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ON THE SOBOLEV CONSTANT
AND THE p-SPECTRUM
OF A COMPACT RIEMANNIAN MANIFOLD

By PetErR LI

On a m-dimensional compact C* Riemannian manifold M™, the Laplace-Beltrami
operator A is defined by

0.1) A=ds+3d,

where d is the exterior differential operator, and § its adjoint operator with respect to the L2
inner product. The Laplacian is a second-order self-adjoint elliptic operator acting on the
space of L? p-forms. Its p-spectrum, Spec?M, consists of discrete eigenvalues
{0=0=...=0<),,SA,,S ... £A,,<...}. The multiplicity, n,,, of the zero
eigenvalue in Spec”? M are given by the p-th Betti number b,.

Recent development shows that the non-zero eigenvalues also contain substantial
geometric and analytic information. For instance, the first eigenvalue A, , for functions (0-
forms) is given by the well-known Poincaré inequality

(0.2) Ao, 1 inf ||l f=all3<II VSIS
aeR

for all C! functions defined on M, where || ||, denotes the L? norm. Equality holds iff fis
the first eigenfunction satisfying

0.3) Af=Xo, 1f.
Another important analytic inequality is the Sobolev inequality

(0.4) Co inf lf—allmm- 0, =N VAT,

aeR
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452 P. LI

for all functions in H,  ;, the Sobolev space of functions which has L! derivatives. The best
constant C, such that (0.4) holds is known as the Sobolev constant.

One of the important geometric inequalities is the isoperimetric inequality
0.5) Cy(min { V(M,), V(M)})" " S(A(N))",

where N is any codimension-1 submanifold which divides M into M; and M,, with
A (N)=the (m-1)-dimensional measure of N and V(M,)=the m-dimensional measure of
M;(i=1,2).

It is known that [1] the Sobolev inequality is equivalent to the isoperimetric inequality,
namely,

(0.6) 2C,2Cy=C,.

Recently C. Croke [4] showed that C, has a lower bound depending on: lower bound of the
Ricci curvature, (m— 1) K; upper bound of diameter, d; lower bound of volume, V; and the
dimension, m, of M. The purpose of this paper is to give estimates for the eigenvalues of
Spec? M from below in terms of C, and V. Hence combining with (0.6) and the result of
Croke, one can estimate A, , from below in terms ofd, K,m,and V. Itisinteresting to point
out that Cheeger [2] gave a lower bound of A, ; in terms of an isoperimetric constant h, which
is different from C,;. Yau [8] later showed that this isoperimetric inequality is equivalent to
an L'-type Poincaré inequality. In the same paper he also gave a lower bound of 4 in terms
of d, V, K and m, which provided a lower bound of A, ;.

For completeness sake, some known results concerning the Sobolev inequality will be
proved. In particular, another version of the Sobolev inequality which is more suitable for
our situation will be derived. We will also establish an elementary inequality between A ,
and C,. ’

Section 2 will be devoted to obtaining upper bounds for the multiplicities n,(A) of all
eigenvalues A € Spec? M. In the process, we will derive estimates on the supremum norms of
the eigen-p-forms. As a corollary, upper bounds for the Betti numbers can be obtained in
terms of the lower bound of the curvature operator, volume, and the Sobolev constant C, (see
Lemma 1 for definition of C,). In particular, when M is a manifold with constant curvature
—1, b, has an upper bound depending on V alone provided m=4.

Finally, we will estimate from above the sumpremum norm of any differential forms which
are linear combinations of the first n-th eigen-p-forms. This enables us to obtain lower
bounds for A, , in terms of V, d, lower bound of the curvature operator, and n.

Throughout this paper, all manifolds are assumed to be compact oriented C* Riemannian
manifolds, and D (m) denotes a constant depending only on m. The results on functions can
be generalized to non-oriented Riemannian manifolds by lifting to their two-folded
coverings.

The author is greatly indebted to S. T. Yau for his interest in this work, without whose
useful suggestions this paper would not be in the present form.
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Pp-SPECTRUM ON MANIFOLDS 453
1. Sobolev inequalities

For our purposes, we will derive a weaker version of the Sobolev inequality for manifolds
with dimension greater than or equal to 3.

