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STRUCTURE OF THE GROUP OF HOMEOMORPHISMS
PRESERVING A GOOD MEASURE

ON A COMPACT MANIFOLD

BY A. FATHI

0. Introduction

We give proofs of the results announced in [FV].
Let M" be a compact connected manifold without boundary of dimension n. Let p, be a

probability measure on M" without atoms and which is strictly positive on each non empty
open subset of M; such a measure is called a good measure. We prove the following results.

THEOREM. — The group ^(M", [i) of ̂ -preserving homeomorphisms is locally contractible
(for the compact open topology), i. e. there exists a neighborhood ̂  ofld^n in ̂ f(M", (i) such
that the inclusion ^c:^f(M", p) is homotopic to a constant map. Moreover, the inclusion
^(M", H)<=^(M"), where ^(M") is the group of all homeomorphisms, is a weak homotopy
equivalence, i.e. it induces isomorphisms on all homotopy groups.

THEOREM. - Suppose that M" is differentiate or PL and that n^3. Let ̂ (^ ^) be

the path component of J'f(M", \\) which contains the identity. The abelianization of
^f(M", n) is isomorphic to a quotient o/Hi(M", R) by some discrete subgroup. The
commutator subgroup [j^o^M", |i), J^Q^ML", \i)] is a simple group; moreover, it is generated by
the elements o/^fo(M", ^) which are supported in topological n-balls.

In fact, we do not need that M" is differentiable or PL, the Theorem above is true under
more general conditions which are explained in the text. In contrast the condition n ̂  3 is
essential for our methods; to our knowledge the case n = 2 is still unsettled. The case of S1 is
treated by direct examination since ^fo(S1, ^) is isomorphic to S1. Generalizations to the
non compact case are also given.

We will describe now the proofs of these Theorems; this will give a fairly good idea of the
content of this work.

The first ingredient is the von Neumann-Oxtoby-Ulam Theorem [OL^]; it says that given
two good measures ^ and v on M", there exists a homeomorphism h of M" such that
h ̂  (A = v. What we need is in fact a parametrized version of this Theorem; more precisely we
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46 A. FATHI

would like that h depends continuously on [i and v. We are not able to prove this fact, but
instead we remark that if we restrict to the subset of good measures which have the same
subsets of measure 0 as a fixed measure [IQ, then the proof of Oxtoby and Ulam gives us a
homeomorphism h which depends continuously on p, and v. As a consequence, we obtain
that ^f(M", n) is a deformation retract of the group Jf(M", i^-bireg), where ̂ (M", n-bireg)
is the group ofhomeomorphisms h such that h and h~1 send subsets of^i-measure 0 to subsets
of ^-measure 0. Next we remark, as is well known, that the Cernavskii-Edwards-Kirby
technique shows that Jf(M", n-bireg) is locally contractible; this gives us immediately the
local contractibility of jf(M", ^). Then, we show that ^(M", [i) c? ^(M") is a weak
homotopy equivalence by showing that ^(M", ji-bireg) q: Jf(M") is a weak homotopy
equivalence. This last fact is a consequence, via a Theorem ofEilenberg and Wilder [EW], of
the local contractibility of ^(M", n-bireg) and the fact that it is dense in ^(M").

The proof of the second Theorem begins with the construction of the mass flow
homomorphism;thisisagrouphomomorphism9 : ̂ fo(M", H)->Hi(M", R)/r, where r is
some discrete subgroup of Hi(M", R). The existence of this map was first given by
Schwartzman [Sc]; its differentiable version is attributed to Weinstein [Th]. The definition
given here is inspired by Herman's definition of the rotation number of a homeomorphism of
the circle [Hea]. It is more convenient to define first S : Jfo(M", n) -^ Hi (M", R), where
Jfo (M", n) is the universal cover of J^o (M", ^). Since J^o (M", n) is locally contractible,
an element of jfo(M", \i) is represented by an isotopy(^)^o ^ such that h o= id and h^ [I^^L
for each te[0, 1]; two such isotopies represent the same element if they are homotopic with
fixed extremities, the homotopy being through measure preserving isotopies. To define 9,
we first remark that Hi(M", l^Hompr, S1], R), where [M", S1] is the set of homotopy
classes of maps from M" to S1. We will identify S1 with T1 = R/Z, this allows us to write the
group law on S1 additively. Given (^)ejfo(M,., n) we define a homomorphism
8(^) : [M", T1] -> R in the following way:

Let /: M^-^T 1 be continuous; the homotopy fh^—f\ Mn->Jl verifies fhQ—f==0,
hence we can lift it to a homotopy fli^-f : M" -^ R such that fho-f=0:

By definition, 8(^)(/)= jh^-fd\i. One first shows that this gives a group
JM"

homomorphism [M", T1] -^ R, then that S(^) depends only on the class of(^) and finally
that S : ̂ (M", p) ̂  Hi (M", IR) is a group homomorphism. If we put

r =8(100^0(1^, ^-^jfotM", n)),
we obtain by passing to the quotient a group homomorphism
9 : ̂ fo(M", H)^Hi(M", [R)/r. The subgroup F is discrete because it is contained in

4eSERIE - TOME 13 - 1980 - ?1



STRUCTURE OF THE GROUP OF HOMEOMORPHISMS 47

H i (M", Z). We show that 8 (hence 9) is surjective, i fHi (M", R) has a basis represented by
imbedded curves having tubular neighborhoods. It remains to show that KerO is simple,
and is generated by the homeomorphisms supported in topological n-balls. We then prove
this second fact in the case where M" has a handle decomposition, the proof is done by
induction on the number of handles; moreover, we show that Ker6 is generated by
homeomorphisms having support in arbitrarily small topological n-balls. This last fact
implies, by the classical method of Epstein and Higman ([E], [H]), that the commutator
subgroup [Ker 6, Ker 9] is simple. Then, we prove that Ker 9 = [Ker 9, Ker 9] by the same
method as in [F] where we proved that the group of bimeasurable Lebesgue measure
preserving transformations of [0, 1] is a simple group.

Some more facts and the extension to the non compact case are proven in the different
appendices.

The results of this work are of course related to results of Epstein [Ep], Herman [HeJ,
Mather [Ma] and Thurston [Th] on the simplicity of diffeomorphisms groups, and also to
results due to Anderson [A], Cernavskii, Edwards and Kirby [EK] on the algebraic and
topological structure of the homeomorphisms group of a manifold. Our debt to their work
is important, but our greatest debt is to the work ofOxtoby and Ulam; their paper [OUJ is
certainly the most important tool for any study of measure preserving homeomorphisms.

The part of this work centering around the first of the two Theorems mentionned above is a
joint work with Yves-Marie Visetti, to whom I am most grateful. This work was done at the
instigation of Michel Herman and with his help and constant encouragements. It owes also
a great deal to the good will and encouragements of Larry Siebenmann. I want also to
thank Lucien Guillou who followed this work step by step and listened to all stupidities
without loosing his temper.
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48 A. FATHI

1. Some generalities on measures on compact metric spaces

Let X be a compact metric (non empty) space. We will denote by ^(X) the set of
probability measures on X. Recall that a probability measure on X is a non negative
measure, defined on the c-algebra of all Borel subsets of X, whose total mass is 1.

We put on J^(X) the weak topology (see [DGS], p. 9 for a definition), with this topology
M (X) is a compact metric space. We will have sometimes to consider measures on a locally
compact space Y. A Radon measure on Y is a measure defined on the a-algebra of all Borel
subsets, and which is finite on each compact subset ofY. Hence, such a measure is o-finite, if
Y is a-compact, in particular if Y has a countable basis of open sets.

In the remainder of this section, X is a compact metric space.
We recall some facts which are proved in chapter 2 of [DGS].

PROPOSITION 1.1. — If\\. is in jy(X), then p, is regular, i.e. for each Borel set B we have:

[i (B) = sup {[ i (C) | C compact <= B },
H(B)=inf{^(U)|Uopen^B}.

PROPOSITION 1 . 2 . — The weak topology on M (X) 15 the weakest topology on M (X) such that
each function [i i-> p, (U), U an open set in X [resp. p, i—^ H (C), C a closed set in X], is lower semi-
continuous (resp. upper semi-continuous).

DEFINITION 1.3. — A measure on X is good if it is a probability measure with no atoms and
whose support is X itself. We will denote by ^g(X) the set of good measures on X.

Remark. — The support ofp,isX if and only if^lis strictly positive on each non empty open
set.

PROPOSITION 1 . 4 . — IfX has no isolated point, then J^g(X) is a dense G§ subset of ^(X).
Proof. — By [DGS], 2.16, the set of non atomic measures is a dense G§ in M (X). We have

now to show that the set { p, e M (X) | support \\. = X} is a dense G§. Let (U,, ),,g^ be a basis of
open sets of X, we can assume Un^0 for each n. It is easy to show that:

{H6^(X) |supportH=X}= Q{H6^(X) |n(UJ>0}.
neN

Now each set { p, e M (X) [ \\. (UJ > 0 } is open by 1.2. Moreover, if Xn e U,, and v e M (X)
then, for each t>0, ( l -Qv+rS^ is in this set and, of course,
v = lim (1 -1) v +18^. Hence, { \JL \ \\. (UJ > 0} is open and dense.

(-»0
An application of Baire category Theorem finishes the proof. D
We put the compact open topology on ^f (X) the space of homeomorphisms of X. Since

X is compact metric, this topology is the same as the uniform topology, it is metrizable. In
fact, we can define this topology by a complete metric; ltd is a metric on X, we define a metric d
onjf(X)by:

~d(f, g)= supd(f(x), ̂ (x))+ supd(f-l(x),g-l(x)).
xeX xeX
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STRUCTURE OF THE GROUP OF HOMEOMORPHISMS 49

The metric d is complete and defines the uniform topology on jf(X).
We recall for future reference that an isotopy between ho and h i, where ho and h i e ̂ f (X),

is simply a continuous path in ^f(X) between ^o and h^. It is also given by a continuous
map H : Xx[0, 1]->X such that, for each te[0, I], the map X -> X, JCI-^H(X, t) is a
homeomorphism, which is equal to fc o for t = 0 and to h i for r = 1. An isotopy of X is simply
an isotopy between the identity ofX and some other homeomorphism, i. e. a continuous path
in Jf(X) starting at the identity of X.

There is a natural map: ^(X)x^(X) -> J^(X), (h, [i)^->h^[i, where h^ ^ is defined by
^(B)^^-^)) for each Borel set B in X.

PROPOSITION 1.5. - The map ^(X) x^(X)^^(X), (h, \x)^h^[i, is continuous.
Proof. - It suffices to show that if C is a closed set in X and a a real number, then the set

{(^U)ejf(X)x^(X)|^(C)<a}isopen.
Fix ho and ^o in this set, we have Ho ?0 1 (C)) < a. We can find a compact set K such that:

A o 1 (C)<=Int(K), and MK)<a. The set

{^^(X^-^QcrIntOC)} x {He^(X)|^(K)<a}

is a neighborhood o f ( / i o ,Ho) which is contained in

{(A,H)ejf(X)x^(X)|/i^(C)<a}. D

Given a measure p, on X, we define ^f(X, [i) as the set of homeomorphisms of X which
preserve H:

Jf(X,H)={/ ie^(X) | / i^=H}.

COROLLARY 1.6.- If\ji is a measure on X, the set e^f(X, p,) is a closed subgroup ofJ^(X).

APPENDIX A.I

ON THE TOPOLOGICAL TYPE OF My (X)

THEOREM A . I . — Lei Xbea compact metric space without isolated points. Then, M (X)
{with the weak tolopoly) is homeomorphic to the Hilbert space I2. Moreover, the pair
(e^(X), e^(X)) i5 homeomorphic to ([0, if, ]0, 1^).

Proof. - By the Anderson-Kadec Theorem ([BP], p. 189, Th. 5.2), the Hilbert space I2 is
homeomorphic to ]0, Ij^, hence we have to prove only the last part of the Theorem.

We will use the apparatus of infinite dimensional topology. We will give reference to [BP]
and [To] for the quoted results.

