sections of a
G-linearized sheaf on G/P restricted to a Schubert variety (or modification of one), but at
present the strength of such a generalization has not been fully tested.

5. Steinberg representations

We will first recall a general fact about finite group schemes. By definition a group
scheme H is finite if k [H] is a finite dimensional fc-vector space (equivalently H has a finite
number of points). A basic fact about finite group schemes is:

LEMMA 5.1.- There is a unique hyperplane L c k [H] such that L is a left-H-submodule and
the induced representation on k[H]/L is trivial.

Proof. - This result can be found in Sweedler's book [13]. (When H is reduced,

L = { / e / c [ H ] | V / ( ^ ) = 0 } . ) I will give a sketch of Sweedler's proof in geometric language
/»eH

although in more classical language it involves convolution of linear functionals on
k [H]. Let (OH be the dualizing sheaf on H. By functoriality, (OH is a H-linearized sheaf for
the left action of H on itself. By Grothendieck's Theorem 90, we have a H-equivariant
isomorphism (OH^^H®^ for some ^-vector space V. Thus F(H, w^wkW®^ as

H-linearized fc[H]-modules and, hence, the space of H-invariants in F(H, ̂ wk®^'
By duality, F(H, w^)wHomk(k[H], k) and, hence, V must be one dimensional and the
invariants k®V correspond to the linear functionals (i.e. integrals) defining such subspaces
Lmk[H\.

Q.E.D.

Remark. — The hyperplane L is invariant under the right action ofH (basically because the
left and right actions commute). Thus an integral defining L must be a right eigenvector for
H. Its weight corresponds to the multipliers in the functional equation for right translation
of a left-invariant Haar measure. Integrals give a self-duality for k[H]. Perhaps this
duality should be studied further when H is the Frobenius kernel ^G of a reductive
group G. We can now specialize the lemma to the unipotent case.
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70 G. R. KEMPF

COROLLARY 5.2. — J/H is a finite unipotent group scheme:
(a) there is a unique hyperplane L in the (left) regular representation fe[H];
(b) L is the maximal proper H-submodule ofk[H].

Proof. - By Theorem 1.1, any proper H-submodule of fe[H] is contained in some
hyperplane L' of k [H], which is an H-submodule. By Theorem 1.1 again, the line k [H]/I/
must be a trivial representation of H. By Lemma 5.1, the hyperplane L' is unique.

Q.E.D.
We want to apply this Corollary when H is the previous unipotent group scheme ^JJ . In

this case we can use the action of the torus T to give an explicit description of the
situation. What we need to know is contained in:

LEMMA 5.3. - The maximal proper ^J J-submodule L ofk [^U^] is the T-subspace which is
spanned by the eigenspaces of weight ^IIa4"1, where a runs through the roots of\Jj.

Proof. - By Corollary 5.2 we need only see that the T-subspace in question is a
^U^-submodule and has codimension one in k LU^]. In Lemma 4.1, we have determined
the weights occurring in k[^Jj] together with their multiplicity. In terms of the partial
ordering of characters given by the roots R [U;] in \ J J , the weight II o^ ~1 for a in R [U^] is
strictly higher than the other weight in k [JJ^]. Therefore the T-subspace in question is a
JLJy-submodule of codimension equal to the multiplicity of IIo^"1, which we have
determined to be one.

We can restate the last result in terms of the infinitesimally induced representations.

LEMMA 5.4. — The infinitesimally induced representation M}(/) has a maximal
n\Jf-subrepresentation which is the T-subspace complementary to the line off-eigenvectors
of weight ^jca4"1 where a runs through the roots in\Jj.

Proof. - Just use the isomorphism in the proof of Lemma 4.1 to deduce this result from
the Lemma 5.3.

Q.E.D.

Remark. — For the globally induced representations M^(^), the representation has a
unique U^-submodule of codimension one if and only if My(^) is irreducible. Thus the
situation is not strictly analogous to M}(/). The correct analogy seems to be with U^.
invariants in M}(/).

