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SOME ISOPERIMETRIC INEQUALITIES
AND EIGENVALUE ESTIMATES

BY CHRISTOPHER B. CROKE (1)

Introduction

In this paper we first find sharp isoperimetric inequalities

Vol (BM) 27ia(n-l)^
Vol(M) ^ a(n).D co?

„ Vol^Mr ^-^(n-l)^^
YoUM)"-1"' a(n)"-1 co )

where M" is a compact Riemannian manifold with boundary 9M and diameter D, a (n) is the
volume of the unit n-dimensional sphere, and £ is a constant depending on M. Fora history
of isoperimetric inequalities see the survey article of Osserman [11].

In general the constant © is hard to compute, but in some interesting cases it can be
estimated.

For example, we consider the following case. Let N" be a compact manifold without
boundary. Define the isoperimetric type constants

Vol (S)
I(N)=inf

s mm{\ol(M,\Vo\(M^}9

[Vol(S)]"
0(N)=inf

s [min{Vol(M,),Vol(M2)}]"-1

where S runs over codimension one submanifolds of N which divide N into two pieces M ̂ ,
and M^.

In [6], p. 196, Cheeger shows that the first eigenvalue of the Laplacian ofN, X-i (N), can be
bounded below in terms of I (N). In [13], p. 504, Yau shows that I (N) [and hence ̂  (N)] can
be bounded below by the diameter, volume, and Ricci curvature of N. In this paper we
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420 C. B. CROKE

reproduce Yau's result, with a slightly better constant, and show that in the two dimensional
case I(N) can be bounded below by the volume and injectivity radius of N.

In [10], Peter Li uses 0 (N) to get lower bounds for the higher eigenvalues of the Laplacian,
for forms as well as functions, and upper bounds on their multiplicities. In this paper we
show that 0(N) can also be bounded below by the volume, diameter, and Ricci curvature
ofN, while in the two dimensional case it can be bounded by the volume and injectivity radius
ofN.

Another case where one can estimate co is where M is contained in a compact manifold N
without boundary, and the diameter ofMis less than the injectivity radius ofN. In this case
(0=1, so the isoperimetric inequality II is in terms only of the dimension of M. As a
consequence we show that the volume of a metric ball of radius r in N, where r is less than or
equal to one half the injectivity radius ofN, is bounded below by a constant times r", where
the constant depends only on the dimension of N.

We next turn our attention to universal (i.e., curvature independent) upper and lower
bounds on the first eigenvalue, ^i, of the Dirichlet problem for the Laplacian.

We prove a sharp lower bound for ̂  (M) where M is a sufficiently nice compact manifold
with boundary. In particular, if M is contained in a compact manifold N without
boundary, and the diameter D of M is less than the injectivity radius of N, then
^i (M)^^i (SD) .where SD is a hemisphere of the constant curvature sphere of
diameter D. Further equality holds if and only if M is isometric to So. Cheng [8] has
independently shown a universal bound for such M; however, his bound is not sharp.

We then show that there is a constant y (n) depending only on n such that for every compact
manifold N" without boundary of convexity radius c (N), for every m e N and every r < c (N)
we have

, ^/ ^y(n)Vol(N)2

^1 (B (̂  r)) = ———yJnT2——— '

where B(m, r) is the metric ball of radius r about m. This allows us to show
y(n)Vol(N) 2

MN)- ^N)2^2 •

The proof of this result borrows much from the proof in [3]. In [3] Berger shows that there is
a constant y (n) depending only on the dimension n of N such that for every r less than the
injectivety radius of N there is a point m e N such that

^,^^^i.
Using this he gets an upper bound for ̂  (N) under the assumption that N admits a fixed
point free involutive isometry.

I would like to thank Peter Li for bringing the isoperimetric problem to my attention.
I would also like to thank Berger and Kazdan, whose work is used extensively throughout

this paper.

