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CLASSIFICATION OF FREE ACTIONS
BY SOME METACYCLIC GROUPS ON S2'-1

BY C. B THOMAS

Let p and q be distinct odd prime numbers, such that q divides p—1, and consider the
extensions

and
l^Z/^D^Z/^l,

l ^ Z / p ^ ^ D ^ ^ Z/^-^l,

where AB=A r with rq=l(p) in both cases. Thus in the second, Z/q2^ is not mapped
faithfully into Aut (Z / p ) . (Throughout this paper Z /x n denotes the cyclic group of order n,
generated by X). Our aim is to give a complate topological classification of free actions on
S2""1 [for n=0(q)] in the first case, and a partial classification in the second. The result
obtained is sufficiently strong to recover the Theorem, that for q > 3, STop (S24"1) does not
have the same homotopy type as SO (2q), in sharp contrast to the work of A. Hatcher,
when q=2.

Our starting point is the existence of free actions for both groups above on S2""1, for all
values of n = 0 (q). In the second case of a non-faithful action of Z /q2 on Z / p this follows by
representation theory, see [20], in the first case, when J . / q necessarily acts faithfully on Z/p,
existence follows from [18], together with Theorem 12.5 or [19]. Alternatively we can use
the earlier construction of[10], see paragraph 5 below. In this case, one sees, following M.
Keating [6] that the simple homotopy type of a model manifold (or Poincare complex) is
determined, using the reduced norm (Nrd), by an element in the centre of Q(D^).

This generalisation of the Reidemeister torsion is in turn determined by a pair of algebraic
integers, Ap in the subfield L ofQ(a) invariant with respect to the automorphism a \-> a^ and
A^ in Q (P). Here a and P are primitive p-th and q-th roots of unity respectively. In the case
ofD^2 it is harder to describe the Reidemeister torsion, which in any case only determines the
weak, simple homotopy type, since SKi (Z^) is not necessarily zero. Recall that the
homotopy equivalence /: X^ ->X^ is weakly simple, if the image of the torsion of / in
W h (Q r) is trivial. Having fixed the (weak) simple homotopy type of the model complex
YQ, with fundamental group r, we proceed to interpret the surgery exact sequence

LL(r) -^ STop(Yo) ̂  [Yo, G/Top] ̂  LL-i (F).
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406 C. B. THOMAS

Since the order of F equals pq or pq2, and is odd, the set of normal invariants [Yo, G/Top] is
determined by real K-theory, and the triviality of the right hand group implies that of the map
a. As in the case of fake lens spaces, we complete the classification by means of the signature
p, see [17] and paragraph 1 below; there exists a (weak) 5-cobordism between Mi and M^, if
and only in, pi =p2 and AI =A2.

It will become clear to the reader, that for F=D^, one can also give this classification in
terms of the covering spaces M(p) and M(q), with fundamental groups generated
respectively by A and B. In particular one can extend an arbitrary free action of the group
Z/q^ to a free action of Dpg, compare Theorem C in [7]. For F = D^ the situation is more
complicated, since even the partial classification shows, that because of the existence of
elements of composite order, the spaces M (p) and M (q) do not specify M. Furthermore, by
means of non-published material of Wall, one can find conditions under which the
topological quotient space admits a differentiable structure; this result will be published later
in a more general framework.

For the group D^ here is a result analogous to that of Madsen. Let L2q~l(q2, s^
s^ . . . , Sq) be the lens space defined by the representation P51 © P 5 2 . . . ©(3s" of the cyclic
group J-lq2^.

Then for each ^-tuple (s^, ..., Sq), there exists a manifold M (pq2) which has L24"1 as q-
covering space. It follows that M (pq2) is not necessarily of the same homotopy type as a
manifold of constant positive curvature, and hence that the classifying map for the action
BDp^BSTop (S29-1) does not factorise through BSO(2q). The existence of such
homotopically exotic actions may be important in the future for the study of the homotopy of
BSTop(Sodd).

