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SECOND ORDER LINEAR
DIFFERENTIAL SYSTEMS

By F. NEUMAN

I. — Introduction

We shall deal with second order linear differential systems
Q) y'=Q(1)y,

where n by n real symmetric continuous matrices Q :R — R" satisfy
Q(t+m)=PQ(r)P!

for a constant orthogonal matrix P. We shall derive a sufficient condition under which all
solutions of (Q) comply with

(1) y(t+m)=Py(),

and we shall construct some (Q) of the property (1). If P= +1(I denoting the unit matrix),
all solutions of (Q) are periodic or half-periodic. For the case we shall construct an example
of two-dimensional system (Q) having only half-periodic solutions so that Q is not
diagonalizable, i.e., it is not of the form

C—l diag(qla AR qn)C’

C being a real constant regular n by n matrix, and q; are scalar functions such that all
solutions of

y'=q;(t)y

are half-periodic. For constructing such g; (see [5], pp. 573-589).

Systems (Q) with solutions satisfying (1) are in close connection with investigations in
differential geometry, especially with Blaschke’s conjecture see [1], pp. 225-230.

The problem considered here was proposed by Professor M. Berger.
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438 F. NEUMAN

II. — Notations and basic properties

For an integer m>0, let C"(J, R”) denote the set of all matrices T:J — R”, JcR, having
continuous derivatives up to and including the m-th order. T* means the tranpose of T,

denotes d/dt. Throughout this paper the matrix Q in (Q) is supposed to be continuous
on R:QeC’(R,R").

Y, Y
IfY, and Y, are two matrix-solutions of (Q) on R such that the 2 n by 2 n matrix < Y’l Y’Z )
1 2
is regular at least at some ¢, (then it is regular on R), then Y, (t)C, +Y,(t)C, is a general
matrix-solution of (Q), C, and C, being arbitrary constant n by n matrices.

For each solution Y of (Q) with symmetric Q, Q*=Q, the expression
Y*(¢£)Y'(t)—=Y*'(t) Y (¢) is a constant matrix, say C. If C=0 (the null matrix), then Y is
called isotropic. For each isotropic solution Y of (Q) sucH that Y is regular on an interval J,
the matrix

Y(I)J[Y"‘(S)Y*"(s)ds, del,

d
is a solution of (Q) on J, see e. g. [2] or [3].

LemMA 1. — Let Y be a solution of (Q) satisfying Y (a)=0, Y' (a) being regular. Then there
exists a neighbourhood V of a such that Y (t) is regular on V—{a }

Remark 1. — We need not suppose the symmetry of Q for the Lemma. However, if
Q*=Q, then the Y in Lemma 1 is isotropic.

Proof. — If such a V does not exist, there is a sequence { ¢, } {2, t;#a, t; > aasi — oo, such
that det Y (¢;)=0. Because of the continuity of det as a function of n? variables, we have

detY'(a)=det {lim [Y (t;) = Y (a)].[t;—a] "'}

i—

= lim det {[Y (¢,)~ Y (@)].[t;—a] "'}

= lim (t;—a) "det Y (¢;)=0,
that contradicts the regularity of Y'(a). W
LemMa 2. — Suppose Q*=Q. Let a solution Y, of (Q) satisfy: Y,(a)=0, Yi(a) is
regular. Let Y, be regular on (a, b). For

Yz(f)3=Y1(t)J'Yfl(s)Yf_l(S)dS, de(a, b),
d

the expression Y, (t)C, +Y,(t)C, is a general solution of (Q) on (a, b).
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SECOND ORDER SYSTEMS 439

Proof. — It is sufficient to show that

Y0 Y. f YT Y ) ds
d
Y0 Y;(t)['Y;l(s)Yr*(s)dswr-‘(r)
J d

is regular at least at some ty€(a, b). For ty=d we get

Y@ 0
Yi@; Yr'@)

whose determinant is det Y, (d). detY* !(d)=1. W

III. — Sufficient condition for y(t+m)=P y(¢)

Suppose that a matrix-solution Y, of (Q), Q*=Q,
() Q(t+m)=PQ()P 1,
P being a real constant orthogonal matrix, satisfies:

Y, (a)=0, Y] (a) is regular,
Y, (t) is regular on (a, a+m),
Y, (t+m)=PY, (¢).