4° SERIE - TOME 13 - 1980 - ?4



ISOPERIMETRIC INEQUALITIES 421

Notation and Definitions

Let (M, 3M, g ) be a smooth compact manifold M with smooth boundary 8M and
Riemannian metric g .

n
Let UM -> M represent the unit sphere bundle with the canonical measure. For v e UM

let Yy be the geodesic with Yy(0)=y, let ^(v) represent the geodesic flow, i.e.
^ (v) = 7v (0- Let l(v) be the smallest value of t > 0 (possibly oo) such that Yy (t) e 5M. Note
^(r) is defined for t^l(v). Let T(r)==sup{ r | y y minimizes up to t and t^l(u)].

Now let the subsets UMcUMcUM be defined by

UM={i ;eUM|4- i ; )<oo}, \JM={ve\JM\7(-v)=l(-v)}.

LetUp=7i|^(p)and U^=7i|oM(p). Define ^=m(U^)/m(U^) and ^=m(U^)/m(Up)
where m represents the canonical measure-on the unit sphere. Also let co==infco ,

peM
co= infcOp.

peM

For p e 8M let Np be the inwardly pointing unit normal vector. Let L^ 8M -> 8M be the
bundle of inwardly pointing unit vectors. That is

\3+8M={ue\JM\^ \ <u,N^>^0}.

Let U4' 8M have the local product measure, where the measure on the fibre is the measure
from the upper unit hemisphere.

We will let a(n) represent the volume of the unit n-sphere.

1. An isoperimetric inequality of type I
and some consequences

PROPOSITION 1. — For (M, 8M, g ) we have:
/» /» /» I {u)

(i) f(v)dv=\ /(TO)<u,N^>rfr^;
J UM J U^M J o

(ii) L f^)dv=[ [{u) f^(u))(u^^drdu.
J UM J U^M J 0

Where f is any integr able function. In particular/or f=. 1 we have:

(iii) Vol(UM)= | l(u)(u, N,^>rfu;
J\J+8M

(iv) Vol(UM)= f 7(M)<^ N,^>^.
Ju + BM

This formula occurs in [12], pp. 336-338, and [I], p. 286.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



422 C. B. CROKE

COROLLARY 2 :
Vol(aM)^C,o)
Vol(M) == / '

Vol(BM)^C^
Vol (M) - D '

where C^=2KQi(n-l)/ai(n),l== sup {I (v)} and D is the diameter of M.
v(=V+ 8M

Note. — The inequalities are both sharp when M in the upper hemisphere of a constant
curvature sphere. In this case co =0= 1 and I == D = diameter of the sphere.

Proof. - (D.oc(n-l). Vol (M)^Vol(UM). From the Proposition we get

-— r rVol(UM)= l(u)(u^^^du^l\ <^N,^>^=/KVol(3M) .
JU^M JU^M

Where K is the constant achieved by integrating over the fibre. To finish the Corollary one
can compute K directly or note that equality must hold everywhere for M the upper
hemisphere of a constant curvature sphere, (ii) is proved similarly. D

Remark. — In general (ii) is more interesting than (i) as I may be infinite.
For M a compact manifold without boundary, and S a codimension one submanifold

dividing M into two pieces M^ and M 2, we let ©i and ©2 represent the co corresponding to the
manifolds with boundary M^ and M^ respectively. For peM^ let

Op={qeM\q=expptu, -ueVp, t^C(u)},

where C(u) represents the distance along y^ to its cut point in M. Since M is complete

M-OpCz[qeM\q=exptu, -M/Up, t^C(u)=J(u)} c=M,.

Therefore M^cOp for j ̂  i. Thus by a standard comparison Theorem we have:

LEMMA 3. — Let M be a compact Riemannian manifold without boundary, such that the Ricci
curvature is bounded below by (n-l)K. Then if S is any n-1 dimensional submanifold
dividing M into two pieces M^ and M^ we have

Vol(M,)co^ —————_—————L_^—————————— (^^

a(n-l) (^-1/K sinhV^Kr)""1^
J°

In particular i/Vol (M^Vol(M^) then

Vol(M)
^——————^(•D ,____ ,__

2oc(n-l ) (V-T/K sinhy-Kr)""1^
J o

46 SERIE - TOME 13 - 1980 - ?4



ISOPERIMETRIC INEQUALITIES 423

where we use the convention that (^/ - 1/K sinh -^/ -K r) 15 interpreted as r if K=0 and as
^/1/K sin (Kr) i /K>0. D represents the diameter ofM.

