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ON EXTREMAL SOLUTIONS
OF MARTINGALE PROBLEMS

BY D. W. STROOCK (1) AND M. YOR (2)

Section (0). Introduction

This paper consists of two parts which, even in the eyes of the authors, are only todsely
related to one another. Thus we deem it to be appropriate to split the introduction into two
parts: the first part being for sections (1) through (4), and the second part for sections (5)
through (9).

To explain what we are doing in sections (1)-(4), recall the following facts. If
Q=C([0, oo), R1) and x(t) is the usual coordinate mapping on Q, then Levy showed that
Wiener measure "W is the one and only probability measure P on ft such that P (x (0) = 0) = 1,
x(t) is a P-martingale, and x2^)-? is a P-martingale. In other words, i^ is uniquely
characterized by the equations

^r(x(0)=0)=l
and

E1r[(x(t2)-x(^)),A]=E1r[(x2(t2)-x2(^)-(t2-^l)).A]=0

for all 0^ ( i<?2 and AeJS^ =a(x(t) : O^r^i). Levy's beautiful characterization
shows that the functions (x (t 2) - x {t i)) ̂  and (x2^ 2) -^(^i)-^ 2 -^i))^'0^!^ and
Aejy, , must play a central role in the structure of ^. In fact, since

x2(t)-t=2[ x{u)dx(u) (a.s.,^T) and x(u)dx(u) is in the L2 (^-closure of
J o J o

span {(x( r2 ) -x ( rO)5CA :0^i<?2 and AeJ^ }), one is lead to suspect that the func-
tions in the class {(X^-^OXA^^I^ and Ae^} are by themselves the
building blocks out of which all of L2^) can be constructed. This suspicion is
most dramatically confirmed by the Ito-Wiener theory of "homogeneous chaos"
(cf. exercise 4.6.14 in [5. and V.]) from which one easily derives Ito's representation of

pa)
every OeL2^) in the form E^[0)]4- Q(u)dx(u), where 9 is a progressively

J o
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96 D. W. STROOCK AND M. YOR

measurable function with E^ (Q(u))2 du\«x). What was not immediately

apparent for many years is that Ito's representation theorem is, in fact, not only motivated
by Levy's characterization of "W but is also a quite easy direct consequence of it
[cf. remark (1.2) below]. The line of reasoning which connects these two properties
of "W was first investigated by Jacod [13] and later by Jacod and Yor [14] and Yor [16].
The essential ingredient which makes it easy to establish the connection between Levy's
and Ito's results is the theorem of R. Douglas: Theorem (1.1) below.

In section (1), we present Douglas's theorem and show how (in conjunction with a theorem
about the convergence of sequences of martingales) it provides a simple proof of Ito's
representation theorem.

Having introduced Douglas's theorem and shown how it can be applied in a special
situation, we turn in section (2) to applications of Douglas's theorem to the study of more
general martingale problems (cf. Chapt. VI of[5'. and V.]). The point here is that even when
a given martingale problem admits more than one solution, Douglas's theorem enables one
to characterize the extreme solutions of this problem. The reason why one is interested in
obtaining such a characterization is that all solutions to a given martingale problem can be
reconstructed from a certain subset of the extreme ones: namely, those which are members of
time-homogeneous strong Markov selections [cf. Thm. (2.9) below]. (A word of warning
must be given at this point. For us, a stopping time T is a function on the sample space such
that { r ^ r } is measurable with respect to the path up until time t.

This is to be distinguished from what we call extended stopping times T for which the
condition is on { T < t ] instead of { T ̂  t ] . In keeping with this convention, we say that a
Markov process is strong Markov if it enjoys the Markov property at stopping times even if it
does not at extended stopping times. That this distinction is real can be seen from
example (2.13) below). In this connection, we show that under mild conditions, there
always exists a selection of solutions which is strong Markov with respect to extended
stopping times and which consists of extreme solutions; however, we have been unable to
show that every such selection is necessarily made up of extreme solutions. If one drops the
strong Markov condition for extended stopping times, then example (2.13) shows that the
selection need not consist of extreme solutions.

Section (3) has as its basis the simple observation that every Markov process can be viewed
as the unique solution of a martingale problem [cf. Lemma (3.1)]. Combining this
observation with Douglas's theorem, we obtain a very simple proof of ah important theorem
due to Kunita and Watanabe [cf. Thm. (3.2) and remark (3.3)]. The machinery thereby
obtained enables us to develop some criteria for determining when a given Markov process is
made up of extreme solutions to the martingale problem determined by the operator of which
its true generator is an extension [cf. Theorems (3.17) and (3.19) as well as Corollary (3.20)].

Section (4) is a collection of examples. Unfortunately, these examples serve best to
demonstrate just how weak is our present understanding of the structure of the solutions to a
martingale problem for which there is more than one solution. Nonetheless, it is our
impression that, with the exception of Girsanov's now classic example [9], the literature
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ON EXTREMAL SOLUTIONS OF MARTINGALE PROBLEMS 97

contains very few instances of ill-posed martingale problems for which the structure of the
solutions has been completely worked out. Section (4) can be viewed as a feeble attempt to
remedy this situation.

Section (4) can be viewed as a feeble attempt to remedy this situation.
The second part of the paper is wholly devoted to the study of the extreme points of the

(convex) set of all continuous one-dimensional (local) martingale distributions. Of course,
the general results of the first two sections apply here and again allow us to relate extremality
to a martingale representation property.

The starting point of our study, expounded in section (5) of this paper, is the Dubins-
Schwarz theorem [20] which gives a sufficient condition for extremality in terms of the
Brownian motion of which the martingale is a random time change (cf. Dambis [18] and
Dubins-Schwarz [19]).

As discovered by Dubins and Schwarz [20], and again by Yor [32], this sufficient condition
of Dubins and Schwarz is not necessary. We hope to clarify this situation with a result
further relating extremality and the Dubins-Schwarz condition [cf. Thm. (7.3)] as well as a
procedure — developed in section (6) — for constructing new examples of extreme martingales
which do not satisfy the Dubins-Schwarz condition: in particular, TsireFson's example [29]
of a stochastic differential equation having no strong non-anticipating solution allows to
construct such s martingale [cf. Thm. (6.4)].

Finally, we confilude the second part with a list of problems whose resolution we believe to
be the major questions left in this area.

Acknowledgment

The authors would like to thank Richard Holley for a number of fruitful conversations.

Section (1)

Much of what follows in this paper turns on the following simple observation due to
Douglas [1]. We include the proof of Douglas's theorem only because it is so short.

THEOREM (1.1) (Douglas). — Let (Q, M} be a measurable space and let 3F he a set of
^-measurable f:fi.->R1. Define J^(^') to be the set of all probability measures [i

on (Q, M} such that ^^L1^) and ud[i=Q, fe^. Then Jf (^) is convex,

and p.e J^(^) is an extreme point if and only i/'l®span(^) is dense in L1 (ji).
Proof. — Certainly ^{3F) is convex. Suppose that \\.e^V(y) is extreme and that

1 © span (^) is not dense in L1 (\\). Then, by the Hahn-Banach theorem, we can find a non-

zero/leL00^) such that /idn=0 and /i/rfn==0 for each fe^. Furthermore, we may

assume that —1/2^^1/2 everywhere.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



98 D. W. STROOCK AND M. YOR

Now define v+ and v- so that dv^=(l±h)d\i. Clearly v+.v-eJ^^) and
v + -^ v - . But p , = l / 2 v + 4 - l / 2 v _ , and so we have a contradiction.

Next suppose that neJ^^), 1 ©span(^') is dense in L^p,), and H=9vi+(l-9)v2,
where0<9<landvi, V2e^(^). Clearly, v^andriv.A^ieL^forf^l, 2. Hence
^span^) is dense in L^v^) for f = = l , 2 . At the same time, it is obvious that
fi -/.

gdv^= \gdv^ tor all gel ®span(^). Thus ,Vi==V2.

Q.E.D.
Remark (1.2). - Before proceeding, we want to show how Douglas's theorem

relates to the problem of representing martingales. For this purpose, consider the
following example: Q=C([0, oo), R1); for oeQ, x(t, CD) is the position ofco at time r^O;
J^t=a(x(s) : O^s^t)', ̂ =^(^o)^t a^ ^ consists of functions of the form

/=((p(x((2))-(p(^i))- [21/2^(x(s})ds)^J"J ti

where 0 ̂  ̂  < t^ A € M^, and (p e C^ (R1). Then one can easily show that Wiener measure
TT is the one and only element P of J^^) such that P(x(0)=0)=l (cf. [S. and V},
Thm. 4.1.1). In particular, IT is an extreme element of ^(^) and so 1 © span(<^') is
dense in L1 (^). At the same time, by Ito's formula

((p(x(^))-(p(x(^))~ l/2^(x(s))ds)^ 6(s)dx(s) i))~ St21/2^(x(s))ds)^= F

where
9(5, CO)=^(CO)^,^(5)(P'(X(5, 0))).

Hence every ge 1 © span(^) is of the form

(1.3) X=c+ [WQ{s)dx(s)
J o

where ceR1 and 9 : [0, oo) xQ -> R1 is previsible.
In other words, Douglas's theorem by itself shows that every element of L1 (i^) is the

L1 (^T) limit of X's having the form given in (1.3). This is very close to Ito's representation
theorem but is a slightly weaker statement. In order to complete the proof of Ito's theorem,
we use the following fact about L ̂ convergent martingales (cf. M. Yor [15]).

THEOREM (1.4). — Let (Q, M, P) be a probability space and { M^ : t ̂  0 } a non-decreasing

family of sub G-algebras ofM such that M = a ((J M,\ Given X € L1 (P), let X (t) be a right-
t^O

continuous version of E^X^+o] (^1+0= D ^r+e)- Suppose that X^X in
£>0 ^

L (P). Then there exist a sequence of stopping times { 'Tj }j°= i and a subsequence {n^ }k°= i of

4eSERIE - TOME 13 - 1980 - ?1



ON EXTREMAL SOLUTIONS OF MARTINGALE PROBLEMS ^

Z'1' such that T^f oo (a.e., P) and for eachj^l:

E P i s u p l X ^ l K o o and Ep[ sup \X^(t)-X(t)\]^0 a s k ^ a o .
O^t^Xf O^t^x,

Furthermore, ifin addition/or each n, Xn(t) is (a. 5., P)-continuous, then {n^ }k°= i and {tj }J°= i
can be chosen so that

sup sup \X^{t)-X(t)\ v \X(t)\^j Pa.s. on (T,>O),
k O^r^T,

and^er^r^E1*! sup [X^(r)-X(()| r; l^>o)]-^0/^ eachl^r<co.
O^^T;

Proq/: - Choose {n^} ̂  i so that ̂  E1' [ | X^ - X | ] < oo and define
k

T,=inf{^0 : (3k)|X^(t)-X(0| v |X(r)| ̂ j] .
Clearly

E^ sup IX^II^+E^IX^II^+EHXIIOO.
O^^T,

Also

£'[ sup IXJO-XMI]^ sup Ix^to-x^li+E^lx^d^-Xd,)!].
O^t^Tj 0^«T^

Since Ep [ | X^ (T^) - X (T^.) | ] ̂  E1' [ | X^ - X | ], the second term tends to 0. As for the first

term, note that sup |X^( t )—X(t ) | ^j for all k and that, by Doob's inequality, for each
0^t<tj

8>0:

P(sup|X„(0~X(0|^E)^^EP[ |X„-X|]-.0.
t^O e

Hence, by Lebesgue's dominated convergence theorem, the first term also tends to
zero. Thus, we need only check that Tjf oo (a.s., P). But by Doob's inequality

P(T^r)^P( sup |X(s)| ^/)+ ^P( sup |X^(5)-X(5)| ̂ j)
O^s^t k O^s^t

^^(E^IXH+^E^IX^-XID-O as j too.
J k

Finally, assume that X^ (t) is (a. s., P)-continuous for each n. Then, by Doob's inequality,
X(t) is (a.s., P)-continuous. Hence

sup |X^(()-X(0| v |X(t)| ^7, Pa.s. on (T,>O).
O^t^x,

Q.E.D.

ANNALES SCIENTinQUES DE L'ECOLE NORMALE SUPERIEURE



100 D. W. STROOCK AND M. YOR

Completion of Remark (1.2). - We can now finish the proof of Ito's representation
theorem. Indeed, suppose that X e L2 (^T). Choose { X ^ } ? of the form given in (1.3) so
that X^ -^ X in L1 (iT). Clearly we can suppose that E (X) = E (XJ = 0. Furthermore,
X^ (t) is (a. s., ^T) continuous for each n ̂  1. Hence we can choose { T j } j°= i and {^k} k°= i as
in Theorem (1.4) so that

E^ t sup IX^O-XO)!2]^.
O^t^T,

In particular, this means that

lim supE^I" ̂ ^(s^^ds}^.
k-oo l^k LJ 0 Jfc-*oo /Sfc LJ 0

Thus we can find a previsible 9 such that

[ J 9 (5) dx (s) = X (T,) and E [ F 9 (s)2 ds} < oo.

In particular,

E^| [ ^l^l^imE^r r^^l2^"! =limE[(X(T,))2]=E1r[X2]
LJ 0 J ^too LJ 0 J ;foo

and obviously
r00

X= 9(5)rix(s),
J o

which is exactly what Ito's theorem asserts.
For future reference, we will want a generalization of the line of reasoning just carried out

to complete Remark (1.2).

THEOREM (1.5). — Let (0, M, P) be a probability space and let {M^: t^O] be a non-
decreasing family of sub a-algebras of M such that M= \j M^.

t^O

Let X==(Xi, . . . , X^) : [0, oo) xQ -̂  R^ be a continuous (M\)-adapted function such that
^ [ | X (t) |2 ] < co for all t ̂  0 and (X, (Q, ̂ , P) is a martingale for 1 ̂  i ̂  d. Ify (X) denotes
the set of all functions

Y-};Y= r<9(5),rfX(5)>
o

where 9 : [0, oo) x 0 -> R^ is previsible and

^\ E r(9,9^(5)d<X.,X,>,1<oo 0
L». j= iJo J

(1) It is well known that the measure ^9,6^(s)rf<X,, Xj>, is positive.
i,J

4es6RIE - TOME 13 - 1980 - ?1



ON EXTREMAL SOLUTIONS OF MARTINGALE PROBLEMS 101

then
^X)Ll(p)^L2(P)=y(X).

Proof. — The argument is essentially the same as the one given in the completion of
Remark (1.2).

Section (2)

In this section we apply-the ideas of section (1) to the study of "martingale problems". To
begin with, we will work with a general formulation of a martingale problem, later we will
specialize.

Let E be a Polish space (i.e. a complete separable metric space) and let Q=D([0, oo), E)
be the Skorohod space of right-continuous functions CD : [0, co) -> E having left-limits.
For t^O, x(t, CD) will denote the position of CD at time t. M is the Borel field over
Q and J^^=a(x{s) : O^s^t), t^O. Let ^ be a countable collection of right-
continuous ^(-progressively measurable functions X : [0, oo) x0-^ R1 such that
sup |X(r,co) | <oo, T>0. Given s^O, we define ^(^F) to be the set of all

O^T
(oeQ

probability measures P on (0, M} such that (X(rvs), M^,, P) is a martingale. For
(5, x) e [0, oo) x E, let ̂  OF) = { P e ̂  (T) : P (x ( s) = x) = 1}. The following theorem
can be easily deduced from Theorem (1.2.10) in [S. and V }.

THEOREM (2.1). — Let T :Q-^[s, oo) be an J^t-stopping time (i.e. {T^}e^ for
t ̂  5). IfP e ̂ , OF) and {P^} is an r. c. p. d. of? \ Ji\ (cf. p. 34 of [S. and V.}), then there is a
P-null set Ne^ such that P^e^^^^^^^^¥) for all CD^N. Conversely, if

(0 -^ CL e ̂ T (o». x (T «o), o) is an ^.-measurable map, then P ®, ̂  Q. e ̂  (^F) (cf. Thm. (6.1.2)
of[S. and V}for the definition o/P®,^Q ).

Now define

(2.2) ^m= {(X(^)-X(ri))xA : s^i^, Xe^, and AeJ^ }.

Then it is clear that ̂ , (^) = ̂  (^-, (T)). We can use this fact to study ext (^, (x?)) [the set
of extreme elements of ^QF)].

THEOREM (2.3). - Peext(^,®) if and only if 1 ©span(^QF)) is dense in
L1 (P). Moreover, ifPe ext (^, (^)), t^n/or ^^r^ Y e L1 (P), E^Y | ̂ . ̂  ] arfmfts a right-
continuous adapted version; and if, in addition, X (. v 5) is P-a. s. continuous for all X e ̂ F, then
this version ofEP[Y \ J^ ^J wf/? ^fso be P-a. s. continuous. In particular, if-c : Q -> [5, oo) fs
an extended stopping time (i.e. {^<t}eJf^for t^O), then Jt\~^-=jU^Q (a.s., P), where
M\~^Q [T andx(t/\x), t^O] and ^+0= 0 ^r+e-

e>0

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



102 D. W. STROOCK AND M. YOR

Proof. - Since ̂ , (^V) = ̂  (^ (^P)), the characterization of ext (^, (T)) is just the content
of Douglas's theorem. In the proof of the rest of this theorem, we may and will assume that
5=0.

To prove that E11 [Y | ̂ J admits a right-continuous progressively measurable version for
all YeL^P), first note that this is obvious when Yel ©span (^oC^))- Moreover, if
Y,, : [0, oo) xQ -> R1, n^ 1, is a right-continuous progressively measurable function and if
lim supP(sup|Y^(r)-Y^(0| ^s)=0 for all e>0, then, by Lemma 4.3.3 in

w -*• oo n S: ni t S 0

[S. and K], there exists a right-continuous progressively measurable Y : [0, oo) x0.-> R 1

such that P(sup|Y^(t)-Y(0| ^e)-*-0 as n->oo for each e>0. Thus, by Doob's
t^O __

inequality plus the density of 1 ® span (J% (T)) in L^P), EP[Y|^.] admits a right-
continuous progressively measurable version for all Y e L1 (P). Furthermore, it is clear that
if X(.) is P-a.s. continuous for each Xe^P, then the same argument shows that our
version ofE1 '^!^/] is also P-a.s. continuous.

Finally, let T : Q -> [0, oo) be an extended stopping time. Given Ae^,+o» 1̂  Y(.) be a
right-continuous progressively measurable version of P(A|^J. Then there is a
{ t n } T £[0, oo) and a measurable F : [0, oo) x R7' -> [0, oo) such that

Y(r, o))=F(r, x(t^r\t, co). ..., x ( r^Ar , co), ...), (r, co)6[0, oo)xft.

Thus:
XA=l imY(T+l /n )=Y(T)=F(T ,^ (^AT) , . . . , X ( ^ A T ) . . . . ) (a.s..P)

n-»oo

and so A e ̂ \~). That is, ̂ ,+0 £ ̂ ^-) (a. s., P). Since the opposite inclusion is obvious,
the proof is complete.

Q.E.D.
We next want to show that ext (^5 (^)) is closed under the same operations of conditioning

and splicing as is ^(T).

THEOREM (2.4). - Let T : ft -> [5, oo) be a stopping time. IfP e ext (^, (^)) and {P^} is a
r. c. p. d. of? | M^, then there is a P-null set N e M^ such that Py, 6 ext (^\ ̂  ^ (, ̂  ̂  (^V))for
each co i N. Conversely^ if P e ext (^, ®) and CD -^ Q<, e ext (^, ̂ , ̂  (, ̂ , ̂  (V)) 15
^ ^-measurable, then P (g)^)Q.eext(^QF)).