Lemma 1. — Let f be a function in H, ,(M) satisfying J (sgn f) |f|¥m=D=0. If
C,=D(m) C¥™ and m=3, then ;
Co 113 miom—2) SN VA3
Proof. — Consider the function

—(sgnf) |/ =D/,

The fact that J (sgn f) | f|*m~2)=0 implies that g satisfied
M

(1.1) J(Sgng) lg|tm=D=0.

This means

1.2) ”g”m/(m—l)=inf “g_a”m/(m—l)'
aeR

Hence by (0.4):

Collf I3 mitm=2y" " =Co ll g limm-1, 11 Vg IIT

2(m—1 _
“ (m—1) <D(m) 1120, 11 VA .

Dividing both sides by || f||5%,3),), we have

Coll I3 mjom -2y =D (m) | VA3,
and the Lemma follows.

LemMMA 2. — For all feH; ,(M) with m23,
I1VA1ZZD(m) Co I3 mpm-2y=V ™2™ 1131

Proof. — Let feH, ,(M), consider ke R such that
[sgn (f—k) |f—k =2 =0,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



454 P. LI
By Lemma 1,

(1:3) VS IBZC I Kl -2y 2C 27 2Hm ) {313 — v 2 miem =2 om=20m
2C, 27 DM 1 )= VD)

However, if

M, ={xeM : (f—k)(x)>0}

and
M_={xeM : (f—k)(x)<0},
then
J sgn (f—k) [f—k =0
implies
(1-4) J (f._k)Z/(m—2)=‘[ (k_f»)Z/(m—Z)'
M, M.
But
-[ (f‘_k)Z/(m—2)S2aj f2/(m—2)__v+ k2/(m—-2)’
M, o,
where
{ 0 if m=3,
o=
m—4
if =4,

m—2 nom=

also
j (k_f)z/(m—Z)Zzﬁv_ k2/(m—2)_f |f|2/(m_2),
M_ - M_
where
—4
: T2 i m=3,
p=)
0 if m=4.

Hence combining with (1.4):

ZaJ. f2/(m—2)_\/+ k2/(M~2)gzﬁv_ k2/(m-2)_J |f|2/(m—2)‘
M+

M.
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P-SPECTRUM ON MANIFOLDS 455

This gives

J. |f|2/(m—2)+2aJ‘ If|2/(m—2)22liv_ k2/(m—2)_}_V+ k2/(m=2) =(2BV, +V+ )k2/(m—2)
M_ M,

Hence

D (m) | fII§jm252 V k22,
Applying Holder inequality we have
(1.5) . D) IfI3ZVE

Together with (1.3) yields the Lemma.

A lower bound of A, ; can be obtained rather easily by substituting the first eigenfunction
into the Sobolev inequality.

PropositioN 3. — If M is a compact manif(}ld, then
Xo,12D(m) (CoV™ Lyzim,
Proof. — Let fbe the first eigenfunction ‘satisfying (0.3), then J f=0. Forthecasem=2,

M
3, or 4, we consider the function

g=(sgnf) IfI""".

Clearly
j(Sgny) lg|tm= D=0,
hence
(1.6) (m= 1" /"2 VA1 =1 Vg 7 Z Collg m-1=Coll 117"
However

2SI RV S V20002 | £ ARV | £,

Therefore ro.12(Co V) ™(m—1)"2 as claimed. When m=5, let
g=(sgnf)|f|'™~2Y2, Then g satisfies

J(Sgng) lg|¥m=2 =0,

hence by Lemma 1:
(1.7) ' V9132 Callg 113 mim-2)=Ca I fllm~2.
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However
(1.8) I|Vgll§=J. IV(f"m’Z”2)|?+J V(I fIm=272)2,
M* M-

where M™ and M~ correspond to parts of M such that f takes positive and negative values,
respectively. By regularity of M ™* and 0M~ [3], and the fact that f™~ 22|, . =0 and
| fm=2)42).,-=0, we have

nvg”2=J f(m—l)/Z A(f(m—Z)/Z)_'_J |f.l(m—2)/2 A(|f|(m-2)/2).
M* M-
Computation shows that

R[5 o]

Hence (1.8) and (1.9) together yield

—-2\? 1 _
llVg||2=<m—2‘> (m) Mo, 1 I1fIIm=3.