Proof:

r f*c(u)
Vol(M,)^Vol (Op)= F(u, r)drdu

J -uJo
r0 .__ ,_

^a(n-l) (V-T/K sinhy^Kr)"-1^.
J o

(For the inequality F(u,r)^(^/-l/K sinh^-Kr)""1, ŝ  [5], section 11.10) where

-U,={^U, | -^U,}={^eU,m^)=7(K)},

and F(u, r) is the volume form in normal polar coordinates. D
Now from Corollary 2 we have Vol(S)/Vol(M^Ci co^/D (where C^ is sharp). Thus

using Lemma 3 we get

PROPOSITION 4:

,^. 7i _______Vol (M)
^^-T^——FD————————

a^ D. L/-1/K sinhy^Kr)"-1^

[I(M) was defined on page 1.]

Remark. — This Proposition was proved by Yau ([13], p. 504) with the constant
1 /2 a (n — 1), 7i/a (n) > 1 /2 a (n — 1). Neither constant is sharp as Lemma 3 (essentially used
in both proofs) is not sharp.

THEOREM 5 (Yau). — Let M be a compact n-dimensional Riemannian manifold whose Ricci
curvature is bounded below by (n -1) K. Thus Proposition 4 holds. Since ^i (M) ̂  I (M)2 /4
we find a lower bound ofk^ in terms ofD, Vol(M), and K.

In some cases we are able to show that o must be 1. For example let M be a compact
manifold without boundary and let S be an n — 1 dimensional submanifold dividing M into
Mi, M^ then we have:

LEMMA 6. — If the maximum distance in M between any two points ofS is less than the
injectivity radius ofM, i(M), then (o,=l/or f = = l or 2.

Proof. - Let p e S then

S c B ( p , f ( M ) ) = { ^ e M | ^ ( p , ^ ) < f ( M ) } .

Let M, be the piece of M lying entirely inside B(p, f(M)). By continuity this choice is
independent of the choice of p. Now for x e M,, d (x, p) < i (M) for every p e S, by the choice
of M,. Hence ScB(x, f(M)). Let M^. be the piece of M lying in B(x, i(M)). By

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



424 C. B. CROKE

continuity Mj is independent of x and hence must be M^.. Thus every geodesic from x
minimizes up to S. Hence co;= 1. D

If M is a compact manifold without boundary and r<f (M) , let

B(x,r)={yeM\d{x,y)^r] and S(x, r )==BB(x, r)= {yeM \d{x, y)=r}.

Then Lemma 6 and Corollary 2 give:

COROLLARY 7. - For r<f(M)/2:

Vol(S(x,r)) ^ Ci ^7ioc(n-l)
Vo^x,^)"^" roc(n) *

If M is a two dimensional compact manifold without boundary and S divides M into two
pieces M^, M^ we can consider separately the cases where the length of S ̂  2 i (M) and length
o f S < 2 f ( M ) t o g e t :

COROLLARY 8. — For M a compact 2-dimensional manifold

'•"—e.^}-
Hence ̂  can be bounded below by f (M) and Vol (M).

2. An isoperimetric inequality of type II
and consequences

To begin this section we introduce a Lemma essentially due to Berger and Kazdan ([4],
Appendices D and E).

LEMMA 9. — Let M" be a Riemannian manifold and u e UM. Then for every l^C(u) (the
distance to the cut locus in the direction u):

r t x = l f t z = l - x m+l

¥^x(u^z)dzdx^C(n)^^,
J x=0 J 2=0 7T

where C(n)=Kai(n)/2c(.(n-l)=K2/C^ Further equality holds if and only if

R(Yu(0, Jy^O^Tr/O^d/orO^r^.

Here F(r, z) is the volume form in polar coordinates
r r rw -,
i.e. ¥(v,z)dzdv=Vo\(M) ,

L Ju,J o J

R is the curvature tensor and y^ is the geodesic determined by u.

46 SERIE - TOME 13 - 1980 - ?4



ISOPERIMETRIC INEQUALITIES 425

This follows from a slight modification of the work of Berger ([4], Appendix D) (see
Appendix).