Proof. — Since it is clear that

(2.5) ext(^,,®)=(ext(^®))n^,y®, (r,^)6[0, oo)xE,

the first assertion will follow if we can show that there is a P-null set N e M^ such that
1 ©span^^y)) is dense in L^PJ for (O^N. Furthermore, since M is countably
generated, this will be accomplished if we show that for each bounded e^-measurable Y with

4es6RIE - TOME 13 - 1980 - ?1



ON EXTREMAL SOLUTIONS OF MARTINGALB PROBLEMS 103

E [Y] = 0 there is a { Y,} ? s span (^, (T)) such that

limEP-[|(Y„-EP-[Y„])-(Y-EP•[Y])|]=0
n-» oo

for P-almost all co. To this end, choose {Y^^^span^^T)) so that

EEPt lY^-YlKoo . Then, since
i

P ( { < o : EP-[|(Y,-EP•[Y„])-(Y-EP-[Y])|]Se})

^ P ( { ( O : EF-dY.-YllSe^}) +P(|EP[Y,|^J-EI>[Y|^J| ̂ /l)^^^^^,
6

it follows that E1' [|(Y^-EP [YJMY-E11 [Y])|] -^0 (a.s., P).

To prove the second assertion, we begin by showing that if^s^) is the set of probability
measures Q on (ft. j^,) such that (X((t A r) v s), M^^,, Q) is a martingale for all Xe^,
then P€ext(^Q|)) implies Pl^eextO^QP7)). To this end, first note that, by Doob's
stopping time theorem, P^e^y). Second, observe that since 1 ©span^,^) is
dense in L1 (P) and E1' [Y | ̂ J admits a right-continuous progressively measurable version
for each YeL^P), {E[Y|jS<J : Yel ©span(^(^))} is dense in {YeL^P) : Y is
M^ -measurable}. Hence, by Douglas's theorem, P [^ e ext (^, QP')).

Now set R=P(g)^^Q and suppose that R=eRi+( l -9 )R2 for some 0<9<1 and
Ri.R^e^QP). Then, since

Rl^^Pl^eext^^)) and Ri |^. ̂ z\^^^\

R \ __ T> | __ -D |11.^--1^!.^—-1!^-

But this means that Q.==9(Ri).+(l -9)(R2). (a.s., P), where { (R»L} is a r.c.p.d. ofR,^
(f= 1, 2). Since Q^eextO^^)) for P-almost all G) and (R,)<,e^,^(^) for P-almost all
(o, we conclude that (Ri).=(R2). (a.s., P) and therefore Ri =R2.

Q.E.D.
The rest of this section is devoted to the following special case of the preceding set-up. In

the first place we will take ft = C ([0, oo), R**). More important we will assume that elements
of ^F are of the form

X,(r)=(p(x(t))- P L^>(x(s))ds
J o

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUP^RIEURE



104 D. W. STROOCK AND M. YOR

where (peC^R^) and

L=l/2 f; ^(x)-a——+ ib^x)9

f ,^i 8xi8xj ^ 'axf

is a second order (degenerate) elliptic operator with bounded measurable coefficients.
(In order to insure that ̂  is countable, we can restrict <p to a countable dense subset of

C? (R^), although it is clear that ̂ , (T) will be the same whether we allow (p to range over all
of C^ (R4) or restrict (p to a dense subset.) For (s, x) e [0, oo) x R^, define ̂  (s, ^c) to be the
set of P e ̂ , ® such that P (x (r) = x, 0 ̂  ̂  s) = 1. Then it is clear that ̂  (5, x) is convex
and that

(2 •6) ext (̂  (s, x)) = (ext (̂  (T))) n ̂  (5, x).

Furthermore, by exactly the same reasoning as we used in Remark (1.2), one can prove the
following special case of a theorem due to Jacod [13] (cf. also Jacod and Yor [14]).

THEOREM (2.7). - P e ext (^ (s, x)) if and only if? e ̂  {s, x) and for every <D e L 2 (P) there is
a previsible 9 : [0, oo) x Q -^ R^ such that

E? < 9 ( M ) , f l ( x ( M ) ) 9 ( u ) > d M < o o and <D=E[0]+ (Q(u)/dx(u)^,
Us J J ,

(6(u),a(x(u))6(u)')du <oo and <D=E[0]+|

w/i^r^

x(.)=x(.)- b(x(u))du.
J s

If for each {s, x), ̂ (s, x) contains exactly one element P,^, then one can show that
{ P S , X ' ' (s, x)e[0, oo) x R4} is a measurable, strong Markov (with respect to non-extended
stopping times), time-homogeneous family such that

EP-[(p(x(r))]-(p(x)=EP-^^L(p(x(M))rfJ, (peC^R^).

For details see Theorem (6.2.2) and the discussion following that theorem in
[S. and V}. However, there are many reasonable choices of L for which ̂  (s, x) will not
consist of exactly one element. There are even examples for which ̂  (s, x) will be empty: see
exercise 6.7.6 in [S. and K]. We will devote the rest of this section to a discussion of the
case in which V (s, x) contains many elements. The starting point of our study lies in some
ideas of N. Krylov [2] (cf. also Chapt. XII of [5. and V.]).

Let M(ft) denote the set of all probability measures on (0, J^) endowed with the Levy
metric for weak convergence. By comp (M (Q)) we mean the space of non-empty compact
subsets of M(Q) and we think of comp(M(Q)) as a metric space with the Hausdorff
metric. Given a collection Jf = { ̂  (s, x) : (s, x) e [0, oo) x R4} of subsets of M (Q), we will
say that Jf is a Krylov system if:
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(a) (s, x) -> ̂ (s, x) is a measurable map into comp(M(Q));
(b)Pe^(O.x) if and only if PoT^e^s, x) where T,:0->0 is given by

x(t, T,co)=x((r-s)v0, co), r^O;
(c) if P e ̂  (0, x), T : Q -^ [0, oo) is a stopping time, and { P^} is a r. c. p. d. of P | Ji^, then

there is a P-null set N e M^ such that 8^«,), ̂  0, «o) P<, e ̂  (r (co), x (r (co), co)) for each co/N;
(d) ifP6^(0, X),T : Q-^[0, oo) is a stopping time, and co--^Q,,e^(T(co), x(T(co), co))isan

.^-measurable map, then P ®^ ̂  Q e^(0, x).
By Theorem (2.1) and equation (2.6), it is easy to check that

^L^^L (^ ^) ; (s, x) e [0, oo) x R^} is a Krylov system if and only if jf^
satisfies (a). Furthermore, if the coefficients of L are continuous, it is easy to see that Jf^
satisfies (a).

LEMMA (2.8). - Let Jf = { ^ (s, x) : (s, x) e [0, oo) x R4 } &<? a Krylov system and let 'k > 0
anrf /: R4 -> R 1 , a bounded upper semi-continuous function, be given. Define

M(s,x)= sup Eq |^ / (x(r+5))^ | .
Pe<^(s,x) LJ 0 J

Then
u{s, x)=u(0, x), 5^0;

and if
f r r^ 1 )

C'(s, x)= \ Pe^(5, x) : E^ ^/(x(r+s))rfr =u(s, x) ^
I LJ o J J

t/i^n
Jf '={^(5,x) :(5,x)e[0, oo)xR d }

is a Krylov system.
Proof. - See Lemma 12.2.2 in [5. and V.].
LEMMA (2.9). — Let everything be the same as in Lemma (2.8), only this time assume that

/eC^R^) and that ^(s, x)^^(s, x), (s, x)e[0, oo) xR4 , where L has continuous
coefficients. Then, u(s, x) is upper semi-continuous. Moreover, I /T :Q-^ [O , oo) is an
extended stopping time, Pe^'(0, x), and (t, y} -> P^y6^'(r , y) is measurable, then

Q=P®^P^,^.)e^(0,x)

and

i^O.x)^! ]^-^/(x(t))r f t ] .

Proof. — The upper semi-continuity ofM(s, x) is obvious. To prove the second assertion,
define T n = = T + 1/n, n^ 1. Then T^ is a stopping time. Next, set

f a(x(t)) if r < T ^ ,
n { ) [a(x(r)+AJ if r^T,
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and

where

f b(x{t)) if «T,,

'" / [ &(x(t)+AJ if ^T,

A,,=X(T,,)-X(T).

If Q^ = So, (a^ (P^(<,) ,(^ <„) o S^)). where Sy : (2 -> Ois given by x (t, Sy co) = y + x (t, <o),
then it is not hard to check that Q" = P ®^ , Q" 6 ̂ o, x (^n)> where V, consists of functions
of the form

<P(^))- r rzay^-^^^+t^^^^^))')^
J o|_ 1 OXi<3Xj i OX; J

(cf. Thm. 6.1.2 in [S. and V.] with (p6Cy(R'').. In particular, since
Q^-^Sio^TdBiPt^^ttta) (o) as n-»oo for each <B and therefore Q"-*Q, we see that
Qe^(0,x).

We must still show that

u(0.x)^[Sxe-uf(x(t))dt\.

But

^ f°°e-^/(x(t))rft1 = lim E^r ('°°e-^/(x(t))dt1

=Epf l̂  e-^f(x(t})dt\ + lim E^f { w e-uf(x(t))dt}
U 0 J B-OO Ljl. J

and

E^r re-^/^^rft^E^r re-^/MO-AJdtl

+EQ"^f°oe-^(/(x(t))-/(x(t)-A„))rit1

=EP[e-^«(T„, X(T))]+EQT fcoe-xt(/(x(f))-/(x(t)-A„)rit^
L J i. J

-^[e-^M^x^))]

since u(Tn, . )=M(T, .) and/6C(,(R'1). Hence

E0! 1 e-^/^O))^"] =EP^ P e-^f(x(t))dt} +EP[e-^u(x. x(x))].
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Finally:

e-^u(x, x(^lime-^u(x^ x(rj)
n-»oo

= limE^r f0 0 e^tf(x(t))dt\^EP\ S ' e - ^ f(x(t)}dt\jy^ (a.s., P)
"-»<» |_J T,(.) J LJ T J

where { P ^ } is a r. c. p. d. of P | M^^ and we have used the fact that

8x(U<o).co) ®x,«o)P;e^(^((0), ^(Tn((0)» ©)) (a. S., P).

Combining this with the preceding, we conclude that

E^ fY^CO^I^I" f\-^/(x(0)^1=M(0,x).

Q.E.D.

THEOREM (2.10). -- Suppose that J^ is a Krylov system. Then for each K>Q and each
bounded, upper semi-continuous function /^R^-^R1 , there is a measurable
map (s, x) -^ Ps , x e ext C^L (s^ x)) suc^ tnat { PS, x : (5» x) e [0» oo) x R^} forms a time-
homogeneous strong Markov family (w. r. t. non-extended stopping times) and

EP- ] e-^/Oc^+s))^! = sup E1* f e~^f(x(t+s))dt[ (s, x)e[0, oo) xR4 .
LJ 0 J P6<i?(5.x) LJ 0 J

Moreover, if the coefficients of L are continuous and /eC^R^) then for each extended
stopping time T : Q —»• [0, oo), { S<a ® r (o) PT (<B), x (T (<o), <o)} ls a conditional probability distribution
°f ^o,x given jy^+o.

Proof. - The first part of this theorem is due to Krylov [2] (cf. Thm. (12.2.3) in
[S. and K]); we will say how the proof runs because we use it in the proof of the second
part. Given \ and /, define (^o» (po)=(^ /)• Next choose { ( X » , (pj}? £(0, oo) x Co(R4)
to be a dense set. Let

r r°° 1UQ (s, x) = sup E^ e~^ (po (x (t + s)) dt
Pe^^s.x) LJ 0 J

and

<^o(s, x)= {pe^(s, ̂ 4 f\-^(po(x(r+5))dr| =uo(s, x)\.
l LJ o J J

By induction, define u^ and ̂  for n^ 1 by:

r r00 1u^ (s, x) = sup E1* ^-x"t (?„ (x (t + s)) rir
P6^,-i(s.x) LJ 0 J
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and

^(5,x)={pe^_l(5,x):Ep^faoe-u(p,(x(^+5))^1=^(5,x)l.t L J o J j

By repeated use of Lemma (2.8), one sees that ^n=={^n(s,x):(s, ;c)e[0, o^xR^} is a
Krylov system for each n^O.

00

Hence if ^^(s, x)=^^(s, x), then JToo={^ao(s, x):(s, x)e[0, ^xR^} is a Krylov

system. Moreover, there is exactly one element P,, ^ in each ̂  (s, x), and from this it is
obvious that {P^:(s, x)e[0, oo) xR^} is a time-homogeneous strong Markov
family. Finally, to see that P,, ^ e ext (^ (s, x)), suppose that P,^ = 6 Qi + (1 - 9) Q^ where
0 < 9 < 1 and Qi, ?2 e ̂  (5, ^c). Then, by induction, one sees that Qi, C?2 e ̂ n (s, x), for all
n^O. Hence, Qi, (^e^ooOs x), and so Q^=P=Q^

Now suppose that /eC^R^) and that the coefficients of L are continuous.

Set Qo>==8<o8)T((o)PT(cD),x(T(o),(o) and Q= QoPo,^03)- Using induction plus

Lemma (2.9), check that Qe<^(0,x) for all n^l. Hence, Q=Po,^. Thus, since
^T+o=^^) (a.s., Po,J, we will know that {Qco} is a conditional probability
distribution of P given M^^ once we show that P(AnB)=EP [Q.(B), A] for
all A e ̂ -) and B e M. To this end, we must show that Q. (A) = ̂  (a. s., P) if A e M\~^\
and this will be proved if we show that Q^(T=T((O))=I for Po,^-almost all co. But
because {T<t}e^ , t^O:

X[o,t)(T(co /))=F(^,x(^lAr,co'), . . . ,x(^Ar,co') , ...), co'eQ,

where F: [0, oo) x R^ -^ [0, 1] is measurable and { ?„ }^ ̂  [0, oo)
Hence T(O^T(co) if x(rAT(co) , o)')=x(rAT(co), co) for all t^O. Thus

Qo (T < T (co)) = 0. On the other hand

E^^-^E^E0^]], k

and so we conclude that Q<,(T=T(O)))=I (a.s., Po.J.
Q.E.D.

Theorem (2.10) shows that, under mild assumptions on L, the time-homogeneous strong
Markov selections (s, x) -> P,^ e ext (^ (s, x)) are important. Indeed, Theorem (2.10) tells
us that such selections exist under very general conditions. Furthermore, it is easy to show
from Theorem (2.10) that if^ is a Krylov system, then card (^ (s, x)) = 1 for all (s, x) if and
only if there is precisely one such selection (c/. Thm. (12.2.4) in [S. and V.]). (If the
coefficients of L are continuous, then one can use Theorem (2.10) to show that card
C^L (^ x))= 1 for all (5, x) if and only if there is precisely one time-homogeneous selection
(5,x)-^P^eext(^L(s,x)) such that {P,^:(5, x)e[0, oo)xR d} is strong Markov with
respect to extended stopping times). Thus, it is possible to tell something about the
structure of Jf^ from a knowledge of such selections. Of course, by Choquefs theorem,
ext(%L (s, x)) completely determines ̂  (s, x) if J^ ^ a Krylov system.
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However, in general not every element of ext(%L(s» x)) will be a member of a time-
homogeneous strong Markov selection. To see this, simply splice two such selections
together at a stopping time (for instance, the second hitting time of some closed set) and apply
Theorem (2.4) to conclude that the resulting measure is again extreme, but clearly it is not
part of a time-homogeneous strong Markov selection. Nonetheless, we can recapture all of
^L ( s ' x) from time-homogeneous strong Markov selections in the following sense.

THEOREM (2.11). - Assume that J^ is a Krylov system. Let ^ index the set of all time-
homogeneous, strong Markov selections (s, x)-> ext (^ (^ x))m ̂ e sense that for each a e ̂
there is exactly one such selection { P^: (s, x) e [0, oo) x R^ }. Denote by ̂  (x) ̂ e smallest
set of P's such that:

(i) {P^ae^}^^
and

(ii) if PeQi^(x), t>Q, and CD-^P^^) is an M^-measurable map into M(Q), then
P ®, P^-^ ) e ̂ L (x)- Then ^L (x) ̂  ext (^L (°» x)) and ^L (°' x) coincides with the closed
convex hull of Q^ (x).

Proof. - Everything but the inclusion 3>^(x)^ext(^^(Q, x)) is proved in Theorem
(12.3.1) of [S. and K]. However, this inclusion is an immediate consequence of
Theorem (2.4).

Remark (2.12). — Theorem (2.11) tells us that we will have a reasonable good grasp
of Jf^ once we classify all time-homogeneous, strong Markov selections
(s, x) -> Ps, x e ext C^L ( s ' x))- ^s we w1^ see m section (4) below, such a classification is often
possible to carry out, although a general classification procedure is still waiting to be
found. One of the most serious difficulties that we have encountered is that we have not yet
discovered a really good practical criterion for determining when the members of a time-
homogeneous selection are extreme. Some progress in this direction is made in section (3)
[cf. Thms. (3.17) and (3.19) and Cor. (3.20)]; but the natural conjecture that every such
selection consists of extreme elements is false, as the following example demonstrates.

Example (2.13). - Letri==l and L=b(x)8/8x, where b(x)= [ x^Al . Wearegoingto
construct a time-homogeneous, strong Markov selection (5, x) -> P^e^ (s' x) suc^ A^
Po,o^ext(^(0,x)).

Define u: [0, oo) x R1 -> R1 so that

x+r , O^r^ -x+1 \

u(t,x)=
1- r4-x+l \ 2

-x- l^r^-x+l
and x<-l

((-^-x~l)2/4, -x+ l^ r^ -x+3
r+x-2, r^ -x+3

_((_^)1/2_^/2)2, O^t^-x)^2

^-^(-x)1/2)^, 2(-x) l / 2^r^2(-x) l / 2+2
t-2(-x) l /2-l, ^2(-x) l/2+2

and l^x<0
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_ [ (x^+t/2)2, 05^2(1-x1/2)) . n 1
" 1 ^2x^-1, Wl-x^) J and 0<X<1

=r+x , r^O and x^l.
Next define TO : (— oo, 0] -> [0, oo) by

r -x+1 if x<- l ,
ToM- ^ 2(-x)1/2 if -l^x^O.

Then it is easy to check the following facts:
(i) MeC1 '0^, oo) xR1) and u(t, y)^u(s, x) if t^s and y^x;

(ii) 8u/St(t, x)=b(u(t, x)), t^O and xeR1 , and u(0, x)=x;
(iii) M(r-hs , x)=^(r, M(5, x)), s, t^O and xeR1;
(iv) T o ( x ) = m i n { r ^ O : M ( r , x)=0} i fx^O.

On [0, oo) x R1 x ̂  , we now define

f ^(u(s,x)) if x^O and 0^s<To(x),

^-(s-xo(x)) ^^ (o) + f 5 6^(CT-TO(X» Xr ̂  (5 - a, 0)) rfaP(5,x,r)= < Jxo(x)
if x^O and s^To(x),

5Cr(^(5,x)) if x>0 and 5^0.

Using the preceding facts, one can easily check that P(s, x, F) is a transition probability
function and that

(2.14) (p (^) P (s, x, rf^) - (p (x) = | dt |L (p (^) P (r, x, ri^), (p e Co (R').

Also, one can easily construct a time-homogeneous Markov family
{ P,^: (5, x) e [0, oo) x R1} on (Q, ̂ ) having P (5, x, F) as its transition probability function;
and because of (2.14), it is clear that P^ ^ e ̂  (5, x) for all (s, x).

Finally, if P\ r^O, is defined by

Pt—;s
-r """"((.-^vO.O)'

then P'e^L (0, 0) for each r^O and

r00
Po,o== ^P^r.

J 0

Thus we will have our example if we can show that {P,^: (5, x) e [0, oo) x R1} is strong
Markov.
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To prove the strong Markov property for {Ps,^: (5 , x)e[0, oo) xR1}, we consider the
following alternate construction of the P^'s. Let E = = ( — o o , 0 ] u ( l , o o ) and on
[0, oo)x E x ̂ > define

^(u(s,x)) if x^O and 0^s<To(x),
I r5
I ^-toOO) ̂  (Q)+ ^-(O-TO(X)) ̂  (^(s-cy, 0)4-1)^0

P(s, x, r)= ^ Jxo(x)
if x^O and 5^To(x),

Xr(^(s, x-l)+l) if x^l and 5^0.