Substituting into (1.7), we have
Ao, 1 D(m) If =32 C, IS 1Im2.
Holder inequality implies
Xo,1 D(m) V¥m2C,.
The Proposition follows from the definition of C,.

In the case when m=2, Lemmas 1 and 2 are not valid, hence we need the following:

Lemma 4. — Let M be a compact surface. If feH; ,(M), then

IVAIEZD@)Co VT2 fIIZ=V IS 113]:

Proof. — Let g be deﬁned by

gx)=1f1f(x).

Then (0.4) gives

(1.10) IVglli2Cyinfllg—all3=Collg—ali3,
aeR
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P-SPECTRUM ON MANIFOLDS 457

where a=V 1, j g. By definition of g, we have

1.11) llg—al3= J(fIfI—a)2=||fl|i—2°tjflf|+°t2V
== VZIfIE=I v
On the other hand ,
(1.12) IVgIR=4llf VAIR=S4ISIZIV S
(1.10), (1.11), and (1.12) then give
(1.13) DOISIGIVAIE+Coll A IZVT 2Coll S 2.
But
NAIZSHANZV2,

therefore

DR)V2VfIE+Co VT2 f132Coll £ 112

and the Lemma follows as claimed.
When M is a compact manifold with boundary the Sobolev inequality

(1.14) IV LIFZColl f limom-1)

is valid for all feH, , satisfying f|;,=0. As in the case of manifolds without boundary
(1.14) is equivalent to the isoperimetric inequality ([1], [7]):

(1.15) (ANN)"=C (VM) !

for all codimension-1 submanifolds N dividing M, and M, is the part of M such that
M;noM=@. Infact,C,=C,. Following the proofs of Lemmas 1,4, and Proposition 3,
one can prove the following Lemmas:

LemMA 5. — Let M be a compact manifold with boundary. If feH; ,(M) satisfying
flam=0 then

NV FIBZColl f 1B mim—2)
when m=3, with C,=C2%™D (m), and
IVAI32ZDR)Co [V 21 £113]
when m=2.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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ProposiTiON 6. — Let A, ; be the first eigenvalue for functions with the Dirichlet boundary

condition. Then
C 2/m
7‘0,1.—>—_D(m)<T,0‘> .

Remark. — Sobolev inequalities similar to those of Lemmas 2 and 4 can be derived for
functions that do not necessarily satisfy f |,,=0.

2. L® estimate and multiplicities of 1, ,

Let M™ be a compact oriented Riemannian manifold. By duality Spec? M =Spec™ ?M,
moreover if w is an eigen-p-form satisfying

(2.1) Aw=Aw,

then % w is an eigen-(m — p)-form satisfying

(2.2) A (% w)=A(xw).

Hence the task of studying the spectrum is reduced to the study of Spec? M, for 0<p <[m/2]

([m/2]=largest integer less than m/2). From here on p is assumed to be in the above range.
We define K, by

lower bound of the curvature operator on M, for p>1,

K,= (m—1)"1! x (lower bound of the Ricci curvature), for p=1,

0, when p=0.

THEOREM 7. — Let M be a compact manifold with m=3. Suppose w satisfies (2.1), and if
A—p(m—p)K,#0, then

D(m) 5 5
2 .
C;l Vz/"'O»—p(m—p)Kp)]”wllz':“w““’

D(m)[C; ' (A—p(m—p)K,)™? CXP[
Remark. — By [5], p. 270, .=p(m—p)K, only when A=0=K,. In which case, w has
constant length, hence
lwlZ=Viwll.

When K ,<0 and A=0, Theorem 7 gives supremum norm estimates for harmonic p-forms.
Before we attempt to prove the Theorem, we will show the following Lemma:

Lemma 8. — Suppose w is an eigen-p-form satisfying (2.1). Then
lw|Alw|S(A—pm—p)K,)|w|*.