First, jy(X) is a separable compact convex set of infinite dimension, hence by Keller's
Theorem ([BP], p. 100, Th. 3.1), it is homeomorphic to the Hilbert cube Q = [0, If. To
finish the proof, all we have to do is to prove that ^(X)-J^(X) is a Z-skeletoid (see [BP],
chap. IV and V). Since ^(X) is convex and dense, it is easy to see that for each open
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50 A. FATHI

convex set U the inclusion Un^(X)<=Un^(X) is a homotopy equivalence, hence
by [To], Th. 2.3, M (X) - ̂  (X) is locally homotopically negligible in M (X). Remark that
JT(X)-^(X) is a F^ since ̂ (X) is a G§. So, we have proved that ^(X)-^(X) is a
Z^-set. To finish the proof, we must show that it contains a Z-skeletoid ([BP], p. 156,
Th. 3.2). Now, i f x o e X , the set {?§^+( l -0u | re]0, 1] and uejT(X)} is an ¥^ set
which is contained in ^(X)-^(X), so it is a Z^-set; it follows then from [BP], p. 157,
Prop. 4.2, that this set is a Z-skeletoid. This finishes the proof. D

Remarks. — (1) By'using Dirac measures on X, we can imbed naturally X in J^(X) as a
Z-set. By using the action of ^(X) on J^(X), we obtain a group imbedding
^f (X) c: j^ {M (X)) which gives us canonical extensions of the homeomorphisms of X to
homeomorphisms of e^(X)^Q. Since two Z-imbeddings of X in Q are ambient
homeomorphic, we obtain the following:

If X is a Z-set in Q, we can construct a group homomorphism ^f (X) -> Jf (Q), h -> h, such
that ~h | X = h, for each h e ̂  (X).

(2) We will see in paragraph 3 that, if M" is a compact connected closed manifold and
^^(M"), then ^(Mn)/^?{Mn, ̂ ^(M"), hence ^(Mn)/^{Mn, u) is homeomor-
phic to I2. Applying this fact to !=[-!, I], we obtain the well-known result
J^W^l2 x { Id , r] where r : I ->I is given by r(x)= -x.

2. Some generalities on manifolds and measures on manifolds

We introduce the following notations:
B"= { xe R" | |[ x [ I ^ 1} where |[ || is the usual euclidian norm;
I"=[0, IpclR";
H\={(x,, . . . .xJe^lx^O};
H ^ + = { ( x i , . . . . x J e R ^ x ^ - i ^ O a n d x ^ O } .
By a manifold M", we mean a Hausdorfftopological space which is locally homeomorphic

to H"+ , and which has a countable basis of open sets. Locally homeomorphic to H"+ means,
of course, each point of M" has an open neighborhood homeomorphic to some open set
of H"+. By the definition we have given, our manifolds may have a non empty
boundary. If M" is a manifold, we will note by 3M" its boundary and by M" its "interior"
NT-SM".

To avoid confusion, if A is a subset of a topological space X, we will note its interior as a
subset of X by Int (A), and its "boundary" as a subset of X will be called frontier and noted
byFr(A).

If M" is a manifold, we will denote by J^8 (M") the subgroup of ^(M") defined by:

J^8(Mn)={he^(Mn)\h\8Mn=ideniity}.

The following Lemma is trivial and its proof is left to the reader.

LEMMA 2.0.- Let [ i b y a a-finite measure defined on some space X. Let { Aj ̂  e A } be a
family of disjoint measurable sets. There is only a countable number ofA^ such that \i (A^) ̂  0.
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STRUCTURE OF THE GROUP OF HOMEOMORPHISMS 51

Note the following trivial consequences of Lemma 2.0.
(1) If M" is a manifold and [i is a (Radon) measure on M" such that ^(5M")=0, then we

can find (arbitrary small) coverings ofM^y sets { B / }̂  such that each Bj is homeomorphic
to I" and [i(8Bi)=0.

(2) If p, is a (Borel) measure on the cube I" such that p. (81") = 0, then we can find (arbitrary
small) subdivisions of I" by hyperplanes into subcubes Ci , . . . , c^ such that ^(3cf)==0 for
each i.

We will need the following Proposition of Oxtoby and Ulam [OUJ.

PROPOSITION 2 . 1 . — Let M" be a compact manifold and p, a (Borel) measure on M" with
[i(8Mn)=0. If A is a closed set ofM" with int(A)=0, then there exists a homeomorphism h
of M" such that [i(h(A))=0 and h\8Mn==ld. More precisely, the set
{he^8(Mn)\^(h(A))=0} is a dense Gg in Jf^M").

To prove 2.1, we must first give a Lemma.

LEMMA 2 . 2 . — Suppose [i is a measure onl" such that [i (81") = 0, and S is a closed subset ofV
such that int(S)=0. Then, for each 5 and e>0, there exists a homeomorphism h ofV such
that:
- fc|ar=id;
— h is 6-close to the identity;
- H(/I(S))<£.
Proof. — Let Ci , . . . , c^ be a subdivision of I" by cubes such that diam(Cf)<8 and

k

H(5cf)=0 for each i. We can find an open neighborhood U of ^ oci, such that
1=1

H(U)<e. Since S has empty interior, we can find, for each f, a small subcube c[ c:Ci with
faces parallel to the faces of Ci and such that S n c[ =0.

For each f, we can define a homeomorphism hi of c, such that:
- hi\8ci=U;
— ^(Ci—c^crUnCi.
Piecing together the hi gives the desired homeomorphism h. D
Proof of 2.1. — Let B i, . . . . Bj^ be a covering of M" by sets homeomorphic to I" and such

[i(8Bi)=0 for each i.
I f f e { l , . . . , f e } a n d 7 e ^ l * = ^ - { 0 } , define a subset ̂ (ij) of^f^M") by:

^0\7)={/^e^(Mn) |^l[/I(A)nB,]<4}.

We clearly have:

{^^(Nni^MA))^} = n^(ij).
i,J

So we must show that ^(i, 7) is open and dense in ̂ s (M"). Denseness of ^(f, j) follows
easily from Lemma 2.2. We prove now that ^(i,j) is open.
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52 A. FATHI

Fix hoe^(i,j), we can find an open neighborhood U of ho(A)r\Bi such that
[i(U)<l/j. If ^ is close enough to ho, we have /i(A)nB^c:U, which implies that
H(MA)nB,)<l/7. D

Remark. - Proposition 2.1 is also valid when M" is not compact and when the compact-
open topology on M" is replaced by the fine topology.

We will use the following Theorems due to M. Brown.

PROPOSITION 2.3. - Let M" be a compact connected n-dimensionnal manifold. There
exists a map (p : I" -> M" such that:

(i) q> is surjective;
(ii) (p | P 15 a homeomorphism onto its image;

(iii) (p(aP)n(p(P)=0 and in particular (p(3P) has empty interior in M".

PROPOSITION 2.3'. — Suppose M" is a connected manifold, with 8Mn^(j[). There exists an
open imbedding \|/ : H\ -> M", where Hn+={(x^ . . . , xJeR^x^O} , such that:

(i) ^~l(8Mn)=8H^;
(ii) v|/(H"+) is dense in M"; in particular IVP-v^H^) 15 a closed subset ofU" with empty

interior.
The proof of 2.3 and 2.3' can be found in [B]. The proof of 2.3 is also [CV], p. 461.
Complement to 2.3 and 2.3'. - lf\\. is some (Radon) measure on M" such that ^(8Mn)=0,

then, we can assume that H((p(aP))=0 in the case on 2.3 and ^i(Mn-v|/(IH]n+))=0 in case
o/2.3'.

Proof. - Since (p (81") [resp. M" - \|/ (H"+)] is a closed subset of M" with empty interior, we
can, by 2.1, find a homeomorphism h of M" such that H[/i((p(BI "))]=() (resp.
[i [h (M" - \|/ (B-0"+))] = 0). We can now replace (p by h (p (resp. \|/ by h v|/) to obtain the desired
result. Remark that, in the case of 2.3', we have not assumed M" compact, we can apply
2.1 in this case also by the remark following the proof of 2.1. D

The Alexander isotopy works also in the case of Lebesgue measure as we will see it now.

PROPOSITION 2.4. — Let m be the Lebesgue measure on I". Then

^c(ln,m)={he^(ln,m)\h\81n=id}

is contractible.

Proof. - We can replace, of course, P = [0, 1]" by J" = [ -1 /2, 1 /2]". Introduce on R" the
norm | | defined by | (;q, . . . , xj | =max( [ x^ |, . . . , | x^ [). In this norm, J" is the ball of
radius 1/2 and center 0.

If hej^8 (P, m), define (^)^ ^ in the following way:

, / . ) ^ ( - V if M ̂ t,ht(x)= \ \t j 1 1 - 2 '
x otherwise.
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STRUCTURE OF THE GROUP OF HOMEOMORPHISMS 53

We have ho==id, h^=h and each h^ is a homeomorphism of J". Moreover, h^ depends
continuously on (h, t). It remains to check that each h^ preserves Lebesgue measure, but
this is clear since a homothety in R" transforms Lebesgue measure into a scalar multiple of
itself. D

3. The von Neumann-Oxtoby-Ulam Theorem
and some of its consequences

If M" is a compact manifold, we define the subset ^^(M") of ^g(Mn) by:

^(M^He^Nnl^aM^O}.

Recall that we have a natural map:

^f(M") x ̂ (M") ̂  JT(M"),
(h, [i)\->h^\i.

This map defines an action of the group Jf (M") on M (M"). The von Neumann-Oxtoby-
Ulam Theorem says that J^M") is an orbit of this action.

THEOREM 3.1 (von Neumann-Oxtoby-Ulam). — Suppose M" is a compact connected
manifold. If ^i and j^e^^M"), then there exists a homeomorphism h of M" such that
h\8Mn=id, and h^[i^=^.

The proof of this Theorem can be found in [OLy, section II.
In the following, we fix a compact manifold M" and a measure |io e^^(M"). We have

the map:

^(M^^M"),

/II-^HO-

Theorem 3.1 shows that this map is surjective and, in particular, that the induced map
Jf^M^/^f^M", Ho)^^(M") is a bijection. In fact, this map is a homeo-
morphism, we will not prove this fact here, but note only that it can be deduced from
Theorem 3.1.

Question 3.2. — Does the (surjective) map KQ '- ̂ 8 (M") -> ̂ (M") have a (continuous)
section?

The answer to this question may be negative. The proof of Theorem 3.1, given by
Oxtoby and Ulam, can be used to give a partial positive answer to 3.2. We proceed to
explain this now.

Define J^(M", ^o) as the subset of ^(M") consisting of the measures which have the
same sets of 0 measure as j^

^(M", ^(^{^^(M^IVACM" Borel set ^(A)=0<^o(A)=0}.
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THEOREM 3.3. — If M" is compact and connected, the surjective map
Tio^^M^-^^^M") has a continuous section above e^(M", po)- J^ other words,
there exists a continuous map a: ̂ (M", ^o) -* ̂  (M") such that KQ a= identity.

We will first prove this Theorem with N1"==!" and ^o=w the Lebesgue measure. We
formulate Theorem 3.3 in this case in slightly modified terms.

LEMMA 3.4. — Let P be a topological space. Given any two continuous maps:
P -^ ̂ (I", m), p^->Vp, and pt-^Up. There exists a continuous map: P -> ̂ s (I"), p^->fp,
such that, for each p e P , (fp)^Vp==[ip.

Proof o/3.4. — The proof is divided in 4 steps.
First of all, define J^6 (I", bireg) as the set of biregular homeomorphisms of I" (fixing the

boundary). A homeomorphism h of I" is biregular if h and h~1 are absolutely continuous
with respect to Lebesgue measure. We have:

JT5 (I", bireg) = {h e ̂ 8 (I") | ̂  m e M\ (I", m)}.

Step 1. — Suppose I" is divided into two (closed) cubes Ci, c^ by a hyperplane parallel to a
coordinate hyperplane. There exists a continuous map P -> Jf^(P, bireg), p -> h p , such
that:
- for each p in P, Hp(/ip(ci))=Vp(ci) and \Jip(hp(cz))=Vp{cz)\
- the family of homeomorphisms (hp)p^p is equicontinuous.

Proof of step 1. — Let (h^)^^ ^ :1" -> 1" be any (continuous) homotopy such that:
- Vre]0, 1[, h, e^(r, bireg);
- Vr' , te[0, I], t '> t , /i,(Int(ci))=^(ci);
- /io(ci)=cinai"and /ii(ci)=r.