Then it is easy to check that P(s, x, F) is a Feller continuous transition function on E
and that there is a Feller continuous time-homogeneous Markov family
{Ps.x^ -^)^[0» oo) x E } on D([0, oo), E) having transition probability function
P(s, x, F). Furthermore, Po,jc l s concentrated on C([0, oo), [1, oo)) if x^ 1; and if x^O,
then PQ^ ^-almost surely x (.) has precisely one jump and the left and right limits at that jump
time are 0 and 1, respectively. Finally, because of the Feller continuity,
{ PS, x ' ' ("^ x) 6 [0, oo) x E } is strong Markov with respect to extended stopping times. Next
set y (t) = x (t — 0). Observe that

PO,^(O€E, ^0)=1, xeE,
Po,x((3r^0)^(0^x(0and(x(0^1 or^(Q^O))=0, xeE,

^o,x(yW^x(t))=Q, r^O and xeE.

We are now going to show that if T:Q-»[O, oo) is a stopping time for y ( . ) , then
{S(o®T«o)PT(a) ) ,y (T«o) , (o )} is a r. c. p. d. o f^Po ,^ [ a (^ ( tAT) :^0 ) for all xeE.
To do this, it is enough for us to show that Po,^(x(T)=^(T))=l; since, by the strong
Markov property, {§^ O^^P^MG)),^} is a r.c.p.d. ofPo,,c|^\. But

T(0))=F(3^iAT(o)), 0)), . . . . y(^AT(0)), 0)), . . . )

for some measurable F^R^ -> [0, oo) and { ^^^[O, oo).
Thus if ^(co)=inf{^0:x(0-^(r)^l}, then for x^O:

PO.,(T=O^PO,,K=F(^AO, . . . , ^ ( r , A O , . . . )) .
=Po,xK=F(M(^ATo(x),x), . . . ,M(^ATo(x) ,x) , ...))=0

since
p (^,.f 1 if O^To(x),PO,.K>O-^_,_^^ ^ -^^^^-0,xl^^-^-(,-^(,))

Also,P^(i;<oo)=Oifx>l.
The final step is to define /: E -> R1 by

/ . / , f x if x^O,
^tx-1 if x>l ,
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and thenjset z (.) = / (y (.)). Then one can easily check that Po, ^ is the distribution of z (.)
under PO./-^) for all xeR1, and now the strong Markov property for
{P,^:(s, x)e[0, oo)xR1} follows immediately from the considerations in the preceding
paragraph.

Remark (2.15). - Example (2.13) has a number of interesting properties. In the first
place, for all t^O and xeR1 , M^M^Q (a.s.,Po,J. This can be seen from the
corresponding fact about {P,^:(5, x)e[0, oo) x E } plus the equality Po,x(x(t)=y(t))=l,
t ̂  0 and x e E. Secondly, { P,^: (5, x) e [0, oo) x R1} is an example of a time-homogeneous
strong Markov process which is not strong Markov with respect to extended stopping
times. Indeed, let T '==inf{ t^Q:x(t)>0}. Then Po^(x(l-hT')=u(l, 0))=1. On the
other hand

E P O X[px'( .U(^'( .))^(l+T /(•))=^(l , 0))] =Po,,(x(l)=u(l, 0))=P(1, 0, {u(l, 0)})=0.

Thus, the strong Markov property fails for T'. In particular, this example does not rule out
the possibility that any time-homogeneous selection which is strong Markov with respect to
extended stopping times must be made up of extreme elements.

Remark (2.16). - Very little change would have been required to prove Theorems (2.10)
and (2.11) had we taken Q = D ([0, oo), R4) and L to be a Levy generator (cf. [4]). We have
restricted our attention to the diffusion case only because the technical details are fewer and
the problems involved are already apparent.

Section (3)

We begin this section with an application of Douglas's theorem to the study of quite
general Markov processes. Later we will return to the study of diffusions.

Let E, Q, x(r, ©), M, and M^ be defined as they were at the beginning of section (2) and
let {Ps,^:(5, x)e[0, oo)xE} be a time-homogeneous Markov family of probability
measures on (Q, M} having transition probability function P(t, x, F) [i.e.
P5,;c(^2)er|^J=P(r2-ri,x(^),r) for 0^5^i<^]. Denote by D^ and A
respectively the domain of the weak generator and the weak generator itself of the semi-group
determined by P(t, x, F); and observe that, because C,,(E) is in the weak center C^ of this
semi-group, D^ is weakly dense in B(E) (the space of bounded ^g-^asurable
/: E -> R1). Next define R^, ^>0, to be the resolvent operator associated with P(r, x, V)

p.e. R,/(x)= j e-^dt^f(y)P(t,x,dy),feB(E)\. Then D^R.C^ for each

^ > 0. In particular, if 2 ̂  C^ (E) is weakly dense, then {(Ri /, ARi /): / e Q>} is weakly
dense in graph (A) == {(/, A /): / e D^ }.

LEMMA (3.1). - The measure P,^ is uniquely characterized on (Q, Ji} by the fact that
ps,x(x(t)==x, Q^t^s)=l and that either one of the following holds:

/•tvs

(a) (f(x(tvs))~ Af(x(u))du, ̂ ^, P,^) is a martingale for all feD^,
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or

(b) (^VSR„/(x(tvs))+ [ e~^f(x(u))du,^^,,Ps,x) is a martingale for all

/eB(E).
In fact, in (a) D^ can be replaced by any subset such that {(f, A /): / e Q} is weakly dense in

graph (A); and in (b) B(E) can be replaced by any weakly dense subset of itself.
proof. - The proof is easily obtained from the characterization of ?s,x ̂  the only P on

(Q, M} such that P(x(t)=x, 0^t^s)=l and

^[f(x{t2))\^^= (f(y)P(t2-ti,x(t,),dy} (a.s.,P)

for all s^ t^ < (2 and / in a weakly dense subset of B(E).
Q.E.D.

THEOREM (3.2). - Let ^DA be a set such that {(/, Af):fe2} is weakly dense in
graph (A), and define

^s=\(f(x(t2))-f(x(t,))- [h Af(x(u))du\^:fe^,s^t,<t2,andAe^^ ̂
i \ J (i / -)

77i(?n 1 © span (^) is dense in L1 (P,, J. Alternatively, let 3) g C^, (E) be weakly dense and
let A^(0, oo) be dense. Set

^= [(e-^ R,/(x(^))-e-^ R,/(x(^))

r2 \ 1+ ^-^/(x^))^ )^:fe2,s^t,<t2andAe^,^.
J h / J

TTi^n a^afn 1 © span(^'J is dense in L1 (Ps,J.
proof. — Both these facts are easy consequences of Douglas's theorem. Indeed, in either

case, we know from Lemma (3.1) that there is exactly one Pe^(J^) such that
P(x(t)==x, 0^(^s)==l, namely P^. Hence P^eext(^r(^J).

Q.E.D

Remark (3.3). — The second part of Theorem (3.2) is very close to a result due to Kunita
and Watanabe [5]. Indeed, their theorem says that ̂  is dense in L2{P,^). When
Q=C([0, oo), E) and P(t, x, V) is Feller continuous, one can obtain the K.-W. theorem
directly from ours by using Theorem (1.4). Indeed, one then has that ̂  is dense in
I/(P^)for l^p<oo.

In general, one can prove the K.-W. theorem using Capon's variant of Douglas's theorem
(cf. [6]): If 1 <p< oo then 1 © span(^') in dense in V (u) if and only if for all non-negative
g e if (u) ((1 I p ) + (1 I p ' ) = 1) with E^ [g] = 1 the measure u^ given by d^9 = g d\i is extremal in
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\ r ~ p^^^fJt1161 '6 the notation is the same as in the first part of
v ^ v ) /

section (1)]. Thus we will know that 1 ©span (^o) is dense in If (Po,J, where ^o is
defined as in the second part of Theorem (3.2), once we show that for every non-negative
^^'(Po,,), with E^^l, P§,, is the only Pe^({/-E^ [/] :/e^o}) such that
P(x(0)=x)=l. To this end, note that if Pe^^f-E^'- [/] :/e^o})» then for all
/ ieCfc(E) ,0^r i ,Ae^,and?i>0:

E11 R^(x(ti))- ] e-^h(x(u+t,))du,A^

=EP9-^R,/^(x(^l))- f°\-^(;c(M+ri))^,Al.

Hence, because the Laplace transform is injective

^[J^P^ x(s), dy)-h(x(t+s)), A^E^I" [h(y)P(t, x(s), dy)-h(x(t-^-s)), At

for all 5, ^0, Ae^,. From here it is an easy matter to check that if in addition
P(x(0)=x)=l,thenP=P^.

(The procedure is very much like the proof that a Markov process is determined by its
transition probability function.)

THEOREM (3.4). - Assume that P{t, x, F) is Feller continuous. Then for every
(s, x) e [0, oo) x E and every Y e L1 (P), E p s ' x [Y [ M ^J admits a right-continuous progressively
measurable version. Moreover, if in addition Q=C([0, oo), E), then this version will be
PS, jc-a. s. continuous.

Proof. - Let ^F be the set of functions X(.) of the form

X(f)=^R,/(x(r))+ F e-^f(x(u))du
J o

as ̂  runs over a countable dense set in (0, oo) and / runs over a countable weakly dense set in
Cb (E). By Lemma (3.1), P,, ^ e ext ̂ \ , QF). Thus we can apply Theorem (2.3) to finish
the proof.

Q.E.D.
Throughout the remainder of this section we will specialize to the case when E=R d and

(3.5) cp(^)P(^x,^)-(p(x)= ds \ L ^ ( y ) P ( s , x , d y ) , (peC^R^)
J J o J

where L is a second order (degenerate) elliptic operator of the sort introduced in sec-
tion (2). From (3.5), it is easy to check the following:
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(a) P,^e^(s,x) for all (5, x)e[Q, oo) xR^. In particular we can take
Q=C([0, oo), R^);

(b) C^R^DA andA/^L/for/eCiKR');

(c) Letl^R^/eBtR^lim sup |/(x)| =0} and set C^^R^n^R^).
R f o o |;c|^R

Then the semi-group determined by P(t, x, V) maps JE^R^) into itself. In particular, if
P(t, x, F) is Feller continuous, then this semi-group maps C^) into itself.

Observe that from (b) we know that C^ (R^) is contained in the strong center of the semi-
group determined by P (t, x, V) and therefore { R i (p: (p e C? (R^)} ̂  D^, where D^ is the
domain of the strong generator A, determined by P(t, x, F). In particular, we have

(3.6) {(/, A,/):/eD^graph(A).

Combining the preceding. Theorem (2.7) and Lemma (3.1), and the reasoning used in
Remark (1.2), we arrive at the next result.

THEOREM (3.7). - Let x(t)=x(t}~ b{x(u))du [b(.) is the vector of first order
J o

coefficients of L].
Then P,^eext^^(s, x) if and only if for each feD^ there is a previsible

9 : [0, oo) x Q -> R^ such that

E^- (Q(u),a(x(u))6{u)ydu <oo, t^s,' - [ [^(Q{u),a(x(u))Q(u)ydu\<

and

- (\f(x(u))du= F(3.8) f(x(t)}-f(x(s))-\ Af(x(u))du=\ <e(u), rfx(u)>, t^s.
J s J s

In fact, in order that P,^ e ext (^ (s, x)), it is sufficient that (3.8) holds for all /eD^ .
For the remainder of this section we will study the problem of determining when (3.8)

holds. The first step in our program is to introduce Meyer's notion of the extended
generator [3] (see also Kunita [35]). To be precise, let S be the set of pairs (/, g) where
./^(R^) and ^ i R ^ - ^ R 1 is a measurable function R^^e^R^) for all X>0 and
f=R^f-g), X,>0. Clearly, graph(A)£(? and S is linear. Denote by D^ the
projection of S on its first coordinate.

LEMMA (3.9). - If (/, g ) e ^ , then for all T>0:

sup E1- \( F I g (x (u)) | ̂ Y1 ^ 2 e^ \\ R, \ g \ \\2 < oo,

and (f(x(t))~ dug(x(u)), M^, Po,J is a martingale for all xeR^ In particular,
J o
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iffeD^ and (f, g^), ( f , g z ) ^ ^ , then T=[x'.g^{x)^g^(x)} has null potential

[i.e. Po,,f (co^(x(u))du=0\=l for all xeR^.
L \J o / J

Proof. — First note that

E^rfr^-^^^i^Yi
^E^ ( c o e-s\g(x(s))\ds ^ e-t\g(x(t))\dt^

^E1-]" foo^-2s |^(x(5))|Rl(|^|)(x(5))^^^2||R,(|^|) | |2 .

Hence the first assertion is proved. To prove the second statement, observe that because
/=R,(V-^):

(e-^f(x{t))+ F e-^^f-g)(x(u))du,^,,P^^
\ J o /

is a martingale. Using the estimate just obtained, it is now easy to see that after letting ̂  [ 0,
we still have a martingale. Thus the second assertion. Finally, if (/, g i) e <?, i = 1, 2, then,

by the preceding ( (g^ (x (u)) - g^ (x (u))) du, M^, Po, x ) is a martingale.
\J o /

Since the only continuous martingales of bounded variation are constant almost surely, we
have now proved that g^ ==g^ except on a set of null potential.

Q.E.D.

The final part of Lemma (3.9) allows us to make the following definition. Given / e D^,
define Ag / to be set ofg such that (/, g) e € . Since any two elements ofAg/ differ on at most
a set of null potential, we are justified in identifying A g/ with any element g e A^/ so long as
we only use Ag/ in integrals of Ae/(x(r, co)) with respect to dt xd?Q^. Of course, if
/£DA, we will take A^/==A/.

We will need one small refinement of the last part of Lemma (3.9).

LEMMA (3.10). ~ Suppose that f e D/, n C^ (R^) and that f = 0 on the open set ̂ . Then
we can take Ag/==0 on ̂ .

Proof. - Let x^e^ and choose 0<Ri<R2 so that B(xo, ̂ 2)^' Define
< 7 o = i n f { r ^ O : | x ( 0 — X o | ^ R i } and

T ^ = i n f { r ^ C T » - i : | x ( r ) - X o | ^ R 2 } ,
or^=inf{ r^T^ |x ( r ) -xo |^Ri} .
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/ r x - A t \
Then (/(x(rATj)-/(x(rA(7^-i))- A^f(x(u})du, M^ Po ,x) ^ a martingale for

\ J 0,,-iAt /

all n ̂  1 and x e R^. Hence

f [( Xla, .xJ^)Ae/(x(u))^, ̂ ,, Po,x)
\J 0 /

is a martingale, so

| X^^(M)A,/(X(M))^=O (a.s.,PoJ fo ra l l n^O.
J o

It follows immediately that

| XB(xo,R,)(^(^))Ae/(x(M))^=0 (a.S.,Po,J.
J 0

Q.E.D.

Lemma (3.10) enables us to make the following definition. Let D^ be the set of/eC^R^)
such that for each R>0 there is an T|R eQ? (R4) with the properties that T|R = 1 on B(0, R)
andr|R./eDA . ByLemma(3.10),Ae(r|R./)onB(0, R) is independent of the choice of r^
up to a set of null potential. Hence we can define ̂  f = Ag (r\^. /) on B (0, R) for all R > 0.

LEMMA (3.11). — Suppose that D^ is an algebra {i.e. /, geD/^ implies f.geD^).
Then D^ is an algebra. Given f, ̂ eD^(eD^), define

Q(f. ̂ )=AJ/.^)-/.A^-^A,/(=^(/.g)-/^^-^^/).

If f,geD^, then

(xf(t)X,(t)- [ t QO g)W)du, ̂  PO,.)
\ J o /

is a martingale for all xeR^, where

(3.12) X,(t)=h(x(t))- [ t AMx(u))du, heD^.
J o

In fact, this uniquely determines Q(/, g) for f, geD^ up to a set of null potential. In
particular, for feD^u D^, Q(/, /)^0 except possibly on a set of null potential.

Proof. — The first assertion is trivial. All of the other assertions follow easily from Roth's
article [7] (cf. also Kunita's paper [35]).

Q.E.D.
Note that if f,gEC2(Rd), then Q(/, ^)==(V/, aV g). In particular, if ^(^^(JceR^),

Q(Xr Ij^^' Also, from the non-negative definiteness assertion about the quadratic
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form Q, one can easily deduce

Q(/,^Q(/,/)Q(^)
up to a set of null potential.

LEMMA (3.13). - Assume that D^ is an algebra. Given feD^ n Cb(Rd), define

{3A4} ^-(o^) Z.^^' xeRI

. /Q0ci,/)\
where Q (7, /) denotes the vector ( • j . Then for any (p 6 Q? (R1'-1-1) and x e R,'';

\Q(X.,/)/

(3.15) <p(x(t),X/(t))-(p(x,/(x))

=E .^-(^(").X/(«))^,(M)+ -^-(x(u), X^.(M))rfX,(«)
;=1J 0 ^-^j J o C'^d+1

r'+ ^-(p(x(u),X^(u))dM (a.s.,PoJ
J o '

where
d+l ^2 d a

(3.16) ^=1/2 ^ c ^ - 8 + ̂  b^x)8

,,^i ax,ax^. ,̂ 1 'ax,
/« particular, if 6:[0, co) xft^. R'' is a progressively measurable function such that

E1'"- < 6 («), a {x (u)) 9 (u) > du1 < oo, t/ien

(3-17) Ep-^fx^(t)-/(x)- r<e(M),rfx(«)>Y1

—[jK^yc..^-).].
Proo/. - The first assertion will be proved once we have shown that

/ p \
[x,(t)Xf(t)~ \ Q(x,,/)(x(u))^,^,PoJ
\ J o ' /

is a martingale for all /eD^ nC^R^), l^j^d, and xeR^
To this end, choose a sequence { p^ }j° ̂  Cg° (R1) such that

Pn(0)=0, p^(x)=l for |x|^n,
and

sup sup[p^(x) | v |p^(x)| <oo.
«^1 xeR1
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Let^(x)==pjx,). Then

fx, (t)Xf(t)- P Q(^, f)(x(u))du, M,, Po,,)
\ J o /

is a martingale for all n^ 1. Furthermore, using the estimates | g^(x) \^C\Xj\ and

Q(^, /)^Qto,, ^)Q(/, /)=(V^, aV^)Q( /, /)^CQ(/, /),

one easily sees that the desired result follows upon letting n -> oo. Given the first part of the
Lemma, the second part is an immediate consequence of Ito's calculus for stochastic
integrals.

Q.E.D.

THEOREM (3.18). - Assume that P (t, x, F) is Feller continuous. Then P^ ^ e ext (^ (s, x))
for all (s, x)e[0, oo) xR^ if and only if each of the following two conditions holds:

(a) DA is an algebra;

{b) for each f^D^n C^R^), the setFf ofxeR'1 such than ] e Range (C^(x)) has null

potential.

Proof. — The proof of necessity relies heavily on Meyer's theorem [3] which says
that D^ is an algebra if and only if for every continuous square integrable martingale
(M(r), M^ Po,jc) there is a progressively measurable w:[0, oo)xQ-^[0, oo) such that
/ p ' \
( M 2 ^)— m(u)du, ̂ t, Po ^ ) is a martingale. With Meyer's theorem, it is clear that
\ J o /
the necessity of (a) is an immediate consequence of Theorem (2.7). To show the necessity of
(b), note that if Po^eext^ (0, x)), then for /eD^ n C^R^):

f(x(t))-f(x(0))- [\J(x(u))du= [\Q(u),dx(u)^ (a.s.,Po.J
J o J o

with 9 : [0, oo) xQ -> R^ previsible and satisfying

E^ | (Q(u),a(x(u))Q{u))du <oo, r>0.

Thus, by (3.17):

^•{jr'y^cH-0-
ButPr^= <[x: (3eeR d ) ( 9 ] Cf(x)( 9 ) =o}, and so Ff has null potential.