Evidently Y, e C*(R, R"l), and a+m is the first conjugate point to a, [2]. The matrix

1

Y,: ti—»Yl([)J YY) Y*  (s)ds, de(a, a+mn),

d

is also a solution of (Q) on (a, a+m). Let ?2 e C% (R, R") denote the (unique) continuation
of Y,. Due to Lemma 2 every solution y of (Q) satisfies (1) if and only if

3) Y,(t+m)=PY,(t) on R.
Because of the uniqueness of solutions, the relation (3) holds if and only if
Y,(a+n)=PY(a) and  Yj,(a+m)=PY,(a).
Since Y, (t)=Y,(t) on (a,a+m), and Y, e C2(R,R"), there exist

lim Y, (t)=Y,(a), lim Y,()=Y,(a+mn),

t—a, t—a+mn_
lim Y, (t)=Y}(a), lim Y5(t)=Y,(a+n).
t—a, t—>a+n_
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440 F. NEUMAN

Hence (3) holds iff both

4) lim Y,(t)=P lim Y, (2),
t—=a+mn_ t—a,

5) lim Y5(t)=P lim Y, (2).
t—a+m_ t—a,

Define

A(t):=Y,(t).sin"'(t—a) for te(a+km, a+k+1mn),
A(t):=(—=P)* Y| (a) for t=a+kmn, k=0, +1,...;

sin~*s denoting (sins)”* throughout this paper. We have

lim A(t)=(—P)}Y)(a), lim A’(t)=0,

t—a+kn t—a+kn

1
lim A" (l)=§(—P)"(Q (@+1)Y;(a).

t—a+kn

Hence AeC?(R, R"), A(t+m)=—PA(t), A being regular on the whole R. Using
I’Hospital rule we get

t

(A*(s)A(s)) " !sin"2(s—a)ds

lim Y, (t)= lim A(I)Jd

t—a, t—a, Sin_l(l_a)
o A*OAO)
_A(a)'lir? —COSW__A (a)a
and
* -1
lim Y,(t)= lim A(a+n)m=v—PA*_l(a)-

—cos(t—a)

t—a+m_ a—a+mn_

Thus the condition (4) gives no further restriction on A. For (5) we have:

'(A*(S)A(S))_‘—(A*(G)A(S))_lds

J sin?(s—a)

lim Y5(t)= lim {(A(t)sin(t—a))’j

t—a, t—a,

+(A(t)sin(t—a)) (A*(a) A(a))™* [ctg(d—a)—ctg(t—a)]+A*”‘(t)sin‘l(t—a)}

=A(a)J WTOAR) A @A) ds+A*~!(a)ctg(d—a),

B sin? (s —a)

because of

lim [— (A(t)sin(t—a)) (A*(a)A(a)) 'ctg(t—a)+A* " (t)sin~ ! (t—a)]=0.

=,
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SECOND ORDER SYSTEMS 441

Analogously

lim Y5 (t)=PA(a) x ds+PA*~ ! (a)ctg(d—a).

t—oa+mn_

J”"(A*(S)A(s))_l——(A*(a)A(a))_‘

i 2
a sin“(s—a)
Due to our conditions on A the expression

(A*(5)A(s)) ' —(A*(a)A(a))”!
sin?(s—a)

has limits both for t — a and for t — a+n, hence the above definite integrals are well defined
and we may equivalently rewrite the condition (5) as

atmn * -1 _ * A -1
©6) J (A*(1)A (1)) " —(A*(a)A(a))

sin?(t—a) di=0.

a
Let us summarize our considerations in:

THEOREM. — Let Q*=Q, aeR, Y, be a matrix-solution of (Q)such thatY,(a)=0,Y(a)is
regular,Y , (t +n)=PY, (t) for an orthogonal constant matrix P, Y being regular on(a, a+ )
(or equivalently, a+ 7 being the 1st conjugate point to a).