This paper is no more than the first step on the road to the classification of all free actions
by finite groups on S2""1. As such it is really joint work with C.T.C. Wall, and appears now
because of the possible interest of the application in the last paragraph.

The author also wishes to express his appreciation to his colleagues at Berkeley and
Cornell for their hospitality during the summer of 1978, and to the National Science
Foundation for financial support.

1. The invariants of the action

As in the introduction we suppose that F is a metacyclic group of order pq or pq2, where p
and q are distinct odd primes, and q divides p-1. For each value of n congruent to 0
modulo q, we start with a reference complex Y2"-1, with fundamental group isomorphic to F,
and universal covering space homotopy equivalent to S2""1. Without loss of generality we
assume that Yo is (F, In- l)-polarised, that is we have a fixed identification and homotopy
equivalence. Following Madsen ([7], Thm. 2.10), if F has order pq, we can choose Y2"" \
such that

Y^/p^L^-^l.r, . . . ,^-1),
s
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METACYCLIC GROUPS ON S2""1 407

and

YCZ/^^L2^-1^, ! , !,...,!).

(Here, as usual, ^ denotes simple homotopy equivalence.) In higher dimensions the
s

reference complex is obtained by joining copies of^Y2^1, F) to each other, see [13] for the
algebraic model for this construction. Note that we can also consider \2q~l as the (2q—l)-
skeletonofK(r, 1). If F has order equal to ̂ 2, we choose Y2^"1 to be the manifold defined
by the reprensentation n=n^ ̂ , see [20], given in terms of matrices by

-oc 0 0 \ /O 1 . . . . 0-
- 0 a' ... 0 \ / 0 0 . . . . 0

TI(A)= | : ; , ; ) - ^ ( B ) = l . . .

-0 0 ... ^9 V ^(^ 0 0 0^

where a and (3 are respectively p-th and ^-th roots of unity. In each of the two cases an
arbitrary polarised complex defines a torsion element in the summand Q I 7 < £ > = Q R r o f
the rational group algebra, see [9] for more details. (Here Z denotes the sum of the group
elements.) This torsion is well-defined up to sign and multiplication by an element of the
group. By induction on the cells there is a map / :Y^Yo, which is ( 2 n — l ) -
connected. Hence there exists g : Y2" ~ 2 -^ Y, such that the composition fg is homotopic to
the inclusion. The map g is (2 n— 2 ̂ connected. H^-i(^; ZF) is projective [13], and
stably free, since both Y and Yo are finite. Since F contains no subgroup of quaternion type,
it follows, see [14], that H^-1 (g', Z F) is free of rank one. As in [17], g can be extended to a
homotopy equivalence g ' : Y2""2 u ^n-i -> Y, and up to this point there is no difference
between Dpq and D^2. Now let L^ be the integral closure of Z in the subfield L of the
cyclotomic field Q(oc) invariant with respect to the automorphism a i—^, where r it the
exponent occurring in the relations for Dpq.

LEMMA 1. — (i) SKi (ZD^)=0, and (ii) there is a monomorphism

Ki(ZD^)-K,(ZZA?)+Ki(L,).

Proof. — The first part is contained in [6], and depends on the K^-exact sequence, n^2,
associated to the Milnor square with ring projections ZDp^ -> Z(a)(Z/^) and
Z Dpq -> ZZ/^f. Here Z (a) (Z/^f) is the twisted group ring, the twist being given by the relation
oc B = B o^; as a ring it embeds in the q x q matrices over L^. Passing to the rational group
algebra, it follows that Ki(QD^) maps monomorphically into Ki(QZ/^)+Ki(L^).
(Recall that K^ of a matrix algebra reduces to Ki of the underlying ring.) The second part is
now immediate, given the triviality of SK^.

Using Lemma 1 and assuming that F has order pq, one can rechoose the generator of
n2n-l(c^)=^2n-l(cl'•> ^ r) in order to make the homotopy equivalence g ' simple. Note
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408 C. B. THOMAS

that in each case the image of the chain map 8^_ i is isomorphic to Z F/ < Z > =Rp, and we
have only varied 8^_ ^ by a unit in Rp. Moreover given the monomorphism of Lemma 1
(ii), we see that the Reidemeister torsion A(Y) is determined by the restrictions

Ap(Y)eL^ and A,(Y)eZ(P).