PROPOSITION 10. — For (M, <5M, g) we have

voi(M)2^ f (niQr^N^)^
JV+8M

with C^ = a (n)/2 n" a (n — 1). Equality holds for the upper hemisphere of a constant curvature
sphere.

Proof:
r f rT(u) /• ^T(U)

Vol(M)2^ ¥ ( u , t ) d t d u d p = \ ¥ ( u , t ) d t d u
JM JUp J 0 JUM J 0

r r^)
(8.1) ^ ¥(u, t)dtdu

JUM J o
r r^v) ru^(v))

¥(^(v),t)(v^^dtdsdv
J\J+8M J 0 J 0

r r r^) F^)-S -i
^ F^^O^^ <i;,N^>^

J u + ^ M L J o J o J

(8.2) ^^f (n^^^^N^^)^.
71 J u + aM

The above follows from Proposition 1, Lemma 9, and the fact that
^K5^))^^)—5- Equality holds for the upper hemisphere of a sphere at each stage. D

THEOREM 11. — For (M, ^M, g) we have the isoperimetric inequality:

vol(3M)n >c ^+1
voKMr1'^3" '

w/lereC3=2"-l a(n-l)''/a(n)"-1.
Equality holds iff(a=\ and M fs the upper hemisphere of a constant curvature sphere.
Proof. — From Proposition 10 and a Holder inequality we have

„ {[ KMX^N^,)^}^1

(9.1) VoUM)2^ ^Y^^u^^du^C^^———————-J,
Ju taM <",N^>ri«

l J u + ^ M J

using Proposition 1 we have

U 1"
Vol(M)2. <M,N,^>du ^ ^C^Vol^M)"-'1 ^C^coaOz-^VoHM)]^1

J^M J

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERJEURE



426 C. B. CROKE

giving
Vo^M)" ^
VoKMr^-^ •^=T=^3{

To compute €3 one need only note that equality holds everywhere for upper hemisphere.
To order for equality to hold we must have equality in (8.1), (8.2) and (9.1). Equality in

(9.1) implies T(r) is a constant I almost everywhere in L^ SM. Equality in (8.1) implies
co=l. Equality in (8.2) implies equality in Lemma 9. Thus we see that M must have
constant curvature equal to (n/l)2.

For p an interior point of M, x e S", the sphere of curvature (n / l ) 2 , and I: T M -> T^ S" an
isometry, we see that Exp^ o I o Expp 1: M -> S" must be an isometry by the Cartan-
Ambrose-Hicks Theorem ([7], p. 37). To see that the image is a hemisphere one need only
look at qeSM and note that T(q)=l(q)=l. D

Note. — The equality condition only says that the upper hemisphere minimizes
Vol(aM)"/Vol(M)"-1 over spaces (M, BM, g ) with co=l.

Remark. — If(M, <5M, g ) has non-positive sectional curvature one can bypass Lemma 9
and use F (u, t) ̂  t " ~ 1 in Proposition 10 to get a better constant (C^ = 1 I n (n +1)), and thus a
better constant in Theorem 11 (^^Tr^a^-iy'^/n^+l)^)").

Consider M a compact Riemannian manifold without boundary, and S a codimension one
submanifold dividing M into two pieces M^ and M2. If the maximum distance in M
between any two points of S is less than the injectivity radius, then we can combine Lemma 6
and Theorem 11 to get

______VoUS)"______^-^(yz-iy1

mn^VoKM^VonM^)}"-1 == 3 - o c ( M ) " - 1 '

Using this in the case that M is two dimensional we see:

PROPOSITION 12. — Let M be a compact 2-dimensional Riemannian manifold then:
^(M^^HM^/VoHM), which is sharp for a constant curvature sphere.