Then
Y, (t)=A(¢t)sin(t —a),
where
AeC*(R,R"), A isregular on R,
(7 A(t+m)=—-PA(1), A(a)=Yi(a), A'(a)=0,
and
8) Q)=A"(H)A" ' (t)+2A (1)A™  (t)ctg(t—a)—1.

Moreover, every solution y of (Q) satisfies (1) if and only if (6) holds.
Remark 2. A’(t)A~*(t)ctg(t—a) in (8) is continuous by defining its value at a+kr as
P¥A"(@)A" ' (a)P ",
Remark 3. — We may always take Y, normalized by Y (a)=1 that gives A(a)=1 and
rTA*()A@) -1
o) J (A* (A ()

sin? (t —a) di=0

a

instead of (6).

IV. — Constructions

In the first part of the paragraph we shall use the condition (9) for constructing some
differential systems (Q) with all solutions satisfying (1).
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442 F. NEUMAN

In the second part we shall construct a two-dimensional differential system (Q) with all
solutions satisfying

yt+mn)=—y(t),

[i.e. P=—11n (1)), the system (Q) being non diagonalizable, i.e., Q being not of the form
C~'diag(q,, ..., q,)C for a regular constant matrix C.

For both the parts relation (8) with a suitable A satisfying (7) and (9) will be considered. If
such an A is taken, the only one requirement we need to guarantee is the symmetry of Q. In
can easily be checked that for

S(t):=A"(t)A™1 (1)
the relation (8) reads
(10) Q(t)=S'(t)+S*(t)+2S(t)ctg(t—a)—1L.
Compare with formulae in [5].
We shall prove:
LEmMA 3. Q=Q* if and only if S=S*.
Proof. (<=) If S=S* then (10) gives Q=Q*.
(=) ForQ=Q%*, thesolution Y (1):=A(t)sin (¢t —a)[hence Y («) =Y *(«)=0] is isotropic:
Y*Y' -Y*¥*Y=0,

or
(A*A’—A* A)sin?(t—a)=0.
Because of continuity of A’ we get A¥*A'—A* A=0,or A'A" ' =A*"TA*=(A'A"')*. B

As a sufficient condition for Q being not diagonalizable we shall use the following two
Lemmas:

LemMma 4. — Let Q=Q* and Q be diagonalizable, i.e. Q(t)=C~1D(t)C, where
D(t)=diag(d, (1), ..., d,(t)). Then for R(t):=(A*(t)A(t))"' the matrix R'R™'R" is
symmetric.

Proof. — Let Z be a solution of
Z" =diag(d,(t), ..., d,(t)).Z
determined by Z(a)=0, Z'(a)=1. Then

Z(t)=dlag(21 (t)a ey Zn(t))a
where

zi' (t)=d;(t) z;(¢),
z;(a)=0, zi(a)=1.
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SECOND ORDER SYSTEMS 443
Put Y(1):=C~'Z(1)C.
Then

Y (a)=0, Y'(a)=1,
and
Y'=C 'D()ZC=C 'D(1)CY=Q(1)Y.