LEMMA 2. — The polarised complexes Y^ and \^ have the same simple homotopy type, if and
only if\(^,)=\(\,) and ^(Y,)=\(\,).

Proof. - The torsion of the homotopy equivalence h=g^g[~1 l Y ^ - ^ Y ^ lies in
SKi (ZDp^), which is trivial, by Lemma 1.

For the reference complex Y, recall from [7] that

\W=q^^ri-^n/q

1=0

and that A^ (Y) ==(?-!)". It is clear that the former is invariant with respect to the induced
Z/^-action.

Given an identification of the fundamental group with F=D^, the homotopy type ofY
only depends on the ̂ -invariant in H2" (r, Z). This cohomology group is cyclic of order pq\
let 0Q ==^(Yo) be a preferred generator. It is known (see for example [13]), that the
module

(r, Z ) = = { K , v\xy=v for all x in F, and "Lu=rv].

is such that there exists an isomorphism between (r, S) and (r', E), if and only if there
is a unit a in R^ of augmentation e (a) in Z/[F: 1] with e (a) r ' = r. Given the existence of such
a unit a, with preimage a' in Z F, the isomorphism is given by ui-> a' u\ v ̂  v > ' .

LEMMA 3. — (i) A(Y) determines the first k'invariant o/Y.
(ii) If the unit aeRp determines an isomorphism (r, 5;)^(r', £)=Z F, and Y is the complex

obtained from Y() by twisting the attaching map (p for the cell ̂ -i by a, then k^(Y)==rgo.
Proof. - (i) We follow the argument on page 205 of [17]. The two torsions A^(Y) and

Ap (Y) belong to be n-th power of the kermel of the augmentation of the group ring of a cyclic
group, mapping naturally onto the Tate group H"2^ , Z). The image of A in each case is
the inverse of the fc-invariant for the covering space.

(ii) First of all it is clear, that if the attaching map is twisted by the unit A (Y), the degree
(modulo the order of the group F) of the homotopy equivalence with Y is given by the
augmentation e(A(Y)). Furthermore in the proof given by Swan we can set r ' equal to 1,
and realise the simple homotopy type by means of the unit a. Hence by the first part, the
map induced on H2""1 (F, Z/[F : 1]) is multiplication by r, and by passing to H2"^, Z) by
means of the Bockstein coboundary, we must have k^ (Y)=rfci (Y)=r^.

Remaks. - (i) Both when F has order pq and order pq2, for each r=^ (modulo p) there
exist units a in Rr such that e (a) = r, see [5] and [15]. Later on we will exploit this possibility
of realising special homotopy types.
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METACYCLIC GROUPS ON S2" 1 409

(ii) As in [17] one can show that the torsion of the natural homotopy equivalence between
the Poincare complex Y and its dual is trivial. As for A(Y) we lift to covering spaces
corresponding to subgroups generated by A and B, and apply ([17], Lemma 14 E.2).

Lemma 1 shows that, when F=D^, the pair of torsions { Ap, A^} determines the simple
homotopy type of Y. For D*,2 one cannot say as much. In normalising the arbitrary
complex Y we only obtain a complex Y2""2 u e^n-1, weakly equivalent to Y. By using the
remark (i) above, this is enough to prove the existence of normalised complexes such that
fei (Y)==r^o for each r, which reduces to a q-th power modulo p .

In the next stage of the classification we consider the set of normal topological invariants
[Y, G/Top]; put another way, we classify the classes of stable topological bundles v over Y,
associated to maps of degree one S^2""1--^Y^ for N large. Since F has odd order,
[Y, G/Top] can be identified with the real K-group KO(Y), see [12].

Since the proof is no harder, we state the following result for an arbitrary group of odd
order, all of whose Sylow subgroups are cyclic. Such a group has a presentation of the same
type as Dp, or D^z:

l-^/m^r-^Z/n^l,

where (w, n)== 1, and AB=A r with ^=1 mod m.