Proof. - Since n=2 we can assume that S is a smooth closed curve of length I .
in^2f(M)then

_____Y^ltsi2_____ > ^WW_ _ ^'(M)2

min{Vol(Mi) ,Vol(M2)} = Vol(M)72 ~ Vol(M)'

If l<2i(M) then by the above

_ _ V o l ( S ) 2 ^ 2(27r)2 ^
min{Vol(Mi), Vol(M;,) = 471 n'

Now in [2], p. 36, and [9], p: 296, Berger and L. Green show VoHM^^M)2/^ Thus
27^^8f(M)2 /Vol(M). D

4eSERIE - TOME 13 - 1980 - ?4



ISOPERIMETRIC INEQUALITIES 427

For n^2 we need only combine Theorem 11 with Lemma 3 to get:

THEOREM 13:
Vol(M)

<D(M)^C4/ pro ____ __
(^/-1/K) sinh^-Kr)"-1^

J o

with the same convention as Lemma 3 for K^O. C4=l/4a(n- l )oc(n)"~ 1 .
Now Proposition 12 and Theorem 13 can be applied to the results of Peter Li [10]. Thus

we get a lower bound on the higher eigenvalues of M as well as upper bounds on their
multiplicities in terms of the volume of M, the diameter of M, and a lower bound on the Ricci
curvature of M.

Remark — For (M, ^M, g ) we can consider

,,.^ . , Vol(S)"0(M)= inf _______——_____/ s (min{Vol(Mi) ,Vol(M2)})"- 1 9

where S moves over submanifolds dividing M into two pieces M^ and M^ (Sn^M not
necessarily empty). If for given S we let UM be the set of vectors whose geodesies minimize
up to the point they intersect S, and define co analogously, then the same method will give an
isoperimetric inequality. If M is geodesically convex, then an argument similar to
Lemma 3 will put a lower bound on co. This will give a lower bound on 0 (M).

Let M be a compact Riemannian manifold without boundary. Define

^(M)=inf{0<r | (B(p, r), S ( p , r), g ) has oxi}.

Since co = 1 is equivalent to the statement that the cut locus to any interior point of B (p, r) lies
outside B(p, r), we see that rp(M)^f(M)/2 for all peM.

PROPOSITION 14. - For r ^ r p (or in particular r^f (M)/2) we have

Yo^B^r))^^,
n

VoKS^r))^-^"1-

in particular

^TN "̂'-
Proof. - By Theorem 11 for 0<t^r:

_Vol(S(^))_^
Vol(B(p, t))("-1)/" = 3

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



428 C. B. CROKE

integrating both sides with respect to t yields
n.VoHBO^r^^C^r.

This gives the first statement. The second follows from Theorem 11 and the first
statement. Q

This relates to a question of Berger. Berger is interested in bounding the volume of a
compact manifold from below in terms of the injectivity radius. In [4], p. 242, he proves
that Vol (M)^(l/2)(Qi(n)/nn)i(M)n. Proposition 14 can be considered as a local version
of this result (although not as good). One has from Proposition 14 that

yol(M)^Csit(M).-^i(M)\

where Cat (M) is the topological category of M (i. e., the number oftopological n-balls needed
to cover M). To see this one need only note that for every xe M, B(x, f (M)) (open) is a
topological n-ball, then choose x^eM, choose x ^ e M — B ^ i , i(M)), in general choose

i-l

x^.eM— (J B{xp ?(M)); by the definition of Cat(M) we can choose at least Cat(M)
j'=i

such x,. Now for j^i, d(Xi,Xj)>i(M) hence B(x, , f (M)/2)f )B(x,.,i(M)/2)=0.
Hence Proposition 14 gives the result.

Proposition 14 also allows us to get good lower bounds on Vol (M) when r p (M) is large for
some p even though the injectivity radius may be small. Another consequence is:

COROLLARY 15. — Let M be a compact Riemannian manifold then

Vol(M) a(n-l)"
~~D~>2nn^n)''^T{) '

Proof. — Let I be the integer such that I+l>D/t ' (M)^I^l . Let y be a minimizing
geodesic from p to qinM of length D. Choose points p=Xy,x^,x-i,..., Xj=^along ysuch
that d(x,, x,+i)^i(M). Then the geodesic balls B(x;, i(M)/2) will be disjoint and have
volume^(a(n-l)72n"a(n)"-l)l(M)". Thus

virM^n-.n01^-1^1^^ D a(n-l)"l(M)" nVol(M)^(I+l)-^^^_-^^^-^^^-,r-T-. D

3. A universal lower bound
for the first eigenvlaue of the Laplacian

In this section we prove the following lower bound for the first eigenvalue of the Dirichlet
problem for the Laplacian.