For Y (t)=A(t)sin(t —a) we have A (t)=C~!8(t) C, where C is a regular constant matrix
and & is a diagonal matrix.
According to Lemma 3 it holds A*A’=A*A. Hence

R'R™'=—(A*A) ' (A*A) = —A"'A* | (A¥ A+A*A))
= —2ATTA*TI(A*A)=—2AT'A'=-2C71871EC,

i.e. R’R™! is diagonalizable.
Thus it commutes with its derivative

R'RTHR'R7)=R'R7')R'R™Y),
or
R'R™'R'R™'—R'R™')=R"R™'~(R'R™')?)R'R™).
We get R'R™'R”"=R”R"!R’. Because of symmetricity of R=(A*A)~!,
R'R-!R"=R'R"'R")*. W

s st

class C*(J, R”). Then R’"R™'R" is symmetric on J if and only if
ug(t) uy(t) uz(r)
det{ ui(t) wuy(t) wui(t) )=W(uy, uy, u3)=0 onlJ.
ui(t) uy(t) uy(r)

Proof. — Let A:=detR. Then

R1=A-1( B T
N-uy u )

! ’ ’ ’ 1 r

R'R-!R"=A"! <“1“3_”2“2 _”1”2"'“1”2)(“1 “2)
* ’ ’ ’ ’ 1" 1
Uy Uz —Ujy Uz —U, u2+u1 Usz U, Us

> be a 2 by 2 regular real symmetric matrix of the

and R’ R™! R” is symmetric if and only if

1t

’ 2 _ ’ /I_ ’ r ’ ’ ’ ’ ’" ’ , m
Uy Up Uy — Uy Up Uy — Uy Up Uz + U Up Uy =il g —uf uy uly—uy uhuy+uy uyusy,
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444 F. NEUMAN

or
uy (g w3 —uyuz) —u, (uy uy—uy'uz) +us Uy uy —ui'uz) =0,
or W(uy, u,, u;)=0. H
ParT I. — We are going to construct a system (Q) with all solutions satisfying (1) for an
orthogonal constant matrix P.

Let a symmetric matrix M e C? (R, R") be periodic,

M(t+m)=M(t), and j M (¢)dt=0.

0

Moreover, let the eigenvalues of M be greater than —1. Then the matrix M () sin? t + I has
only positive eigenvalues. Let N(t) denote the symmetric square root with only positive
eigenvalues of the symmetric matrix (I+M (¢)sin?t)"!. Then NeC?(R,R"), det N(t) is
always positive,

N(t+m)=N (), N*(@)=N(), N(@©O)=L N (0)=0,

J" E;zit—):ldmjnM(t)dt:‘0.

)
o sin*t 0

and

We put A (1) :=B(t) N(t), where Be C* (R, R")is an orthogonal matrix. With respect to
Lemma 3 we are looking for such a B, that S:=A’A~"! is symmetric. Hence we need

0=S—S*=(BN)(BN) ! —(BA)* ! (BA)* =2B'B ! +B(N'N ! —(N'N"1)*)B~ !,
because of orthogonality of B and skew-symmetricity of B'B™?, see e. g. [4]. We get

(10) B’=B.%(N'N"—(N’N“)*).

Since 1/2(N'N~!—(N'N~1)*)eC! (R, R") is skew-symmetric, B is orthogonal for every ¢ if
it is orthogonal at some t,.

By taking B (0)=1 we have Be C? (R, R”) and orthogonal for every t. Then S=S* and
also Q=Q* due to lemma 3. For A=B.N we get

n * -1 __ n -2 _
j (A*(1)A (1)) ! Id:=J N-2(t)-1

— ——dt=0.
0 sim“t o SIn“t

Evidently AeC? (R, R™), A (0)=N (0)=1I, A’ (0)=B’ (0)+ N’ (0)=0, and A is regular
on R. Moreover, since N is periodic, the system (10) is also periodic and due to Floquet
Theory, there exists a regular real constant matrix C such that B (t+m)=CB(t) for
all t. Because of orthogonality of B, C is also orthogonal. Hence

A(t+n)=B (t+n) N (t+n)=CB (t) N (1)=CA (¢).
For P:= —C we have

A¢t+n)=—PA(t) forall t.
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SECOND ORDER SYSTEMS 445

Let us summarize our construction. MeC? (R, R") is symmetric, periodic with all

n

eigenvalues > —1, and J M (t) dt=0. N is the symmetric square root of (I1+M (t)
[

sin? 1)~ ! with only positive eigenvalues. B is a solution of (10) with B (0)=1. Thus (9) is
satisfied for A :=BN, a=0, and Q defined by (8)is symmetric. AlsoP:=—B(t+n)B~!(t)
is a constant real orthogonal matrix and A (t+ )= —PA(¢).