LEMMA 4. — r 15 metacyclic of the form above, and ifmn is odd then

KO (Y) = KO (Y (n)) + KO (Y (w))^.

Proof. — The corresponding result is well-known for ordinary cohomology. Since the
order of F is odd, and KO* (pt)®Z [1 /2] is zero in dimensions not congruent to zero modulo
four, the spectral sequence H^Y, KO^pt)) ̂ KCY^Y) collapses, from which the lemma
follows.

Closely linked to the normal is the signature p o f a manifold, M2""1, simply homotopy
equivalent to Y. Since n^ M ̂  F, there is a map M -> K (F, 1); there exists an integer s such
that s M = 3W2" as singular manifold in K (F, 1). We denote by o (W, F) the signature of
the singular manifold W -^ K(F, 1) (see [17]), a(W,F) is an element of the ring R(F) of
complex representations of r, which is real if n is even and totally imaginary if n is odd.
We define ^

p(M,r)=-a(W,F),
5

p(M, r) is independent of the manifold W as an element of Q®[R(F) modulo the
regular representation] if n is even and as an element of QOOR(F) if n is odd. For more
details, we refer the reader to [17] or [18]. In the two cases under consideration here, the
complex representation ring has generators (as a free abelian group) of two kinds. First
there are the one dimensional representations factoring through J,lq (or Z /q 2 ) , and second q-
dimensional representations, induced up from a 1-dimensional representation of the normal
subgroup generated by A (or by AB4). Hence there are monomorphisms

R(D^) -^ R(Z/pA)mv+R(Z/A

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



410 C.B.THOMAS

and
R(D^) ̂  R^/p^F +R(Z/^).

When the order of F equals pq, the signature p is determined by its restrictions to the
subgroups generated by A and B, but when the order equals pq2, this is no longer true on
account of the existence of elements of order pq. However, in the first case we may identify
p(M) with the pair { pp, p q } . If tp and tq are dual to the groups generated by A and B
respectively, as in [17] we may identify pq with an element o fQ®Rf -compare the definition
of Rr following Lemma 1 above. Similarly pp belongs to (Q (x) Rr V^.

LEMMA 5. — The signature p(M) determines the normal invariant.

Proof. — In general it is a folk theorem that p(M) determines the odd part of the normal
invariant, but in our special case we can split p (M) as { pp, p^}, and appeal to [17], Prop. 14
E.6. The lifted signatures determine the normal invariants for the covering spaces with
fundamental groups generated by A and B, and the result now follows from Lemma 4.

Remark. — The full generality of Lemma 4 combined with the structure Theorem for
groups with periodic cohomology, and the argument above, show that the folk Theorem
holds for any spherical space form, see also [16].

2. Classification of the manifolds

THEOREM 6. — Let M^~1 and Mj""1 be polarised topological manifolds with fundamental
group Dpq. There exists an orientation preserving homeomorphism M^ -> M^, inducing the
identity on Dpq if and only if^(M^=A(M^) and p(Mi)=p(M2).

Proof. — Let Y2""1 be a normalised complex, for which the Reidemeister torsions at the
primes p and q agree with those ofM^ and M^. Using Lemma 5 choose a normal invariant
for Y, determined by p. The corresponding surgery obstruction is zero, since
L2^-i(Zr)=0, see [18], Cor. 2.4.3. In order to distinguish between the manifolds
obtained, within a fixed normal cobordism class, see the surgery exact sequence in the
introduction, it is necessary to describe the action of L^ (Z D^) = L^ (1) + L^ (Z ). Once
again, since the group is of odd order, the signature maps the second summand (1-1) onto

47c l(D^, R) (n even) or 4xc l(D^, iR) (n odd),

see [loc. cit. supra]. But the image of L^nW acts trivially on the set of homeomorphism
classes, contained in the same normal cobordism class. This follows from the surgery exact
sequence and the fact that the image of[SY, G/Top] in L^ acts trivially inside a fixed normal
cobordism class.