We are ready to discuss Steinberg representations. For the rest of this section, the
homogeneous space will be assumed to have the form G/B where B is a Borel subgroup of
G. The Steinberg character a^ is by definition a character of T such that a^^rio^"1

where the product is taken over all roots a in U^. Clearly the Steinberg character exists
unless p = 2 and in any case it is weight for the root system of G. It is well-known that CT is
dominant and has moments equal to q — 1. Furthermore, if WQ is the longest symmetry in
the Weyl group, then Wo.<^=c^~1. The Steinberg representation St^ is the globally
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induced G-module Mj- (c^). The principal properties of Steinberg representations are listed
in:

THEOREM 5.5. — (a) the Steinberg representation St^ is an irreducible nG-module and, hence,
irreducible as a G-module;

(b) also Stq is naturally isomorphic to the infinitesimally induced P^module M}(a^);
(c) the characteristic of Stq as a T-module is [o'jn^ll—ta4])/^!]-^]), where a runs

through the roots of\Jj.
Proof. — By the above remarks, the Theorem 3.1 applies to the Steinberg character

<jq. Thus we have two natural injections Ny (o^) c: Mj- (a^) == Siq -> M} (a^). In particular
we may regard Ny(c^) as a ^U^-subspace ofM}(c^). To show that Ny(c^)=M}(<7g) by
Lemma 5.4, it will suffice to find a non-zero eigenvector in N^ (a^) of weight Oq H a4"1 with a
in R(U^). Now Ny(a^) is a G-module with a non-zero eigenvector v|/y(o^) of weight
Oq. Consider the following element w^. v|/y (cjq) of Ny (a^) where WQ is an element of N (T)
representing WQ. Clearly w^.\|/y(a^) is non-zero and its weight is Wo.Oq which equals
<Jql=<Jq.(Tlaiq~l). Therefore we have found the desired element and, hence,
N^)=M}(a,)=St,.

By Theorem 4.2, N^. (o^) = N} (<jq). Therefore, as N} (c^) is an irreducible ^G-module,
Siq is ^G-irreducible. So (a) is true. Also St^=M}(^) and, hence, (fc) is true. Part (c)
follows directly from (b) by Lemma 4.1 (c).

Q.E.D.
Steinberg has given a partial converse. We will sketch its proof for completeness.

PROPOSITION 5.6. — Let ^ be a dominant character which has all its moments strictly less
than q. If the infinitesimally induced representation M^(^) is an irreducible ^G-module,
then / is the Steinberg character <jq.

Proof. - In other words, N}Oc)=M}Oc). By Theorem 4.2, N^(/)%N}Oc). Thus
NyOO^M}^) and we know the characteristic of Ny(^) as a T-module by Lemma
4.1 (c). From this and highest weight considerations, we may conclude that Ny (/) contains
a non-zero Uy-invariant of weight ^TIa4"1. As such an invariant is a constant times
w? ̂ f (x)» we have an equality of weights WQ (x) = X n a4 ~1. By an elemantary fact about
root systems, this equation has only one solution 5C=<7^ with the given restriction on the
moments of ^.

Q.E.D.

6. Applications to sheaves

First we will consider the meaning of the conclusion of the general Theorem 2.4. We
have a quasi-coherent sheaf M on a variety Y such that:

(*) the restriction F(Y, M} -^ F(Y^, M |y ),

is inject! ve for y in an open dense subset of Y.
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Let examine the quasi-coherent sheaf (FJ^ e^ on Y^ which is the direct image of^ under
the purely inseparable morphism F^: Y -^ Y^. For any arbitrary point z = F^ (y) of Y^, we
have a natural isomorphism [(FJ^^]^ F(Y^y, ^|y ) as F^ is affine and
F^1 (z)=Y^y. As we have a natural isomorphism F(Y, ^)%r(Y^, (FJ^e^), we have a
canonical ^y -homomorphism:

a: r(Y,^/)(x)^->F,^/.

Thus our hypothesis (*) means that a |^ is inject! ve for z in an open dense subset ofY^. As
a section of the kernel of a is determined by its values on such a subset, we may conclude the
truth of the first statement in:

LEMMA 6.1. — The condition (*) implies the following conclusions:
(i) the canonical mapping a is injective;
(ii) if^V is a quasi-coherent shea/on Y^ which is locally free along the support of the cokernel

of a, then:
{a) a®J^: F (Y, M}®^^V -> F^(e^)(g)^ ^T is injective;
(b) the induced mapping r^Y,^)®^^^^)^ H^ F^(^)®J^) on global sections is

injective;
(iii) if ^V or cok (a) is locally free everywhere on Y^, then we have a natural injection,

F(Y, ^)®,F(Y^ ^T) ̂  F(Y, ^(x)^(F,)*^);

(iv) i/a is an isomorphism, then:
(c) the injections in part (iii) are isomorphisms, and
(d) the restrictions in (*) are isomorphisms for all y in Y. Conversely, if they always are, a is

an isomorphism.
Proof. — For (ii) the assumption implies that STor^ (cok (a), J0=0, which is stronger

than the injectivity assertion (a). The global effect of (a} is (b). Part (iii) follows from (b) by
the projection formula. In (iv), (c) and the first part of(rf) are evident. The rest of{d) is a
routine application of Nakayama's lemma.

