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ON THE SOBOLEV CONSTANT
AND THE p-SPECTRUM

OF A COMPACT RIEMANNIAN MANIFOLD

BY PETER LI

On a m-dimensional compact C00 Riemannian manifold M"", the Laplace-Beltrami
operator A is defined by

(0.1) A=d8+8d,

where d is the exterior differential operator, and § its adjoint operator with respect to the L2

inner product. The Laplacian is a second-order self-adjoint elliptic operator acting on the
space of L2 p-forms. Its p-spectrum, Spec^M, consists of discrete eigenvalues
{0=0= . . . =0<^i^^p 2= . . . ^p,n^ • • • } • The multiplicity, rip^o, of the zero
eigenvalue in Spec^ M are given by the p-th Betti number bp.

Recent development shows that the non-zero eigenvalues also contain substantial
geometric and analytic information. For instance, the first eigenvalue X-o, i for functions (0-
forms) is given by the well-known Poincare inequality

(0-2) ^iinf||/-^||V/||2
aeR

for all C1 functions defined on M, where || \\^ denotes the L2 norm. Equality holds iff/is
the first eigenfunction satisfying

(0.3) A/=^o,i/.

Another important analytic inequality is the Sobolev inequality

(0.4) Coinf||/-^||^-,^||V/||m,
< i e R
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452 P. LI

for all functions in H^ i, the Sobolev space of functions which has L1 derivatives. The best
constant Co such that (0.4) holds is known as the Sobolev constant.

One of the important geometric inequalities is the isoperimetric inequality

(0.5) Cl(min{V(Ml),V(M2)})w- l^(A(N))w ,

where N is any codimension-1 submanifold which divides M into M^ and M^, with
A(N)=the (m-l)-dimensional measure of N and V(M^.)=the m-dimensional measure of
M,(f=l ,2) .

It is known that [1] the Sobolev inequality is equivalent to the isoperimetric inequality,
namely,

(0.6) 2C^Co^Ci.

Recently C. Croke [4] showed that C^ has a lower bound depending on: lower bound of the
Ricci curvature, (m — 1) K; upper bound of diameter, d\ lower bound of volume, V; and the
dimension, m, of M. The purpose of this paper is to give estimates for the eigenvalues of
Spec^ M from below in terms of Co and V. Hence combining with (0.6) and the result of
Croke, one can estimate ' k p „ from below in terms ofd, K, m, and V. It is interesting to point
out that Cheeger [2] gave a lower bound of^o, i m terms of an isoperimetric constant h, which
is different from C^. Yau [8] later showed that this isoperimetric inequality is equivalent to
an I^-type Poincare inequality. In the same paper he also gave a lower bound ofh in terms
of rf, V, K and m, which provided a lower bound of ^o, r

For completeness sake, some known results concerning the Sobolev inequality will be
proved. In particular, another version of the Sobolev inequality which is more suitable for
our situation will be derived. We will also establish an elementary inequality between ^o, i
and Co.

Section 2 will be devoted to obtaining upper bounds for the multiplicities rip(k) of all
eigenvalues ̂  e Spec1' M. In the process, we will derive estimates on the supremum norms of
the eigen-p-forms. As a corollary, upper bounds for the Betti numbers can be obtained in
terms of the lower bound of the curvature operator, volume, and the Sobolev constant C^ (see
Lemma 1 for definition ofC^). In particular, when M is a manifold with constant curvature
— 1, bp has an upper bound depending on V alone provided m^4.

Finally, we will estimate from above the sumpremum norm of any differential forms which
are linear combinations of the first n-th eigen-p-forms. This enables us to obtain lower
bounds for ̂  „ in terms of V, d, lower bound of the curvature operator, and n.

Throughout this paper, all manifolds are assumed to be compact oriented C00 Riemannian
manifolds, and D (m) denotes a constant depending only on m. The results on functions can
be generalized to non-oriented Riemannian manifolds by lifting to their two-folded
coverings.