COROLLARY. — Mi is homeomorphic to M^ if and only ifM^ (1) is homeomorphic to M^ (I) for
l=p and l=q.

Proof. — We combine the Theorem with the decompositions of A and p, given in the
previous section.

46 SERIE - TOME 13 - 1980 - ?4



METACYCLIC GROUPS ON S2" 1 411

THEOREM 7. - Z^r F=D^2 anrf ;̂  M^""1, M^""1 be two manifolds as above. Then, if
A(Mi)=A(M^) and p(Mi)=p(M^), there is a weak s-cobordism between M^ and M^.

Proof. — In form this is the same as Theorem 6. In particular M^ and M2 are
homeomorphic in all cases when SK^ (Z D^) is trivial.

The Corollary to Theorem 7 analogous to that of Theorem 6 is a little more
complicated. First of all it is necessary to restrict the notion of equivalence to weak s-
cobordism, but even then the covering spaces M(p) and M(q) do not suffice for the
classification. The reason for this is that the rational group algebra Q D^ possesses an
additional summand of the form QD^2 /<B^+1> , for which the group relations are
augmented by B9 = — 1. This summand is of finite dimension over its centre Q (a)^, and the
torsion has components in ©(a)"^, Q(P) and QW\ The situation is similar for the
signature, see the decomposition of R(D^) given above, and in order to take care of the
additional data, it is necessary to consider the "mixed" covering space with fundamental
group generated by the element AB4.

4. Values taken by the elements p and A

Both when F = Dpq and F = D^2, the easiest way to find the restrictions on each of p and A,
the relations between them, and the geometrically significant pairs, is to consider the same
problems for the covering spaces M (?) with I = p , q or pq. In principle the problem is solved
by [17], Thm. 14. E. 7, with the additional restriction that both A and p, for l=p or pq, are
invariant with respect to the induced action of B on their domains of definition. Avoiding
these complications, we shall state two more geometric results, of which the second will be of
importance in the last section.

THEOREM 8. — Let (A^, pq) be the torsion and signature associated to the arbitrary fake lens
space M (q). Then there exists a topological manifold with fundamental group Dpq, such that
the covering space with fundamental group generated by B 15 homeomorphic to M(^).

Proof. — Since the epimorphism Dpq -> Z^ is split, the group of units \J(1Z/q) is a direct
summand of the group U(ZDpg). If u projects onto Ag, we can twist the chains of the
reference complex Y by u (considered as a unit in R^ ). Comparison with the reference
complex shows that Y (q) has torsion equal to (P -1)" u, as required. Lemma 4 implies that
the normal invariant ofY can be chosen to restrict to that determined by pq over the covering
complex Y(^). Surgery then gives a manifold, M^, whose ^-covering lies in the same
normal cobordism class as M (q). Since the ring R {Dpq) maps surjectively onto R (Z /^), we
can vary Mi inside its cobordism class, thus obtaining a manifold M^ with M(q)^M^(q).

Turning now to geometric realisation at the prime p, there are problems
with A. A limited result says, that starting with the reference complex Y, one can choose an
arbitrary normal invariant in KO (Y (p))^. In a similar way to Theorem 8 one can make an
arbitrary choice of pp, making allowance for the partially known restrictions on Ap, and of
the necessary condition of invariance with regard to the action of B on R(Z/^).

In the case ofDj^, we see that, since A is a weaker invariant, one will also have a weaker
result. However, the following example is strong enough for our purposes.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



412 C.B.THOMAS

THEOREM 9. - There exists a topological manifold M, with fundamental group Dj^, such
that the covering space M{q2) is homeomorphic to the lens space L2""1 (q2; s^, ..., sj.