^—————
s

N
\

s
s
\

Ci

^4
^^^

y^

Y'
4^

/

/

^

^

^

C2

s
\

s
N»

s
^

Remark that if ^ e M\ (I", m), the map t -^ [i (A, (ci)) is a strictly increasing continuous map
from [0,1] onto itself. We can then define a map: P-^[0,l], p^^p, by
Hp(^f ^i^Vptci). One can check that this map is continuous.

Since VpC^^l"), we have Vp(ci)e]0, 1[ and hence tpe]0, 1[. This shows that
^6^(1", bireg). Remark also that the family (A^)pgp is equicontinuous because it is
contained in the compact family (h^)^^ ij.

We can define the map P -> JT5 (I", bireg), p ^ h p , by hp=h^ . D
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Step 2. — If { C i , . . . , Ck} is a subdivision of I" in (closed) cubes by hyperplanes parallel to
coordinate hyperplanes, then there exists a continuous map P —>^8 (I", bireg), p ^ h p , such
that:

— for each p in P and each cube Cf in { c i , . . . , c^}, [ip(hp{Ci))-=Vp(Ci)',
— the family of homeomorphisms (^p)pgp is equicontinuous.

Proof of step 2. — Induction using step 1.

Step 3. — For each s > 0, there exists a subdivision i; of I" in (closed) cubes by hyperplanes
parallel to coordinate hyperplanes, and two continuous maps P -> ̂ 8 (I", bireg), p^hp and
P ^ Q p , such that:
- Vce^, VpeP, [ip(hp(c))=Vp(gp(c)),

- (^pep and (9p)pep are equicontinuous;
- V c e ̂ , V p e P, diam (c) < e, diam (hp (c)) < e and diam (g? (c)) < e.

Proof of step 3. — Let { Ci, . . . , c^} be a subdivision of I" in cubes of diameter < e. By
step 2, we can find a continuous map: P -> J^8 (I", bireg), p^->hp, such that:
- V p e P , V c , e { c , , . . . , c,}. [ip(hp(c,))=Vp(c^
— (hp)p^p is equicontinuous.
Since the family (/ip)pgp of homeomorphisms of I" is equicontinuous, we can find a

subdivision ^ of I", finer than { c i , . . . , Cj,] and such that: VpeP, Vce^, diam(^p(c))<e.
By applying step 2 inside each cube Ci ( i==l , . . . , k) to the subdivision ^|ci and the

measures [Vplcjpgp and [(hpl)^[ip\Ci]^p, we can obtain a continuous map:
P -> J€8 (I", bireg), p^g?, such that:
- Vce^VpeP,v^te^(c))=^(^(c));
— V^eP, V i = l , . . . , k, gp(Ci)=Ci and gfp |5c f= identity;
— (^p)pep is equicontinuous.
It is easily verified that ^, </ip)pgp and (gp)pep have the desired properties. D
Step 4, end of the proof of 3.4. — Using step 3, we can construct by induction on i e ̂ ,

subdivisions ̂  (in closed cubes) of I" and continuous maps P=JT5 (I", bireg), p^h1? and
P1—^^ such that:

(a) y1 refines^';
( b ) V i ^ l , VpeP, Vce^', diam(c)<l/21, diam(h^ . . . hp{c))<l/2\ and

diam(^^...^(c))<l/21;
(c) V^l.VpeP.Vce^^1^)^1^)^;
(d) V f ^ l , VpeP, Vce^', ̂ (^ . . . hip(c))=Vp(glp . . . ^;,(c));
(e) Vi^ 1, (Ap)pgp and tep)pgp are two equicontinuous family of homeomorphisms of I".
More precisely, ̂ i+l, (h^ ^pgp and (g^ ̂ p are constructed by application of step 3 inside

each cube c of the subdivision ^l. Condition {e) at step i insures that, if the diameter of each
cube in ^ i + l is small enough, then condition (b) will be realized at step (i+1).

Define now H^ejf^I", bireg) and G^eJf^I", bireg) by:

Hip=hlp...hip and G^ ... g1?.
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By (b) and (c), we obtain easily:

^H^H^]^, ^G^G^X^, ^[(H,)-1.^1)-1]^

and

rfKG^)-1^1)-1]^.

These inequalities imply that H,° = lim Wp and G^ = lim G;, exist (for each peP) and

belong to ̂ (P).
Moreover, the two maps: P -> ̂  (I"), p^Hp° and p^G^, are continuous, since they

are uniform limits of continuous maps.
Using condition (a) and (c), we obtain:

Vce^1 . H,°(c)=H^(c) and G,°(c)=G^c).

Hence using (d), we have:

V f e N , VpeP, Vce^', ^(H,°(c))-Vp(G,°(c)).

Using the last fact and the fact that lim diam^'=0, we obtain:
(-» 00

(H^^G^v,.

Define then fp by /p=G^(H^)~1 . This gives us a continuous map :P-^jT5 (I "),^»->/p,
such that (/p)^ [ip =Vp.

This ends the proof of 3.4. D D
Proof of Theorem 3.3. — By 2.3 and its complement, there is a surjective map (p: I" -> M"

such that (p|l" is a homeomorphism onto its image, ^(l^ncp^I'^^ and
^o(<p(3I"))=0. We can define a measure jio on I" in the following way:

If A is a Borel set in I", then jio(A)=Ho((p(A)).
We have clearly jio ̂  ̂ g (!")»hence by theorem 3.1, there exists a homeomorphism g of I"

such that g^m=\\.Q.
If we put v|/=(pfif, we obtain a surjective map I" -> M", such that:
- v|/1 P is a homeomorphism onto its image;
- MvKai"))=o;
- \|^w==^o.

We define a map \|7: J^(M", ^0) -^ ̂ (I", w) by:
If ne^^M", no) and A is a Borel set in I", then \J/(^)(A)=p(\KA)).
The reader will check, using the properties of\|/, that \|/ is well defined and continuous (in

fact, it is a homeomorphism but we do not need that here). Moreover, we have v|/ (^o) = w.
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We can also define a continuous map \|/: ̂  (I") -> ^(M") by:
If h e^(P),

A^J vl/^-l on ^(In)-
T v / f id on vl/^I").

By 3.4, we can find a continuous section 9:^(P, m)-^^?) of ̂  (!")-> M^y (I"),
/ih-^m.

It is easy to check that the composite map:

^(M", ̂  ̂  ̂ (I", m) ̂  ̂  (I") ̂  ̂ a (M")

is a (continuous) section of ̂  (M") ̂  J^(M") above ^(M", Ho). 0
Define jf (M, Ho-bireg) as the set ofhomeomorphisms h e Jf (M") such that ^ and h~1 are

absolutely continuous with respect to [IQ. We have:

^r(M", ^lo-bireg)={/IeJf(Mn)|^^loe^(M^ ^o)}.

Define also Jf^M", Ho-bireg) by:

^ (M", ^o-bireg)=^f(M^ ^o-bireg) n ̂  (M").

As an immediat consequence of Theorem 3.3, we have:

COROLLARY 3.5. — If M" is compact and connected, then:
(i) ^(M", ^o-bireg)^jf(M", ̂ ) xj^(M", ^0);

(ii) ^(M", Ho) ̂  a retract by deformation of Jf(M", Ho-bireg), in particular the inclusion
J^(M", Ho) c? ^(M", Ho-bireg) is a homotopy equivalence;

(iii) ̂  (M", Ho-bireg)^^ (M", Ho) x^M", Ho)»-
(iv) ^(M", Ho) ^ a r^rracr ^ deformation of ^(M", Ho-bireg); m particular, the

inclusion ^(M", Ho) ^ ̂ (M", Ho-bireg) 15 fl homotopy equivalence.

Proof. - By 3 .3 , the surjective map: J^8 (M", Ho-bireg) ̂  ̂ (M", Ho) has a continuous
section a. A homeomorphism of J^8 (M", Ho-bireg) on J^8 (M", Ho) x ^g (M", Ho) can be
defined by:

^ (M. Ho-bireg) -^ ̂  (M", Ho) x ̂ (M", Ho),

^(^(TCoW)]-1/!,^)).

This proves (iii). — Remark that under this homeomorphism, Jf^(M, Ho) goes to the
subset Jf^M, Ho) > < { ^ o } - Since^^M", Ho) is con vex, { HO } is a retract by deformation of
e^(M", Ho)- If we put the preceeding facts together, we obtain a proof of (iv).

We can prove (i) and (ii) in the same way since any section of KQ :

^ (M", Ho-bireg) -^ ̂  (M", Ho)

is also a section of KQ : ̂  (M „, Ho-bireg) -> M^ (M „, Ho). D
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We give now another application of the von Neumann-Oxtoby-Ulam Theorem.

PROPOSITION 3 . 6 . — Let M" be a compact connected manifold and \JLQ e M^y (M"). Suppose
N" c: M" is a compact connected codimension 0 submanifold, such that M" — N" is a connected
codimension 0 submanifold. If h'.M" ->M" is a homeomorphism such that h \ N" is measure
preserving [i.e. for each Borel subset A oj N", Ho(^(A))=po(A)], then there exists u measure
preserving homeomorphism /i: M" -»- M", such that h \ N"=/i | N".

Proof. — We define two measures Vi and v^ on the compact connected manifold
V^M^-N".

If A is a Borel subset of V", then:

vi (A) = no (A n V") and v^ (A) - ̂  (h (A n V")).

Clearly, ^(l/v^V^v.e.^V"), hence, by 3.1, there exists /e^(V») such that
/*Hi=H2- We have:

v^V^MV^MM^-N^MM^-MN")
^MMM^-MMN^MMM^-N^v^V"),

i.e.
ViCn^m.

We conclude from this, that f^ Vi = Va. Since /15V" = identity, we can extend / by the
identity on N" to a homeomorphism / of M". It suffices to define h by h=h of. D

The proof of 3.6 is typical of most of the proofs given in this work.
Before stating the next Proposition, we recall the generalized Schoenflies Theorem.

/ " \
Let C^ be a parallelotope in R" i.e. C"= Y[ [a,, fcj, a^b, or an Euclidian ball of

\ f = i /
(arbitrary) finite radius (more generally C" can be any locally flat ball in IR" such that the
Lebesgue measure of 8C" is 0). We have 3C" ̂  S"~1. Ifj is an embedding, j: QC" c; R",
then, by the generalized Jordan Theorem, Rn—j(9C") has two connected components one
bounded and the other unbounded. We will note the bounded component by B(j). In
general, B (j) is not a ball ([Ru], p. 47 and 69 or [CV], p. 417 and 461), but if/ can be extended
to an imbedding J:U c; IR", where U is a neighborhood of 8C" in R", then B(j) is
homeomorphic to C" and we can extend j to a homeomorphism j of C" onto B (j). This is
the generalized Schoenflies Theorem; for a proof, see [Ru], p. 48 or [CV], p. 461. We now
give the "measure preserving" version of this Theorem. Recall that m is the Lebesgue
measure on R".

PROPOSITION 3.7. — Suppose j'.SC" c^R" is an imbedding which can be extended to an
imbedding of a neighborhood of QC" in U". Suppose, furthermore, that we have:
m(j(9C^))=0 and m(B(j))=m(Cn}. Then, j can be extended to a (Lebesgue) measure
preserving homeomorphism j : C" ̂  B(j).
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Proof. — We can extend j to a homeomorphism J: C" ̂  B (j). We have two measures on
C". Vi = (m | C") and v^ = (J~1)^ (m | B (j)). It is easily verified that we can apply to Vi and Vz
the von Neumann-Oxtoby-Ulam Theorem. We obtain he^^C") such that
^ YI = V2. If we define j by j=j°h, we obtain the desired homeomorphism. D

PROPOSITION 3.8. - J/pe^(r),r/i6?n^(P, ^)iscontractible. I n particular, if M" is a
compact manifold, B is a subset of M" homeomorphic to 1" and neJ^(M"), then each
^-preserving homeomorphism of M", whose support is contained in 6, is isotopic to the identity
via a ^-preserving isotopy, whose support is contained in 6.