Due to Theorem 1, all solutions of the system (Q) with Q given by (8) satisfy (1).

Part II. — Now we are going to specify the matrix P in (1), namely we take P= —1. The
aim of this part is to construct a two-dimensional system (Q) with non-diagonalizable Q
having only half-periodic solutions, y(t+n)= —y ().

Again we use Theorem 1 and relation (8) for constructing Q. We are looking for A of the
form

A()=H()D(1)G (),

where periodic H, D, Ge C? (R, RY),

_[di(t) O
Dm'( 0 dz(t)>

is diagonal,

G(t)=< cosa(t) sin cx(t)>, H(t)=< cos B (1) sinB(t))

—sina(t) cosa(t) —sinB(t) cosP(t)
are orthogonal 2 by 2 matrices such that

H(@©0)=I, H'(0)=0; D0)=I; D’(0)=0;
G(0)=I, G'(0)=0;

that is satisfied by

o, B, d;eC*(R, R),
(11) a(0)=0, «'(0)=0, B(0)=0, B'(0)=0, d;(0)=1,
40)=0; i=1,2.

With respect to Lemma 3 we need A* A=A* A, or
D(H*H'—H* H)D=GG* D?-D? G’ G*,

or
’ 0 d1d2 . 0 _d%—dg ’
2P (t)<—a11d2 0 )“(df+d§ o )*®
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446 F. NEUMAN

or equivalently
(12) 2B'd,d,+a'(d3+d3)=0 on R.

Consider now (9) for a=0:

J" (A*(t)A(t))"—Idt___j"(G*DzG_I)Sin—ztdt

)
o sin” t o

' 1
(@7* =1)cos*at+(d;* ~sin*a 5(dy*~d;?)sin’ o

=J" . sin~ 2 tdt
0 5(d;z—dgz)sinzcx (dy?—1)sina+(d; 2 —1)cos?a
Let
fieCZ(R9 R)a l=la 29
and
(13) fit+m)=£:(2),
fim/2+ )=~ fi(n/2—1), or  fi(t)=—fi(n—1),
| fi()I<1,

fi(0)=0,  fi(0)=0.
Then d;:=(1+ f;(t))”'/* satisfy

d;eC*(R, R),
d;(t)>0,  d,(0)=1,  di(0)=0,
d;(t+m)=d;(1),
d72(t)—1=—(d; *(n—1)—1), i=1,2.

(14)

Hence

dt

[l -n=2

o sin? ¢

n? 2 n? e _
=j @2 (-1 ““’wf @r2m—0—1 1m0y o
0

sin®t o sinf(m 1)

if
(15) a(t)=o(n—t).
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Similarly

sin oc(t)

J d; 2()—1) dt=0
and

sm2oc(t) sm2oz(t)

J(dlz(t) dy (1) j [(dr2(0)—1)—(dy* (1)~ D] ———dt=0,

because of sin 2a (t—t)=sin2a(t).
Let us see for conditions on o and . If

aeC?(R, R), a(t+m)=a(t),
(16) at)=a(m—t) [see(15)],
®(0)=0, &' (0)=0 [see(11)],

then Ge C2 (R, R¥)is periodic, G (0)=1,G’(0)=0. The same remains true for G if instead
of o the function k « is taken, k being a constant.