The author is greatly indebted to S. T. Yau for his interest in this work, without whose
useful suggestions this paper would not be in the present form.
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/7-SPECTRUM ON MANIFOLDS 453

1. Sobolev inequalities

For our purposes, we will derive a weaker version of the Sobolev inequality for manifolds
with dimension greater than or equal to 3.

f
LEMMA 1. - Let f be a function in H^(M) satisfying (sgn/) l/l2/^-2^. If

JM
(:2==D(m) C2^ and m^3, then

C2ll/llL/(.-2)^HV/||J.

Proof. — Consider the function

^(sgnni/12^-1^-^.

The fact that (sgn/) l/l2/^-2^ implies that g satisfied
JM

(1 .1 ) f(sgng)\g\l/(m-l)=0.

This means

(1-2) | |6f| |^^_i)=inf | |^-^IL/(m-i)-
aeIR

Hence by (0.4):

Co ll/llj^--12r-2)=Co II^II^-D^II V^ll?

=|2(m^/m/(w-2)V/|^^D(m) II/IÎ ÎIV/II?.
|| m-2

Dividing both sides by \\f\\^l^ we have

Coll/ll^/(.-2)^D(m)||V/||?,

and the Lemma follows.

LEMMA 2. — For oH/eH^ ^(M) wftft m^3,

|| V/||j^D(m)C,[ ||/|lL/(.n-2)- V-^ll/Hi].

Proof. — Let/e Hi 2 (M), consider /ceIR such that

f
sgn(/-fe)|/-fe|2/(m-2)=0.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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By Lemma 1,

(1.3) l|V/||^C2||/-/c||L/(.-2)^C2[2-^+2^-2))||/|||^:ij-v^m^-2^

^c.p-^^^ii/ii2^.^-^-2)/^2].
However, if

and

then

implies

(1.4)

But

M + = { x e M :(f-k)(x)>0]

M _ = { x e M :(/-fe)(x)<0},

[sgn(/-fe)|/-fe|2/(w-2)=0

| (y-fc)2/(m-2)^ f ^_^2/(m-2)

JM+ JM_

r r(y_fc)2/(m-2)^^a f2/(m-2)_^ ^2/(m-2)

JM+ JM^

where

a=
0 if m=3
m—4
w-2

if m^4,

also

(/c-/)2 / (w-2)^2PV_fe2 / (w-2)- f l/l2^"2^
JM_ JM

where

m—4
if m=3,m-2

0 if m^4.

Hence combining with (1.4):

2" y2/(w-2)-v^ fe 2 / ( w - 2 )^2 P V_ fe2/^-2)- f | / ' |2/(w-2)
JM. - JM.

4^1^11: - TOMI 1 3 - 1980 - •?4



J9-SPECTRUM ON MANIFOLDS 455

This gives

f ]y]2/(m-2)^^ f ^[2/(m-2)^Pv_^2/(m-2)^y^2/(m-2) = (2^ V _ + V J ^2/(w - 2)

JM_ JM.

Hence

D^II/ll^-^^Vk2^-^.

Applying Holder inequality we have

(1.5) D(m)||/|||^Vfe2.

Together with (1.3) yields the Lemma.
A lower bound of ^o, i can be obtained rather easily by substituting the first eigenfunction

into the Sobolev inequality.

PROPOSITION 3. - IfM is a compact manifold, then

^^(mKCoV-1)2^.

r
proof. - Let/be the first eigenfunction satisfying (0.3), then /== 0. For the case m = 2,

JM
3, or 4, we consider the function

^=(sgn/)|/r-1.
Clearly

[(sgn^r^-^O,

hence

(1.6) (m-l)m||/m-2V/||r=||V0||^^Col|0||^-l,=Co||/||^(m-l).

However

ll.r'^./HT^II./lir^'ii'llv.ni? ^ll/ll^"""21^4-'"'/2^!!/!!?^^/^!!/!!^*'"-1'.