Next I want to record the group-theoretic properties of the above
homomorphisms. Given a group variety H, we have the homomorphism
\|/sF^: H -> H^. If H acts on the variety Y, then H^ acts on Y^ so that F,.: Y -> Y^ is
\|/-equivariant. Given a H^-linearized sheaf ^ on Y,, or any H^-module N, let ^
and M^ denote the H-structures induced by v|/. With the above notations, we have:

LEMMA 6.2. — Given an ^-linearization ofM^ then:
(a) ¥^ ^t has a naturally ̂ -linearization and a; F (Y, ^)®^ (9^ —> F^» Ji is H-equivariant

for the diagonal linearization of the first term;
{b) similarly, the natural homomorphisms:

F(Y, ̂ )®,F(Y^, ̂  ^F(Y,, F^(Jn®^^)-^r(Y, ^/®^(FJ*^)
are Yl-equivariant.

Q.E.D.
Proof. - Why not ?
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My last duty before I can state definitively the consequences of the previous theory is the
change of scalars. Temporarily we will move outside of the category of ^-schemes to do
this. Let x: Spec k -> Spec k be the morphism corresponding to the ^-power
homomorphism on the rings. Then x is an isomorphism and the analogous x-morphism
Y -> Y factors naturally as:

Y^Y^Spec^cx.Y^Y.

Further x x ly is x x Ipj-equi variant for any group variety H acting on Y. Given any
H-linearization of a sheaf ^ on Y, we have a H^-linearization of (x x ly)*^ and, hence,
an H-linearization (x x ly)* ̂ SE^. Specializing to the case where Y is a point, a given
representation MofH gives an H^-representation on k®^ M, which induces a representation
M1^ ofH. Clearly we may identify F (Y,., .^[q]) with F(Y, ^{q} in a G-equivariant manner.

Returning to the category offe-schemes and the notations of sections four and five, we have:

THEOREM 6.3. — Ifthe moments of the weight p (^) of x are all strictly less than q and^f is any
other character of the parabolic subgroup P r :

(a) we have natural injective G-equivariant homomorphisms:

a: M^(x)®^c,(FJ^Oc)

and, more generally:

^ M^W^fW^ c;(F^^(x)(x)^^(v|/)^^(F,)^,.(5c.r),

and
(b) globally we have a natural injective G-homomorphism:

A^: M^)®M^)^c,M^.r).

Proof. — By Theorem 3.1, the condition (*) at the beginning of this section is verified for
^=^^(7) at the point/. By homogenity, the condition (*) is verified for all points
of %. Thus injectivity follows directly from Lemma 6.1 (i), (ii) and (iii). The Lemma 6.2
should explain the G-equivariance as (FJ*^^)1^)^^^).

Q.E.D.

In case where X is a total flag space and % is the Steinberg character a^, we have much
stronger conclusions (see [8] and [2]).

THEOREM 6.4. — For an arbitrary character \|/ of the Borel subgroup P^;
(a) we have natural G-equivariant isomorphisms:

oc: St,®^S(FJ^(cr,),

and, more generally,

^ St,®^ j^ (^ ̂  (FJ^ J^ (a,. ̂ ),
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and
(b) globally we have natural isomorphisms:

St^M^)^M^(a^)

and in particular, for any non-negative integer r:

St,(x)St^SSt^.

Proof. — One uses Theorem 5.5 b) together with conserve in Lemma 6.1 (iv) to verify that
a is an isomorphism. Using the rest of that part (iv), the proof is similar to the last
one. The last remark is a special case because Oq a^r = a^r+i [i. e. in terms of the exponents in
the definition of CT^, q(qr- l)+(q- l)=qr+l-l].

Q.E.D.

Remark. — The last statement implies a very special property for the graded fe-algebra
©^oM^(a^) with respect to the n-th Frobenius homomorphism. One may ask whether
there is any useful theory about such graded rings.

Next I will show how the global injectivity theorem implies the Steinberg tensor product
formula.

THEOREM 6.5. — In the situation of Theorem 6.3, the homomorphism A^ induces a
G-isomorphism:

N^(x)(x)N^(v|/)^^N^5c.^).