Proof. - Let t=s^s^ ... s^ (modg2), and let r' be some unit in Z/pq2, for which the
remainder modulo q2 is t. Then the projective module (r', E) is free of rank 1, see [15], [5]
and [14], so that there exists a unit in RD» ,, defining an isomorphism between (t\ £) and
Z D^,see [13], 6.3. Recall that in this case the reference complex Y is defined by means of a
fixed point free representation, and that,

A-l . \n/q^(Y)= rKp'-i) •
\i=0 J

As in the first section, and noting as in Theorem 8, that a unit in JZ.q2 can be lifted to Z D^2,
we can show the existence of a complex Y, such that A^(Y)=A^(Yo), except that the last
factor of the form (P — 1) has been replaced by (y — 1). (It may be necessary to modify u by
another unit of augmentation 1, in order to achieve this.) Furthermore it is well known that
the equation

(P51-!^2-!)... (P5--!)^^)

admits a solution u, which can be used to further modify Y, see [9] for example. With the
(weak) simple homotopy type now fixed, we can choose the normal invariant of
L "-1 (q2, s^ . . . , sj from KO(Y(^2)), extend it over all o fY by Lemma 4, and apply
surgery. The result is a manifold, such that M(q2) is normally cobordant to L2""1, and
such that p^(M)=p(L), modulo some integral combination of representations. Once
more we can lift this combination back from Z/q2 to D^2, thus modifying M in order to
obtain a manifold for which the (^-covering space is homeomorphic to the lens space given at
the start.

To explain the significance of this result, let us consider the homotopy types associated
with spaces of constant positive curvature. By obstruction theory, if such a space is defined
by the representation n^, i (replace a by a* and P by ̂  in the defining matrices for K^ i), then
fei (Y)==c, (TCfe f) . An easy calculation with characteristic values and the sum formula for
Chern classes, see page 415 below, shows that k^(\)=tg, where t=kq{mo<^p) and r = = J 4

(modq2}.
Combining this calculation with the Theorem one obtains the:
COROLLARY. — There exist free actions by the group D^z on S24"1, such that the orbit

manifold does not have the homotopy type of a space of constant positive curvature.
The lowest dimension in which such homotopically exotic actions occur is 5 (take q

equal to 3).

5. The examples of T. Petrie

Consider the complex hypersurface

V(/i)={z|zf+z^...+z^+z^=£},

4® SERIE - TOME 13 - 1980 - ?4



METACYCLIC GROUPS ON S2" 1 413

where l=qn for some positive integer n. There is an action of Dpq on V(/i), defined as
follows

and
Az=(azi , 0^2, ..., a'" \, z^J

Bz=(z^,z i , . . . ,z^i, PZ^J.

For a suitable choice ofe and T|, K(/i), the intersection ofV(/i) with the central sphere in
C^1 of radius T|, admits an induced/reaction by Dpq. Moreover W(/i), the intersection
of V (/i) with the central disc, is bounded by K(/i), and admits actions by the generators A
and B, having only finitely many fixed points.

In [10] Petrie shows that K (/i) is a rational homology sphere, and that for carefully chosen
values of n, one can kill the torsion group H^-i (K(/i), Z) by surgery. Indeed K(/J has
the same normal cobordism type as a homotopy sphere, admitting a free action by the same
group, and it is interesting to see how this action fits into the present framework.

First of all recall that A(K) belongs to QRr, where F=D^, and, since we work with the
surgery exact sequence for simple homotopy equivalence, is a rational invariant with respect
to normal cobordism. But, over Q, we may calculate directly, using the method of
de Rham [4]. There exists an A-invariant decomposition ofK(/i) by rational cells, defined
by

^ 2 f c = { z | ^ i = ^ 2 = — = ^ - i = = 0 , a r g ( z ^ _ f e + i ) = 0 } ,

^ 2 f c + i = ^ z | z i = Z 2 = . . . = z ^ _ k = = 0 , 0 < a r g ( z ^ k + i ) < — ^ .

Since each cell is defined by a rational polynomial of the same type as/^, Petrie's calculation
in [10] shows that the homology contains no free summand. The manifold K(fi) is the
union of the cells a^ and of their images under powers of A, put together by means of the
boundary maps

a^fc+i^A^-l)^ and aa2k=( l+A+. . .+A P ~ l ) f l 2 fc - l .