Conversely, assume (a) and (b). Given / e D^ n C^, (R^), we can use a standard selection

(Q / y \ \ T / A f Y ^ \

principle to find a measurable 6^-^ such that ' ) C^(x)( _ ) = 0 for
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x^Ff. Furthermore, by (3.17):

E^IYx^O-yM- F <9(x(M)),rix(^)>Y1=0.

In other words, (3.8) holds for all /eD^nC^R^). But because P(r, x, F) is Feller
continuous, {(/, A,/):/eD^ nC^R4)} is weakly dense in graph(A). Thus (3.8) holds
for all / e DA , and so Po, ^ e ext (^ (0, x)).

Q.ED.
Unfortunately, Theorem (3.18) does not provide a very practical criterion for

extremality. Nonetheless, with the help of the next lemma, we can use Theorem (3.17) to
arrive at a more workable sufficient condition.

LEMMA (3.19). — Assume that the second order coefficients a(x) are continuous
at x°. Also, assume that P(t, x, F) is Feller continuous and that D^ nC^R^) is an
algebra. Then for each /eD^nC^R4) there is a version of Cy(.) which is bounded
everywhere and continuous at x°. Furthermore, if f e D^ n C^, (R4) is Lipschitz continuous

at x°, then ( ° ^ Range Cf(x°).

Proof. - The first part follows easily from the fact that

A,: D^nC^R^C^).

To prove the second part, define

^(^(lAOOc^O-x0),
^(0-(l/e)(X^(£20-/(xo)),

and let P6 on C([0, oo), R^) denote the distribution under Po ^ of ( ^ ^ . Then
\ ys ( ' ) /

P^^, (0,0), where
d+l ^ I d ^

L,=l/2 ^ C , ( x o + E ^ , — — — + i : £ & i ( x o + e x ) , .
i, j = 1 ux i OXj i = i (7X (

Hence, it follows that P6 -> P as e [ 0, where P is the distribution under (d+ l)-dimensional

Wiener measured of Cf(x°)x(.). In particular, if ( ] e Range Cy(x°), then it is easy to

check that
P ( | x ( l ) [ < l and |x^i(l) |>M)>0

r'\for all M>0, where jc=( • ). On the other hand,
\ ^d I
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PJ | jc( l ) |< land |x^i( l ) |>M)

=Po,,,f |^(1)| <1 and /(sxe(l)+xo)~/(3co) - e S ' A J i x ^ ^ d v >M^O
8 J o

as E ^ O , so long as

- , „ ,. \f(y)-f(x°)\M > MQ = lim sup -—j———o|—sio i^-x° i<8 \y~x |
Hence

P( |x( l ) |< land |x^( l ) |>M)

^limP(|x(l) | <1 and | x d + i ( l ) [ >M)=0 for M>Mo.
ei0

In particular, ( ]^ Range (Cf (x0)).

Q.E.D.

THEOREM (3.20). - Assume that P (r, x, F) is Frikr continuous and that D^ n C (R^) fs an
algebra. Also assume that there is a set FQ of null potential such that the second order
coefficients a (.) of L are continuous at each x eFo and that every f e D^ n C (R^) is Lipschitz
continuous at all points outside a set F^ of null potential. Then P^eext^ (s, x)) for all
(s, x)e[0, o^xR^.

Proof. — By Lemma (3.19), the hypotheses guarantee that for each /eD^nC^R^),

( ]^ Range (C^(x)) for x outside a set of null potential.

Once one has this, the rest of the proof is word for word the same as the proof of sufficiency
in Theorem (3.18).

Q.E.D.

COROLLARY (3.21). - Assume that a(.) is continuous and that P(r, x, F) is Feller
continuous. If

D^nC(Rd)g{/eC(Rd)nC l(Rd):(V/.^V/)eC(Rd)},

then Ps, x e ext (^ (s, x)) for each (s, x) e [0, oo) x R^.

Proof. - In view of Theorem (3.20), we need only check that D^nC^R^) is an
algebra. To this end, we use the results of Dynkin [8] which show that /eC^R^) is in D^ if
and only if lim (E^- [/(x(TJ)]-/(x))/EPOX [rj exists for all xeR^ and defines an element of

ei0

C^) (which is, indeed, A,/), where

T,=inf{^0: |x(0-x(0)|^e}.
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Now suppose that/eD^nC^R4). If Epox[^:^<ao for0<£^8o, then

EM/2^))]-/2^) E^[(/(x(Tj)-/(;c))2] .', „ ,EM/Qc(Te))]-/(x)
EMTJ E^tTj i 2 J W E^TJ

for 0 < E ̂  So. The second term on the right tends to 2 / (x) (A, /) (x) as e ^ 0. To handle the
first term, note that

^[(f(x(^))-fM = f |/(x)|/(x)EP«.•[(x,(T,)-x,)(x,(TJ-x,]+o(e^.
l 7 = 1 ^•'^ ( C'.^C .

But

( p /•? \
\x(t)-x\2-\ rTv3icea(x(u))du-2\ (x(u)-x, b(x(u)))du, M,, Po J

J o J o ' /

is a martingale. Thus if E110 x [rj < oo, then

E^ - Trace a (x (u)) du = 82 - 2 E^ - I E (x (^ - x, fc (x (u))) du\

and therefore lim^/s^E1^ [rj>0. At the same time
£i0

E^^x.dJ-x^^^Tj-x,)]
——————p, J—————-^^(x) as siO.

^ ' L^eJ
Hence

E^-K/^^eM-y^leiO^,
——————^^———————-(V/,.V/)(X);

and so
r F^'^^^s))-/2^)]- ^. vn^.^^A ̂hm————uPo'T—i———— "(^ ^V/)(x)+2/(x)A,/(x)
E i O •̂  ' L^sJ

at x such that E^x [rj< oo for small enough e. Next suppose that E^ - [rj= oo for all
£>0. Then, according to Dynkin's theory, ?o^(x(t)=x, ^0)=1. Hence in this case
a (x) = 0 and A, / (x) = 0. Thus once again

^^•'^.^'-'''^(V^V^M^/MA./M.
ei0 CJ ' ^EJ

Since (V/, aV^^/A^/eC^), this completes the proof.

Q.E.D.

Section (4)

This section contains several examples of L's for which it is possible to classify all the
extreme, strong Markov, time-homogeneous selections from J^- Unfortunately, no
general schema has grown out of these examples. In fact, we find these examples to be
convincing evidence that a general procedure is going to be hard to come by.

4° SERIE - TOME 13 - 1980 - ?1



ON EXTREMAL SOLUTIONS OF MARTINGALE PROBLEMS 123

Example (4.1). - Let d==l and let a:R1 -40, oo) be a bounded continuous function
whose zeroes are isolated. Assume further that

r r i(4.2) sup dt\ g ( t , y-x)——dy<co, T>0 and R>0,
\x ^ p j o jp1 a(y)

where

n(i Y>= e~^111
g ( ) x ) (IntY^ '

We are going to study J^ with L == 1 /2 a (x) ̂ 2 /3x2. In fact, what we are going to do is show
that every time-homogeneous strong Markov selection from Jf^ ls Feller continuous and
that every Feller continuous time-homogeneous strong Markov selection consists of extreme
elements. Combining these facts with Theorem (2.11), we will have thereby ended up with a
reasonably satisfactory description of Jf^ •

To prove that every time-homogeneous strong Markov selection
{Ps,^ : (s , x)e[0, oo)xR 1} is Feller continuous, we proceed as follows.Let p( . ) be a
1-dimensional Brownian motion. Using (4.2), one can easily check that if T^( . ) is
defined by

I::(0 i
o a(x+P(5»)

ds=t, t^O,

then, almost surely, T^ is a continuous increasing function such that T^ (0) = 0 and T^ (t) f oo as
^ f o o . Moreover one can see that if P^ on (Q, M) is the distribution of
x + p (^ ((. - 5) v 0)), then P^ e ̂  (s, x) (cf. Thm.' 6.5.2 in [S. and K]). In fact, if ^ < T| and
a(.)>0 on (^, T|), then for any Pe^t0^ p equals Pg,^ on ^ ^ where
T(^^=inf{r^0:x(0^, T|)} (c/. section (6.6) of [S. and K]). In particular, we have
that if/eCb(R1) and u(t, x)=EPO< [f(x(t))], then

u{t, x)=EPOO-[f(x{t)), T^,)>r] +Epg•x[u(^-T(^, X(T^,))), T^,^r]

so long as a( . )>0 on (^, r|). But it is a simple matter to check that for each s>0:

limPg^(T^^>£ or x(r^^)^y = limPg^(T^^>8 or X(T^))^T|)=O.
^Ci^ x f T I

Hence, for any ^<r\ such that a(.)>0 on (^, ri),

{ u ( t , Q as x^,M ( r , x ) - ^ ^ , , .(u(t,r0 as x f T i .

Because the zeroes of a (.) are isolated, we have now proved that {P,^: (s, x) e [0, oo) x R1}
is Feller continuous.
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Our next step is to prove that if A, is the strong generator of { P,, ̂ : (s, x) e [0, oo) x R1},
then every /eD^nC(R1) is locally Lipschitz continuous, feC2({x•.a(x)>Q}), and
As/=L/ on {x:a(x)>0}. To this end, it is enough to prove the second and third
properties of/, since the local Lipschitz continuity will then be obvious from (4.2). But

/ p \
(x(Q, M,, Po,J and (x{t)-x)2- a(x(u))du, J^,,Po x ) are martingales.

\ J o /

Thus, i fT,=inf{^0: |x(r) -x(0)[ ^s} and Po^(Te<oo)=l, then

r r'6 ~i
(4-3) Po,xOc(Te)=x+£)=l/2 and E^- a(x(u))du ==£2.

LJ o J

In particular, if a(x)>0, then we have:

Po,x(^(^)=^+s)=l/2 and EPOS^,]=G2/a{x)+o(s2)

for small £>0. Hence, by Dynkin's formula

(4.4) A./^^in.^'^^-^^^aWlim^^^^r^^^.eio H^-ITJ 2 ^o e2

when a(x)>0.

This proves both that feC2({x•.a(x)>0}) and that A,/=L/on {x:a(x)>0}.

We now want to show that P, , e ext (^^ (s, x)). Suppose that we have done this under
the additional assumption that a(x)^s. \x\ ̂ R, for some e>0 and R>0. Then, using
Theorem (2.4) together with an easy localization argument, we will have proved the general
case. Thus we will assume that a (x) ̂  e > 0 for | x \ ̂  R. By the preceding paragraph, if
/eDA.nC(R1), then feC2({x•.a(x)>0}) and

,. ^'[f^x^M-f^x)nm—————D—-—-————
^o E^-trJ

- ̂ ^-[(/(x^))-/^)2] ,.,^-[f(x(^))]-f(x)
. " "E^[Tj———— + 2 f ( x ) ———E'MrJ———

=a(x)(f'{x))2+2f(x)Lf(x)=a{x)(f'(x))2+2f(x)^J(x)

when a (x) > 0. Next suppose that a (x) = 0. We distinguish two cases: x is absorbing and x
is not absorbing. In the absorbing case

r Epo•'^2(x(^))]-/2(x) n . ^ ,A f^hm————ppo. r- i————=0=2/(x)A,/(x).
e^O £/ ' ^ej
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In the non-absorbing case, there is an £o > 0 such that E^ [rj < oo for all 0 < £ ̂  £o. Thus,
by (4.3),

-^E^ a(x(u))du =1 as e^£o.8 L J o J

Since a(x)=0 it follows that

-^E^ITJ-^OO as 8^0.

Hence, since / is locally Lipschitz continuous

,,,E>...I/-(;(T))!-/'(,) . ...^•"^•"/""''.VMA.A.)^/,^./^.
g ^ O E/ ' ^ e J ei0 ^ ' L ^ e i

We have therefore shown that for /eD^ n C(R1):

E^/2^,))]-/2^) _;2/(x)A,/(x)+a(x)(nx))2

h m — — — — F ^ k l — — — — I 2f (x )A, f (x ) if a(
E^t/2^))]-/2^) _j2/(x)A,/(x)+a(x)(nx))2 if a(x}>Q,

lm————E^^rJ————"I 2/(x)A,/(x) if a(x)=0.

Since / is locally Lipschitz continuous, we conclude that

-/ , ,. ^[f^M-f2^ p.pi.
F(x)= hm————^^————ec(R )

ei0 1-' L ' -eJ

when / e D^ n C (R1). Finally since A, / -> 0 at infinity and a (x) ̂  c > 0 for | x \ ̂  R, we see
that /"(x) -^ 0 as | x [ -> oo and that F (x) - a (x) (f (x))2 -> 0 as | x \ -^ oo. But / -> 0 and
f" -^ 0 at oo imply /' -> 0 at oo, and so F -> 0 at oo. In other words

r E^-t/^x^J)]-/2^),
l l m————E^-kl———— e c(R)•ei0 rj L'e-l

By Dynkin's theory, it follows that /2 eD^ n C(R1).
To summarize, we have now shown that every time-homogeneous strong Markov

selection {Ps,^(s, x)e[0, oo)xR1} of ^^ is Feller continuous and consists of extreme
elements. One can go further. Namely, it is possible to describe the generators of all these
Feller selections. In a particular case, this was done by Girsanov [9]; and the general case
can be deduced from the particular one by localization.

Example (4.5). - An interesting feature of the preceding example is that all time-
homogeneous strong Markov selections turn out to be Feller continuous. We now give an
example in which things are even better: namely, there exist precisely two time-homogeneous
strong Markov selections both of which are strongly Feller continuous.
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Let r f = = l . G=R1 \{0} and define

L=l /2xGW^2+X{o}W^.

Since the coefficients of this L are discontinuous, we must first check that JT^ is a Krylov
system [i.e. condition (a) preceding Lemma (2.8) is fulfilled].

LEMMA (4.6). - For each xeR1 , i^o,x^^L(^' x)' where i^o,x denotes 1-dimensional
Wiener measure starting from x at time 0. Furthermore, if Xn -> x and P^e^ (0» xn)' ^en
{Pn}5° 15 relatively compact and every limit is an element of ^(0, x).

G oo \

Proof. - Since ^o,x X{o} (x (0)^=0 =1 ^ an ^eR1, it is clear that
o /

^o,x^(0,x).
To prove the second assertion, first note that {Pn}? is relatively compact because the

coefficients of L are bounded. Next note that P e ̂  (0, ^) if and only if P (x (0) = x) = 1 and
for all /eCo^aO, oo) XR1) satisfying ((8f/8t)-{-(8f/8x)) (r, 0)^0:

( f* t / ^ /* ^ 2 / * \ \
f(t,x{t))- ^ ( x ^ ' + l / l ' Y ^ x ^ d u ^ ^ P ]

J o \ot ox / /

is a submartingale. The "only if statement is easy.
To see the "if direction, suppose that P satisfies the submartingale condition and that

P (x (0) = x) == 1. It is then easy to check that for every \ > 0:

( e ' k x ( t ) - ( ' k 2 / 2 ) t - { - e - ' > . x ( t ) - ( k 2 / 2 ) t , M,, P)
is a supermartingale. In particular, E^ sup ^|x(0]]<oo for all ^>0 and T>0.

O^r^T

Using this estimate, it is now a simple matter to check that

(^(O+x^)^. J^, P) and fx2^)- [ t ^(x(u))du, M,. p)
\ J o /

/ r' \are martingales. Thus ( x(t)— ^Q) (x(u))du, M^ P ) is also a martingale. Now, let
_\ J o /

/eC?(R1) and define f(x)=f(x)-f(Q)x. Then

(f(x{t))- [r (XG l/2/")(x(M))^, M,, ?}
\ J o )

is a martingale; and so

/(x(r))- rL/(x(u))^=7(;c(r))- f\xGl/2D(x(M))^
J o J o

+/'(0)fx(r)- f'^o}^^))^)
\ J 0 /

is a P-martingale. In other words, Pe^ (0»Jc)'
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In order to complete the proof, suppose that P^ -> P. Clearly P (x (0) = x) = 1, and so we
need only check that P satisfies the submartingale condition. This in turn will be done if we
show that for /eC(,(R1), 0^ t^ < t^ and bounded continuous ̂  -measurable F: Q -> R1:

^ |"F P (XG /) (^ (u)) du\ = lim E?" 1"F ? (^ f) (x (u)) du\ .

In other words, we need only check that

supE^rpx^od^MD^t-O

as £,10 for each t^O. For this purpose, choose rieC^(R1) so that O^T|^I, T|=I on
[-1, l ] ,andr |=0offof[~2,2] .

Set v|/ (x) = d y \ T| (t) dt and v|/g (x) == \|/ (x/e). Then | \|̂  (x) | ̂  (c/s) | x | and therefore
J o J o

E r̂ [(x^od^^D^i ̂ E^r r (XG^^M/^^I
=2£2EP"^^(xGl/2^')^^))^1
=2£2(EPB[vl/,(x(0]-^,(xJ)^C(0£.

Q.E.D.

We now know that J^ ls a Krylov system and therefore that the results of section (2)
apply. Furthermore, { ̂ 5^: (s, x) e [0, oo) x R1} is one time-homogeneous strong
Markov selection from J^ consisting of extreme elements. We will now Construct a second
one. Namely, from results in [10], there is for each (s, x)e[0, oo) x[0, oo) precisely one
Q^e^L(s,x) such that Q^(x(Q^O for t^s)==l. We now define Qs^ for
(s, x)e[0, oo)x(-oo, 0)by

Qs,x=^.^®^(.)Qxo(.).o' where To(.)=inf{^0:x(0=0}.

Then, since for any x e R1 and P e ̂  (^' x)' P equals ^"o, ^ °i1 ̂ xo' l l ls ̂ ^ tnat f01" eacn

(s,x)e[0, oo)xR l ,Q,^istheonlyPe (^L( s ' x) such that P(x(t)^0, t^To)=l. From this
uniqueness property, it is easy to see that {Qs,^5* ^^[O* oo)xR1} is a second time-
homogeneous strong Markov selection from J^- ^n particular,

HQO<[/(x(0)]=E^-[/(x(0),To>^] +E^-[EQTO(• )•o[/(x(^-To(.)))],To(.)^r].

Hence, {Qs,^:(s, x)e[0, oo)xR1} is not only Feller continuous, it is strongly Feller
continuous. Finally, Qs, ^ e ext (^ (s, x)) for all (5, x) since if Qs,x = 9 PI + (1 - 9) PZ with
0<9<1 and Pi, ^^e^^{s,x), then Pi(x(Q^O, t^To)=P2(^(0^0, t^To)==l and so
Pl=P2=Qs,x.
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LEMMA (4.7). — Let {Ps,^^ ^)^[0, oo)xR1} be a time-homogeneous strong Markov

G \
selection from c€^ If Po,o %{o}(x(u))du>Q >°» then Ps,x=Qs,;c for all

o )

(5,x)€[0. oo)xR1 . J/Po.of [\o}(^))^>o)==0, thenP,^=i^,^forall(s,x).
\J o /

Proof. — We prove the last part first. Indeed, by time-homogeneity and the strong

G \ / rco \
Markov property, Po, o Z{ o} (^ (u)) du > 0 = 0 implies Ps,x( \ X{ o} (^ (u)) du > 0 == 0

o / \J o /
/ ^V5 \

for all (s,x). But this means that (/(x(rvs))- du\/lf"{x(u)), Ji,, P,^ is a
\ J s )

martingale for all /eC(?(R1), and so Ps,x=^s,x'
We next observe that {P^jc^ x)e[0, oo)xR1} is Feller continuous. [The proof is

exactly the same as the one that we just gave for { Q^ ̂ : ("^ x) 6 [0» °°) x R1 }]• Thus if A,
and A? denote the strong generators of {P,^:(s, x)e[0, oo) xR 1 } and
{Qs.x^5 ' -^)€[0» °o) xR1}. respectively, then we will be done once we show that

G \
PO,O ^(x(u))du>0 >0

o /

implies that D^ nC^R^^D^ nC(R1) and A,/=A?/ for feD^ nC(R1).
/ f0 0 s \

Assume that Po, o ( X{o} (x (M)) ̂  > 0 j > 0 and set
' \J o /

^mf!t^0:[\^(x(u))du>0\.
I J o J

Then, Po,oK<oo)>0. Moreover, by the Blumenthal 0-1 law, Po,oK>0)e{0, 1}. If
Po.oC>6)==l,

G^e \
Po,oC<w)=Po,o ^o}(^(^)^>0,^<oo

0 /

=Po,oK<oo)Po,of f X{o}(^(u))du>0\
\J 0 )

^Po.o^ocOPo.o^O^O.