4° SERIE — TOME 13 — 1980 — N°4



P-SPECTRUM ON MANIFOLDS 459

Proof. — By Bochner’s formula
1
(2.3) EAIWI2=(Aw, w)—|Vw|*~F (w),
where F (w) is a function defined on M involving w and the curvature tensor. It is known
that [5], p. 264:
(2.4) Fw)zpm—p)K,|w|*.
Since
AlwP=2|w|Alw|=2|V|w]|?,
(2.3) becomes

(2.5) lw|Alw]|—|V|wll? <(Aw, w)~|Vw|*—pm—p)K,|w|*.

Now we claim that |V|w|?*<|Vw|>. Indeed, if one chooses orthonormal coframe

wy, ..., W, at a point with w= )" a;w,, then
I=p
lwl=(Y af)'?.

ITi=p

If g ;’s denote the covariant derivatives of a,, then

2
|V|u|lz=Z(ZM> < 1|2Z(2 a,zj)(z all) =Z||za121=lvwl2
7 i=p JoAt=p

T\ wl lw i=p
The Lemma follows by substituting this inequality into (2.5).
Proof of Theorem 7. — Define f=|w|. For k>1/2, Lemma 9 shows
(2.6) sz"“Afé(X—P(m—p)Kp)llflli'é
On the other hand
2k—1 2k-2 2k—-1 k(|12
2.7) SRTIAf=Qk=1) |(f**T2V Vf)=-7—IIVf I3

Applying Lemma 2 to the function f*, (2.6) and.(2.7) yield

2

k
(2.8) D(m)[Cz"()\.—p(m——p)Kp)<ﬁ:—1> +V2’"']I|fll v 23k kim=2)-

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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Denote B=m/(m—2)andlet k=p",i=0, 1,2,... Equation(2.8)can be written in the form

Bzi 1/2p¢
(2.9) {D(m)[C;‘ VZ/'"(x—p(m—p)Kp)wi_l +1]}

x”f”za-‘v—l/zﬁlzuf”zﬁi“V-mB' .

Since fim || f Ly V%" =|| f || ,, by iteration of (2.9), we have

i—

@ 2i 1/p!
(2.10) H{D(m)[cz‘lVZ/m(x—p(m—p)K,,)z—B'f_—l +1]} I3V 21 1
i=0

The Theorem follows from the appendix.
By utilizing Lemmas 4 and 5 instead, the above proof gives the following Theorems.

THEOREM 9. — Let M be a 2-dimensional compact surface. Suppose f is a function defined
on M satisfying
(2.11) Af=\f, A#0,
then

D A g 2> 2
) Co VifzzIf -

TueoreM 10. — Let M be a compact manifold with boundary. Suppose f is a functionon M
satisfying

(2.12) Af=\f
and

f |aM =0
then

Dm)AC; Y2 fIB2IA1Z i m=3
and
DR)VACY IS 1321/1E  if m=2.

Remark. — Similar estimates for eigen-p-forms on a compact manifold with boundary
satisfying absolute or relative boundary conditions can be obtained. In which case, we
utilize the Sobolev inequalities for non-compact support which was mentioned at the end of
section 1.

The next Lemma enables us to derive upper bounds for the multiplicities of eigenvalues.

LeEmMA 11. — Let E be a finite dimensional subspace of the space of L? p-forms on
M. Then there exists we E such that

dimE m
uwnzglwn;min{( ),dimE}.
A 2 P

/ 7
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P-SPECTRUM ON MANIFOLDS 461

Proof. — Let {w;};-,, r=dimE, be an orthonormal basis of E. Define the function
(2.13) F(x)= ) lw;(x)]>, xeM.
i=1

Clearly F(x) is well-defined under orthogonal change of basis. Since E#{0},
IF|l.#0. Let xo,eM such that F(x,)=||F||,.. Define the subspace E, of E by

E,={weE|w(x,)=0}.