Therefore ^i^CoV"1)2'"^-!)"'2 as claimed. When m^5, let
g=(sgaf) l/l^"2"2. Then g satisfies

l'(sgn0)|0|2/('"-2)=0,

hence by Lemma 1:

(1.7) \\^g\\W,\\g\\i^.^=C,\\f\^-2.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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However

(i.8) nv^n j= f iva^-^+f ivd/r"2^)!2,
JM+ JM-

where M'^ and M~ correspond to parts of M such that/takes positive and negative values,
respectively. By regularity of 8M+ and 8M~ [3], and the fact that/^-2^2 |^=0 and
l/^-^2 IBM- =0, we have

r c
IIV^H^ f^-2)/2^-(m-2)/2^ \f\(m-2)/2^^(m-2)/2y

JM+ JM-

Computation shows that

(1.9) A(/<m-2'/2)=-('^Vm^4')/('"-^[v/|2+(/?"^2^(".-^2A/

=(wf2)[-(w^)/<M-6-|V/p^o,J<m-2)/2].

Hence (1.8) and (1.9) together yield

«v("ll=("^)2(;»13^».•ll/«^-

Substituting into (1.7), we have

^0,1 ̂ (m)\\f^-.^C,\\f\^-2.

Holder inequality implies

^iD^V2^^.

The Proposition follows from the definition of C^.

In the case when m=2, Lemmas 1 and 2 are not valid, hence we need the following:

LEMMA 4. - Let M be a compact surface. If /eH^ ^(M), then

| |V/||j^D(2)Co[V- l/2 | |/||^-V- l | |/||j].

Proof. - Let g be defined by

^)=l./l./(.v).

Then (0.4) gives

t^O) \\^9\\W,M\\g-a\\i=C,\\g-^
aeR

4" SERIE - TOME 13 - 1980 - ?4



/^-SPECTRUM ON MANIFOLDS 457

where a==V~1 . \g. By definition of g, we have

(1.11) ||^-a||j= fa i / l -^^l l / l^- laf / l / l+a^

^l/llt-^V^II/llt-ll/lllV-1.

On the other hand

(1.12) l|V^=4||/V/||^4||/||j||V/||j.

(1.10), (1.11), and (1.12) then give

(1.13) D(2)||/||j||V/||j+Col|/||^V- l^Co||/||:.

But

1 1 / 1 1 ^ 1 1 / I I ^ V 1 / 2 ,

therefore

D(2)V l/2||V/||j+CoV- l/2||/|||^Co||/||2

and the Lemma follows as claimed.
When M is a compact manifold with boundary the Sobolev inequality

(1.14) IIV/II^GolWon-l)

is valid for all /eH^ ^ satisfying f\s^=^' ^s ln ̂  case of manifolds without boundary
(1.14) is equivalent to the isoperimetric inequality ([I], [7]):

(1.15) ( A ( N ) ) " l ^ C l ( V ( M l ) ) w - l

for all codimension-1 submanifolds N dividing M, and M^ is the part of M such that
Mi n3M=0. Infact,Co=Ci. Following the proofs of Lemmas 1,4, and Proposition 3,
one can prove the following Lemmas:

LEMMA 5. — Let M be a compact manifold with boundary. If /eH^ ^(M) satisfying
f\^=0then

IIV/IIJ^C.II/IIL^^)
when m^3, with C^Ci^D^), and

||V/||^D(2)Co[V-l/2||/||2]

when m=2.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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PROPOSITION 6. - Let ^o i &6? the first eigenvalue for functions with the Dirichlet boundary
condition. Then

/c v^^^D(m)(^j .

Remark. - Sobolev inequalities similar to those of Lemmas 2 and 4 can be derived for
functions that do not necessarily satisfy /|^=0.

2. L°° estimate and multiplicities of ^ „

Let M^ be a compact oriented Riemannian manifold. By duality Spec^ M = Spec"" ~ p M,
moreover if w is an eigen-p-form satisfying

(2.1) Aw=^w,

then *u; is an eigen-(m—p)-form satisfying

(12) A(*w)=?i(*w).

Hence the task of studying the spectrum is reduced to the study of Spec^ M, for 0 ̂  p ̂  [m/2]
([mil} = largest integer less than m/2). From here on p is assumed to be in the above range.

We define Kp by

lower bound of the curvature operator on M, for p> 1,
Kp = (m -1) ~1 x (lower bound of the Ricci curvature), for p = 1,

0, when p=0.