Thus, Po, o K > 0) = 0. Next set (p (x) == x2 + x. Then L (p = 1 and so for all R > 0:

E^ ° [TR A ̂ E^ • 0 [(P(X(TR A rffl^R^R, r^O.

where TR == inf { r ̂  0: | x (?) | ̂  R }. From this it follows that

(4.8) E^tT^R^E^xM].
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/ p \
Since ( x(t)— ^Q) (x(u))du, M^, Po,o ) l s a martingale, we have:

\ J o /

(4.9) E1- [x(Tj]=E1- F p ^0} (x(u))^1 =o^ >0

because Po ,oK=0)=l . Now define PR=PO ,o(x(TR)==R). Then for 0<Ri<R2:

PR,=Po.o(x(T^)=R2)

=PR.Po.R.^(^)=R2)+(l-PR.)Po,-R,(^(^)=R2)

/R2-Ri R i \ „ ,R2-Ri RI /\ R i \
=^ ——n———PR, + D1 +(1 -^ )-V^^ = ir^ + 1 " T PR-\ K.2 1<2 / 1<2 K2 \ K2 /

and so p^=p^ . (We have used here the fact that Po,jc equals ^o,x on ^io)- Thus,
from (4.9).

(4.10) aR=aiR, R>0

where

(4.11) 0<ai=2pi- l .

We can now compute AJTor/e D^ n C (R1). For x + 0, it is clear from Dynkin's formula

thatA,/(x)=l/2/"(x). Thus/eC^(R l\{0}), lim f"(x} exists and/" -.0 at oo. In
x-^ 0

particular, fe C^ (R1). Moreover,

A ^m r EPO•o[/(x(Te))]-^(()) i. Pi/(g)+0-Pi)/(-€)-/(0)AJ'(0)=hm ———pp—-.——— ==hm—————2.., ,—————
ei0 ^ ^eJ ei0 £ + a lo

r 1/2/(£)+1/2/(-£)-/(0) . ,^oci/(£)-ai/(-£) .,̂==lim ——————5—————————+1/2———<——————===/ (U).
^o e 2 +a le e 2 + a l £

Thus D^nC(R l )^^={/eC(R l ) : /eC,2 (R 1 \{Q}) , l im/"(x)==0, and
[ x \ —» x

/'((^lim 1/2 /"(x)} and for/eDA/nC(R1):
x-»0
x^O

AfM-J1^"^ if ^0>
J( "[/'(O) if x=0.

Since it is simple to show that D^o n C (R1)=^', the proof is now complete.
Q.E.D.

We have now shown that { ' W ^ „: (s, x) e [0, oo) x R 1 } and {Qs,,: (s, x) e [0, oo) x R1} are
the only time-homogeneous strong Markov selections from Jf^ • Note that both these are
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strongly Feller continuous. Finally, all elements of^ (s' x) can be obtained from these two
selections by the procedure described in Theorem (2.11).

Example (4.12). — In the preceding examples, the time-homogeneous strong Markov
selections of extreme elements all turn out to be Feller continuous or better. We now give an
example in which this is not the case.

Let d ̂  2 and let a: R/ -^ [0, oo) be a bounded continuous function such that a (0) = 0, a (.) is

uniformly positive on R^^B^, e) for each e>0, and (l/a(x))dx<co. Set
JB(O, i)

L = 1 /2 a (x) A. We will show that there are exactly two time-homogeneous strong Markov
selections of extreme elements from Jf^'one of which is Feller continuous and the other one
is not.

Note that for all xeR^,

supE^0- , , ,, du \< oo for all r>0
LJ o a(x(u)) J

and

J: rf^foo as r f oo (a.s., ^o,jc)'oa(x(u))

where i^o,x ls ^-dimensional Wiener measure starting from x at time 0.
Thus if T (.) is defined by

rrw . i
du=t, t^Q,

o a(x(u))

then ^FO, x-al1110^ surely: T (O)==O,T( . ) is continuous, and T ( r ) f o o as r f o o . Finally,
if Q,^ on (Q, e^Q is the distribution of x(r(.-5)v0)) under i^o,x. ihen

{Qs,x : (^ ^^[O, oo)xR d } is a Feller continuous, time-homogeneous, strong Markov
selection from Jf^.

We next show that if x^O, then ^^ (s, x)=[Qs,x}- Indeed, by an easy random time
change argument, one sees that any Pe^^(s,x) equals Qs,x on ^ ^ ' where
To=inf{^0: x(Q=0}. But Q^Ci^^^^^x^c^^)^' a^ so we conclude
thatP==Q^.

LEMMA (4.13). — Leta!Q=mf[ t^s:x(t)^0] andletP°eM(fi)be the measure such that
P°(x(r)=0, r^O)==L Then for any? e^(s,0):

r00-I;(4.14) p=P(aso=oo)PO+ P°®,Q(,oP(^oerfr).

In particular, Pe^ ( s ' 0) equals Qs,o if and only ifP(asQ==s)==l; and therefore Qs,o ls

extreme. Also, Pe^^(s, 0) is extreme if and only if there is a te[s, oo] such that
P(a^t)==l.
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Proof. — We may and will assume that 5=0, and we will drop the superscript on a^.
To prove (4.14), define Oe=inf { t^O: |x(r)|^e}. Then ojao. Given a bounded

continuous <I>: Q -> R1:

E1' [01 ̂  , J = E^-^ A ̂ ^ ̂ ^ - ) [0] (a. s., P)

for all e > 0 and t = 0. Letting s [ 0 and then r f oo, we obtain:

HP[0|^J=X(oo}(cTo(.))EPO[0]+^,co)(^o(.))EP0000(•)QCTO(•)•o[a)];

and clearly (4.14) follows from this.
Next, it is obvious from (4.14) that P=Qo ,o if and only if P((JO=O)=I; and the

extremality of Qo, o ^s immediate from this.
Hence Q^eext (^(^ 0)) for all t^Q, and so, by Theorem (2.4),

P° ®tQ(,oeext (^(0, 0)) for all t^O [since P° is obviously in ext (^(0, 0))]. From here
plus (4.14), it is clear that Pe^^(0, 0) is extreme if and only if P (a o =0=1 for some
te[0, oo].

We now have the following facts:
(0 {Qs, x ' (s, x) e [0, oo) x R^} is one time-homogeneous strong Markov, Feller continuous

selection of extreme elements from JT^;
(ii) if P 6 ext (%L (s, 0)), then either P=P° or P=P°®(Q(,O for some te[s, oo);
(iii) if x + 0, then ̂  (s' x) = { Qs, x } ' Thus if {P,, „: (s, x) e [0, oo) x R^} is a second time-

homogeneous strong Markov selection of extreme elements from Jf^ ^en Ps,x=Qs,x
for x^O and either P ,o=P° or P,,o=P°®^Qro+5.o for some toe(0, oo).
But ifPs.o=P°®r,+,Qro+,,o fo1" some to^(0» °o)» then by the Markov property

PO, 0(^0= ^o)=Po, 0(^0= ^o^(4)=0)=EP O O[P^^(CTo=?o)^(^o)=0]

=P^(ao=ro) Po,o(^o)=0)=0

since P^ o(oro=ro)=-P° ®2to Q^o^^^o)^- On the other hand,

Po^c^^P0®^^^)^.

Thus it must be that P^ o = P°.
We have therefore shown that there exist exactly two time-homogeneous strong Markov

selections {Ps,^: (s, x)e[0, oo) xR^} of extreme elements from J^' I11 both selections,
Ps,jc==Qs,jc (or ^^0; and in one of the selections Ps,o==Qs,o» while in the second one
Ps, o = P0* I11 particular, since {Q^ y: (s, x)e[0, oo) x R^} is Feller continuous, the second
selection cannot be. Perhaps it is worth noting at this point that exercise 12.4.2 in
[S. and V} provides an example of a continuous coefficient L for which there are no Feller
continuous selections from Jf^.

Example (4.15). — We present one last example. This example displays no new
phenomena but it does show just how complicated the structure of^ can be even for rather
simple L's.
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Let d=2 and define
/ ^ 2xy.\

fl(z)= 2xy X2+^2

^x2+y2

fx\
for z=^ jeR 2 . We are going to study Jf^ when

\ ^ /

L=l/2fa l l(z)^+2a l 2(z)-a—+^2(z)^\
\ ox oxoy 8y )

Note that since a (.) is discontinuous at 0, it is not altogether obvious that Jf^ ls a Krylov
system. On the other hand, for any z eR 2 , x ( . ) under P(6^(0» ^)) is a 1-dimensional

Brownian motion starting from x. Hence, lim sup sup E 1 ) ^^^(l2^)!)^ =°
ei0 z e R 2 Pe^O, 2) LJ 0 J

for all t > 0 [which-in particular-allows us to have neglected defining a (0)!], and from this fact
it is easy to see that Jf^ ls a Krylov system (cf. the proof of Lemma 4.6).

In fact, if P» e ̂  (Sn, ^n) and ($„, z^) -^ (s, z), then every limit of { P ^ } is in ̂  (s, z). Set
E = { z e R 2 : x=y or x= — y ] and define

TE=inf{^0 :z (OeE}.

Since a (.) is continuous and non-degenerate on R2 \ E, it is a simple matter to show that for
each zeR^E, all Pe^(Q, z) agree on M^.

LEMMA (4.16). - For allzoeR2\E and all Pe^ (0» z°):
/ ^ \ 1 / 2 poo

P (TE ̂  r) = - 6?-"272 ̂  an^ P (z (Tg) = 0) = 1.
\71 / J |x0 v | y ° | / / 1 / 2

For allz°eE, P ( z ( r ) e E , t^0)=l ifPe^ (0, z0).

Proof. — By symmetry, it suffices for us to look at z oeR 2 \E such that
0<|y°|<x°. For R>x°, define ̂ ={z :0< |y |<x<R} and let ̂  and OR be the first exit
times from ̂  and { z: 0 < x < R }, respectively. Then ̂  ̂  OR for all R > 0, ̂  f Tg as R f oo,
and because x(.) is a 1-dimensional Brownian motion under P:

/ 9 \ 1 / 2 /-oo
lim P(aR^t)== - e-^^du, r>0.

R T o o \^/ Jx°A 1 / 2

We now want to show that P (^p =<JR)= 1 for all R>x°. To this end, let <p (z)=x2 -y2 and
note that E = { z : (p(z)=0},V(p^OonE\{0},andL(p=<V(p, aV(p>=OonE. Thus, by
Lemma (7.2) in [11], P (z (ip) e E \ {0}) = 0, and clearly the equality P (^ = Op) = 1 follows
from this. Finally,

P^KR)=0)=P(x(aR)=0)=R—c o-. l as R T O O .i\
Thus the first part of the lemma has been proved.
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To prove the second part, let z°eE be given and define (p as above and
T| (Q=(p(z(r)). Then, for any Pe^ (°» zo). (r! (0» ̂  p)is a martingale. Furthermore

^2(0-4[ t(^^2(M)/|z(M)|2)^,^,P
< J o ^

is also a martingale. Hence there is a 1-dimensional Brownian motion P( . ) and a
progressively measurable function CT (.) such that ri (.) under P has the same distribution as

f .
^ (.) = a (u) dp (u) and a2 (.) ̂  4 [ ^ (.) |. But, by the result ofWatanabe and Yamada [12],

J o
this means that ^( .)=0 a.s.; and so P(r|(0=0, r^0)=l.

Q.E.D.

LEMMA (4.17). -Z^To=inf{t^O:z(0=0}. Then for ever y z e R 2 andPe^(0, z),Pis
uniquely determined on M^ . Furthermore, for all z e R 2 and P e ̂  (0» z)'T o (•) I s continuous
at V-almost all co and

/ 9 \ 1 / 2 /•00

P(To^O= - ^-U2/2^.
\ 7 1 / J | x |vH/ t 1 / 2

Proo/. — The uniqueness statement when z°^E is obvious from Lemma (4.16) plus the
uniqueness of Pe^^(0, z°) on J^ . When z°eE, then the uniqueness statement is a
consequence of the fact that P (x (t) = sgn (x° y°) y (t), 0 ̂  t < To) = 1 plus the fact that x (.) is a
1-dimensional Brownian motion starting at x° under all P€^^(O, z°). Furthermore the
distribution of TO under Pe^ (0» zo) ls an ̂ ^ consequence of Lemma (4.16).

To prove the almost sure continuity of T() ( . ) under any P from J^, assume that
Pe^(0,z°) where 0^\y°\^x°. Then, by Lemma (4.16), T O = C T O (a.s., P) where
<Jo==inf{^0: x(Q^O}.

But a o (.) is P-almost surely continuous because x (.) under P is a 1-dimensional Brownian
motion and therefore <7o=inf{ t^O: x(t)<Q] (a.s., P).

LEMMA (4.18). - Let { P s , z ' ' (s, z)e[0, oo) x R 2 } be a time-homogeneous strong Markov
selection from J^- Tnen {ps,z : ( s ' z)e[0, oo)xR 2 } is Feller continuous. Furthermore,
two such selections [ ?s,z'- (s, z) e [0, oo) x R2 } and { Q,^: (s, z) e [0, oo) x R2 } are equal if and
on^yPo,o=Qo,o-

Proof. - Clearly for any/eC^, (R4) and t>0:

HP O ^[/( z(0)]=EP 0 2[/( z(0),To>^+EP-[EP^•o[/(z(t-To(.))] ,To(.)^t] .

Since Po,z is uniquely determined on M^ and P^o, s>0, is uniquely determined by Po,o, the
last assertion is obvious. Furthermore, from the expression for the distribution o f ro ( . ) given
in Lemma (4.17), it is clear that the second term on the right is continuous as a function
of z. To prove that the first term on the right is continuous with respect to z, note that:

E^t/W)). To^^E^L^zO A To))]+/(0)Po,,(To>0
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where /(.)=/(.)-/ (Q). Now suppose that z, -» z. Then by the discussion preceding
Lemma (4.16), every limit of {P^ }^i is an element of ̂  (0, z). Hence, because all
elements of^ (0. z) coincide on ̂ , E^z" [<D] ̂  E1'- [<D] for all bounded Jt^ -measurable
C>: Q-^R1 which are Po^-almost surely continuous. But by Lemma (4.17),f(z(t A To))is
such a <D, and so the proof is complete, as Po,. (TO > t) is continuous [again by Lemma (4.17)].

Q.E.D.

^LEMMA (4.19). - Let Y.=inf {(^0: |x(t)|^e}. Then for all Pe^(0, 0) and e>0,
E [YJ=e2. Furthermore, for each O^a^l, t/iere is a unique time-homogeneous strong
Markov selection {P^: (s, z)e[0, oo) x R 2 } such that PS,o(x(Yi)=^(Yi))=a.

Proof. - The first assertion is trivial, since x(.) is a 1-dimensional Brownian motion
starting at 0 under any Pe<^ (0, 0).

To prove the existence of {P,«, : (s, z)e[0, oo)xR 2 }, it suffices to construct
{P?, 2 •' {s, z) e [0, co) x E } , since we can then define P^forz^Eby:?" = P ® P"
where P is any element of ^(5, z). ' s'2 T o ( ) T<'()'("

To construct {P^,: (s. z)e[0, w) x E }, let O^a^ 1 be given and set a= 1 -a. For x, W.
define

P,(t.(±x, ±x),(±^, ±y)=ff(t ,x-y-a0(t ,x+y,
Pa(t, (±x. ±x). (T^, ^))=ag(t. x+Q,

P^t, (±x, ±x). (±^ +Q)=ag(t, jc+y,

P.O. (T^c, ±x), (T^, ±y)=ff(t, x-^)-a^(r, x+y,

P,(t, (Tx, ±x), (±^, q:y)=a^(t, x.+y,

P.(t,(+x, ±x),(±^, ±y)=a0(t,x+y;

where g (t, n)=(l/(2 Tit)1/2) e-^2'. Next, for zeE and Te^, define

P.(t,z,r)=| P,(t,z,^,Q)d^+S P,(t,z,(-^,i,))d^
J{W:(f.,Qer] J[w:(-c..Q6r]

C f+ p ^ - 2 ' (^ -y)^+ p»(t. z, (-^ -y)^.
JKso: K, -yer} J;^o: (-^ -yer}

It is then easy to check that there is a Feller continuous time-homogeneous Markov family
{P?,2: {s, z)e[Q, oo)xE} of probability measures on C([0, oo), E) having P,(t, z, F) as
its transition probability function. Furthermore P^e^s, z) tor each
(s,z)e[0, oo) xE. Finally, if a 6 { 0 , l } , then it is clear that PS o{x(y,)=y(y ))=a
e>0. If a6(0,l), set /^,y=a[^| and f^.-Q=-^\ for ^6R1. Then

J/K)P.((,z,<fO=/(z) for all (t,z)e[0, oo)xE, and so (f(z(t)), ^,, PS,o) is a
martingale. In particular

ae PS, o (x (Ye) = V (Ye)) - ae PS, o (x (Ye)) =-y (Ye)) = 0

andsoPS,oOc(Ye)=}'(Ye))=a.

4° sfeRIE - TOME 13 - 1980 - ?1



ON EXTREMAL SOLUTIONS OF MARTINGALE PROBLEMS 135

To prove uniqueness, it is enough for us to show that if {P^: (s, z)€[0, oo) x E} is any
Feller continuous, time-homogeneous strong Markov family such that Ps,ze(^L (s' z) ̂ or a^
(s, z)e[0, oo)xE and Po, 0(^1)== ̂ (Vi^^ then A,=A^ on D^nC(E), where A,
and A^ are, respectively, the strong generators of {P,^ : (s, z)e[0, oo) xE} and
{ P^ : (5, z) e [0, oo) x E } . The first step is to show that if (Xg = Po, o (^ (Ye) = ̂  (Ye)). then

oCg=a for all e>0. But a simple argument shows that:

aE- =aE. (s^ + s^s,"6-)^1 -aEl)s^sTa6• =ael-

We next show that

Po,o^(ye)=} ;(ys)=£)=Po,o^(ys)=} ;(ys)=-£)=a/2
while

Po,o(^(ys)= -^(ys)=£)=Po,o(^(ye)= -^(ye)= -£)=(i-oc)/2.

To this end, note that (x(t)-{-y(t), M^ Po,o) ls a martingale and so

o=EPOO[x(ye)+} ;(ys)]=2£Po,o(x(ys)=y(ys)=£)-2£Po,o(^(ys)=^(ys)=-£)

and clearly this shows that

Po,o^(ys)=} ;(ye)=£)=Po,o(^(ye)=}7(ye)=-£)=a/2.

The proof of the other equality is similar. Using Dynkin's theory, one can now easily show
that D^ n C(E) consists of/eC(E) such that the functions/^ (x)=/(x, ±x) are in C^ (R1),

lim /^(x)=0,and
\X\ -> 00

,. 1^,_ ,. 1 / A(e)+A(-e) , „ /-(e)+/-(-e) Yhm -/±(x)=hm -2 (a————.————+(l-a)————5————-/(0)1;
x_0 2 EiO E \ z L /
XT-0

and that for fe D^ n C (E):

l/2/+'(x) if 2=(x, ±x),

As/(z)= lim Ifo/-(£)+A ̂ ^ +(1 -a/-(e)+/- ̂  -/(O)) it z=0
ei0 £ \ 2 2 /

Q.E.D.