In the same way as for lens spaces, one has

A^^rT^'-i).
1=0

Turning to the action of the generator B, first of all choose new coordinates {z\}, so that the
representing matrix is reduced to diagonal form. There is then another decomposition into
the union of rational cells, and

AJK)^-!)2!"!1^-!).
J=2

(One of the two factors P — 1 is associated with the action of B on the last coordinate
^-n^P^+i.)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



414 C.B.THOMAS

For p it is not possible to be so precise. Recall from [3], that if h : W2^ -> W29 is an
isometry with a finite number of isolated fixed points {P} , and if { 9 J } is a coherent system of
angles associated to the differential dhp, then

sign (h, W)= ^r^n,cot(9J/2).

Again observe that

^/2+^e/2 ^9^

^2^^7972 =r cote/2=^Y

Restricting the action of Dpq on W^/J, for a suitable pair (s, T|), to the cyclic groups
generated by A and B, we see that

Fix(A,W)={(0, . . . ,0 ,z^) |z^=£, |z^J 2^T^},
and

Fix(B, W)={(z , z, ..., z, 0)|^=£, ^Izl2^}.

If We now apply the formula to the representation, which defines the action, we obtain:

^(A.w^^n1^1
1 »=o

and

-:-<B,w</,)>-(^)2 n(^).
In this way one determines the signature of the final manifold, up to a virtual integral
representation. In principle one can calculate this modification in terms of the difference
betwenn the positive and negative characteristic subspaces of a certain matrix S. S is
defined by means of an exact sequence

0-^F-^F-^M-^O,

where F is ZD^-free, and M is closely related to H^_ i (K(/i), ZD^), see [10], Th. 3.2, for
more details.

6. The homotopy type of STop (S24"1)

The irreducible representations of the group F=D^2 are either one dimensional, { P ^ :
^=0, 1, ..., q2—!} or ^-dimensional of the form [n^i '' l^^A 1^^<?} described on
page 7 above. (As written the second set contains duplications, see [20] or [11] for example.)

Since p and q are both odd numbers, no irreducible C-representation other than the trivial
one is real or isomorphic to its conjugate. Hence the irreducible R-representations are of
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the form ^+^ or 1, with ^^. By restricting the representation K^i to the subgroups
generated by A and B, and decomposing as a sum of one dimensional representations in each
case, one obtains the sums

afc+arfe-h...+ar<-l' and P /+P ( 1 + < ^ H+.. .+P ( 1 + ( € - 1 ) < ^ ) J .

From these expressions the Chern classes of n^ i are easily calculated; the two multiples of
ci(nl, i) which concern us are

f Omodp
^-^[qlmodq2

and

f r^-^fe^EEfe^modp),
W,i)-^^^^)... (l+(q-l)q)l^l^modq).

By elementary obstruction theory the top dimensional class Cq (n^ ^coincides with the first fe-
invariant of the corresponding manifold of constant positive curvature; in particular
MS24-1/^)^/^.

Let STopS24"1 be the group of orientation preserving homeomorphisms ofS24"1, with
the compact-open topology, and let

i : SO(2q)^SrTop(S2q~l)

be the natural inclusion. The existence ofhomotopically exotic actions ofFon S24"1 allows
us to (re) prove:

THEOREM 10. — The inclusion i is not a homotopy equivalence.

Proof. — By the Corollary to Theorem 9 there exists a manifold M2^"1 with fundamental
group D^2, such that k^ (M)^^feJYo) modulo q2. The free action determines a map of
classifying spaces y : BF-^BSTop (S2^"1), which by the same obstruction theoretic
argument used for Chern classes above, is such that

e(y)=k,(U).

Suppose now that y factorises through BSO(2^), that is, there exists a map/^ such that

(BQ/R^Y and e(fn)=e(y).