THEOREM 16. — Let (M, 3M, g ) be a compact Riemannian manifold with boundary such that
every geodesic ray in M intersects 8M. (f. e., co= 1). Let I be the maximum length of any
geodesic (from boundary point to boundary point). Then we have ^ (M^^S^). //

4° SERIE - TOME 13 - 1980 - ?4



ISOPERIMETRIC INEQUALITIES 429

further every geodesic ray minimizes distance up to the point that it intersects the boundary
(i.e., (0=1), then equality holds if and only ifM is isometric to S^.

Remark. - One suspects that the equality condition is also true for co=l without
assuming o)=l.

COROLLARY 17. - Let N be a complete Riemannian manifold of injectivity radius
i (N). Then for every m e N and every r ̂  i (N )/2 we have ̂  (B (m, r)) ̂  ̂  (S^,), with equality
holding if and only ifB (m, r) is isometric to S .̂ [fn w/nc/i case r==f(N)/2].

Proo/(Thm. 16). - By the minimum principle we need only show that

[ |V/|^m
•/M ___"> ^ ^Q+' t—Y~————— ^AI ̂  )

f'dm
JM

for all / such that /1 ̂  = 0.
We first note that

^^^--i)^2^
where vf represents differentiation.

Using this, Proposition 1 (with UM=UM) and the one dimensional version:

[f^dt^ r/(r)2^, /(0)=0, /(a)=0,
J o ^ J o

with equality if and only if /(^)=A sin((7i/<3) r), we see

f i v /1 2 ^ . - 1 — f (v^dv
JM a(n-l) JuM

^.r-'-n f f'^rM)/]2^^^^^)^
^V""1^ JU^M J 0

^a(^n [ ^ ['^[/^^(u^dK^N^)^^V"""1 / JU^M H^^ J 0

nn2 r r^
^^-n72 [/^^N))]2^^^^^)^a ^ — i ^ JU^M J o

= a(^)F L^^^^2^' '?2 i/2^ =^^) J/2^-

Now we assume that equality holds. Equality holds if and only if:
(a) l=l(u) for every ueV^ 8M and
(fo) / (Yu(0)=A(M) sin (TI/O t for all ueU-^ BM, where yjr) represents the geodesic with

initial tangent vector u and A(u) is a constant depending on u.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



430 C. B. CROKE

By scaling we may assume that sup ( /)==!. Let m e M be such that/ (m) = 1. Then ify is
any geodesic through m (parameterized from boundary point to boundary point), m will take
on the maximum value of/hence m=y(J/2) . Thus it is not hard to see:

(1) M is the metric ball of radius 1 / 2 around m and 9M= {qe M \d(m, q)=^l/2}.
(2) / (q)=cos[n (<:/(;?, q ) ) / l ] for all q(=M.
(3) A ( M ) = < n , N \ ^ > fo ra l l^eL^BM.
Let uerTq9M, qe9M. By continuity y,,(0 is defined (i.e. lies in M) for Q^t^l. Since

A ( ^ ) = < M , N^)>=O we see that /(yj^))=0 for all t^l. Hence yJr)e3M for
Q-^t^l. Thus (9M is totally geodesic.

For q e c Mwe let q represent the (antipodal) point y^ (0 e 9M. We now assume (as in the
statement of the Theorem) that every geodesic minimizes length up to the point it
intersects 8M. As M is the metric ball of radius 1/2 around m the unique point of distance I
from q is q. Hence if y is any geodesic from q we have y(l)=q. Hence this holds for
geodesies in 8M. Hence the metric on 9M is that ofaBlaske structure on a sphere. Hence
by Berger's Theorem ([4], p. 236) 9M is isometric to the constant curvature sphere 9S^ . In
particular Vol {9M) = Vol (9S^~ ). Now using the assumptions of the Theorem, the fact that
l(u)=l, and the proof of Corollary 2 we see that

YOKBM) _ voi(as^
VoTovrr - VoKsT)"

Thus

^oi_(aM)"_ _ ^ouas^
VoUM)"^" ~ VoT^T^ - 3'