By the choice of x,, E,#E. We claim that the orthogonal complement Eg of E, is of at most

. . m
dimension <m ) In fact, if { w, }5, form an orthonormal basis for Eg with s> < » ), then
p

there exists (a,);- , €R® with (a,)#0 such that ) a,w,(x,)=0. This is true because the
a=1

dimension of the vector space of antisymmetric p-tensors on an m-dimensional vector space is

m T . .
( ) However this implies Y a,w,€E,, which is a contradition.
p

a=1
Now we choose orthonormal basis for E such that { w }5_, form an orthonormal basis for
Eg and {w;}/_,,, an orthonormal basis for E,. Then

dimE= jF(x)§||F||wV=F(xO)V VY |wa(x0)|2§(Z)Vmaxnwallﬁo.

a=1 a

Since ||w|2<V||w|? for all weE, the Lemma follows.

THEOREM 12. — Let X be an eigenvalue for p-forms on a compact Riemannian manifold M™
withmz3. Suppose n, denotes the multiplicity of A, and if L —p(m—p)K ,#0, then either

()

m= (r;)D(m)V(Cz"‘(?»—P(m—p)K,,))""2 exp[

or

D (m)
C; V¥ —pm—p)K,) |

When p=0, then
n, <D(m)V(C5 ' A2,

Proof. — This follows from Proposition 3, Theorem 7 and Corollary 11.
Similarly, we obtain the following Corollaries.

CoOROLLARY 13. — Let A be an eigenvalue for functions on a compact surface M.  If n, is the
multiplicity of A, then n, <D (2)(ACqy ' V)2

ANNALES SCIENTIFIQUES DE L'’ECOLE NORMALE SUPERIEURE
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CoROLLARY 14. — Let A be an eigenvalue for functions satisfying f | ;=0 on a compact
manifold with boundary. If n, is the multiplicity of A, then:

(i) m<DmVAC; Y™ if m2z3,

(i) n,<DR2)AVCy')? if m=2.

IfK ,=0, and there exists a point on M such that the curvature operator (Ricci curvature, if

p=1)is positive, then it is known that [5]b,=0. When the curvature operator is identically
zero, the manifold is flat, hence is covered by a flat torus. Therefore

m
b, = Betti number of the torus= ( » )

Suppose the Ricci curvature of M is identically zero then by Bochner’s formula, any
harmonic 1-form is parallel, hence with constant length. This means

NwlZ=VIiwl.
Comining with Lemma 11, we get

b,<min{m, b,}.
Therefore

b,sm..

THEOREM 15. — Let M be a compact manifold. Assume K ,<0, then

bpé<':>D(m)V(—'C2_1p(m—-p)Kp)"‘/lexp[ D(m)C, ]

—p(m—p)K, V"

COROLLARY 16. — Let M be a compact manifold of dimensionm=4. Suppose the curvature
of M is identically —1, then

b,<Const.(m, p, V),

where Const.(m, p, V) is a constant depending only on m, p, and V.

Proof. — From Theorem 15, we have

D C
b,<D(m, p)VCz_"”zexp[inﬂ—2 +m—1].

V2/m

However, since C, can be estimated from below in terms of Ricci curvature, volume, and
upper bound of diameter (see [4]), clearly the Corollary follows if one can estimate d from
above by V. In fact, a Theorem of Gromov [6] showed

w(m)(1+d)SV.

4° SERIE — TOME 13 — 1980 — ~°4



P-SPECTRUM ON MANIFOLDS 463
3. Lower bounds for A, ,

. Inview of Theorem 11, if one takes E to be the vector space spanned by the set of eigen-p-
forms with eigenvalue A, ; <X, ,, then in order to get a lower bound for A, , one needs a
similar estimate as in Theorem 7, for any we E. The main theme of this section is to deal
with this question. Since in general we cannot conclude that

jlwlz"’z(w, Aw)<h,, L llwliz

for weE, the proof of Theorem 7 will not carry through directly. To get around this
difficulty we need the following Lemma:

LemMa 17. — Let {w; }}_, be a set of linearly independent p-forms defined on M. Ifq22
and O0<A =N,=<... S\, are positive real numbers, then there exists a subset
{a}={1,2,...,n} such that

=

q

Y Aw;
i=1

Z }“n W,

a

q

Proof. — Define the function

q

FA)=

Y Aw; for 15j<n.
i=1

q

Differentiating F twice with respect to A ;, we have

q—-4 n 2
(wj9 Z )"iwi> +QJ
i=1 M

For g 22, this is a positive function. Hence F is a concave function of A ;, which attains its
maximum on the interval [0, A,] at either 0 or A,,. Inductively, one replaces the maximum
point (0 or A,) for each A;, 1 <j<n, and we obtain

n

Z A w;

i=1

q—2
2
fw;|*.