Due to (12):
_ ) (dils) | dy(s)
b= J 2 <d2<s)+d1<s)>ds’

BeC2(R, R),
B(0)=p'(0)=0,

and hence

and because of periodicity of a, d,, d, also

B(z+m)=B(t)—ko,

_ d,  d,
k°"J ) <d2 *a, )ds

If ko=0, then He C? (R, R?) is periodic, and that is what we need.
If ky#0, then take (2m/k,) o (t) instead of o (t).
Then B (t+n)=p (t)—2n, and He C? (R, R¥) is periodic.
Since again B (0)=p’ (0)=0, we have H (0)=I1, H’' (0)=0.
It remains to look for conditions of non-diagonalization of Q. According to Lemma 5it

would be sufficient to have
R=(a*x4) =2t 22
u, uz)’

~ where

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



448 F. NEUMAN

such that W (u,, u,, u;), Wronskian of u,, u,, u;, be different from zero. Since

1 .
d;? cos>a+d; %sina E(dfz-dz‘z)smhx

R=G*D2G = | )
E(dl’z—dz'z)sinZa di?sin® a+d; % cos®a

if
(17) d, and d, have different positive constant values
on some subinterval (c, d) of (n/4, t/3),

then the Wronskian of

di%cos’a+d; %sin’q, %(d{z—d;z)sin2a,
di?sin*a+d; *cos®a
on the interval (c, d) has the value (a’(t))®>. W (4, y2, ¥3), Where
y,(t)=d;?cos? t+d; ?sin’ t,
y2(0)=5(d5 *d)sin2,
y;(t)=d; ?sin® t+d; 2 cos? t,-

d; *#d; ? being constants, are three linearly independent solutions of y’"’+4 y’=0, having
¢;+c,sin 2 t+c; cos 2 t as its general solution. Hence W (y,, y,, ¥3)#0 and if « besides of
above restrictions complies with

(18) o' (t)#0 on (c, d),

then our Q is not diagonalizable.

We summarize our considerations. Let f; satisfy (13), f; and f, being different constants
on (c, d)=(n/4, n/3), then d, (t):=(1+ f;(t))”*/* comply with (14), and (17). Takea

satisfying (16) and (18). If
"o (dy, d
ko=| = —1+—2>ds#0,
0 _[0 2 <d2 dl

take (2m/ky) o (t) instead of the o (¢). Define

) (dils) | dy(s)
B(t):= Jo 5 <d2(s)+d1(s))ds'

4° SERIE — TOME 13 — 1980 — N°4
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Using a, B, and d; we get periodic matrices G. H, and D. For A :=HDG we define Q by
means of (8). This Q is symmetric [Lemma 3 and relation (12)}, non-diagonalizable
{Lemma 5 and conditions (17) and (18)]. Our A complies with Theorem 1 for P= —11i. e.
A (t+7r)=A(t)] and satisfies relation (9) with a=0. Hence all solutions of (Q) satisfy
y(t+m)=—y(t).

Remark 4. — Having a two-dimensional second order non-diagonalizable system (Q) with
all solutions satisfying y (¢ + n)= — y (t), we may construct a non-diagonalizable system of the
same property for any dimension n(n>2) simply by extending the second order system (Q)

1

by adding n—2 equations y;'=—y,, i=3,...,n.
REFERENCES

[1} A. L. BESsE, Manifolds All of Whose Geodesics are Closed (Ergebnisse, Vol. 93, Springer, Berlin, New York,
1978).

[2] W. A. CopPEL, Disconjugacy (Lecture Notes in Mathematics, Vol. 220, Springer, Berlin, New York, 1971).

[3]1 L. W. GREEN, A Theorem of Hopf (Michigan Math. J., Vol. 5, 1958, pp. 31-34).

[4] H. W. GUGGENHEIMER, Differential Geometry, Dover Publ., Inc., New York, 1977.

[S] F. NEUMAN, Linear Differential Equations of the Second Order and Their Applications (Rend. Mat., Vol. 4,1971,
pp. 559-617).

(Manuscrit regu le 13 septembre 1979,
révisé le 21 février 1980.)

F. NEUMAN,

Czechoslovak Academy of Sciences,
Mathematics Institute,
Brno,
Janatkovo Ndm. 2 A,
Tchecoslovaquie.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