LEMMA (4.20). - For each O^a^l the family {P?,^ (s, z)e[0, oo)xR 2 } consists of
extreme elements of ^r^.
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Proof. — Because P?,2=P^®^(.) P^^.o ̂ d all elements of^ (s' z) coincide on M^, it
suffices for us to show that P^^oeext(^^(0, 0)). Furthermore, since
P5^(z(OeE, r^0)=l, zeE, we will know that PS,oeext(^(0, 0)) once we have shown
that for all/e DA. n C(E) and t^O:

4:/(z(r))-/(0)~ A^f(z(u))du
J o

is in L1 (Po,o) closure of

f r'2 i
^ XA((p(^2))--cp(z(fi)) - L(p(z(M))riM: 0^^<r2^^ cpeC?(R2) and Ae^^ ^
1 J ti )

We will do this by proving that

(4.21) /(z(t))=/(0)+ F 6f(u)dx(u)-^ S 1

J o J o
(4.21) /(z(t))=/(0)+ r Qf(u)dx(u)+ f A,/(z(u))du (a.s.. PS,o)

J o J o

where
g f/',(z(r)) if x(t)=y(t),

/ v / V'-(z(r)) if x(t)=-y(t)

and/^ are as in the proof of Lemma (4.19). [Recall that x(.) under P5,o ls a Brownian
motion with respect to {j^: t^O} and so the stochastic integral in (4.21) is well-defined].

The proof of (4.21) is an easy extension of Ito's formula. In fact, since
/+ eCi^NJO}), it is clear that for all n^l and e>0:

f(z(^ A r))-/(z(c^ A 0)

/•T^ A t f*X^ A (

/sgn(x(a;).y(a;)) (^ W) dx (ll) + 1 /2f^^y^ (x (u)) dli
J a^ A t J CT^ A t

where T^==O and

^=inf{^^-i: |x(0|=£}, n^l.
T^=inf{^a;:x(t)=0}, n^l .

NJO
Let NJr)=max { n ^ l : o^r}. Then since (J [x^-i , a y s { u ^ r : |x(u))|^e} and

Epso H[o^(\x(u)\)du ->0 as e i0 ,wehave

N.(0 ^ A t /•(

E ^(^ay.^ay)^^))^^)-^ 6f(u)dx(u)
1 J (T; J O1 J (T: J O
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and

^f p" l/2/4^,^,,^(x(M))^-. r AJ(x(u))du
1 J ̂  J o

in L^PS.o). At the same time

N,(0 N, ( t )+ l

/(^(0)-/(0)= E (/(Z(T^ A r))-/(z(a;;))) + E (f(z(^ A O)-/(Z(T^-I A 0).
1 1

Thus, we only have to show that the second sum on the right tends to zero in L2 (P5,o) as

e [ 0. Since each summand in this sum is dominated in absolute value by e, we are left with
proving that

H^-0 [FE (f(z(^))-f(z(^^)))\2^ -^ 0.

But

r/Nc(o \2-|
E''00^ E (/^(^-/(z^-i)))) =£^-[N,(0]

+2 ^ Epaoo[(/(z(oe„))-/(z(T^l)))(/(z(aeJ)-/(z(T,-,))),a^t]
l^m<n

and the second sum on the right can be written

S E^rr" A,a/(z(M))^(/(z(a,))-/(z(T,_,))),T£„_^r^
l^w<n Ut;-, J

- E Epaoo[(/^(^))-/(^T£n-l)))(/(z(a^))-/(z(T,-l))).T£„-^t<aeJ
\^m<n

^Cte^P-KNJ^^+e^^^N^r)])

since E^-^a^-T^-i |̂  J==£2.

Thus all that we need to know is that Um E11"00 [(sN^t))2^ oo. But eNJO1^010^^^
eiO

the local time of x{.) at 0 up to time r; and so we are done.

Q.E.D.
To summarize, we have now shown that every time-homogeneous strong Markov

selection from Jf^ is one of Ae processes {P^: (s, z)e[0, oo)xR 2 } and that for each
O^a^ 1 the process {P^: (5, z)e[0, oo) x R 2 } is Feller continuous and consists of extreme
elements from Jf^ •
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Section (5)

In this section, which begins the second part of our paper, we first study the transformation
of continuous martingales under changes of time, and derive from there the main properties
of a particular class of continuous martingales, called pure martingales.

(0, M, P) is the basic probability space, endowed with a right-continuous, (M, P)
complete, filtration (^1)^0 [which may be changed, in the sequel, into (^\), or
(^t) . . . ]. (9 (M.), resp.: ̂  {M.) denotes the optional, resp.: predictable o-field on Q x IR + ,
associated with (J^\).

In agreement with N. Kazamaki [25], we define a {M ̂ -change of time as a family T == (r^o
of finite valued, (^) stopping times such that, for almost all co, the trajectory T.(o))~is
increasing and right-continuous.

Given a (J^,) change of time T=(T(), and a ^®^((R +) measurable process (X^o, we
denote by T(^.), resp.: T(X), the filtration (^), resp.: the process (X^).

IfX=(X^o is a (real-valued) process defined on (Q, M, P), ^(X)=(^(X)^, t^O) is the
smallest right-continuous filtration, composed of(^, P) complete a-fields, with respect to (in
short: w.r.t.) which the process X is adapted. A e^(X)-change of time is also called a
X-adapted change of time. A (^) change of time T=(T() is said to be X-continuous if,
outside an evanescent set, X is constant on each interval [T,-,TJ, and on [0, To].

In the following, X is always a continuous (M^ local martingale with Xo = 0. The interest
of X-continuous changes of time appears in the next.

PROPOSITION (5.1). - Let T==(T() be a {M^ change of time. The following assertions are
equivalent:

(i) T is X-continuous;
(ii) T(X) 15 a T(^() local continuous martingale, with increasing process T«X».
Moreover, if Y 15 another continuous {M^ local martingale, such that T is X- and Y-

continuous, the only T {Ji ^-adapted, continuous process with bounded variation, associated to
the product T(X)T(Y) 15 given by

(5.2) <T(X), T(Y)>=T«X, Y».

The main ingredient in the proof of Proposition (5.1) is the following

LEMMA (5.3) (Getoor-Sharpe [22]). — X and < X > have the same intervals of constancy,
almost surely.

Proof of proposition (5.1). - (i) => (ii). - Kazamaki proved in Proposition 1 of [25] that ifT
is X-continuous, then T(X) is a local martingale w.r.t. T(J^).

From lemma (5.3), T is also < X ^continuous; therefore, T is Y-continuous, where
Y^X^X^so that, using again Kazamaki's result, T (Y) = (T (X))2 - T « X »is a T {M.)
local martingale. As T«X» is a continuous, T(^J adapted, increasing process, this
proves that

<T(X)>=T«X».
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(ii) => (i). — In particular, T « X )) is continuous, i. e.: T is < X ^continuous; therefore,
from lemma (5.3), T is X-continuous.

To show (5.2), we need only remark that if T is X- and Y-continuous, it is (X+^-Y)-
continuous for any ^e(R. Thus, from our previous results, we get:
< T (X + ̂ Y) > = T « X + ̂ Y ». Developing w. r. t. ̂ , we obtain (5.2).

We investigate now the effects of X-continuous changes of time on stochastic integrals
w.r.t.X.

PROPOSITION (5.4). — Let X be a continuous (M^ local martingale, with Xo = 0, and T === (T()
a X-continuous change of time.

p
IfC is a (^() optimal process such that: V t, C^d < X >, < oo a. e., we denote by C. X

J o

the stochastic integral C^dX,.
J o

Then, the process T(C) is T(^ ) optional, (TC).(TX) 15 well defined, and

(5.5) T(C.X)=(TC).(TX).

Proof. — 1) If C is right-continuous, and (^) adapted, T(C) is right-continuous, T(^J
adapted, and consequently T(^ )-optional. Thus, by the monotone class theorem, ifC is
(J^) optional, T(C) is T(^J optional;

2) Suppose (y,)^o ls a continuous increasing process, not necessarily (^\) adapted, but
such that T is y-continuous. Then, for any positive Borel function u: [0, oo[ ->• R + , one has

Vt, p MYs=r ^(yj.
J o J o

which, in short, may be written as

(5.5') T(K.y)==(Tu).(Ty);
p

3) As a consequence of 2), and of Proposition (1.1) (ii), the finiteness of C^ d < X >,, for
J o

every t, implies that of (TC)^<TX>,, for every t, and so (TC).(TX) is well defined;
J o

4) To prove (5.5), we only have to show that:

I^\T(C.X)-(TC).(TX)>=0

[remark that, from lemma (5.3), T is < C. X > — , and thus (C. X)-continuous; consequently,
Proposition (5.1) may be applied to T(C.X)]. Developing I, one gets

I=<T(C.X)>-2(TC).<TX.T(C.X)>+(TC)2 . (T«X»).
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From formula (5.2), we deduce

^T^C.X^^TQ.TKX.C.X^+^Q^T^X;))

=2(TC)2.T«X»-2(TC)2.T«X»=0. D

The above preliminaries on changes of time will play an important part in the
sequel. But, even now, they are helpful to sketch a proof of the Dambis-Dubins-Schwarz
(D.D.S., from now on) result already alluded to in the introduction and to draw several
conclusions from it.

So, let X be a (^;) continuous local martingale such that Xo=0, and
< X > ^ = o o a.e. Let T , = i n f { 5 / < X > , > r } . T=(T() is a (^,) change of time, which is
X-adapted [as the process < X > is adapted to M (X)], and even X-continuous, as
T«X»(==r [then, use lemma (5.3)]. As a consequence of Proposition (5.1),
T(X) is a T(^/) local continuous martingale with increasing process t, i.e.: a
T(^)-Browman motion, from Paul Levy's theorem. We shall call P^T^X) the D.D.S
Brownian motion attached to X, and we note P = p (X). Moreover, as T is X-continuous, we
also have

(5.6) X,==p^.

The effects of changes of time on the D.D.S Brownian motion are studied in the next

LEMMA (5.7). — Let X be a continuous (M^ local martingale, with XQ =0, and < X > ̂  = oo
a.e. Let R=(p()^o be a {M^ change of time, which is ^'continuous, and such that
p^=ooa.e.

Then, one has

(5.8) P(R(X))=P(X).

Proof. — Note that, from Proposition (5.1), Y=R(X) is a R(J^.) continuous local
martingale, with < Y > = R « X », and so, from formula (5.6):

^(=PR«X»,==P<Y>,'

where p = p (X). From this equality, we finally deduce: p (Y) = p. D
In the D.D.S result, we may regard «X\) as a (e^) change of time, since:

V r : < X \ = i n f { 5 / T , > r } . Thus, in lemma (1.4), we have composed changes of time.
We shall need the following general result concerning this situation.

LEMMA (5.9). - Let T == (T() be a (̂ ,) change of time, and S == (a^) be a (̂  ) change of time.
del'

Then, ST=(r^ ) is a {M\) change of time, and

(5.10) V r , (^),,=^.

The first part of the lemma has been proved by Kazamaki ([25], lemma 2) and here is a
sketch of the proof of (5.10): we recall that if(^,)^o is a "usual" filtration, and u a finite (^)
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stopping time, any (^J measurable random variable may be expressed as: Z^, where Z is a
(^t) optional process. Suppose now that Z is a (^) optional process. Then,
Z^ =(ZJ^. Moreover, (Z^ )^o ls a (^x,) optional process, and this proves:

(5.10') <^(^Jo..

Conversely, a monotone class argument shows that any (^) optional process may be
written as:/(t; T( , co), where/is a S(R +)00 ̂ (^.) measurable function. This implies the
equality

(5.10") (^,)^=^va{a,}.

Thus, to prove (5.10), one needs only show that o-( is M^ -measurable.
This last result is easily obtained, using the dyadic approximations from above of c^, and

the right-continuity of (T(). D
We are now ready to recall the definition of a pure continuous martingale which

is—again—due to Dubins and Schwarz [20].
Let (X() be a continuous (J^) local martingale, with Xo =0, and A= < X > its increasing

process, such that k^ = oo a. e. Note P the D.D.S Brownian motion attached to X, and
T(=inf{s/A,>(}(^0).

Remark (5.11). — It is worth pointing out here that, with the previous notations, the
following equality always obtains

(5.12) Vr , jr(X)^=^(P;T),.

The inclusion M (P; T)( ̂  M (X)^ is obvious; conversely, as M (X)^ = lim \ { M (X)^ ^ ) _ }, one
ei0 ' E .

needs only show: ^(X)^_ ^^/(P; T)(, for every t. The o-field ^(X\^_
is equal to e^(X)o v a { X ^ ^ , s^O; T(} up to P negligible sets. Moreover,
one has

^(S A T,) = Pt 1(T,<S) "^^S 1(S^T,)-

Thus, all reduces to showing that for s>0, X, 1^^ is J^(P; r) ̂ -measurable, which follows
from the equality

^l^r^ I™ P(A,-(^) l(A;_<^/^r)
(w-» oo)

and the fact that (A() is a J^(P; r)-change of time. D
Now, by definition, X is pure iff it satisfies

(5.13) ^(X),=^(P),,

a condition which is easily shown (see [32] for example) to be equivalent to

(5.13') Vt . M{X\=M{^\
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or to
(5.13") [compare with (5.12)] A == (A() is a M (P)-change of time.

Also remark that, if ^=^(|3), and X is pure, then

(5.14) V r , ^(X),=^A,-

The importance of pure martingales originates from the following remark, made initially
by Dubins and Schwarz [20]: if ̂ ig the (convex) set of probability measures on (Q, M (X) J
under which X is a continuous local martingale (w. r. t. { Ji (X)J), and P is an element of^0

such that X is pure (under P), then P is extremal in <^loc.

[Nota bene. — In the following, we shall rephrase the property "P is extremal in ^-°0" by
the slightly less correct expression: "X is extremal", without mentioning the ever present
probability P . . . ]

locWe now sketch the proof of the Dubins-Schwarz remark: as (€- is convex, it is obviously
sufficient to show that if Q belongs to<^100, and Q ̂  P. then: Q = P. As Q is equivalent to P,
the increasing processes ofX under Q and P are indistinguishable as are, therefore, the D.D.S
Brownian motions attached to X under P and Q. Thus, under Q, ^(X)oo==^(P)oo
obtains. Finally, the Brownian distribution being unique, one has: P=Q.

Conversely, as already indicated in the Introduction, a continuous local martingale X,
with Xo ==0, and < X > ̂  = oo a. e. need not be pure to be extremal (see Dubins-Schwarz [20]
and Yor [32] for counter-examples).

We now discuss some examples of pure martingales:
— it has already been remarked in [32] (p. 193) that if(Z() is a continuous local martingale,

with Zo =0, < Z > ̂  = oo a. e, and < Z >(= a(Z,)ds, with a: R -> R + \ { 0 }, Borel, locally
J o

bounded, then Z is pure. This remark is, in fact, at the heart of the powerful method of time-
substitution, used—for instance—in Examples (4.1) and (4.12) of this paper;

— we have also tried to study the purity of stochastic integrals

X?= | h(s,w)dB,,
J o

with (B() a real-valued Brownian motion, and he^(^(B)) satisfying h2(s)ds<oo for
J or°°finite t ' s, and h2 (s) ds == oo a. e. It is already very difficult to decide, in general, whether

J o
X^ is extremal or not; nonetheless, the following partial result is easily obtained:
(5.15) if h is strictly positive, except possibly on a Lebesgue negligible set (which may
depend on co), then X^ is extremal.

Indeed, as
/ A / yh \ ( * t

./^S ^ B,-f
V <lt J o

^J——^- and B ,= | l /M(X?) ,
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one sees that: M (B) = M (X'1). From Ito's theorem, every M (X^) martingale may be written
as c+f^^B^c+r^i^x?),

J o J o [ ^ s )

with ue^ (Jy (X^)) and ce tR.
So, X^ possesses the "predictable representation property", and is, therefore, from sections

(1) and (2) of this paper, extremal.

Remark. — If in (5.15), one replaces the strict positivity ofhby'.h^O, then X^ may not be
extremal. For instance, if T is a non-constant, integr'able, Brownian stopping time, and
^ def

^= liT.oc[(5),then

Y^xf^B^-B^l^

is not extremal [indeed, T=inf{ t/Y^O} is a ^/(Y) stopping time, but T cannot be
expressed as a constant plus a stochastic integral w.r.t.Y].

def C '
Another—certainly more interesting—example is that of M= I(Q oo)(B,)^Bs, which

J o '
the authors have shown to be non-extremal ([33]). In fact, there are even purely
discontinuous ^(M)-martingales. Q

Once (5.15') has been obtained, it is natural to study, for h>0 (except possibly on a
Lebesgue negligible set), the purity of X^*. Apart from the obvious case where h is
deterministic (then, X91 is pure, no matter h is positive or not!), we have only been able to settle

rthe case, which we partially discuss now, of one other type of martingale, namely: B^rfB,
J o

(n odd) is pure (the proof of this will be published in [33]). Remark that this martingale may
P /T' \be written as |B,|"{sgn(B,)^B,}, and since ^(|B|)=ejq sgn(BJrfB^ ](see, for
J o \J o /

example, [32]), B; dB, is of the form Xh, with h (s, co) = | B, (oo) |", the "basic" Brownian
J o

^< \
motion being here sgn(B,)rfB^ .

o /
An open question. — Does there exist a M (B) predictable process h > 0 (except possibly on

ra Lebesgue negligible set), with h2 {s)ds infinite iff t= oo, such that X'1 is not pure ? D
J o

We now come back to the general study of pure martingales.
In the following proposition, we show that pure martingales are left stable under "nice"

changes of time.

PROPOSITION (5.16). — Let M=(M()^O be a pure continuous (^) local martingale, with
Mo==0, and < M > o o = o o a.e.

Then, yT=(T()^o ;s a M-adapted, and M-continuous, change of time, increasing to + oo 05
t f + oo, N = T (M) 15 a pure local martingale.
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Proof. - From proposition (5.1), N is a T(^) local continuous martingale, with
increasing process T « M ».

From lemma (5.7), the D.D.S Brownian motions attached to M and N are equal. Denote
this (common) process by p, and ^=^(P).

So, to prove that N is pure, we need only show, from (5.13"), that T« M »is a ̂ -change
of time. But, as M is pure, < M > is a ̂ -change of time; from (5.14), T is a (^<M>) change of
time, and, from lemma (5.9), T« M» is a ^-change of time.

Remark. — For a converse to Proposition (5.16), the reader is invited to look ahead to
theorem (7.3), which gives a new characterization of pure martingales.

The following statement, suggested to us by L. Dubins [21], is also a characterization of
pure martingales; it can be considered as an extension of the D.D.S theorem, when one
replaces the Wiener measure (i.e.: the Brownian distribution) by pure distributions (i.e.:
distributions of pure martingales).

THEOREM (5.17). —Let P be the distribution of a continuous local martingale X, such that
X o = 0, and ( X ) y = oo a. e.

Then, P is pure iff, for any local continuous martingale M, defined on some filtered
probability space (0', M ' ' , (^i), P'), with MQ=O, and < M > o o = o o a.e., there exists a
M-adapted, and M-continuous change of time L=(X,()^() such that the distribution
ofL(M)isP. [WenoteP=J^((M^o)].

Proof. — 1) Suppose the condition holds. It holds in particular when M is the real-valued
Brownian motion (B^o> with Bo=0.

Let R=(p()^o be a B-adapted, and B-continuous (this amounts here to be continuous,
from lemma (5.3), and the fact that < B > ( = t ) change of time such that
P== <^((Bp)^o). Then, from Proposition (5.1), Y=Bp is a continuous local martingale
w. r. t. ^(Y), and < Y > = p. The D.D.S Brownian motion attached to Y is obviously B,
and from (5.13"), Y is pure;

2) Conversely, suppose P is a pure distribution. By definition, P= ^?(Y), where Y is a
continuous local martingale, which may be written as Y=B , with B a Brownian motion,
and R=(p , ) ,>o a B-adapted, and continuous, change of time.

Now. let M be a continuous local martingale, defined on a filtered probability space
(Q',-^',^;), P'),with Mo=0,and < M > ^ = o o , P'a.s.

Note A ( = i n f { 5/< M >,> t} {t^Q). Then, from the D.D.S theorem, (P(=M^ , (^0) is a
real valued Brownian motion.