THEOREM 7. — Let Mbea compact manifold with m ̂  3. Suppose w satisfies (2.1), and if
X-p(m-p)Kp^O, then

DMlC.-(».-p(.-p)K,)]-»exp[^.^.^_^^]||»|gi||»^.

Remark. - By [5], p. 270, 'k=p(m-p)Kp only when ^==0=Kp. In which case, w has
constant length, hence

IMIJ=V|M|^.

When Kp<0 and X=0, Theorem 7 gives supremum norm estimates for harmonic p-forms.
Before we attempt to prove the Theorem, we will show the following Lemma:

LEMMA 8. — Suppose w is an eigen-p-form satisfying (2.1). Then

\w\^\w\^-p(m-p)K,)\w\2.

4e SERIE - TOME 13 - 1980 - ?4
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Proof. — By Bochner's formula

(2.3) -^AlwI^Aw, w)-\Vw\2-¥(w),

where F(w) is a function defined on M involving w and the curvature tensor. It is known
that [5], p. 264:

(2.4) F(w)^p(m-p)KJw|2.

Since
^\w\2=2\w\^\w\-2\^\w\\2,

(2.3) becomes

(2.5) \w\^\w\-\^\w\\2^(^w,w}-\^w\2-p(m-p)Kp\w\2.

Now we claim that I V I w I P ^ I V w l 2 . Indeed, if one chooses orthonormal coframe

u?i, ..., w^ at a point with w= ^ a^w^, then
in-p

|w|=(l:a2)1/2.
IH=P

If Oi ^'s denote the covariant derivatives of a,, then

ivMl2-^^)^^ «,•,)(,£"?) -£ ,,E»^-l^l2.

The Lemma follows by substituting this inequality into (2.5).

Proof of Theorem 7. - Define f=\w\. For k > 1 /2, Lemma 9 shows

(2.6) [/^^A/^^-ptm-p)^)!!/!^.

On the other hand

(2.7) f/2k- lA/=(2^-l)f(/2fc-2V/,V/)=2^||V/fe|||.

Applying Lemma 2 to the function /\ (2.6) and-(2.7) yield

(2.8) D(m)^C,-l^-p(m-p)K,)f,^)+V2/4l/llj^ll/l^^
L \z /c- i / j

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Denote P =m/(m - 2) and let fe = p', i = 0, 1,2,. . . hquation (2.8) can be written in the form

(2.9) ^D^rC^V^^-^m-^K^—^+lir2''

xll/ILp.V-'^'^ll/II^.V-1^'.

Since lim II/II^.V-1721'"1^!/!!,,, by iteration of (2.9), we have
i —» oo

00 f r R21 ""ni/p'
(2.10) njD^^C^V^^-p^-^K^^+lJ^ H/lljV-^ll/lli.

The Theorem follows from the appendix.
By utilizing Lemmas 4 and 5 instead, the above proof gives the following Theorems.

THEOREM 9. - Let Mbea 2-dimensional compact surface. Suppose f is a function defined
on M satisfying

(ln) A/=V; ^0,
then

^fr^T^II^II^II2-\^o /

THEOREM 10. — Let Mbea compact manifold with boundary. Suppose f is a function on M
satisfying

(2.12) A/=V

^n^
AM=O

^n
D^^c,-1)^2!!/!!^!!/^ y m^3

and
D(2)V(^Co-l)2||/||2^||/||2, if m=2.

Remark. - Similar estimates for eigen-p-forms on a compact manifold with boundary
satisfying absolute or relative boundary conditions can be obtained. In which case, we
utilize the Sobolev inequalities for non-compact support which was mentioned at the end of
section 1.

The next Lemma enables us to derive upper bounds for the multiplicities of eigenvalues.

LEMMA 11. - Let E be a finite dimensional subspace of the space of L2 p- forms on
M. Then there exists weE such that

^H^II^II^IIimin^^^dimE}.