Now the fact that every geodesic minimizes up to 9M combined with Theorem 11 gives M
is isometric to S ^ . D

4. A universal upper bound
for the first eigenvalue of the Laplacian

THEOREM 18. — Let N" be a compact Riemannian manifold without boundary. There exists
a constant y(n) depending only on the dimension n o/N such that for every m eN and every
r^c(N), the convexity radius o/N, we have

MB^^^T^.
COROLLARY 19. — For N" a compact Riemannian manifold we have

^ 7(.)Vol(N)2

1 ( ) ^N)2^2 •
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Remark. — Let M be a compact Riemannian manifold with boundary. Let R be the
supremum of all r such that there is an me M with:

(1) B(m,r )nBM=0;
(2) B(m, r/3) is convex;
(3) for peB( /» , 2 r/3), Exp | / , : D(0,r/3) -> B(p,r /3) is a difteomorphism.

( D ( 0 , r / 3 ) = { V e T ^ M | | |V| |^r/3}).

The proof of Theorem 18 allows us to conclude

. ^. Y(n)Vol(M)2

^l (M)<———R2nT2———•

Proof. - Theorem 18 is also proved using the minimum principle. For r less than the
injectivity radius (or for our purposes the convexity radius) and for meN we define the
function K(^ ^ on B (m, r) as follows

nd(m,p)
^(m, r) ( P ) = COS ———.———— .

By direct computation, or by Berger ([3], p. 6) one has:

/"' /* 2 /* (* r / \

IVK^J2^- sm2(7u]¥(u,t)dtdu,
,.x 7 JB(m,r) ^ ^ J u j o V 2^ ' /

\ r /* rr / \
K^^^= COS^^IF^O^^,

^ jB(m,r) JU^J 0 V 2 ^ /

where ¥(u, t) is the volume form in polar coordinates.
We will need two lemmas.

LEMMA 1 (Berger). - There is a constant c(n) depending only on the dimension n o/N such
that for all real r less than the injectivity radius o/N we have

f | cos^^F^), O^^oc^)^1.
J x=OJ t=0 \zr /

Proof. - See [3], p. 7.

LEMMA 2. - For meN and r less than or equal to the convexity radius o/N we have

g(u)du^ \ g(Vu)dt(u,^^^du
JUB(w,2r) Ju^BCw.r)),! 0

for all non-negative integr able functions g on UB(m, 2r).

Remark. — This is the only point in the proof where the convexity radius (rather than the
injectivity radius) is needed.
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Proof. — Consider the geodesic flow

^ : \J+8(B(m,r)}x[0,r]->]JB(m,2r).

The fact that the image lies in UB (m, 2 r) is a simple consequence of the triangle
inequality. The Jacobian is computed to be < M , N^)) as in Proposition 1. Thus the
Lemma will follow if we show that £, is one to one.

Assume ^ is not one to one. Then there exists 0 ̂ i < ̂  ̂  r and u^, u^ e U + 8 (B (m, r))
such that ^(1 (MI ) ==^2 (u^). Thus ̂ '"^ (1^2)= M! • Thus ify is the geodesic with initial tangent
u^ we have y / ( ^ 2 ~ r l ) = M l • ^s t2~tl^r we see ^at y minimizes length from n(u^} to
71(^1). Since B(m, r) is convex y(?)c:B(m, r) for all O^?^^""^ but this contradicts
Y(h-t,)=u,e\J+8(B(m,r)). D

We now fix meN and r less than or equal to the convexity radius ofN. We let X-i
represent X,i(B(m, r)). For every qeB(m, 2r/3) we have B(q, r/3)c:B(m, r) and hence
,̂1 B(^, r/3)^^i. Since K(q^/3) ls 0 on SB(q, r/3) the minimum principle gives

f |VK^/3)12^ ^^(B(^, r/3)) f K^^dp ̂  [ K^,^)^
jB(g,r/3) jB(g,r/3) JB(9, r/3)

substituting (i) in we have

^Lir""^) '̂ ̂ tri" ̂ jjr00^3^)1^' t)'('"'
using sin2 = 1 — cos2 we get

rr2 QTT2 f r^397i2 97c2 r r^3
^-Vol(B(^r/3))=^,- ¥{u,t)dtduF(M, 0^^

Ju,J o

Integrating both sides over ^eB(m, 2 r/3) and using

VolB(m, r)^VolB(^, r/3) and Vol(B(m, r))^Vol(B(m, 2 r/3))

we get

97i2 / 9n2\ C F^3 /3nt\
[VolB(m,r)]2^ ^i + 4 . cos2(——]¥(u,t)dtdu.