F”(7~,-)=q(q—2)J

z Aw;
i=1

q
s
q

q

Z )"nwa

a

Z Ajw;
i=1

q
Clearly, the set {a } is non empty.

THEOREM 18. — Let E be the finite dimensional space spanned by the first n-th orthonormal
eigenfunctions on a compact manifold M of dimension m23. IffeE={@,;>}-,, then

1% D m) [C5 " o, Jm 1 Vin=22 exp[?%ﬁf%] 11
0, n

" ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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Proof. — Let f=) a;¢;, a;eR. Then as in Theorem 7, if B=m/(m—2):

i=1

(3.1) J P2 fAf= 2%’;1 VISP 2C, 3%211 D(m) [If1| 35 = V™IS 135
Hence
(3.2) /11 26.. <D (m) [C;l (22 ) f |fP¥ 2 fAf+ V2 ||fn§'§!]-

When i=0, we have

(3.3) 1IflIZg=D(m) [Cz—l JfAf+V_2”" IIfII%]

=D (m) [CEI Y >~o,ia?+V_2’"'llfIl§} <D(m) [C3 ' Ao, o+ V™2 |13
i=1

Therefore

G4 115 V=12 SD(m) [C5 1 ko, VA + 12 1S V1.
l} s

We claim that for 1<i< oo,
(3.5) Sl V728 <D (m) [C5 1 A, , VH™+1]1/2

i 2j 1/@2p-1
<11 {D(m) [C;‘xo,..vz""zg,-_l +l]} RS

Assuming this is true for i — 1, by induction, we need to show (3.5) for i. First consider the
function g e E with the property that

lgllges - 1oy
3.6 > for all feE.
-0 llgl, 1112

By scaling, we may assume ||g|[,=1. (3.2) then gives

' 2 Bi 2i A ‘ ‘
6.1 gl g3t =D | 5 (5527 ) [1aP a0+ v-rmiaity |

2i
<D(m) |:C-;l (25,-_1) ||g“§|s:'_l “Ag“us""'v_zlm ”gnggl]

4° SERIE — TOME 13 — 1980 — N°4



P-SPECTRUM ON MANIFOLDS 465

However, if g=) b, ¢;, then Ag=Y L, ;b;9; and by Lemma 17, we have

(3-8) llAg L =11 AgG |l pes LA lz Ao, ibi@; LA
i 281+t
=< Z )\'O,nbu(pa V(ﬁ—l)/ZﬂHlg)‘o,n“gHZBi” Z ba(pa V(B-l)/ZBH‘ [by (36)]
] 2B+! o 2
§7‘-o,n”g"23‘+“
Therefore

2i
(3.9) llglF- <Dm) [C;‘<2§_1>||gugg1.xo,n

A

x|1g llpps VOV 2 g n%';i]

2i i+1 i1
L B A e T P

This implies

i1 - BZi 1ep-1) i
(3.10) lgllype V712P §{D(m)[C21XO,,,V2/'"X<2B,~_1 +1 g1l V172

Together with our hypothesis, we obtain

i+1 1/2

19 1Ly V127" <D om) [C;lxo,nvzml]
: (B ey
le:I1{D(m)|:C2 Ao, nV <2Bj—1>+lj|} llgll, V=Y.