4s SERIE - TOME 13 - 1980 - ?4
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Proof. - Let {w^.}^, r=dimE, be an orthonormal basis of E. Define the function

(2.13) F(x)== ^ |w,(x)|2 , xeM.
i'= i

Clearly ¥ ( x ) is well-defined under orthogonal change of basis. Since E^{0} ,
|| F H^O. Let XQEM such that F(xo)=||F|^. Define the subspace Eo of E by

E o = { w e E | w ( x o ) = 0 } .

By the choice ofxo,Eo^E. We claim that the orthogonal complement Eo of Eg is of at most

dimension ( ). In fact, if { w^ }^ ^ form an orthonormal basis for Eo with s > ( m ), then
\ P / \ P /

s

there exists (aj;=i eR5 with (aJ^O such that ^ a^u;Jxo)=0. This is true because the
a = l

dimension of the vector space of antisymmetric ̂ -tensors on an m-dimensional vector space is

(m\ s

j . However this implies ^ a^w^eEo, which is a contradition.
P / oc=i
Now we choose orthonormal basis for E such that { w }^= i form an orthonormal basis for

Eo and {w;}^+i an orthonormal basis for Eo. Then

dimE= fF(x)^||F|LV=F(xo)V =V ̂  |^(xo)|2^ f^VmaxllwJ2,.
•' 0(= 1 \ P / S

Since ||i(;||j^V||w||^ for all weE, the Lemma follows.

THEOREM 12. — Let X be an eigenvalue for p-forms on a compact Riemannian manifold M"1

with m ̂  3. Suppose n^ denotes the multiplicity of ̂ , and if ̂  — p (m — p ) K + 0, then either

/m\

^Uor

,^(;)DWV(C.-'fr-,^-p)K,))-^,p[^.^.^_^^].

When p=0, then

n^D(m)V(C2~l?l)m/2.

Proof. — This follows from Proposition 3, Theorem 7 and Corollary 11.
Similarly, we obtain the following Corollaries.

COROLLARY 13. — Let 'k be an eigenvalue for functions on a compact surface M. If n^ is the
multiplicity of ?i, then n^D{2)(^Co1 V)2.

ANNALES SCIENTIF1QUES DE L'ECOLE NORMALE SUPERIEURE
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COROLLARY 14. — Let X be an eigenvalue for functions satisfying f\^=Q on a compact
manifold with boundary. If n^ is the multiplicity of ^, then:

(i) n^D^V^C^1)^2 if m^3,
(ii) n^D(2)(?iVCo1)2 if rn=2.

IfKp ̂  0, and there exists a point on M such that the curvature operator (Ricci curvature, if
p = 1) is positive, then it is known that [5] bp = 0. When the curvature operator is identically
zero, the manifold is flat, hence is covered by a flat torus. Therefore

b< Betti number of the torus = ( ).
\ P )

Suppose the Ricci curvature of M is identically zero then by Bochner's formula, any
harmonic 1-form is parallel, hence with constant length. This means

\\w\\i=v\\w\\^.

Comining with Lemma 11, we get

fcp^min{m, b p ] .
Therefore

bp^m.

THEOREM 15. — Let M be a compact manifold. Assume Kp<0, then

t,s(;)D^)V(-C.-,(.-,)K,)-»exp[^^;^^,.].

COROLLARY 16. — Let M be a compact manifold of dimension m ̂  4. Suppose the curvature
of M 15 identically —1, then

bp^Const.(m,p^),

where Const.(m, p, V) 15 a constant depending only on m, p, and V.

Proof. — From Theorem 15, we have

b^D(m, ̂ VC^exp^0^2 +m-l].

However, since C^ can be estimated from below in terms of Ricci curvature, volume, and
upper bound of diameter (see [4]), clearly the Corollary follows if one can estimate d from
above by V. In fact, a Theorem of Gromov [6] showed

M;(m)(l+rf)^V.