Proof. — We will see the general strategy from the proof of Theorem 4.2. Let
H*(ztP/)=S^®m, and H*(^f P^)=^ g^n, where {/,}, { m , } , {^.} and {^.} are all

1 J
linearly independent. Now ^*(x.v|^TP/)=E/^J®^^. Thus the content of the

i, J
Theorem is that {/, g^ } and { m, nj } are linearly independent. Using the left-right trick, we
need only prove the statement for {/^j}, but this just means that
^(X^N^^^M^.i)/4) is injective. As this is a weaker statement than
Theorem 6.3, we are done.

Q.E.D.

7. Application to cohomology

In the last section we have actually found that there is an interesting example of a quasi-
coherent sheaf Ji on a variety Y such that (**) the natural homomorphism a:
F(Y, ^)®^^Y, ~^ (FJsie ̂  is an isomorphism.

This is a remarkable phenomenon. In fact (F^ M is a free (9^ -module. Hence as the
morphism F^ is affme, ̂  is flat over ¥„. The cohomological consequence of these facts are
quite extreme.
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LEMMA 7 . 1 . — Assume that the condition (**) is verified and that ^V is an arbitrary quasi-
coherent sheaf on ¥„. Then the natural multiplication:

F(Y, ^(x^H^Y,, ̂ -^(Y, ̂ ®^(FJ*^),

is an isomorphism/or all integers i.
Proof. — Obviously we have an isomorphism:

F(Y, ̂ 0®,^,, ^)%ir(Y,, F(Y, ̂ )®,^).
Using the global effect of the isomorphism o^ of Lemma 6.1 (iv), we have a natural
isomorphism of the last cohomology group with H'(Y^, (FJ^c^®^ J^). As M is flat
and affine over Y^, we have a projection formula isomorphism of the last group with
H'(Y, M®Q (FJ*^). Therefore the composition of these isomorphisms is an
isomorphism.

Q.E.D.

In the presence of G-linearizations of the above sheaves, these isomorphisms are G-
equi variant in terms of the induced G-module structure on the cohomology groups. The
main application to cohomology of the preceeding theory is due to Haboush [8] and
Andersen [2]. It is:

THEOREM 7.2. — In the situation of Theorem 6.5, we have natural G-equivariant
isomorphisms:

B,: St,®,Hl(Y,^(7))[<^]SHi(Y,^(a,.x9)).

Proof. — By Theorem 6.4 (a), we may apply our Lemma 7.1 with e^=J^(<j^) and
j\r == j .̂ (^)l^. The result follows directly.

The last Theorem provides an excellent solution to problem of finding a G-equivariant
proof of the Borel-Weil type vanishing Theorem [9]. This proof is too easy to resist writting.

THEOREM 7.3. — If the weight of the character ^ is dominant, then the cohomology group
H*(X, c^^(/)) are zero for positive i.

Proof. — As Oq ̂ q has positive moments, by Theorem 7.2, it will be enough to consider the
case where ^ has positive moments; i.e. ^^(7) is ample. 6y Serre vanishing Theorem,
W(X, ^f(f)(m})=Q for all f>0 when m^>0. By the theorem again, the natural
homomorphism y: H^X, J^Qc))^ -> H^X, J^(x4)) is injective because B ^ = l u y and
St.^0. Hence H^X, j^(^))=0 for all f>0.

Q.E.D.

The reader may find other interesting applications of the Theorems in this paper in [I], [2],
[5], [8], [10]. A significant fact about the Steinberg character Oq can be seen in duality
theory. Recall that, on the homogeneous space X, we may G-equivariantly identify the
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dualizing sheaf (Ox with J^ (v|/) where v|/ = ITa where a runs through the roots in U^. Thus
Ox ^» ̂ p^11" x (^x ? °^7/ W)- Furthermore the relative dualizing sheaf cop for the morphism:
F,:X-X^s:

^W®(FJ*(^W[4])0-1^^(^1^).

For a total flag space by the definition we have ^^(a^)02^^.
Thus, a priori, we expect the direct image (FJ^ J^ (a^) to be self-dual. Under the above

isomorphisms with St^(x)^x ? tnls self-duality corresponds to the irreducibility of
St^. Further reflexions on duality should convince the reader of the naturalness of the
duality ideas expressed (or implicit everywhere) in Section 5.

Remark. — For split groups over a finite field F, Steinberg has developed an analogous
representation theory. The methods of this paper can be modified to treat that case
also. The Frobenius morphism U -> ^U \ U must be replaced by the Artin-Schreier-Lang
morphism U -> UF\U and the role of the torus T is limited to the action of its group Tp of
rational points.
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