By "transport" of the B-adapted, and continuous, change of time R=(p()^o on the
probability space where M is defined, there exists a p-adapted change of time R / = (pO^o suc^
thatP=^((p^^).

Now, we may write: V t , M^ ,=Pp; , and finally, we only need to show that (Ap^o is a
M-adapted, and M-continuous change of time: it is M-adapted, as a consequence of lemma
(5.9), because (A() is a ^(M)-change of time, and R'=(p0 is a ^(P)-, and therefore a
{e^(M)^ }-change of time; it is M-continuous, as (A() is < M >-, and thus M-continuous, and
p ' i s continuous.
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Section (6)

The aim of this section is to obtain a general method for the construction of extremal, but
not pure continuous martingales. Some examples are then developed, making use of certain
stochastic differential equations having only weak solutions. Our main tool will be the
characterization of extremal martingales given in the next theorem; there, X is a continuous
local martingale, with Xo = 0, < X > ̂  = oo a. e., P is the D.D.S Brownian motion attached to
X,andT(= in f{s /<X>,>^}(^0 ) .

THEOREM (6.1) ([32], th. 2). — X is extremal iff^==X^ has the (predictable) representation
property w.r.t. the filtration {^(X)^}, i.e.: every {^(X)^} (local) martingale M may be
written as

M,=c+ F <D(s)ri[3,,
J o

where ceR, and <D is a {^(X)^ } predictable process such that:

rVt, <l>2(s)ds<oo a.e.
J o

For completedness, we sketch the proof of this result: it has been shown in the first part of the
paper [see sections (1) and (2)] that X is extremal iff it has the predictable representation
property w.r.t. {^(X)J. This is equivalent to the following: for every \eL2(^(X)^),
there exist ceR, and 0 a predictable process w.r.t. ^(X), such that

/r00 \ r°°
E a)2(s)ri<X>J<oo and Y=c+ ^(s)dX,.

\J o / J o

But, if this property is true, we have, from Proposition (5.4), as T^ = oo,

f°° 0(s, co)rfX,== [°° O)(T,(O. (o)dp,= [°° v|/(s, o))^,
J o J o J o

where v|/ is the L2 (n, ds, riP)-projection of <S) (r., .), and n=^(J^(X\).
The converse is also easily obtained from Proposition (5.4), once the following remarks are

made:
(i) « X >() is a continuous {^(X\ } change of time

and
(ii) if v|/ is a Ti-measurable process, then: (t, co) -^vl^X)^®), co) is predictable

w.r.t.e^(X).
Remark. — Here is a different proof of theorem (6.1). — "X is extremal" means, by

definition, that P is an extremal point of the convex set of all probabilities Q on (Q, M (X) ̂ )
for which X is a local martingale. Then, with the help of Proposition (5.1), this is equivalent
to the extremality of P among all probabilities Q (<^ P on M (X) ̂ ) such that P is a (M (X\)
martingale.
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Finally, from part I of this paper, this is again equivalent to the predictable representation
property of P w. r. t. (^ (X\) under P. D

We now develop the promised "constructive" method. Let (Q, ^, (^), P) be a given
"usual" filtered probability space such that:
(Al) Ll (Q, ^ ̂ , P) is separable;
(A2) there exists a (^) Brownian motion (P()^() (^h Po==0)-

Dellacherie and Stricker ([36]) have remarked that the assumption (Al) is equivalent to the
existence of an increasing process (which is far from unique!) (r^o such that ̂  = M (r .)<, for
every t. Of course, (T() can be chosen to be strictly increasing, continuous, and T^r.

We will always assume that these properties are satisfied.
Now, define At = i n f { s / T s > ^ } (t^O). From the inequality: A^t, and Doob's optional

sampling theorem, we deduce that Xy=P^ is a (^) continuous martingale, with increasing
process < X > = A , and associated Brownian motion P.

The following theorem is devoted to the discussion of the extremality and/or the purity of
this martingale X in terms of P. Although quite easy to obtain, these results will be very
helpful in the sequel of the paper.

THEOREM (6.2). — X, defined through the previous construction, satisfies one, and only one,
of the following properties:

(i) X ispureiff:^W^^^(1);
(ii) X ;5 extremal, but not pure iff: P has the predictable representation property w. r. t. (^)

^r^(p)^^,;
(iii) X is not extremal iff: P does not have the predictable representation property

w.r.r.(^).
Theorem (6.2) is a simple consequence of theorem (6.1), once one remarks that

(6.3) V^ , ^=^(X)^.

Indeed, the obvious inclusion M (X\ ^^(T.)(=^( is verified for all t ' s .
Conversely, from (5.12), one has: V t, J^(X\ =e^ (P; T)(C^(T.)(=^(, as P is adapted to

(^,). (6.3) follows. D
The assertion (ii) of theorem (6.2) provides an easy tool to construct extremal but not pure,

continuous martingales. We examine now how it may be applied in the setting of one-
dimensional stochastic differential equations: let Q^. be the set of all continuous maps:
w : R + ^ [ R , and define ^t=<j{w->w(s); s ^ t } ; suppose b: (s, w)->b(s, w), and
a: (s, w) -> a (5, w) are two (^) predictable, real-valued, uniformly bounded applications,
and moreover, that a never vanishes. On the other hand, suppose that, on a given filtered
probability space (0, M, (^), P), there exist a real-valued (^) Brownian motion (P()^() '

(1) It may be worth recalling here that all considered cy-fields are supposed to be (^^, P) complete, and so, no
more completion operations are needed.
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with Po =0, as well as a (^) adapted solution (Y^o to the stochastic differential equation

friY,=fc(5, Y.(coN5+a(5, Y.(O)NP,(O)),
[Yo=^(eR).

The hypothesis: cr (s, w)^0 for all (5, w ) ' s implies that (P() is {^(Y)J adapted, as:

P,== | (l/a(5, Y.(co))){rfY,-fc(5, Y {^))ds}
J o

[consequently, (P() is a [^ (Y)(} Brownian motion].
Conversely, if Y is adapted (resp.: is not adapted) to { ^(P)( }, (Y,) is said to be a strong

(resp.: a weak) solution of (E).
In accordance with the construction preceding Theorem (6.2), we define (for simplicity) the

process
1 f Y 1r jTt= )J o C ^TTCT fc

which is strictly increasing, continuous; it satisfies: T^r, as well as ^(Y)(=^(T.)(, for
every t. Let A,=inf{.s /T,>r} (r^O), and finally note: X(=P^, which is, once again,
a {^(Y)^J continuous martingale.

Before discussing the purity and/or extremality ofX, we still need to introduce the set Tig of
the distributions [on (Q.c, ̂  oo)] of all continuous processes (Y()^() , defined on any probability

rspace, and such that: \o=y and Y^- fc(s, Y.(co))rfs is a {^(Y),} martingale with

increasing process CT 2 (s, Y. (co)) ds.rJ 0

Now, we have the following

THEOREM (6.4) (We use the previously defined notations). - X satisfies one, and only one, of
the following properties:

(i) X is pure iff: (Y() is a strong solution of (E);
(ii) X is extremal, but not pure iff: (Y,) 15 a weak solution of (E), but its distribution is

extremal in Tig;
(iii) X 15 not extremal iff the distribution of (Y,) f5 not extremal in n^.

COROLLARY (6.5). — Suppose Tig consists of only one probability. Then, X 15 extremal, and
it is pure iff (Y() 15 a strong solution of (E).

The corollary follows immediately from the theorem, so that we need only give a
Proof of theorem (6.4). - (i) is obvious; to show (ii), and (iii), we need only prove that X is

extremal iff the distribution of (Y() is extremal in Tig. But, from part I, the distribution of
(Y,) is extremal in Tig iff the martingale

i.=Y,- r
J o

M,==Y(- | fc(5;Y(o)))ri5
0
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has the representation property w. r. t. { M (Y)( }. As

M,= f a(5;Y(co))rip,,
J o

and a(s, w)^0, for all (s, w)'s, (M() has the representation property w.r.t. {^(YU iff p
has it.

The proof is now completed by an application of theorem (6.2). D
Remark (6.6). - Another proof of theorem (6.4) can be given, which avoids the use of the

representation property, as one may also see directly that X is extremal iff the distribution of
(Y,) is extremal in TCg. D

Now, Theorem (6.4) tells us that to exhibit some extremal, but non-pure continuous
martingales, we only need to give some examples of equations (E) which do not possess strong
solutions, and then pick an extremal point in Tig.

The first (and easier) example of this is:

(Ei) ^Y,=sgn(YJ^p,,
Yo=0.

Indeed, if on the given probability space, there exists a solution to (Ei), then (Y() is a real-
valued Brownian motion, as < Y, Y >, = t; therefore, n^ consists only in the Wiener measure.

On the other hand, for every t, one has: ̂ (p),=^( [ Y |),, so that (Y() is always a weak
solution.

Finally, for our purpose, we need to construct a solution to (Ei), and (luckily!) p does not
have to be given a priori. So, simply take a real-valued Brownian motion (B,), with Bo = 0,

def p
and P(= sgn(BJdB,. Then, obviously, (B() is a solution of (Ei).

J o
It had already been remarked in [32] that the martingale X, = p^, where (A() is the inverse

process of „-[•(:
J o \A^nwr''

is extremal but not pure. Q

Remarks (6.7). - (a) Leaving aside the theory of stochastic differential equations, and
looking again at theorem (6.2), we see that, more generally than in the previous example, any

stochastic integral B2 = z,dB,, with z a M (B)-predictable process, valued in { ± 1}, such

that ̂ (B2)^ ̂ (B)^ will provide us with a real-valued Brownian motion which has the
representation property w. r. t. {^(B),} although verifying the previous strict inclusion;

(b) Note that (E^) is closely related to the last example in section (4). D
The "sign" example may be considerably generalized: let u and v be two positive real

numbers such that: 0<u<v< oo, and (p(5, oo) a M (B)-predictable process, taking only the
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values ± 1, and such that

(p (s, co) 1 ,̂ „] (s) = sgn (BJ 1^ ̂  (s).

PWe claim that P?= (p(s, co)riBs satisfies the strict inclusion
J o

(6.8) ^(p^c^(BL,

Indeed, suppose that the equality ^(^)ao=^Wao holds.
As, for every t, (??+/,- P?, h ̂  0) is independant of M (B),, the a-fields M (P^L and M (B)(

are conditionally independant, given ^(P^.
Thus, for every t, ̂ (P^^^B^n^CP^oo. Now, our supposition implies

(6.9) V t , ^(P^=^(B),.

On the other hand, for any t such that: 0<u<t<v, one has

P?-P2== f'sgn(B,)^B,.
J "

Thus, for such fs, one gets

^(P^^B^va^ sgn(B,)^B,;M^^^^.

First, Tanaka's formula, and then, Trotter's theorem tell us that

|B,| = |B,| + rsgn(B,)riB,+{L,°-L2},
J "

and

L?~L°= lim ^f'^ldB^e).
(e -* 0) 2 £ J u

Finally, ^(P < p ) (^^(B)yV<J{ |BJ; u^h^t], but this contradicts (6.9) since the random
variable: sgn ( B y ) is certainly not measurable w.r. t .

^ (B)^va{ |B^ | ; u^h^t}.

Therefore, our initial supposition was wrong, and (6.8) is true. Q
A second (and certainly deeper) example of a stochastic differential equation not possessing a

strong solution is due to TsireFson [29].
TsireFson showed that if one takes CT = 1, and

^ i^ ^ ^ ^ [w(tk)-w(tk-l)~}, (^(6.10) b(s,w)= ^ ——,——,————^.^. i ]^ '
fe6C"N)|_ h-h-i J
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where { 4 }^_^ is a sequence of real numbers strictly decreasing from 1 to 0, as k [ - oo, and
[x] is the fractional part o fxeR, then the equation (E;,) associated with this particular pair
(o, b) has no strong solution; the existence of a weak solution follows from Girsanov's
theorem, which also shows that n^ consists of precisely one probability.

Remarks (6.11). - (a) We recall here that if, instead of TsireFson's drift, one takes
b(t, w)==b(t, w(r)), with b(t, x) a bounded, Borel function defined on R+ x R, Zvonkin [34]
proved that any solution of (E) (with o= 1) is strong.

(b) Apart from TsireFson's original proof showing that (£2) has no strong solution,
V. Benes [17] has given a measure-theoretical one, as well as several extensions of
TsirePson's example. A proof due to N. Krylov appears in Lipcer and Shyriaev's book
[28]. Although very much inspired by Krylov's, the proof we give below does not proceed
"par Fabsurde", and provides some additional information, n

Thus, suppose that (P() is a (^) real-valued Brownian motion, and (Y() is a (^) adapted
solution of

?2) rfY,=fc(5;Y.(co))r/.s-^/P,,
Yo=0.

where b is TsireFson's drift [which is given by (6.10)]. We now introduce the following
notations

Y,-Y, p,-p,
Th=————^ ^=——^ tor te]t,.,,t,]

t—tk-i ^-4-1

and, to simplify again: r|fe=r|^; £ k = £ ^ , for ke(-N).
Remark that, by hypothesis, one has, for any ?e]^_i, ^]:

Y»-Y.-.=fYtt-~Ytt-2^^-^-l)+(P,-P,J,L ̂ -i"'1^-^ J
so that

(6-12) r|,=h,.J+£, (re]4-i,rj).

and, in particular

(6•12/) ri ,=hfc-J+£, (fee(-^)).

The weakness of(Y,), as a solution of(E2), will be a fortiori obtained, once the following is
established.

PROPOSITION (6.13). - For any re]0, I], [r|J is independant of ^((3L, and is uniformly
distributed on [0, 1].

Proof, - (a) For any ke(-^), set ^=E(^). From (6.12'), one has:
^E^-1^). As (P<) is a {^(Y),} Brownian motion, the variables r^-i
and £fc are independant.
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Therefore

This implies

and by iteration,

^==^-lE(f2m£t)=^-^-27t2/(tt-tk-l).

iJj^-J^2,

\dk\^\dk-n\e~2n2n for any ne^l, ^-27l2n——^0.
1 1 1 1 (n-^oo)

Thus, for any k e (- N), ̂  = 0.
(b) For any couple (t, t ' ) of real numbers such that: Q ^ t ^ t ' , let

^/^{P.-P,;^^^}.

For any ke(-^J), n e f ^ J , one has

E(^^t|^.„,4))=^wetE(^t-ll^-.^)-e2m(^

Again, r|k-^ is independant from the process (P^_^-P^, M^O), and therefore from
^ ^ ^). This implies that

E^^/^.^^^^^-^-'-^^-^O.

Now, letting n increase to + oo, one gets

E^^/J^P^O.

Moreover, as ^.oo) and ^Wt, are independant, one finally gets

E^/J^PU^.

(c) The arguments we have just used for the random variables (27cr|fc)^(_^ are also valid
for (27ipr|fc)^_^, for any peZ\{0}.

Therefore, for any k e (-1^), and any p e Z\{ 0 }. one has:

E^^/^pL)^.

This exactly proves, from Stone-Weierstrass theorem, the wanted result for each of the
variables ([rij)^(_^.

(d) With the help of (6.12), one has, for any re]4-i. 4], and any peZ\{0}:

E{e2inplr}l]/^(^)==e2inp£t E^^V^PU^,

which finishes the proof. D
The following corollary provides us with a lot of (complicated!) stochastic differential

equations which have no strong solution.
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COROLLARY (6.14). - Let c:(s, w)->c(s, w) be a (%',) predictable real-valued, uniformly
bounded application, such that c (s, w) = 0, for s ̂  1. Define d: (s, w) -> d (s, w) by the formula

d(s, w)=b(s, w)+c(s; w — \ b(u,w}du\,( s; w— b(u, w)du ),
\ J o /

where b is TsireV son's drift, which is given by (6.10).

Suppose that (y^o is a (M^, P) real-valued Brownian motion, and (Y()^ 15 a (J )̂ adapted
solution of

?3)
^Y,=^(.s:Y.(co))^+^y,.

YO=O.

Then, Y is a weak solution of (£3).

Proof, - Let P,==Y,- fc(s; Y (w))ds.
J o

[Beware: (P() is not a Brownian motion w. r. t. the underlying probability P!]. As (Y() is a
solution of (E3), we have

P,= rc(5;P.(co))^+y,(co).-J;
Consequently, for every t, one has: ^(y)(E^(P)c

Define now a new probability Q by

f r1 i r1 )
Q==exp^ - c(5; P (co))^,-- c^; P.(co))^ ^P.

I J o 2J o J

Girsanov's theorem (if necessary, look at the very beginning of section (8), or at Wong and

Van Schuppen [30], or at Girsanov [23]) tells us that p, == y, + c (s; P (co)) ds is a {M,, Q)
J o

Brownian motion.
Thus, as from the definition of (?,), (Y,) is a solution of equation (Ez) associated with

(PrUe.:

'•-!'J c
Y,= fo(5;Y.(0)))d5+P,,

J o

we have. from (6.13): V r > 0 , ^/(P)^^(Y),, where the two filtrations in question are
taken to be complete w. r. t. (^, Q), which amounts to being complete w. r. t. {M ̂ , P), as P
and Q are equivalent.

So/finally, one has: Vr>0 , e^(y)^^(Y)(. D
TsireFson's construction originated as a (negative) answer to the well-known Innovation

Problem in filtering theory. This problem is worth describing here, as it has some close
connections with our study of pure continuous martingales.
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So, suppose that, on a given filtered probability space (ft, M, (e^y), P), there exists a real-
valued (^,) Brownian motion (B()^Q, with Bo ==0.

Let (ht)^Q be a uniformly bounded (e^\) predictable process. Now define

Y^FM^+B,.
J o

In general, h is not adapted to {^(Y)(}. So, one considers (fl,), which is the {^(Y)(}
predictable projection of (^). Then, it is not difficult to see that the process (?,) defined by

Y,= (\^+P,
J o

is a {^(Y)(} Brownian motion.
Filtering theory (more exactly: Girsanov's theorem again; see lemma (8.1) for instance)

tells us that (P() has the predictable representation property w.r.t. {^(Y)(}.
The Innovation Problem consists in deciding whether: V r, ̂ (Y)(=^(P), or not (as seen

previously, Tsirel'son's example proves that the answer to the Innovation Problem is not
always positive).

We conclude this paragraph by noting that, in this general filtering setting, the martingale
X( = p^, defined above theorem (6.4) is, from the previous remarks, extremal, and it is pure iff
the answer to the Innovation Problem is positive.

Section (7)

In this section, we study the representation property with respect to different filtrations,
and obtain from there another characterization of pure continuous martingales, thus
completing section (5).

On a given probability space (Q, ̂ , P), let (^) and (^\) be two (different!) usual
filtrations such that: V r, ^S^gP\^M, and M a (^\) continuous local martingale, which is
adapted to (^).

There are plenty of examples where M has the representation property w. r. t. (^), but not
w. r. t. (^(): for instance, using the notations of theorem (6.1), if P is the D. D. S. Brownian
motion attached to X, a non-extremal continuous local martingale, then P has the
representation property w. r. t. (^(P)() (from Ito's theorem), but not w. r. t. (^(X\) [from
theorem (6.1)1.

It is also natural to ask about the converse statement: if M has the representation property
w.r.t. (^\), is it also true w.r.t. (^)?

As we shall see further on, the general answer to this question is negative. Nonetheless,
the following equivalences may be noteworthy.
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,PROPOSITION (7.1) (We use the previous notations). — Suppose that M has the
representation property w.r. t. (.^\). The following assertions are equivalent:

(i) M has the representation property w.r. t. (^);
(ii) every (^) martingale is a (^\) martingale;

(iii) every (^) martingale is a continuous (^) semi-martingale.

Proof. — (i)=>(ii). Every (^) martingale (N() may be written as N(=C+ (p^dM,,
J o

where ceR, and (p is predictable w.r.t. (^), and therefore w.r.t. (^\). So,
/ p \
[ (p^rfM,, r^O ) is a (^\) martingale, and so is N.
\J o /

(ii)=?>(iii). — As M has the representation property w.r.t. (c^), every (^) martingale,
which is — by hypothesis — a (<^\) martingale, may be written as a stochastic integral w.r.t.
M, and so, is a continuous (SP\) martingale.