An isotopy {h^)^^ ^ is ^-preserving, if each h^ is ^-preserving. The support of h is
supp (h) = { x e X | x + h (x)}, and the support of (h^)^^ ^ is

supp(^)={xeX|3re[0, l]h,(x)^x}.

Proof o/3.8. — The first part is an immediate consequence of 3.1 and 2.4. The second
part is a trivial consequence of the first. D

4. Local contractibility of j"f(M", î) and related results

We will have to use the Cernavskii-Edwards-Kirby results ([EK] or [R]). In fact,
Cernavskii and Edwards-Kirby worked with topological imbeddings, but we will need their
results for biregular topological imbeddings, i.e. topological imbeddings preserving sets of
measure 0. This is not a restriction because the Edwards-Kirby method works in this case
also; the author learned this fact from M. Rogalski.

Before giving the statements of the Theorems that we will need, we give some definitions
and some notations.

In the following, we fix M" a compact manifold and ^e^^M").
If A is a subset of M", by an imbedding feofAinM",we mean an injective (continuous) map

k'.Ac^M", such that k is a homeomorphism of A onto fe(A) and k~l(8Mn) is
A n 3M". Remark that according to the general terminology a map k: A -> M" is called an
imbedding i f fe i sa homeomorphism of A onto fe(A), and an imbedding is said to be clean (or
proper) if we have k~l(8Mn)•=^Ar\9Mn. As we will always work with clean imbeddings,
the word imbedding means in fact clean imbedding. The space of imbeddings of A into M"
will be denoted by ̂ (A; M"). I f fe : A -> M" is an imbedding and A is a Borel subset ofM",
we can define a measure fe* [io on A by fe* ^o (B) = Ho (k (B)) for each Borel subset B <= A. We
will say that an imbedding k: A -> M" is biregular (with respect to ^o)' it^* Ho ̂ d Ho | A have
the same sets of measure 0. We will denote the set of biregular imbeddings of A in M" by
^(A; M", Ho-bireg). We will say that an imbedding k: A -» M" preserves the measure jio if
the measures k* [IQ and (AQ | A are equal. We will denote the set of measure preserving
imbeddings by <^(A; M", [to).

Suppose B is a subset of M", we define ^(A, B; M") by:
^(A, B; M")={fce^(A; M^felBnA^dentity}.

Similarly, we define ^(A, B; M", j^o) ^d ^(A, B; M", ^o-bireg).
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All spaces of imbeddings will be endowed with the compact open topology.
We can now state the Cernavskii-Edwards-Kirby Theorem for biregular imbeddings.

THEOREM 4 . 1 . — Let U be an open subset of M", CcU a compact set, and D and D' two
closed subsets of M" such that Dc:Int(D')c:D'. There exists a neighborhood % of the
inclusion cUcM" in ^(U, D'; M", ^o-bireg) and a continuous map

(p: ^ x [0, 1] -> ^ (U; M", Ho-bireg)

such that:
(1) (po(fe)=fe,Vfee^;
(2) (pi (k) | C = fA?n^, V k e ̂ ;
(3) (p((fe)|DnU=i^nri^,Vke^Vre[0, I], i.e.

(p(^ x[0, l])cj^(U, D; M", ^o-bireg);

(4) (p^(fe)=fe outside some compact neighborhood Kof CinV, independent of t and k; i.e.
there exists a compact set K such that: CcInt(K)c:Kc=U and (p( ( fc) |U-K=fc[U-K,
Vke^ ,V?e[0 , 1];

(5) moreover, if k \ U n 3M" = identity, then (p, (fc) | U n ^M" = identity;
(6) (p,(0=f,V?6[0, 1].
The proof of Theorem is the same as the one given in [EK] for Theorem 5.1. See appendix

B.4 for some indications.
Remark that if (p^ is given by Theorem 4.1, then k (pi ( fe )~ 1 : (pi (fe)(U) -> M" is equal to k

on C and is the identity outside (pi(fe)(K), hence we can extend it by the identity to a
homeomorphism of M". This gives:

COROLLARY 4.2. — With the same notations as in 4.1, ifke^(V, D'; M", ^o-bireg) is close
to i, then we can extend k\C to keJ^(M", ^o-bireg). Moreover, we have:

— k depends continuously on k;
— i = identity;
— k | D n U = identity;
— if k | U n 8M'1 is the identity, then k 13M" is the identity;
— moreover, if U' is some given neighborhood of C, we can suppose that k is the identity

outside U'.
If we apply 4.1 in the case C=U=M n , D=D'=0, we obtain:

COROLLARY 4.3. - The group Jf(M",Ho-bireg) and JT^M", j^o-bireg) are locally
contractible.

Since, by 3.5, jf(M", Ho) and ^(M",^) are retracts of ^(M^^o-bireg) and
Jf^M", Ho-bireg), we obtain:

THEOREM 4.4. - If M" is a compact manifold and [ioeJ^^M"), then ^(M", ^o) and
J^8 (M", p,o) are locally contractible.
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In fact to apply 3.5, we must assume that M" is connected. But, if M" is not connected
and M^, . . . , Mj* are its connected components, then the group ^(M", ^o) ls locally

t
homeomorphic to the product Y[ Jf (M ?, Ho)- This fact legitimate the proof we have given

» = i
of 4.4.

We now want to prove the following Theorem:

THEOREM 4.5. — If M" is a compact connected manifold and ^e^^M"), then the
inclusions ^(M", ^o) ̂  ^(M") and JT5 (M", ^o) ̂  ̂  (M") are weak homotopy
equivalences, i.e. induce isomorphisms on all homotopy groups.

We will prove 4.5 in the case X7 (M", ^o)c: ̂  (M"). The proof of the other case is exactly
the same.

We know that ̂ (M", ^o) c? ^(M", ^o-bireg) is a homotopy equivalence, so 4.5 follows
easily from the following Lemma:

LEMMA 4.6. — If M" is compact connected and. \ioe^8g(^n)' tnen tne inclusion
^(M", ^o-bireg) c^ j'f(M") is a weak homotopy equivalence.

To prove 4.6, we will apply a Theorem ofEilenberg and Wilder ([EW] § 2, pp. 615-617) or
([To] §2, pp. 98-102), which we recall now. We explain this theorem in terms suitable to
our needs.

Suppose X is a metric space with metric d, AcX is some subset. Suppose furthermore
that, given £ > 0, there exists 8 > 0 such that each continuous map (p: S" -^ A (Sr the r-sphere, r
arbitrary) with dian^q^S^^S can be extended to a continuous map (p ̂ ^ -»-A with
diam (q> (B'"1'1)) < e. Then, the Eilenberg-Wilder Theorem says, in particular, the inclusion
A cf. A is a weak homotopy equivalence.

Suppose now that G is a metrizable group with metric d ; we can suppose that d is right (or
left) invariant. Suppose that H is a subgroup of G which is locally contractible. Then,
given e>0, we can find a 8>0 such that N§(^, H), the 8-neighborhood in H [i.e.
N§ (e, H) = {h € H | d (fe, e) < 8}], can be contracted to a point in Ng (e, H). Now, using the
invariance of the metric d, it is easy to show that each continuous map (p: Sr -^ H with
diam (^(S^^ 8 can be extended to a continuous map (p :B k + l -^H with
dian^q^B'^^e. Hence, the inclusion H c+ H is a weak homotopy equivalence. In
particular, if H is dense in G, then H c> G is a weak homotopy equivalence.

Applying what we said above and 4.3, we have reduced Lemma 4.6 to the following:

LEMMA 4.7. — The subgroup Jf(M", ^o-bireg) is dense in ^f(M").
The proof of Lemma 4.7 follows from another Lemma, which we prove first.

LEMMA 4.8. — Given any measure ^le^^M"), then there exists a homeomorphism
he^(M"), as close to the identity as we want, such that h^^e^^M", po)-

Proof 0/4.8. — We prove it in the case N1"=!" and ^o==m=Lebesgue measure. The
general case follows from this one, using a method similar to that given in the proof of 3.3.
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Let H€^(P). We can find a subdivision of I" by hyperplanes into subcubes Ci, . . . , c^
such that ^(9ci)=Q and diam(Cf)<s. Using the von Neumann-Oxtoby-Ulam Theorem
(3.1), in each cube c^ we can find a homeomorphism fcejf^I") such that

k

h (J <9c,= identity, /!(cf)=c; and ^dcf==(^(c;)/w(Cf))m.
1=1
The homeomorphism ^ is s-close to the identity and h^^eJ^^M", Ho). D
Proo/ o/4.7. - Let g be in ^f (M"), consider the measure p, = ̂  |̂ o. Applying 4.8, we

obtain hej^8 (M"), as close to the identity as we want, such that h^ ̂  e M\ (M", ^o)- The
homeomorphism hg is a as close to g as we want, and (hg)^ \IQ e^(M", Ho)» which means
^e^f(M", Ho-bireg). D

The analogue of Theorem 4.1 is false for measure preserving imbeddings. We give an
example which contradicts its Corollary 4.2. Take two small intervals in S1, Ii and \^ and
push them one towards the other using rotations. This small push cannot be extended to a
measure preserving homeomorphism of S1.

We give analogs of4.2 for the measure preserving case when C is a locally flat codimension
0 submanifold.

Recall that N" c M" is a locally flat codimension 0 submanifold if, for each x in N", we can
find a chart U -> M^ with OeUc [R" and (p(0)=x, such that:

- if xeM", then L^R", and either (p^cN" or ^((^=N"0 (p^"), where
H\={x=(x,, ...,x,)|x^0};
- ifxe<9M", then U=H"+ and either (p^^cN" or ^(^+.^=N"0 (p(H"+), where

H^+^x^Oci , . . . , x J | x ^ _ i ^ O a n d x ^ O } .

PROPOSITION 4.9.- Let N" be a compact locally flat submanifold of the compact connected
manifold M", such that M^-N" is connected. Let ^-^(M"), and U be an open
neighborhood of N" in M".

For each k e ̂  (U; M", |LI()) which is close enough to the inclusion i: U c= M", we can find a
homeomorphism keJ^(Mn, ^o) such that:
- fc |N"=k|N";
- k depends continuously on k;
- i = identity;
- if k | U n oM" = identity, then k [ cM" = identity;
- furthermore, if P and Q are closed subsets of 8M" such that Q is a neighborhood of P in

SM", we can insist that k[P be the identity if k\Q is the identity.
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Proof. - Since N" is locally flat, V" = M" - N" is a locally flat submanifold of M". it is also
connected being the closure of the connected set M"—]^". By 4.2, we can. for each
fce^(U; M", [io) close enough to the identity, find a homeomorphism k^ of M", such that:
- feie^M", uo-bireg);
- ^i |N"=^|N";
- k^ depends continuously on k;
- i\= identity;
- if f c |UnaM" = identity, then fci | BM^ == identity;
- fcJP i s the identity, if k^ | Q is the identity.
Now remark that, since MMN^^M^)' a stupid substraction argument shows that

v = [IQ (fei (V)) is independent of k^.
Define, for each k^, a measure ^i(fci) on V" by:

u^K^^MAnV")),

if Ac: V" is a Borel subset.

It is easily verified that ^ (fei) e M\ (V", Uo), where ^o = (1 I v ) (l^o | V") = ̂  (h)' Moreover,
^i(^i) depends continuously on k^, and hence on k.

By Theorem 3.3, for each »i(fci), we can find a homeomorphism ^e^f^V") such that
k^ \JLQ= ̂ i(^i), moreover fe^ depends continuously on ^1(^1), and hence on k. Since
k^ 13V"=identity, we can extend, by the identity, each k^ to a homeomorphism ofM", which
we still call k^.