However, by (3.6), one can replace f'in terms of g, and the claim is proved. By iteration of
(3.5) and applying the appendix, the Theorem follows:

THEOREM 19. — Let E be the finite dimensional space spanned by the first n-th orthonormal
eigen-p-forms on M with m23. IfweE, and X, ,>\, o then

lwl% <D (m) [C; ' (A, ,—p(m—p) K)" =1 Vm=2m

D(m) C, :| 2
X €x wil3.
P liVZ/mO‘p, n—P(m—p) Kp) ” “2

THEOREM 20. — Let M be a compact surface, and E the finite dimensional space spanned by
the first n-th orthonormal eigenfunctions with n>1. if feE, then

115 SDQ2) V(C " Ao ) 1113
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THEOREM 21. — Let M be a compact manifold with boundary. Suppose E is the finite
dimensional space spanned by the first n-th orthonormal eigenfunctions satisfying the Dirichlet
boundary condition with n>1. IffeE, then

WA1% S €5 ko, )"~ V2D (m) |1 £113
for m>3, and
IA12=DR) (C5 Mo, > VISIE  for m=2.

The proofs of Theorems 19-21 are essentially the same as in Theorem 18 and will be
omitted.

CoROLLARY 22. — Let M be a compact manifold of dimensionm2=3. Suppose ), , is the n-
th eigenvalue for p-forms. If A, ,>0, then

né(’Z) [C5* (hy. = p(m—p) K" V™2 D(m) exp ( €.D(m) )).

VZ/M()‘p,n_p(m_p) Kp
When p=0, we have
nSAg Ll V2T DmClTm D (m).

The proof follows from Proposition 3, and Theorems 11, 18, and 19. Similarly one can
show the following Corollaries:

CoROLLARY 23. — Let M be a compact surface, then
n<D(2) (Co ' Vi, )"

CoOROLLARY 24. — Let M be a compact manifold with boundary. Then

n<D(m) V2 OmE5 I, "t i m23
and
nsD@2)(C5i Vi, ,)?  if m=2.

Remark 1. — In the case of differential p-forms, if K ,>0, it was shown ([5], p. 270) that

A, 2K, xmin { p(m—p+1), (p+1) (m—p)}.

This implies
Apn=p(m=—p) K, 2K, xmin{m~p, p}=pK,  since Pé[g}
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Hence the first part of Corollary 22 takes the form

m _ _ _ C,D(m)
< 2(m—1)/m 1 m—1 2 D .
n‘<p>v (& A exP[Vz’"‘pr] m

When K , <0, the estimate of A, , becomes ineffective when nis small. It can be written as

C,D(m)
V2" p(m—p) K,

Remark 2. — In [4], C. Croke showed that
>2m—1a(m_1)m \Y% m+1

1= d
‘[ /=K !sinh ./—K rdrm1
0

Hence C, and C, =C2/™ D (m) can be bounded from below by the following quantities: upper
bound of diameter, lower bound of volume, lower bound of Ricci curvature and the
dimension of M. When m =2, he also showed that C, =8 82/V, where & =injectivity radius
of M.

a(m)m— 1

APPENDIX
Let f>1 and a>0, then
pr 1P B 1
0 a i _ Y
< oB/B-1)
* sv] sren( gl )
and
© aﬁZi 1/(2p'—1) _ 1 1
B : < llB-1)
® ] seee( iy
Proof. — (A) Since for i=1:
ap?! B* ¥ ¢ Y 2, Y
: < g - =1 iy 1< y2 4 1
log [25'—1 +y]_log a+log Ip—1 + 5 = og a+log B'+ " <log a+p¥*+ o

hence

® 2i 1/p! e 2i
,.13)[2E?— ”] _“p[;ﬁi (215 )]

§exp[ log a+ — )i i, i BL]

= B 1 YB 1
_exp[B 1<logoz+ > B 1] oPB-1 o <(B m B”Z—l)'
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If B=m/(m—2), we have

(B) First note that

0 . oo 1
I «/@¥-D=exp <Z Ip1 log oc)

i=1 i=1
and
i 1 hd 1 . 1 /& 1 1 * 1
7 =< - since P>1=— —— |J==11 —_— .
2 apois L ap P B<i=zl2ﬁ“l—1> ﬁ(+,-;12l3'—1>
Hence

This implies

therefore
/@B D < B

s

1]
—

i

The proof of (B) follows similarly as in (A).
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