(iii)=>(i). — Let N be a (^) martingale. By hypothesis, N may be written as

N(=C+ (p,rfM,+A(, with ceIR, (p a (3F\) predictable process, and A a (SP\) adapted,
J o

continuous process, with finite variation.
rThen, as M is continuous, the process [N, M]; = (p 5 d < M, M >, is continuous, and (^,)
J o

adapted. Thus, (p=rf[N, M]/d<M, M > may be chosen to be (^) predictable. So,
/ f - \

N — I c+ (ps^Ms) is a (^() continuous martingale, equal to A, a process with finite
\ J o /

variation. This implies: A=0.
Q.E.D.

Remark. — In fact, the above proof shows the slightly more general equivalence: (i') ̂ (iii'),
with:

(i') every continuous (^) martingale is a stochastic integral w.r.t . M (with a (^)
predictable integrand);

(iii') every (^) continuous martingale is a (^\) semi-martingale. Q
We still work in the setting described at the very beginning of this chapter. M may or may

not have the representation property w. r. t. (^i)' However, the following lemma shows a
fortiori that there exists a third filtration (e^) such that: V t, ̂  £ Jf^ ̂  ̂ , but w. r. t. which
M does not have the representation property.

LEMMA (7.2). - If (^() and (^) are two different filtrations such that, for every t, ̂ ^ ̂ ,,
there exists a third filtration (e^\) such that:

(i) Vr,^g^g^;
(ii) there exists at least a purely discontinuous (J^^) martingale, whose only jump occurs at a

deterministic time;
(iii) if L1 (^, P) 15 separable, L1 (^f^, P) is also separable.
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ON EXTREMAL SOLUTIONS OF MARTINGALE PROBLEMS 155

Proof. — As (^) and (J^) are different filtrations, there exists tQ>0 such that
^ ^ ̂  . Consequently, there is a r. v. h which belongs to L2 (^ ), and is orthogonal to
L2^).0

Define the process H(=hl^,p and the filtration (J^) generated by (^,) and the
process H. It is clear that ̂  =^r, •

Moreover, H is a (^f() martingale, which is obviously purely discontinuous. Indeed, all
we have to show is that for any bounded e^f-predictable process (Z()^Q, one has:

rr°° 1E Z^Hj==0.
L J o J
But. E|" f°°Z^H,1 =E[Z^]=0, as a(Zjg^- g^.

LJ o J
The properties (i) and (iii) are obviously satisfied. D
An open question. — In lemma (7.2), we exhibited a discontinuous (J^i) martingale. So, in

relation with, and in the setting of, proposition (7.1), it is natural to ask whether there exists
an example of a continuous martingale M which has the representation property w. r. t.G^),
but not w.r.t. (^), and at the same time, all (^) martingales are continuous?

Here is an example which illustrates lemma (7.2): take for (^\) the natural filtration of a
real-valued Brownian motion (B()^()» ^h Bo=0, and for (^) the natural filtration of
( |B( | , r^O) . Let to>0. Then, ft=sgn(BJ is independant of ( |B(| , ^0), and in
consequence, orthogonal to L2^). As in lemma (7.2), (X\) denotes the filtration
(I
generated by ^ and H(==sgn(B, )L ̂ . Finally, take M(= sgn(BJ^B,. This0 0 • J o
process is a {3"\) Brownian motion, which has the representation property w.r.t. (^\);
moreover, as M and | B | have the same natural filtration, M is adapted to (^), and even has
the representation property w.r.t. (^). Nonetheless, as a consequence of the lemma, M
does not have the representation property w.r.t. (c^\).

A slight change in the presentation of this example provides us with a continuous (^\)
martingale N, which has the representation property w.r.t. (^\), but not w.r.t. (^(N)():
this is the case for the (<^\) martingale

-J;N,= [l^+(2+sgn(BJ)l^]sgn(B^B,
J o

as ^(N)(=Jf(, with the notations of the previous example.
p

D. Lane [21] has also given some examples of martingales M{= /(BJ^B, with /
J o

continuous, such that M^ has the representation property w.r.t. (^\) [a necessary and
sufficient condition for this to happen is that the Lebesgue measure of { x / f (x) = 0} is O], but
the natural filtration ol' M-^ supports discontinuous martingales [this is the case, for instance,
if f(x)=xr\a, a>0].

We now give another characterization of pure continuous martingales, the proof of which
relies mainly on lemma (7.2).
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156 D. W. STROOCK AND M. YOR

THEOREM (7.3). — Let (X,) be a continuous local martingale such that Xo==0, and
< X , X > o o = o o a . s . Then, X is pure iff: for any X'continuous, and X-adapted change of time
T=(Ty)^o» sucn t^ T ( t oo, as r f oo, the local martingale T(X) is extremal.

Proof. — (i) The condition is obviously necessary from Proposition (5.16), and the fact
that a pure martingale is extremal;

(ii) Conversely, suppose that the condition holds, but that X is not pure. Note
T ( = i n f { 5 / < X > , > r } (r^O), and P(=X^ the D. D. S. Brownian motion attached to X.

Then, as X is supposed to be non-pure, we have the strict inclusion

^(P)^^(X)^(=^(X)J.

From lemma (7.2) above, there exists a filtration (^\)^o suc^ ^at
(a) Vr,.^(P)^^g^(X),;
(fc) L1 (^, P) is separable;
(c) P does not have the representation property w.r.t. (^\).
From Dellacherie and Stricker [36], there exists a continuous, strictly increasing process

(<Jt)^o such that: <7o=0, a^r, and, for every r:Jf(=^(<7.)(. Then, the part (iii) of
Theorem (6.2) tells us that if A,=inf{s /CT,>r} (r^O), the martingale p^ =X^ . is not
extremal.

Moreover, from lemma (5.9), the process (TA,)^O ls a X-adapted change of time; it is also
X-continuous, as (A,) is continuous, with Ao=0, and Aoo=ooP a.e., and (T() is X-
continuous.

Finally, we have obtained a contradiction with our hypothesis. Thus, X is pure.
Remark. — Theorem (7.3) opens a possibility of defining the notion of purity for right-

continuous local martingales. Indeed, by analogy with the continuous case, we may define
a pure right-continuous local martingale (X^), with Xo =0, as a martingale which satisfies the
condition stated in Theorem (7.3).

This general definition ot purity has been partially investigated in [37], and, at least in some
cases, the situation appears to be completely different from that of continuous martingales:
indeed, it is shown in [37] that if(M,) is a purely discontinuous ((<^\), P) local martingale such
that:

(a) M o = = 0 ; < M , M > , = o o ;
(b) its jumps are identically equal to 1;
(c) its jump times are totally unpredictable,

then M is pure iff it is extremal.

Section (8)

We recall here some—now classical—results on (Girsanov's) transformations of local
martingales under changes of probability, and show that the set of pure, resp.: extremal
martingale distributions is not left invariant under these transformations.

4eSERIE - TOME 13 - 1980 - ?1



ON EXTREMAL SOLUTIONS OF MARTINGALE PROBLEMS 157

Let (Q, Ji, (^(), P) be a usual filtered probability space. Consider Q, a second
probability on (ft, c^), supposed to be equivalent to P on M\ note L=dQ/dP, and (L()^() a

right continuous version of(Ep(L/^(); ^0).
The following result, due to Wong and van Schuppen [30], gives the canonical

decomposition of continuous P-martingales as Q-semi-martingales; it is an extension of an
older theorem of Girsanov [23], concerned only with Brownian motion: if X is a P local

r'continuous martingale, then^=X— ( l /Ls)d<X, L>s i5aQ local continuous mar ting ale.
J o

[Girsanov's theorem also states that if X is a (P, ̂ ) Brownian motion, X is a (Q, ^\) one;
but, this is also immediate from Paul Levy's characterization of the Brownian motion, as
then: < X , X > ( = = < X , X > ( = = r ] .

We call X the Girsanov transform of X (given the ordered pair (P, Q) of equivalent
probabilities). It may be worth to emphasize here that the Girsanov transform of X [given
the ordered pair (Q, P)] is X.

The following result has been obtained by many authors (for instance, Jacod-Memin [24],
Kunita [26], Yoeurp-Yor [31]), using different methods, and will be very useful in the sequel.

LEMMA (8.1) (We use the previous notations). — X has the representation property w. r. t.
((^\), P) iff X has the representation property w.r. t. ((.^\), Q).

We specialize now to the case where (^\) is the natural filtration of a real-valued Brownian
motion (B() (under the probability P). As a consequence of lemma (8.1),

n
S, = B( - (1 /LJ d < B, L >, is a ((^\), Q) Brownian motion, which has the representation

J o
property w.r.t. ((^), Q).

But, Tsirel'son's example \cf. section (6)] — which is now looked at from the point of view of
Girsanov's transform — shows that there exist some densities L such that

(8.2) ^(BL^(BL.

Indeed, take

(8.3) L(co)=exp{ F b(s, B (co))rfB,((o)-1 f1h\s\ B(o)))^l
U 0 ^J 0 J

where b is Tsirel'son's drift, which is given by (6.10).
Then, one has

ft/\i
(8.4) S(=B(- fc(s;B (co))rfs,

J o

so that (B() appears to be a solution of (£2), for the given Brownian motion
(6(). (8.2) follows then from proposition (6.13).

Take again for (T^)^o ̂  process
t C R ")

\2+-B——[ds
ol 1 + B . J
r jT(= iJ o L
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158 D. W. STROOCK AND M. YOR

and
A(= in f{5 /T ,> r} (r^O).

Our previous arguments, and theorem (6.2), or theorem (6.4), show that the (^\,» Q)
martingale X(=B^ is extremal, but not pure.

On the other hand, X^ = B^ is a (^\,, P) martingale, which is pure, by construction, and,
from (5.12), one has

Vr, ^(X),=^==^(X)(.

Moreover, X is the Girsanov transform ofX, with respect to the ordered pair (P, Q) and the
filtration (^(X)^^ ); ^is fact may be easier to visualize when observing the following
commutative diagram [the commutativity property is easily obtained from
Proposition (5.1)].

(Q^r) (P^)
^ Girsanov's transform p
i ^ w . r . t . ( ^ , )

Change of time | Change of time
(A. ) (A,)A v

X <^ Girsanov's transform -^
= B ^ — — — w . r . t . ( . ^ , » X = D / ^

(Q^A,) ( P - ^ A . )

Fig. 1

Therefore, not only does Tsirel'son's construction provide us with an example of extremal,
but not pure continuous martingale, but it (with the help of Girsanov's theorem) also shows
that:
(8.5) the set of pure martingales (or distributions) 15 not invariant under Girsanov's
transforms.

Nonetheless, in the example we are after giving, X is extremal; worse things may happen, as
the following proposition shows.

PROPOSITION (8.6). — There exist a pure martingale X, and a Girsanov transform ofX, which
is not even extremal.

Nota bene. - In (8.5) and Proposition (8.6), the Girsanov's transforms are of course
relative to the natural filtration of the original pure martingale.

Proof of the proposition. — Let (3F\) be the natural filtration of a real-valued Brownian
motion (B^o, and (fi^^o the Q-Brownian motion [formula (8.4)] obtained via the
Girsanov's transform associated with the density L given by (8.3), and (6.10).

As, for every t, e^(6)^^\(=^(B),), but ^(B)^^(B)^, we can exhibit, from
lemma (7.2), a filtration (^\) such that:

(a) for every t, ̂ (8)^^f(E^(B)(;
(b) 6 does not have the representation property w.r.t. ((^f(), Q);
(c) L1 (Q, e?f^, Q) is separable.
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Using (c), we can now apply the construction done before Theorem (6.2), i. e.: there exists a
continuous, strictly increasing process (T(), with T O = = O , T(^, and Jf\=^(T.)(, for
every t. Note A y = i n f { s / T s > ^ } .

Then, from Theorem (6.2) (iii), X=SA is not extremal.
But, as ̂ \ g ̂ , for every t, the (^^» p) martingale X = B^ is pure [and: e^f (X)^ == ̂ '

from (5.14)].
Finally, X appears as a Girsanov's transform ofX, as the diagram in (Fig. 1) (which needs

no change, for we have kept the same notations) is still commutative. D
Remark (8.7). — Note that in the example right above (8.5), one has:

vr, ^(X),=^(X),.

As a consequence of lemma (8.1), this can no longer be true in the example developed in the
proof of Proposition (8.6). Indeed, we have, in this case

and so
Vr, ^(X),=^,

^(X)=j^;

on the other hand, we have shown in (6.3), that: ^(X\ =J'f(.
Thus, the filtrations { M (X)<} and { M (X), ] differ. D
Conversely, let (Q, ̂ , (^\), P) be a usual filtered probability space, Q^ P on ̂ , and X a

(J\, P) continuous martingale, with Xo =0, and < X, X > ̂  = oo a. e., which is pure, but such
that there exists a Girsanov transform of X [w. r. t. the ordered pair (P, Q), and the filtration
M (X)J, say X, which is not pure. As < X, X > = < X, X > , it is easy to see that the D.D.S.
Brownian motion attached to X (w. r. t. Q) is the Girsanov transform of the D.D.S. Brownian
motion attached to X (w.r.t. P), the Girsanov transform being relative to (P, Q), and the
filtration ^(X\ =^(P)(, where T ^ = = i n f { s / < X > , > t } . As X is not pure, we have

M (P)^ M (XL ̂  ̂  (X), = M (P),.

Thus, the filtration of ? is strictly smaller than that of P, e.g.: we have a TsirePson-type
example.

We end this section by drawing a table in which we summarize some of the main results
obtained up to now: this table indicates whether or not certain martingale properties are left
stable under either Girsanov's transforms or changes of time. Our presentation is probably
over concise, but we hope this will make no confusion, as the exact references in the text are
given.

Nonetheless, we precise that the Girsanov transforms (resp.: changes of time) of a
martingale X, considered here, are supposed to be relative to (^(X)^) (resp.: to be
X-continuous, and X-adapted).
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160 D. W. STROOCK AND M. YOR

Martingale properties

Representation
property w. r. t.

Transformations (^\) Extremality Purity

Girsanov's transform. . . . . Stable Unstable Unstable
[Lemma (8.1)] [Proposition (8.6)] [example (8.5)]

Change of time.. . . . . . . . . Stable Unstable Stable
[same proof as for [Theorem (7.3)] [Proposition (5.16)]

Theorem (6.1)]

Fig. 2

Section (9)

This final section consists of several questions, which seem (to us!) to be the main open
problems concerning extremal continuous martingales.

Although some of the theorems in the second part of this paper appear to give — at least in
our opinion — a more precise view of the differences which exist between extremal, and pure
continuous martingales, the main question asked in [32] has not yet been answered. Let us
recall it here:

(B) If(X^)^Q is a continuous local martingale, with XQ =0, and < X, X > ̂  = oo a. e., whose
law is extremal among the laws of continuous local martingales, is { ̂ (X\ } (2) the natural
filtration of a real-valued Brownian motion (B^)^o, with B Q = O ?

It is possible to ask a (seemingly) more general question, which involves only a real-valued
Brownian motion:

(S) if(^t) ls a usual filtration such that:
(a) L1 (Q, ^,P) is separable;

and
(b) there exists a (^^real-valued Brownian motion (P,)^o»wl t^ Po==^' suc^ ̂ ^ P has the

representation property w.r. t. (^), is (^),
I s { ^ i ) ^e natural filtration of a real-valued Brou'nian motion^
Finally, we recall another question raised in [32]:
(B') If(Zt)ls a local continuous martingale, such that ds < Z, Z >s(co) f5 equivalent to (ds),

and Z is extremal, then, is {^(Z)^} the natural filtration of a real-valued Brownian motion ?

Remarks (9.1). — 1) The letters B and S are here respectively for "Brownian" and
"separable".

2) It is easy to see that, conversely, if the property concluding any of the questions (B), (B')
or (S) is satisfied, then the hypothesis made in the corresponding question is verified. D

(2) We denote, as usual, T , = i n f { s / < X > , > r } (t^O).
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We note (Q)+ if the answer to question (Q) is always yes. We now prove

(9.2) (B)^ o (S)^ o (B^

e.g.: the 3 questions are "equivalent".
(B)+ ==> (S)+. — From the construction preceding theorem (6.2), hypothesis (S) implies the

existence of a continuous, extremal, martingale X, with Xo=0, <X, X>oo=ooa.e . , such
that: ^,=^(X)^ (where T , = i n f { 5 / < X > , > ^ } ) .

(S)+ =>(B)+. - We know that, i fX is extremal, P(=X^ has the representation property
w.r.t.{^(X)J.

(S)+ ^(B^. — As r f ,<Z, Z>,(o)) is equivalent to (ds), we can write

-J;Z<= ^Ps,
J 0

with z a (c^(Z)() predictable process, and P a (e^(Z),) Brownian motion, which has the
representation property w. r. t. (e^(Z),), as Z has it.

(B')+ =>(S)+. — As (^() satisfies (a), there exists a strictly increasing, continuous (^)
adapted process (A, )^o such that ̂  = e^ (A)( , for every ? (Dellacherie and Stricker [36]). It

def C 1

is then easy to show that, for every r^O, ^=^(Z),, where Z, == A, dp, (s^ [38]).
J °

Moreover, d,<Z,Z>,(o)) is equivalent to (ds), and Z is extremal, as P has the
representation property w. r. t. M (Z) (= ̂ ). D

Finally, we add two more questions to our list; it will turn out that (S)+ implies that the
answers to these last questions are positive, but we do not know anything about the converse.

The first question seems very tentative:
(G) Ij'(B^o is areal-valuedBrownianmotion^withBQ=Q, defined on(Q, 3P', P),andQ^P

on ^(B)oo, does there exist a real-valued process (C^)^o, such that:
(a)Vr.^(B),=^(C),;
(b) C is a Brownian motion, with Co=0, under Q?
Recall that the density dQ/dP, on e^(B)^, may be written as

r r°° i r^ 1
(9.3) exp\ <p(5)dB,-- ^ds\,

U o 2J o J

with (p a (^(B)() predictable process.
For bounded (p's, whose support is contained in [0, T], for some T>0, we write (GJ

instead of (G).
The second question originates from filtering theory [look at the end of section (6), to see

how this question arises].

(I') If, on a filtered probability spacer ̂ , (^\), P),(B,)^o^ a real-valued^,) Brownian
motion, with Bo=0, and (h^} is a uniformly bounded (^\) predictable process, with support
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contained in [0, T],for some T>0, is the natural filtration of

def ^
(9.4) Y,=B,+ MS

J o

^iat of a real-valued Brownian motion (P()^O» wltn Po=0?
Notation. — The letters G and I are here respectively for "Girsanov" and "Innovation".
Here is the list of implications we have obtained between these questions and (S) for

instance
(S)^ ==> (G)+

(9-5) ^ !!
(r)^<=>(G^

/ n \
(S)+ =>(G)+. — From lemma (8.1), the Q-Brownian motion ( 6 ,=B(— (ps^5, t'^0 )

\ J o /
has the representation property w.r.t. (^(B)^).

(G)+ =^(Gb)+, obviously.
We make some remarks on (I'): Let h be the (J^ (Y),) predictable projection ofh. Then, we

may write (9.4) as

(9.4') Y,=P,+ F n,ds,
J o

where (P() is a { ^(Y)( } Brownian motion.

UnderQ^expl - f ^P" f (fi^ds |.P, (Y,) is a {^(Y),} Brownian motion,
L J o 2J o J

with Yo==0, and so, has the representation property w.r.t. (^(Y)(, Q). (P() is the
Girsanov transform of (Y(), for the ordered pair (Q, P), and so, from lemma (8.1):
(S)+ ==>(!')+. From the definition of (G^), we also have (G^)+ =>(!')+ .

(F)+ => (Gf,)+. — VdQ/dP is given by (9.3), with (p uniformly bounded, and with compact
support, we may write, under Q:

B(==B(+ (p^5,
J 0

which is the equality (9.4), where Y has been changed in B, B in B, and h=fi in (p.
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