One can verify that k=k^k^ is the desired homeomorphism of M". D
Let V""1 be a compact connected manifold, and consider the manifold

yn~lx[Q,l]. Consider four arbitrary but fixed numbers: 0<c<a<b<d<l. If
^V^xIc.d^V^xlO, 1[ is an (open) imbedding, then V^xtO, ^-^(V""1 x[a, b])
has two connected components; we call ^j(k) the connected component containing
V""1 x { 7 }, j = 0 or 1. With these notations, we can now state:

PROPOSITION 4.10. - Let [IQ e M\ (V"-1 x [0, 1]). For each

fee^(V"-1 x]c, d[\ V"-' x]0, 1[, ^o)

close enough to the inclusion r.V""1 x]c, d [ ^ \ n ~ l x ] 0 , 1[ and verifying
[lo(^o(k))=[io(\n~l x[0, a[) [or equivalent^ ^o(^iW)=Ho(V"~1 x]b, 1])], we can find a
homeomorphism k of V""1 x[0, 1] such that:
- k preserves [IQ, i.e. feejf^""1 x[0, I], [io);
- fe lV"- 1 x[a, b]=fc|V"-1 x[a, b];
- k depends continuously on k;
- ~k\Vn~lx{0}u'Vn~lx{l}=identity;
- if fe |aV"~1 x]c, d[ is the identity, so is ^aY""1 x[0, 1].
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The proof of 4.10 is almost the same as the proof of 4.9. We leave it to the
reader. Remark that since k preserves the measure, we have ^o C^o W)== Ho (V"~1 x [0, aQ if
and only ifM^i^MV"-1 x]fc, 1]).

In fact, 4.9 and 4.10 are two particular cases of a more general Theorem, which we will
now explain. We will use only the particular cases given in 4.9 and 4.10.

Suppose N" is a compact locally flat codimension 0 submanifold of the compact connected
manifold M", then M"--!^" has a finite number of connected components
Ci, . . . , C,. Moreover, each closure C/, is a compact connected locally flat codimension 0
submanifold of M". Suppose U is an open neighborhood of N" in M" and
Ho e ̂ g (M"). Let k be an imbedding U <= M" preserving po» A^ by 4.2, ifk is close enough
to the inclusion UcM", we can find a homeomorphism fee Jfbireg^", Ho) extending
k | N". We claim that the set k (C^) is independent of the particular extension of^JN^ ' toM",
this follows easily from the Lemma:

LEMMA 4.11. — If f'.M" -> M" is a homeomorphism ofM" such that / )N"= identity then
/(C,)=C,,/i==l, . . . ,q .

Proof. — Let p e C/, — C\ (such a point exists because we assumed M" connected). Then,
of course, peFr(N"). Since we assumed N" locally flat, we can find a neighborhood V ofp

in M" such that V -> W x ] — 1, 1[ with W some connected open subset of H^"1, such that(P
VnN^cp-^Wxj-l .O]). Since Wx]0, l [ is connected, the set (p(Wx]0, l[) is
contained in a unique component of M" — N", which must be of course C/,. This shows that
V n Ci = 0 if / + h. And as a consequence, C/, is the only component of M" — N" such that p
belongs to its frontier. Now, since f\ N^ id, the set /(C^) is a connected component of
M"-]^, such that p=f(p) belongs to its frontier. Hence C^=/(C^). D

We can now state the generalization of 4.9 and 4.10.

THEOREM 4.12. — Keeping the notations given above, let k e ̂  (U; M", ^o) be an imbedding
close enough to the inclusion. Suppose moreover that ifkeJ^(Mn) is an extension of k \ N",
then Ho(^(Ch))=^o(C/,) for each connected component Ci, . . . , Cq of M^—N".

There exists a homeomorphism K of M" such that:
— K preserves [IQ; i.e. Ke^(M", ^.0);
— ^N^feiN";
— k depends continuously on k;
— if k 18M" n U is the identity, so is K\ 8M".
The proof of 4.12 is the same as the one given for 4.9.
We conclude the section with the extension ofisotopies.

THEOREM 4.13. — Let N" be a locally flat compact codimension 0 submanifold of the
compact manifold M". Let U be an open neighborhood of N" and Ho €e^(M"). Suppose
(^t)t€[o. i] ls an isotopy of open imbeddings: U <^ M" such that feo ls tne inclusion i: U c; M.
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A necessary and sufficient condition for the extension of (k^ | N")^o i]to M" preserving ^o is
the following condition:
(*) If (^()(6(o. i]l5 an extension of (k^ \ N")^ ^ to an isotopy of M", then, for each connected
component C of M"-N", we have Ho(^(C))=Ho(C), te[0, 1].

Proof. — Remark that if(*) is satisfied by an extension offe, | N", it is satisfied by all. This
proves the necessity of (*).

The proof of the sufficiency of (*) is the same (up to minor change) as the proof of 4.9, once
we know the existence of an extension (^)^o,i] ^(^I^LIO.I] with each ^e^M", ^o-
bireg). But the existence of such an extension follows from 4.1 (see [EK], p. 79, proof of
Corollary 1.2). D

APPENDIX A. 4

Is ^ (M^^AN ANR

We recall that a metric space X is an ANR (= absolute neighborhood retract) if it can be
embedded as a closed retract of some open set in a normed space, see [BP], chapt. 2, for
definition and some properties of ANR's. The ANR's are of interest because they form a
fairly large category of spaces which are "well-behaved".

If M" is a compact connected manifold with n ̂  3, it is an open question whether ^f (M") is
an ANR or not. It is known in dimension two [LM] that ̂  (M") is an ANR. One can ask
the same question for ^f(M", p,) where n is a good measure on M". This second question
can be trivially reduced to the first one, as we will see now.

PROPOSITION A. 4.1. — Lei M" be a compact manifold and let jj, be a good measure on M"
with ̂ (SM^^O. If ^(M") is an ANR, then ^(M", p-bireg) and ^(M", ^i) are ANR's.

Proof. — We will use the results and terminology of [To].
By 4.3 and 4.7, ̂ ^(Mn' H) ^ a locally contractible dense subgroup of J^(M"); this

implies [To], remark 2.9, that ^f(Mn)-Jf(Mn, p-bireg) is locally homotopically negligible
in Jf(M"). Hence, by [To], Th. 3.1, ifjf(M") is an ANR so is ̂ (M", p-bireg). On the
other hand Jf(M",H) is a retract of Jf(M",^-bireg), and a retract of an ANR is
an ANR. D

COROLLARY A. 4.2. — // M2 is a compact 2-dimensionnal manifold and ne^^(M2), then
^bireg(M2, \i) and ^f(M2, n) are ANR's.

APPENDIX B. 4

OUTLINE OF THE PROOF OF THE CERNAVSKII -EDWARDS -KIRBY

THEOREM IN THE BIREGULAR CASE

We outline, with few details, the proof of the Cernavskii-Edwards-Kirby Theorem for
biregular imbeddings.
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First, Theorem 4.1 is proved in the case where M" is an open set of IR", and the measure is
Lebesgue measure. The main Lemma is the following handle Lemma.

HANDLE LEMMA B.4.1. — Consider B^xIR""^ endowed with m the Lebesgue
measure. There is a neighborhood ^ of the inclusion cB^ x4Bn - kc:Bk x R"""^ in
^(B^B"^, 9^x4^-^ B^xOr-^ , m-bireg) and a deformation (p, of ^inside
^(B^B"-^ SB^B"-^ B^xtR"-^ m-bireg) such that:
- (p iWlB^xB^^Id .VfceX-
- (p , (0=f ,Vt6[0 , l ] ;
- ^,(k)=koutsideBkx3Bn~k,^ke^,^te[0,l].
The proof of this Lemma is exactly the same as the proof given for Lemma 4.1 in [EK],

once we replace the immersed punctured torus argument by the furling argument explained
in [EK], § 8. We have only to remark that the furling is done via some composition with
some PL (hence biregular) homeomorphisms, and that the final compression argument can
be done using a PL compression.

Once, we have this Lemma, we can obtain Theorem 4.1 in the case where M" is an open set
of 1R" by using a small triangulation like in pages 71-73 of [EK]. Now, if M" is without
boundary and [iQeJ^g(Mn), a simple application of the von Neumann-Oxtoby-Ulam
Theorem shows that there exists an atlas {(^, L^) | U^ open in R" (in fact a ball)} such that
hf [IQ is the Lebesgue measure (up to scaling). Using this, we can apply the usual chart by
chart argument (see [EK]) to prove Theorem 4.1 in this case. Of course this also proves
Theorem 4.1 in the case where ^M"^0 but C n SMn=(j[).

It remains then to prove Theorem 4.1 in the case where C n SM" ̂  0. Here we have to
change a little the argument used in [EK]. In [EK], they apply the Theorem in the empty
boundary case, to the triple 3M", C n 3M", U n cM" and then they use a small collar to
extend the deformation and after that it remains to rectify the imbeddings in the
interior. We cannot do that here because during this kind of deformation, we are not sure to
obtain biregular imbeddings, for example if hrB^'-^B" is even a measure preserving
homeomorphism, h \ 3B" might be very bad !

We get rid of this minor point by the following handle Lemma.

LEMMA B .4 .2 . - Consider [0, 1] xB^xR""^" 1 endowed with the product of Lebesgue
measures. There is a neighborhood ^ of the inclusion i:

[0,l]xBkx4Bn~k~lcl[0,l]xBkxRn~k~l

in
^([0, l ] x B k x 4 B " ~ f c - l , { i J x B ^ x l i r - ^ u t O , 1] xQ^ x ffT-^-1;

[0, l l x B ^ x t R " - ^ - 1 , m-bireg)

and a deformation (P( of ^ inside

J^([0, l lxB^B^-^lJxB^xBr-^utO, 1] xS^ x BT-^-1;

[0, IjxB^R"-^1 , m-bireg)
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such that:
- (pi(fe)|[0, IjxB^B^-^Id.V/ce^;
- (p,(0=i.Vre[0,l];
- ^,(k)=k outsider, r i xB^SB^-^Vfee^Vre tO , 1].
This Lemma can be proved along the same lines as the one above.
Once we have this Lemma, we can prove, using the standard techniques of [EK], the

following Proposition.

PROPOSITION B.4.3. — Let N""1 be a manifold without boundary and with a good
measure v. Let K be a compact set, V an open neighborhood of K in N"~1 and let F c= F' be
two closed subsets of N""1, with ¥ ' a neighborhood of F. We endow [0, 1] xN""1 with
the product measure m x v where m is a Lebesgue measure on [0, 1]. There exists a
neighborhood ^ of the inclusion i:[0, 1] xV <=[(), 1] xN"~ 1 in

^([0, l]xV,[0, ! ] x F ' u { l } x V ; [ 0 , llxN^.m-bireg)

and a deformation (P( of ^ in

^ ([0, 1] x V, [0, 1] x F u { 1} x V; [0, 1] x N"-1, m-bireg)

such that:
- (pi(fc)|[0, l]xK=Id,Vfce^;
- (Mf)=f,Vre[0,l];
- (p((fe)=fe outside some compact neighborhood of [0, l]xK in [0, l]xV, V^ce^,

Vre[0,l].
Now, we can finish the proof in the following way. The boundary ^M n of M" has a small

neighborhood homeomorphic to [0, 1] x 5M". We can apply the without-boundary case to
deform the imbeddings so they become the identity on a compact neighborhood of
C — [0, 1[ x 5M" and then finish to deform them to the identity by using Proposition B.4.3.

5. The mass flow homomorphism

Let X be a compact metric space. We recall that an isotopy of X is a continuous map
^i:Xx[0, 1]-> X such that each map ht:X—>X, x—>h(.\',t), is a homeomorphism and
ho = id^. We will use the notation (h^)^^ ^ or simply (h^) for an isotopy. In fact, an isotopy
is the same as a continuous path in e^f (X) starting at the identity. We will note by ̂ y (X)
the space ofisotopies ofX. Of course, ̂ y (X) is endowed with the compact open topology.

We have, of course, a continuous surjective map:

j>y (X) -^ ^fo (X), (/!,) ̂  AI ,

where J^o(X) is the path component of idx in jf(X).
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We say that two isotopies (h,} and (g,) are isotopic with fixed extremities, which we note
(^M^ if^i =^i and there exists a continuous map 1x1-^ Jf(X), t, si-^H^, such that
Ho,s==idx» H i ^ = = h i = = ^ i , H^()=/I( and H( , i=^c The relation ^ is an equivalence
relation on ^>y (X). We note the set of equivalence classes by Jfo(X). The equivalence
class of(/i() will be noted by {h,} . The set ̂ o (X) carries a topology, namely the quotient
topology obtained from the compact open topology on ^^(X).