4° S^RIE - TOME 13 - 1980 - ?4
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3. Lower bounds for ^p „

In view of Theorem 11, if one takes E to be the vector space spanned by the set of eigen-p-
forms with eigenvalue ̂  , ̂  X-p „, then in order to get a lower bound for Xp „ one needs a
similar estimate as in Theorem 7, for any w e E. The main theme of this section is to deal
with this question. Since in general we cannot conclude that

fM^-^Aw^jMl^

for weE, the proof of Theorem 7 will not carry through directly. To get around this
difficulty we need the following Lemma:

LEMMA 17. — Let {Wi }?= i be a set of linearly independent p-forms defined on M. Ifq'^2
and 0<X,i ̂ ^^ • • • ^^n are positive real numbers, then there exists a subset
{ a } c { l , 2 , . . . , n } such that

E ̂  ^ Z^nW,

Proof. — Define the function

F(A,)= E ^u;, for l̂ n.

Differentiating F twice with respect to ^, we have

n \q-4. n \q-2

^i^i {WP Z î +^ Z 'kiwi \Wj\2¥ff(^)=q(q-2)
M i = li = lM | i = l

For q ̂  2, this is a positive function. Hence F is a concave function of 'kp which attains its
maximum on the interval [0, ^-J at either 0 or ^n. Inductively, one replaces the maximum
point (0 or X,J for each ^, 1 ^j^n, and we obtain

n q q

E ^iW, ^ E^a .
i = l q a q

Clearly, the set { a } is non empty.

THEOREM 18. — Let E be the finite dimensional space spanned by the first n-th orthonormal
eigenfunctions on a compact manifold M of dimension m^3. J/ /€E=<(p^)^i, then

||/||2,^D(m)[C,-l^Jm-lV<"-2'/2exp^^c2^||/||j.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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n

Proof. - Let/== ^ a^., a,eR. Then as in Theorem 7, if P=m/(m-2):

(3.1) Jl/l^/A^^^IIVI/rilj^C.^^D^)!^^^^

Hence

(3.2) 11/H ^,^D(m) Ic^ '̂) Jl/P'-W+V-^ll/lljd

When f=0, we have

(3.3) ll/IIJp^D^rC,1 f/A/+V-2/m||/||j1

=D(m)|C,-1 i ^f^+V-^ll/lljl^D^^-^o^+V-^ll/llj.
L i=l J

Therefore

(3-4) H/ILpV-^^D^lC^^nV^+l]^2 11/Hj V-1 /2 .

We claim that for 1 ^ f < oo,

(3.5) H/l^-V-^P'^D^lC.-^o^V^+l]1/21 f r B27 -])i/(2p^-i)\n ̂ (^[^^o^v^^^+i^ ii/iLv-1/2.

Assuming this is true for i -1, by induction, we need to show (3.5) for i. First consider the
function g e E with the property that

^,^^,
By scaling, we may assume || g H; = 1. (3.2) then gives

(3.7) llffll^^D^rC^f^^Vlffl^ffAff+V-^ll^ljd

^D(m) j^-^^y ||ff llirilA^+V-2/- ||0|ljd.

4° SERIE - TOME 13 - 1980 - ?4
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However, i f^=^fo , (p , , then A^=^^o. i^i^i an^ by Lemma 17, we have

(3.8) ||A^||,p^||A^||,p...V^-l^P•+l= ^o.^ V^-^P"
i 2p i+l

^ Z^O,ACP. V^^^J^r1 Z^ v(p-l)/2pi+l [by (3.6)]
a 2p'*1 a 2

^o.J^r-
Therefore

(3.9) |M|̂ D(m) rC^^—^j-Vlffll^L^n

xiiffii^v^-'^+v-^ii^d
^D^rC^^/^-^+V-^lvtP-1'/2^- ||0||̂ ;- ||ff||^,.,.

This implies

f r / p21 \ T)W-I)
(3.10) ||^||,p...V-l/2P•+l^^D(m) C^Xo^V2^ x^2p^rTJ+ lJj- II^Lp.V-17^-.