~rr \ -rr ) JuB(w,2r/3)J 0 \ LY ]

Using Lemma 2:

^[VoKB^r))]2^^^^)

/• r /•r/3 r r / 3 3 . -|
x cos2——?^^?)^^^^^^)^.

JV+8B{m,r/3)\_J x=0 J t=0 zr J
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Using Lemma 1:

97i2 / 9n2\ r r " ' ^ 1

.,[Vol(B(m,r))]2^ ^+^- c(n)^(u,^^du
\ " / Ju^B^r/S)

/ 9^2 \ y.n+1

=^i+4^-^(n)^TTfe(n)Vol(aB(m,r/3)),

where k(n) is the constant < u, N^) > ^M, for qe9B(m, r/3).
Ju;

By Proposition 14 we have

VolfaBL-)^2""^^-1^.
\ \ Z ) ) ~ ^"^(n)""1 3"~1

Thus we have

9n2 / OTC^ ^n-l ̂ (^_ 1 \" ,.2n[̂voi(B(«, ̂ a (x, + ̂ )c,»)M»)̂ ,A ̂ .

Combining the constants together and rearranging we get the result

y(n)[Vol(B(m,r))]2^ 9^^
————^^————=^ l+4r^^ u

Proof of the Corollary. — Choose points m^, m^ e N such that B (m^, c(N))nB(m2, c(N))
has measure 0. This is possible by the definition of c(N) (the convexity radius of N).

Let /i and f^ be corresponding first eigenfunctions of the Laplacian. Let

Ci= /i and C2= f^
jB(mi,c(N)) jB(m2,c(N))

Define / on N by
/i(w) if meB(mi,c(N)) ,

/(^)=^-^1^(^) if ^eB(m2,c(N)),

0, otherwise.
Thus we have f / - f f^\

JN jB(m,c(N)) C2JB^
f=\ A-c-l\ /2=0.

JN JB(W,C(N)) ^2 JB(w2,c(N)) t

HenCe we can apply the minimum principle to /:

f iv / l ^ f iv/j^^)^ |v/,|2
JN jB(mi,c(N)) V^ / jB(m2,c(N))JN jB(mi,c(N)) \C2/ jB(m2,c(N))
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since f^ and f^ are eigenfunctions we get

=^(B(mi ,c (N)) f f\
JB(WI ,C(N) )

..,<B(«,,c(N).)f (^•/^i^iwrf/.i,
jB(m2,c (N)) \C2/ C(,N) UN J

hence

?. (M)^)^01^)]2 n^(N)^—^^-r-. a

APPENDIX

Berger and Kazdan show in [4], Appendices D and E, that for JI<C(M):

F ' r " XF^X(u),z)dzdx^C(n),
J x=0J z=0

with equality holding if and only if

(A. 1) A* (t) A (r) = (p2 (M; 0 Id = sin2 t Id.

Where (p(M, t)=¥(u, O17^-^, and A(t) is the solution, with initial conditions A(0)=0,
A'(0)=Id, to the resolvant equation

(A;2) Z"+RoZ=0,

where R is the curvature transformation.
Berger also shows that i fA^( r ) is the solution to (A. 2) with initial conditions A^(x)=0,

A^(x)=Idthen

(A.3) A^(y)=A(x)( f 'A-^OA-^^^A*^).
\J x /

Using (A. 1) and (A.3) we get

(A. 4) ^(y)^Ay)=^2(y-x)l±

Now differentiating (A. 4) four times at y = x and using (A. 2) we get R (y^ (x), .) y^, (x) = Id
for 0^x^71.

Now to derive Lemma 9 one need only replace n by / in the above and make the
appropriate changes of variables throughout Berger's proof.
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