The map j^ (X) -^ ^fo (X) induce a continuous map Jfo (X) -^ ^fo (X). Remark also
that ^y(X) is a group, where the composition law is given by
(^te[o.l}o(9t)telo.l}::=(htgt)t6[o.l]- This group structure induces a group structure on
Jfo(X). The two maps J^(X)-^o(X), and Jfo(X)-^Jfo(X) are group homomor-
phisms.

In fact, ifjf(X) is locally contractible (or even 1-semi locally connected), then jfo (X) is the
universal covering space of Jfo (X).

Now, if H is a measure on X, we define:

^(X. H)={(^)e^(X)|Vre[0, I], h,e^(X,^)},
Jfo(X, H)={A|3(^)e^(X. H). h,=h}.

We can also define the equivalence relation ^ on ^e^(X, |i) in the same way as above, and
define Jfo(X, n) as the set of equivalence classes. If jf(X, n) is locally contractible, then
J^o(X, n) is the universal cover ofWo(X, n).

We now consider the topological group T1 = R/Z, which is isomorphic to the topological
group S^ { z e C | |z| =1}.

We note by ̂  (X, T1) the set of continuous maps from X to T1; it is an Abelian group under
addition:

(f-^g)(x)^f(x)+g(x), VxeX.

Recall that /, ge^(X, T1) are called homotopic, if there exists a continuous map
X x[0, 1] ̂  T1, (x. r)h~>/,(x). such that /o=/ and /i ==^.

Homotopy is an equivalence relation. We note by [X, T1] the set of homotopy classes; it
is an Abelian group, its addition is induced from the one defined above on ^(X, T1).

If X is some good space, for example a manifold or a polyhedron, then [X, T1] is
isomorphic to H1 (X, Z) the first singular cohomology group of X. In fact, H1 (T1, Z) ̂  Z,
and a preferred generator a 6 H1 (T1, Z) is given by the natural orientation of the circle. We
can define a natural map:

^x: [X.-n-.H^X.Z),
/^/*a.

This map is a group homomorphism. If X is a polyhedron, obstruction theory shows that
ax is an isomorphism ([Sp], chap. 8). This result is then extended to ANR's, and in
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particular to manifolds, since an ANR has the homotopy type of a polyhedron ([BP],
Cor. 6.6, p. 80 and [LW], Th. 3.8, p. 127).

Remark now that H1 (X, Z)=Hom(Hi (X, Z), Z). So, there is a natural map:

&x : Hi (X, Z) -> Hom(H1 (X, Z), Z).

Composing b^ with af: Hom(H1 (X, Z), Z) ̂  Hom([X, T1], Z) gives us a map:

Px: H^X.Z^HomaX.rLZ).

There is also the Hurewicz map ([Sp], p. 387]:

h^: Ki (X, Xo) -^ Hi (X, Z),

where TCi (X, Xo) is the fundamental group of X with base point XQ. We will call ax the
composite Px^x:

ax : Tti (X, xo) -^ Hom([X, T1]. Z).

We can describe »x in the following terms: a loop I of X based at XQ can be considered as a
map < : T 1 - » X with f(0)=Xo. Now, if / :X^T 1 is a continuous map, then:
»x (0 (/) = deg (/ o J), where f o l ' . J ^ X ^ J 1 . We will use this later.

Suppose that X is a good space and that H i (X, Z) is a finitely generated group; we note
here for future reference that the map (3x tensored by R gives us an isomorphism:

H^(X, R)———^—————^Hom([X, T1], IR)

" p x ® R "
H i ( X , Z ) ® R ———————> Hom([X, T1], Z) ® IR.

In particular, if M" is a compact manifold, H i (M", R) is isomorphic to Horn ([M", T1], IR).
DEFINITION OF THE MASS FLOW HOMOMORPHISM . — If H is a measure on X, we will define a

group homomorphism, noted 8x,n or simply 8, and called the mass flow homomorphism:

Jfo(X, n)^Hom([X, T1], R).

Suppose first (fc,)e^^(X, ^0); we define a map 9(^) : ̂ (X, T1) -> R in the following
way:

If/€^(X, T^.then^c-/) : X-^T1 is a homotopy such that flio-f=f-f=0', hence.
5gg [CV], chap. 13, we can lift it, in a unique way, to a homotopy: (fli^-f) :X->R, with
^o-Y-O:

R
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We define:

9(^)(/)= [(ftii-f)d[i.

We have (f+g)h^-(f-{-g)=(jht-f)-^-(ght-g); this equality imply the same one for the
liftings, and we obtain:

9(^)(/+^)=9(^)(/)+9(/i,)te).

So 9(^)eHom(^(X, T1), R). Suppose now that /e^(X, T1) is homotopic to a
constant map, then we can lift it to a map / : X -> R. It is easy to verify that
fllt-f=fht-f' This gives us

9(^)(/)= [(7^i-7)^= [~fh,d\t- f7^=0,
Jx Jx Jx

since h^ preserves the measure [i. This fact shows that 9(/i,) induces a homomorphism
[X, T ̂  ̂  1R, which we still note 9 (/^).

Up to now we have defined a map:

J^(X, n)^Hom([X, T1], R).

We verify that this map is a group homomorphism. Let (A() e ̂ y (X, ^), (^() e ̂ y (X, n)
and/6^(X,T l),wehave:

A^-/=(A-/)^+(/^-A

hence:

(flitgt-f)=(flit-f)gt+(fgt-n

which in turn implies:

9(^)(/)= f(^i-/)^i^+ f^7-/^=9(^)(/)+9(^)(A
Jx Jx

since g ^ preserves ^i.
Now we check that, in fact, 9 is well defined on ^o(X, n). If (h^^(gt), let H^, be a

homotopy between them. We have now a two parameters family /H^—/: X->T1 ,
lifting this two parameters family to /H^~/:X-^T 1 shows easily that we have
fti-f=fgi-f, which implies 9(^)(/)=9(^)(/).

So we have shown the existence of the map 9 : J?o(X, \i) -> Hom([X, T1]. R).
The map 8 is continuous in the following sense: if /^(X,!1), then the

map: ^Q{X,[i)->R, {^t}1-^ 9 (/!()(/), is continuous. In other words, if we endow
Hom([X, T1], R) with the weak topology, then 9 is continuous.
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If X is a compact manifold, then Hom([X, T1], IR)^Hi(X, R), and each O(^) can
be interpreted as a cycle on X.

Example. - X=T",^=Haar measure. We identify Horn ([X, T1], R) with HT, by taking
the n projections pi : T" -> T1, (xi, . . . , xJ i—^Xi , as a basis (over Z) of[X, T1]. Now, if
a e tR", we can define an isotopy R^ : T" -^Jn,x\->x-^-tai. A simple calculation shows that
8(1^)= a.

The kernel of the natural map j'fo(X, ^i) -> Jfo(X, I1)ls ^e set

^ (X,^)={{^}e^fo(X,^ i= id} ;

^(X, n) q; jfo(X, n)-^o(X, H).

We define r<=Hom([X, T1], R) by:

r=6(^(X,4i)).

Passing to the quotient, 0 gives us a homomorphism 9:

6 : ̂ o(X, ^i)->Hom([X, T1], R)/r:

^r(x, H) ———9———^ r=9(^(x, H))

^fo(X, H) —————s—————). Hom([X, T1],

^o(X, H)—————e—————^Hom([X, T1], IR)/r.

D. Sullivan brought to our attention the following fact:

PROPOSITION 5 . 1 . — IfX is connected and |i (X) = 1, the group F is contained in the image of
the center ofTCi(X,x) under the map ax : 7ii(X, x) -^ Hom([X, T1], Z)cHom([X, T1], R).

LEMMA 5.2. — IfX is connected and (i(X)= 1 and { h^} e^(X, n), then 8(^() is the image
under ax of the loop { h^ (x) \ t e [0, 1]}.

Proof. — Let /: X -> T1, consider the lifting fh^—f : X -> R. Since h^ =id and X is
connected, fh^—f is a constant map whose value is an integer n. So

8(^()(/)= n^=n. It is easy to show that n is the degree of the map T1-^!]"1,

t h-> / (/i( (x)). According to the description of the map ax given before, we have proved the
Lemma. D

Proof of 5.1. - Let {^}eJ^(X, [i). Define the loop / : [0, l ] -^Xby: t^Uv). We
know that, by 5.2, a (!) = 9 ( { h ^ ]). So it suffices to show that I is in the center of n i (X).
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Let c : [0, 1] ->- X be a loop based at x, c(0)=c(l)=x. Define a map [0, 1] x [0, 1] "> X,
(s, t) h-^ /I, (c (s)). Looking at the restriction of H to the four sides of [0, 1] x [0, I], we obtain
the following picture:

/I I/

0 c 1 s

So, (~1 c~1 Ic is homotopic to a constant map, and in Tti (X, x), we have lc=cl. D
Remark as a consequence of 5.1, that if X is a compact connected manifold, then F is

contained in the integral part of Hi(X, R)==Hom([X, T1], IR). This shows that F is
discrete in the natural topology of H i (X, IR) [this natural topology is given by the fact that
Hi (X, (R) is a finite dimensional real vector space].

Example. — X = T" : [i = Haar measure. If we identify H i (T", R) with R" as before, then
I^Z^R",

LEMMA 5 . 3 . — Let Mnbea manifold, B be a subset ofM" homeomorphic to the n-ball B" and
H6J^(M"). Suppose /ie^f(M",H) is isotopic to the identity by a ^-preserving isotopy
having its support in B, then6(h)=0. IfhE^{W, p) has is support in 6, then n is isotopic to
MM" andQ(h)=0.

Proof. — Let (/!,) be an isotopy such that h^ = h. We will show that 9 (A() = 0. Let/be in
^{M", T1). Remark that fli^-f^ identically 0 outside B, this implies that the lifting

fht-f'.M"^^ is also identically 0 outside B,-hence 8(^)(/)= \fh^fdu. Now

j ' \ B : B -> J { can be lifted to a map / : B -> R, since B^B" is contractible. It is easy to
see that fh,-f |B=/^r|B-7, hence we obtain 9(/i()=0. Since MB)=B and h^ is
(^-preserving.

The remaining part of the Lemma is a consequence of 3.8. D
If J^Q(X,[i) is locally contractible, then the map 6 is continuous. This follows

immediately from the continuity of 9 and the fact that in this case Jfo (X, p) -* ̂ o (X, n) is a
covering map.

Remark. — The existence of the mass flow homomorphism is well known; see [Sc] for the
case of a flow and [Th] for the case of volume preserving diffeomorphisms. The definition
we gave is inspired by Michel Herman's definition of a rotation number for homeomorphisms
ofT1 ([He2], chap. 2).
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WHY 6 is CALLED THE MASS FLOW HOMOMORPHISM ? — Let A and B be compact spaces and
A x {0 , 1} -^ B be some imbedding. We define X by gluing A x [0, 1] to B using the map (p:

X=(Ax[0, l]UB)/(p(a, Q)^(a, 0), (p(^. l)-(a, 1),

A x l

A x O

We can define a natural map /: X -> T1 by:

f r m o d i , if .\(a, f ) eAx[0 , I],
'——{o, if xeB.

We obtain a covering X -^ X as the pull-back by / of the covering R -> J1. The space X
can also be defined as in the figure below:

__ ___ A x O + ^ ( p ( A x O )

Ax[- l ,0] / ^ . /Ax[0,l]

A x O _ ^ ( p ( A x l ) A x l - ^ < p ( A x l )

where each B( is a copy of B.
The map / : X -»• R covering/may be defined by:

. - In, if xeB^, VneZ,
[r, if x=(a, r)eAx[m, m+1], VweZ.

Moreover, the covering transformations of X -^ X are generated by the map T : X -> X,
defined by:

^^r^68^!- if ^B^,
\(a,t+l), if x=(a, r)eAx[m, m+1].
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Suppose now that p, is some measure on X, such that ^i]A x[0, l]==v xdt, where v is a
measure on A and dt is Lebesgue measure on [0, 1]. We can "lift" p, to a measure \xofX [of
course n(X)=+oo]. Let (^)eJ^(X, p), we can lift (h^) in a unique way to
(ht) e ̂ y (X, n). Moreover, (^) depends continuously on (^) and (^) commutes with the
covering transformations of X -> X. Suppose that (h^) is close enough to the identity, then
we can define the region R(/I()C=X which consists of the points between A x 0 + and
MAx 1/2).