Together with our hypothesis, we obtain

ii^ib-v-^p'^D^rc^xo^v^+ii1/2

i f r / R2j \ -1-) 17(2^-1)

n D(m) C^nV^ p—— +1 II^ILV-1/2.
j=i L L V- 'P 1 / JJ

However, by (3.6), one can replace/in terms of g , and the claim is proved. By iteration of
(3.5) and applying the appendix, the Theorem follows:

THEOREM 19. — Let E be the finite dimensional space spanned by the first n-th orthonormal
eigen-p-forms on M with m^3. J/weE, and ^ ' p , n > ^ p , o tnen

llwll^D^)^-1^^-?^-?)^)]--1^--2^

^[^M^]^-
THEOREM 20. — Let M be a compact surface, and E the finite dimensional space spanned by

the first n-th orthonormal eigenfunctions with n>l. iffeE, then

||/||^D(2)V(Co-1 ^.J'll/IIJ.
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THEOREM 21. — Let M be a compact manifold with boundary. Suppose E 15 the finite
dimensional space spanned by the first n-th orthonormal eigenfunctions satisfying the Dirichlet
boundary condition with n> 1. IffeE, then

ll/ll^^^^o.nr^V^-^Dtm) H/ll2

for m>3, and

?^D(2)(Col^n)2V 11/H2 for m=2.

The proofs of Theorems 19-21 are essentially the same as in Theorem 18 and will be
omitted.

COROLLARY 22. — Let M be a compact manifold of dimension m ̂  3. Suppose \p „ is the n-
th eigenvalue for p-forms. Ifkp, n>0, then

,S(;) [C,- ,̂.-p(»-rt M- V————DW exp (̂ .(̂ .̂J-

FWien p=0, we fcai^

n^^lV2(m-l)/WCi-WD(m).

The proof follows from Proposition 3, and Theorems 11, 18, and 19. Similarly one can
show the following Corollaries:

COROLLARY 23. — Let M be a compact surface, then

^D(2)(Co-lV^,n)2.

COROLLARY 24. — Let M be a compact manifold with boundary. Then

^D^V2^-1^^-1^)""1 if m^3

and

n^D(2)(Co lV)Lo,n)2 if m=2.

Remark 1. - In the case of differential p-forms, if Kp>0, it was shown ([5], p. 270) that

^^K^xmin {p(m-p+l\ (p+1) (m-p)}.

This implies

^p^n-P^-P) K p ^ K p X m i n { m - p , p } = p K p since p^\ m .
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Hence the first part of Corollary 22 takes the form

^^(^^(m-D/m^-l^ V»-lpYn ^P^) D/^\

\ p ) V^DK v /

When Kp < 0, the estimate of^,p „ becomes ineffective when n is small. It can be written as

^^""^^[v^^K;] D(m' p) ̂ ^(——P) K ,̂..

Remark 2. — In [4], C. Croke showed that

2m- la(m-l)w/ V \m+l

C,^ o^m)"-1

^-K-1 sinh ./::^ rdr"1-1

Hence Co and C^ = C^1"1 D (m) can be bounded from below by the following quantities: upper
bound of diameter, lower bound of volume, lower bound of Ricci curvature and the
dimension of M. When m = 2, he also showed that C^ ̂  8 52 /V, where 5 = injectivity radius
ofM.

APPENDIX

Let P>1 and a>0, then

•A' n[^f^-"»p(^^)
and

00 r aB21 "IWP'-i) / i 1 \(B) n[^r] ,«—>.xp(^^)
Proof. - (A) Since for i^ 1:

[ aB21 ~1 B21 v v v
log _—— +^ p10^ ̂ ^S ̂ -T + ^log a+log P^ ^log a+ P l /2+ -'^ p i ^ j ^p — l o c oc oc
hence

n? "p21 . "r' r^ 1 , ^ "p2' M.n [2^ ̂ J —p [,z pr i°g (^ +y}J
K v \ 00 1 °° 1 ~ls»p ,og,4)^^j^]

=exp [^ (,og ,̂ )+ p ,̂ ]-."<-" exp (̂  + ̂ ).
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If P=w/(/n-2), we have

nf^.J''^.,pfp^-A
i=o [_2p -1 J \2a /

(B) First note that

n^-^exp^ ———.logo)
1=1 \i=l ^P -1 /

and

X^X^ -^KX^HH^)
Hence

fi-iVy —<^\ P/^p'-^p-
This implies

y -J—<J_L, 2(3 l-l=p-^
therefore

00

n a l / ( 2p>~ l )^a l / ( p - l ) .1=1
The proof of (B) follows similarly as in (A).
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