Theorem 1.16 of[l] applied to the stabilisation of/R as a map into BU shows that there is a
virtual representation <Jc such that CTC ~ /p. However, since/R actually maps into BSO, Oc is
invariant under conjugation, and is actually the sum of irreducible real representations by the
general remarks about representations at the beginning of this section. Furthermore there
is a complex representation <j such that

c,(o)=e(fn)=k,(M).
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Restricting a to the monogenic subgroups generated by A and B ([I], Thm. 1.14) implies that
CT(^) and o(q2) are both positive representations of degree q. In general therefore

CT=7i^+(Zp,),

where the sum in brackets consists of 1-dimensional representations, each trivial at the
prime p. If one can prove that CT (pq), the restriction ofo to the subgroup generated by AB4,
is also positive, then the sum in brackets is trivial. In order to do this, consider a as a stable
class for the classifying map y with e (y\p) = fe4 ̂ o, p ̂ d e (y)^ = = ^ 0 ^ 2 . Over the p- and q2-
Sylow subgroups the genefal form of CT shows that we must have the positive representations

^+...+0^ and P( l+q)+...+P( l+^- l )€)+PW,

where for simplicity we have taken n^ i rather than TC^ i. Since K-theory is a cohomology
theory, and restriction of r-torsion to an r-Sylow subgroup is injective, the corresponding
stable class (T equals

^ i+Pm-Pr

If ^(AB^)=^27117^, then restriction to the subgroup generated by AB^ similarly yields

^l+...+^+^-^,

where fe, = r1 k (mod p) and = 1 (mod q). Suppose that the classifying map for this virtual
representation factors through BU(^), that is

^®(^'+...+^+^)==^®TI+(I)

for some T| e [B J-lpq, BU (q)]. Such a class T| will exist, provided the left hand side of this last
equation admits a section. Now

Cl(l .h .s . )=Cl(^)(fel+. . . -^^+mp+p(g 2- l )) ,

which has trivial reduction modulo p . However, modulo q, we have

Cl(^)( l+. . .+l+m+-(^ 2- l ) )=m-l (modulo^).

I fm=l in the original expression for CT, there is nothing to prove, hence we may assume that
Ci (1. h. s.) + 0. But this is the first obstruction to finding a section of the U( l )x . . . xU( l )
bundle; since it is non-zero, no class T| can exist. It follows from this argument that
CT=TT^(.

Given the restrictions on the Chern class Cq (7^ i), modulo q2, and our choice ofhomotopy
type for M, no factorisation/R of the classifying map y can exist. Moreover, since one can
choose M(q2) to be a lens space, the primary obstruction to the existence of/^ must be p-
torsion, detected by some element in the homotopy of the homogeneous space STop
(S2q-l)/SO(2q).
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Remark. — It is interesting to note that this argument fails for F=D^. Consider
again T. Petrie's examples from the previous section. Since the signature determines the
normal invariant, which in turn determines the stable tangent bundle, our calculation shows,
that stably the classifying map B F -> BStop S24"1 lifts to the classifying maps associated to
the lens spaces L^'^p; l , r , r2 , .... r4"1) and L2^"1 (q; 1,2, ...,^-1, 1) at the primes p
and q. Even though the action of the whole group F is not linear, it follows that there is no
obstruction to factoring the classifying map through BV(q), and that stably we obtain the
class Tii, i +Pi -(1). The difference between Dpq and Dp^ is that for the latter we must
satisfy certain conditions on the cyclic subgroup of order pq, and that, using algebraic K-
theory, we can prove the existence of free actions homotopically distinct from the free linear
actions.

COROLLARY. — SDiffS5 is homotopically distinct from SO (6).
Proof. — Here SDiff(S5) is the topological group of orientation preserving diffeomorphisms
of S5. We apply the Theorem to S5 and observe that the obstruction to smoothing the
manifold S^F is zero. Hence the classifying map y : B F -^ BStop(S5) certainly factorises
through BSDiff(S5).

Five is the lowest dimension in which i is known definitely not to be a homotopy
equivalence. Since A, Hatcher has proved homotopy equivalence in dimension three, as
always we are left with dimension four. In higher dimensions it is perhaps interesting
to compare our methods and examples with those of Antonelli, Burghelea and Kahn,
see [2].
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