We also define R'(/I() as the region between h^ (A x 1/2) and A x 1.

PROPOSITION 5.4. - Wehave6(ht)(f}=]i[R(h,)]-~[i(Ax[Q, 1/2]).

Proof. - Since F = A x [ -1 /2, 0] u B o u A x [0, 1 /2] is a fundamental domain of X -> X,
we have:

e(^)CO= {(fh,-f)d^= [fh,d^- [/^i.
JF JF JF

We compute first

[~fd^ [ 7^+ [ 7^+ f 7^-
JF JAX[-1/2,0] jBo jAx [0,1/2]

Since 7|Bo=0, we obtain ~fd[i=Q.
JBO

r - - rWe compute then fd\x and fd\t:
JAX [-1/2,0] JAX [0,1/2]

r - - r r° ifd\x= tdvdt=v(A} tdt=--^v(A),
JAX[-1/2,0] JAX[-1/2,0] J -1/2 °

[ fd^= \
JAX [0,1/2] jAx[0.]

fdVi=\
JAx [0,1/2] JAX [0.1/2]

p l /2 l

tdvdt=v(A) tdt=.v(A).
J o o -

This gives: Jd[i=0
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Now we compute fh^d^i:

\fh,d^= [ fd^i,
^ JMF)

but

M^T-WMuBouR^),

hence

f7^= f 7^+ f 7^.
JF jT-^R'^uBo JR(A,)

Since T preserves ^, we have:

f 7^= f 7^= [ 0+l )dv^=f 7^+^[R(^)].
JR(^) JT-^R^)] JT-^R^,)] JT-^R^,)]

Since T~ 1 [R(h,)] u T~ 1 [R'(^t)] u Bo=A x[-1, 0] u Bo, we obtain:

[7^^=|I[R(^)]+ [ 7^
JF jAx[-l,0]uBo(Ax[-l,0]uBo

=H[R(/i,)]+v(A) 1'° ^t = p"[R (/»,)]-^v (A)

=U[R(M-H(Ax[0,^[°-i])-
Finally:

9(^)(/)=^[R(^)]-^(Axr0^iy D

Remarks. — (1) Proposition 5.4 can be interpreted by saying that 8 (^) is the mass that has
passed algebraically through the "membrane" A x l/2c=X. If we imagine A x [0, 1] as a
pipe, this explains the name of the mass flow homomorphism.

(2) Letfl, b, c, rfe]0, l[,c<a<b<d. Suppose that A is a connected manifold V""1, and
that n | V""l x [0, 1] =v x dt, where v is (up to normalisation) a good measure on V"~1. If
we define ^o^r) ^ the connected component of V"~1 x[0, l]-^!^""1 x[a, b]) which
contains V" xO, then we have, by 5.4, 8(^)(/)=^o(^))-H(V"~1 x[0, 4). Hence we
can apply Proposition 4.10 to h^ \ V""1 x]c, d[, if and only if 8 (h,)(f) =0.
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APPENDIX A. 5
ON THE DIFFERENT FORMS OF THE MASS FLOW HOMOMORPHISM

Suppose M" is a compact C°° differentiable manifold with a volume form ft, such that

ft = 1. Let ^y00 (M", ft) denote the set of C °° isotopies (^ \^ ^ with ho = Id, which
JM"
preserve ft. There is a homomorphism VM",Q=^» ^^(M, ft^H^^M1', R),
see [Th]. We will show that. up to Poincare' duality, V is equal to 8^". n ' where ̂  is the
measure obtained from ft.

First, we recall the definition of V. If (^ )^o ^ is in ^y °° (M", ft), we consider the time
dependent vector field X^ on M" defined by:

X^m)^^-1^)].

Since h^ preserves ft, for each t, the (n — l)-form i (X^) ft is closed, hence so is the (n — l)-form

i (X,) ft dt. By definition, V (h,) is the cohomology class of i (X,) ft dt.
J o J o

PROPOSITION A. 5.1. — The cohomology class ̂ (h^) is the Poincare dual of the homology
class 9 (h,).

Proof. — Let o) be the canonical volume form on T1.
If /: M" -^ T1, we have to show that:

f rrHX^ft^lA^co^S^)^).

We will denote the left hand side of the equality above by < Y(/I(),/ >. By Fubini Theorem,
we have:

<V(/1,)./>= f [l(X,)ft]A^A.r(0.
JM"X[O,I]

Remark that ft A/* CD =0, since it is an (n+ l)-form on an n-manifold. We obtain then:

0=l(X,)[ftA/*(o]=[f(X,)ft]A/ili(0+(-l)wftA[f(X,)/aliO)].

Now:

<V(^),/> = f -[f(X,)ft]A(/*(o)A^=(-ir f ftA[(/*co)(X,)dr]
JM"X[O,I] JM"X[O,I]

(/*(o)(X,)rirAft= /i*[(/*o))(X,)^Aft)], by naturality of integration,
JM"X[O.I] JM"X(O,I]

=[ (/*(o)(X(ofc,)drAft. since/i*ft=ft;
JM"X(O, i] = frr/^tx.o^dtia
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We have:

(/sl6(o)(X,o/z,(m))=(/*(o)?(m)N) ̂ ^^(m)). ^

It follows easily that M->- /*(o(X,o^(m))rfr is a lift in R of the map [0, 1]-+T1,
J o

u-^fli^(m)-f(m),

This means that the lift A-/ of A-/ is just /* co(X^ o/ijdu.
J o

Hence we obtain:

<V(U/>== f fl^fa- f fl^~fd^,
JM" JM"

which is, by definition, 9 (/!()(/). D
In [Sc], Schwartzman gave for a flow another definition of the mass How

homomorphism which we recall now.
Suppose that (/i^gR is a flow on a compact space X, and suppose that (/^)

preserves \JL. Given a function /: X -> T1, consider the lift jh^-f: X -»• R of yh(-/with
fho—f^Q, Schwartzman (using Birkhoff ergodic Theorem) shows that
lim(l/t)[jht—f](x) exists for ^-almost every x, then he defines the "asymptotic cycle"
r-»oo
associated to (A^^R and ^ by:

[ lim ^\flt^f}(x)d^x).
JX t-^ao r

PROPOSITION A.5.2. — The limit lim ^/t[jht—f](x) exists for [i-almost every x and its p

integral is 9(^)(/).
Proo/. — First remark that:

A+t'-/=[A'-/]^+^-/-

which can also be written as:

[A^/l^A^y-A3/ (*).
Using the compactness of X, we obtain a constant K such that:

Vr'e[0,l], V r e R . VxeX, |[A+r-/]W~[A:::7](x)| <K (**).

Now, by Birkhoff ergodic Theorem,

/*(x)=liml^[^7r7]^M^
t-»oo r J 0
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exists for ^-almost every x and moreover

[f^d^[jh^fd^

By (*)» we have:

F [fl^n^du^ r {[fli^^f](x)^[Jh^~f](x)}du
J o J o

p(+ i __ ri __
{[X-/]M^- ^[fli^f](x)}du.

This gives for ^-almost all x:

i r^1 —
.T(x)=lim- [X-/]W^.

t-»00 l J t

Using (**), it is easy to see that:
i f*t+i ___ 1 ___

lim - Uh,-f](x)du^ lim -[fh.-f](x).
t->00 l J { t->00 l

So the computations done above show that lim 1 /([/ o h^ — /] (x) exists for ^-almost every x,
t-»'oo

and also that the integral of this function is fh^ ~/riH=9(^()(/). D

6. Study of the Kernel of 0 in the case of a compact manifold

We will suppose that M" is a compact manifold and that ^ is in ^(M").
We first consider the surjectivity of the map 9 : Jfo(M", \i) -^ Hi (M", R).
Examples. — (1) M^II^xB""1 where B"~1 is the Euclidian ball of dimension

n — 1. We suppose that |A is the product of the Haar measure dt on T1, by the Lebesgue
measure m on B""1. Remark that H^M". Z)^Z with generator [Ti x0].

Choose some continuous function (p : B""1--^ R, such that (pdm==l and

(pl^-^O. IfaelRdefine(^)^o.i] by:

f e ? : T l x B n - l - > T l x B " - l ,
(u, x)h-»(M+aq)(x)t, x).

Then ^j^B^-^id, (h^^^e^8 (M\ [i) and 9(/i?)==a[T1 x0]. Moreover (h9)^^
depends continuously on a. This shows that S is surjective and, in fact, has a continuous
section. Remark that this section is also a group homomorphism.
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(2) M"=[[0, IjxB""1/^, x)^(l, T x)] where T is the orthogonal symmetry with respect to
some hyperplan of Rn ~1. In fact, Mn is the total space of the disc bundle obtained from the
non orientable (n—1)- vector bundle over T1, the 0 section being given by
[[0, 1] x { 0 } /(O, 0)- (1, 0)] == T1. The Lebesgue measure on [0, 1] x B"~1 gives in a natural
way a measure p, on M". We can show, as in example 1, that 8 is surjective (we only have to
replace the function (p by one which is T invariant). In this case also the construction shows
that 9 has a continuous (group) section. Moreover, all our isotopies are the identity
on 8M". r

Recall now that, if M" is a manifold, an element ueHi(M", IR) is represented by an
imbedded curve, if there exists an imbedding k : T1 -> M", such that [k(Jl)]=v. We say
that a curve k : T1 -> M" has a tubular neighborhood if there exists a vector bundle over
T1 : E -^ T1, and an open imbedding k : E -> M", such that k restricted to the 0 section is the
map k : T1 -> M". Remark that there are only two vector bundles of a given dimension on
T1, the total spaces of their disc bundles are given in examples 1 and 2 above.

PROPOSITION 6 . 1 . — Let M" be a compact manifold, and p, e M\ (M"). Suppose that we can
find a basis of Hi(M", R) which is represented by imbedded curves having tubular
neighborhoods. Then, the map 9 : Jf(M", [i)-> H^M", R) is surjective and has a
continuous section. Moreover, ifn^3, this continuous section can also be choosen to be a
group homomorphism.

Proof. — First, we assume n^3. Let p, : E, -> T1, i= 1, . . . , q, be vector bundles and
(pi : EfdM" be open imbeddings such that the images C» under the (p» of the 0 sections
represent a basis ofHi (M", IR). Since n ̂  3, by a general position argument, we can assume
that the Ci's are disjoint, then, by shrinking down the E,'s, we can assume that
(pi (E,) n (pj (Ej) = 0, i ̂ j. IfD(Ef) is the disc bundle in E», then D (E() is homeomorphic to
one of the two manifolds given in the examples above. We can also assume, by the von
Neumann-Oxtoby-Ulam Theorem, that the measure ^ restricted to D(E() is taken, under
this homeomorphism, to a scalar multiple of the measure defined in these examples. Using
the examples, we find for each i, i = 1, . . . , q, and each a e R an isotopy (h1^ "^g^o. i] suc^ that:
- support (^^(p^E,));
- S^^alC,];
- ai-^/^") is a continuous group homomorphism.

We define the section S : H i (M,R) -> Jfo (M", n) by:

S(ai [CJ+a^K ... +aJCJ)=(/l;•al o . . . oh^9)^ . 1 1 .

The map S is clearly a continuous section of 8. Moreover, it is a group homomorphism
since h\^ commutes with h { ' ^ , their supports being disjoint.

We leave the case n=2 to the reader. We loose the group homomorphism property
because we cannot assume the Ci's disjoint; by general position, all we obtain is that C\- and
Cj intersects transversally in a finite number of points. D
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Remark that the hypothesis of Proposition 5.1: "There is a basis of Hi(M", R)
represented by imbedded curves having tubular neighborhood" is satisfied if M" is
differentiable [Hr] or PL [Hu]. It is also satisfied if n=^4 since this is a consequence of the
stable homeomorphism Theorem, which is known in dimension =^4 [K].

As a Corollary, we obtain:

COROLLARY 6.2. — Under the same hypothesis as 5.1, there exists a homeomorphism:

jfo(M", H)^(Ker9)xHi(M", R).

In particular, Ker9 is connected and locally contractible.

Proof. — The existence of the homeomorphism follows from the existence of a continuous
section. Remark that ^fo(M", [i) is connected and locally contractible being a covering of
J^Q^ML", ji), which is connected and locally contractible. Hence, the second part of the
Corollary follows from the first. D

COROLLARY 6 . 3 . — Under the same hypothesis as 6 A, the subgroup Ker 9 (c: jfo (M", [i))is
connected and locally contractible.

Proof. - First, we show that p (Ker 9) = Ker 6 where p : Jfo (M", [i) -> Jfo (M", [i). Let
he Ker 9 and ^ejfo(M", [i) such that p(K)==h. Since 9(h)=0, we have 9(^)er. By
definition of F, there exists ge Ker p such that 9 (n) =8 (J). Remark now that p (Kg~1) = h
andO^-^O. Hence p (Ker 8)= Ker 9.

Now, we show that p : Ker@->Ker9 is a covering. Suppose S is a local section of
p : JfQ^M", ^O^^foCM/1, n). This section is defined on some open set ^^Id^n,
S : U-^jfotM", ^i), poS=id^ and S(idM")= {id^-} the constant isotopy on M". We
have of course 9 [S (ftl n Ker 9)] <= r. Since F is discrete and S and S are continuous, if ̂  is
small enough then 8 S (^ n Ker 9) = { 0 } . This implies that S (^ n Ker 9) c Ker 9. Hence
p '. Ker 8 -> Ker9 has a local section, which implies that it is a covering. Using this fact
and 6.2, it follows that ker9 is connected and locally contractible. D

We now explain what is a handle decomposition of a manifold.
First, a n-dimensional handle is simply a space homeomorphic to a product B^ xB"^,

where Bk and B"^ are the Euclidian balls of dimension k and n—k. The number k is called
the index of the handle. If N" be a manifold and (p a locally flat (1) imbedding
(p : BB^xB^-^N", we can form the topological space M^IsTu^B^ xB^). This
space is obtained from the disjoint union N" ]J (Bk x B""^) by identifying x with (p (x) for each
x in (^ x B""^ In fact, M" is a manifold whose boundary is

8Mn=[8^n-^)(8BkxBn~k)]u(Bkx8Bn~k).

(1) Locally flat, in this case means that (p extends to an (open) imbedding of5B*x (neighborhood ofB""'1^ IR""*)
into W.
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We say that M" is obtained from N" by adding an yi-handle of index k. Remark that
I^uB^Oisa retract by deformation of M".

We will say that a manifold M" has a handle decomposition if M" can be obtained from a
ball B" by adding n-handles. Each differentiable or PL manifold has a handle
decomposition ([Mi], [Ru]). If M" is a topological manifold, the same is true i fn^3 (because
each manifold of dimension ^3 can be given a PL structure, see [Mo]); ifn^6, then M" has
also a handle decomposition [KS].

PROPOSITION 6 . 4 . — Let M" be a compact manifold having a handle decomposition, and such
that there exists a basis of Hi(M, R) represented by embedded curves having tubular
neighborhood. Let ^eJ^M"). Ifh€J^Q(Mn, \i) is in Ker9, then h can be written as a
composition h=h^ . . . hq, with each /iie^fo(M", [i) and support {h^ is contained in a
topological n-ball (a topological n-ball is a subset ofM" homeomorphic to B").

Proof. — We will use the fact that Hi (M, R) has a basis represented by curves having
tubular neighborhood, only to apply 6.3 and obtain that Ker 9 is connected. Since Ker 9 is
connected, it is generated, as a group, by any neighborhood ofid^". Hence, we can assume
that h is close to the identity.

We will prove 6.4 by induction on the number of handles in a handle decomposition
of M". We have to prove then the following thing:

If
M^T^uB^B"-^,

with
N n n B k x B n - k = = a N n n B k x B n - k = a B f c x B n - k

and if 6.4 is true for N", then it is true for M".
We will denote by B^ some concentric ball contained in 6^, for example:

B^LeR" ^^^^^{xe^l ||x||^l}.

Remark that N^M"-^!^ x B""^ is homeomorphic to N". We can assume by 2.1 and
the von Neumann-Oxtoby-Ulam Theorem that [i \ Bk x B" is, up to normalization, equal to
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Lebesgue measure on B^ xB^cff^ xffr-^R". Since 8^noC:8Mnu8Bko xB""^, we
have H(3N5)=0, hence HO=(I/H(NS))H|NS€^(NS). We will show that if h is in
Kere^, where 9^ : ̂ (M", H)^Hi(M", IR)/!^, and is close to id^n, then it can be
written in Jfo(M", n) as a composition /i=/^ with support (/^B^ xB^^B",
support (^)c:NS, and G^INS)^ where 9^ : ^o(NS, HO^H^NS, R)/r „.
Since N 5 is homeomorphic to the manifold N", for which 6.4 is true, this will finish the proof.

We distinguish four cases depending on k the index of the handle.
First case: k=0. - The manifold M" is the disjoint union of N"=NS and B". Wedefme/

by /|B"=/i, / |N»=id, and g by ^B^id, ̂ N^/i.
Second case: k== l . - We have B^l-1,1], which we can of course replace

by [0, 1]. Hence M"=N"u[0, 1] xB"-1 with

N"n([0, l]xBn- l)=aNwn([0, IjxB^^O, 1} xB"-1.

In this case, NS==N"u[0, 1/4] xB"-1 u[3/4, IjxB"-1 . If heKerQ^ is close to the
identity, and (h^) is a small isotopy with h^=h, then ^n(hf)=0. We can then apply
remark (2) after Proposition 4.4, and obtain /e^M^Uo) such that support
(/)c[0, 1] x B""1 and h=f on [1/4, 3/4] x B"~1; moreover, i f fcis the identity so is /, and /
depends continuously on h. If we define g==f~lh, then g is the identity on
[1/4, 3/4] XB""1, it depends continuously on h and is the identity if h is the
identity. Clearly, g \ N5 preserves ^o and is isotopic to the identity, since it is close to the
identity if h is close enough to the identity.

We must now show that 9^ (g | NS) is 0. Let (g^) be a small isotopy, preserving n, with
support in Ng and such that g ^ = g . Remark that i fcp^M^II^ is continuous, we have:

8M"(^)(<P)==Ho(NS)SN5^jN5)((p|NS).

Since N5u[l/4, 3/4] x 0 is a retract of M" and since T1 is path connected, each continuous
map N5 -^ J 1 can be extended to a continuous map M" -> T1. So we have to show that
SM" (9t) = 0. Using that (g^) is small, this follows from

QM-^eM-CT^+eM^^o+o^.
We have Ot/"1)^, because / is isotopic to the identity by an isotopy having support in
[0, llxB""1^".

Third case: k=2. - Since B^B^-BgxB""2 is connected by 4.9 for each
^6jf(M",^) which is close enough to the identity, we can find /ejf^M",^) with support
(/)<=B2 xB^^andh^/onB^ xB"~2 . Moreover, /depends continuously on h, and is the
identity if h is. We define then g==f~1 h, and take a small isotopy (g,)€^y(Mtt, p) with
9=91 supported in NS. We have to show that ifh e Ker 9 then 9^ (^ | NS)=O. Remark
that if a continuous map q> : N5 -> T1 can be extended to M", then, as in the second case
above 8^ (^ | NS)(q>)=0. Now, since N5 u B2 x 0 is a retract of M", a map (p : NS -> T1

can be extended to M" if and only if (p [ 5B2 xO is null homotopic, which is equivalent to
deg((p|aBgxO)==0, where q>|aB 2 xO : 3B2 xO^T1 -^T1. Hence, if each map
(p :N5-^T1 verifies deg((p 13BgxO)==0, we obtain 8^ (^)=0.
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It is possible that some map (p : NS -*- T1 does not verify deg(q> 13B§ x 0)=0. In this
case, let (po : NS -»T1 be such that:

deg((po|aB§xO)==min{deg((p|aBgxO)[(p : NS ̂ T1. and deg(<p|aB§ x0)>0}.

Then as a group, we have:

[N5,T l ]=Z(po+{(p:NS-^T l | deg(q) |aB§xO)=0}.

This implies that S^ (^ | NS)=O if and only if 9^ (^ I NSKcpo^O. Of course, we have to
modify (g^) to obtain this condition.

Using example 1 given in the beginning of 6, we can find an isotopy(s,)e^(M\ n),with
support (s^cB^B^-figxB^sl^xB"-1, and such that

SN"o(^|N5)((po)=-9Ns(^|Nno)((po).

This implies that SNS(S^|NS)=O. Hence, if we define g ' = s ^ g and f'^fs~,1, we obtain
h - f ' g ' with support (/')<=B2 xB"-2, support (fiO<=N5 and 9(^|NS)=0.

Fourth case: k ̂  3. - Using 4.9 as in the third case, we can write each h e ̂ fo (M", |A), close
to the identity, as h=fg, with / and ge^o(M^ ^i), support (f)^ x B""*, and support
(^)cNS. To prove that 6Ns(fif |NS)=0, if heKerQ^, it suffices to show that each
continuous map N5 -^ T1 extends to a continuous map M" -^ T1. Using the fact that
N5 u B{) is a retract of M", it suffices to remark that each continuous map 3B^ ̂  S^1 -» T1

extends to a continuous map B{^ ̂  -^ T1, since fc -1 ̂  2. D
Remark. - Using in the proof of 6.4, a handle decomposition with handles of small

diameter, we see that we can add in Proposition 6.4 that the supports of the h, are as small as
we want. This follows also from the next Lemma.

LEMMA 6.5. - Let m be Lebesgue measure on I" and e>0. Given any he^o^' m)'we

can write h^h^h^ ... hq, with h^e^^Y, m) and diam [support (/!,)]< 8.
Proof. - We will show how to write each hejfo^"' m) as a product h==/ii ... h^ with

support (h,) contained in either [0. 3/4] x I"-1 or [1/4, 1] xP-1, moreover

^[[o.^xP-^^o^O^jxI-^m)

or

^l^.ijxr-^o^^ijxr-Sm).

Of course, 6.5 will follow by "applying the preceding result in smaller and smaller cubes", we
leave these details to the reader.
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Since ^(I^w) is (by definition!) connected, we can assume h close to the
identity. Since

([o,̂ .--[o,̂ ,.-.)-[,,̂ ,.-.

is connected we can apply 4.9 and obtain for each /ie^fo(I"» m}, close to the identity, a
homeomorphism h^ of In preserving the measure such that support

( f c^c jo^ lx l " - 1 and h^h on [o-1 xl"-1,

moreover h i depends continuously on h and is the identity if h is. We conclude from this
that, if / is close enough to the identity,

hl Ml ^""^^(TO^I xP1-1, m\

moreover h^ == h f 1 h has support in

[^ijxl"-1 and fcJ^l]xIW-/eJfo([^l]xIB- l ,my

since h=h^h^ this finishes the proof. D
If W is some open covering of M n, a homeomorphism of M n is called ^-small if its support

is contained in some element of ^.
We restate the results obtained above.

THEOREM 6 .6 .— Let M" be a compactmanifold having a handle decomposition and such that
there exists a basis of Hi(M", ^represented by imbedded curves having tubular
neighborhoods; moreover let (le^^M"). The map 9 : Jfo(M", [i)-> Hi(M", lR)/r is
surjective. The kernel of Q is generated as a group by its elements having support in
n-balls. Moreover given any open covering^ ofM", we can write each element ofKerQ as
a composition of (^-preserving) homeomorphisms, which are ^-small.

APPENDIX A. 6

THE CASE WHERE THE HOMEOMORPHISMS ARE THE IDENTITY

ON THE BOUNDARY AND THE NON COMPACT CASE

Let M" be a compact connected manifold with SM"^ and ^e^^M"). Consider

^^(M», n)= {(h,)e^y(M\ ̂ h^SM^id for each (}.
^o(M", H)= {/i|3(^)e^(M", n) with h^h] .
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We have a natural map ̂ ^ (M", n) -^ ̂ (M", p), (^)i-^i. The restriction of

8: J^^(M",H)^Hi(MMR)

gives a map noted 8^ : ̂ ^(M", n) -> H i (M", R).

LEMMA A.6.1. - If SM^V), the map'Q8 : J^(M", ^-^H^M", tR) is zero on the kernel
of^y8 (M", n) -»> jfo (M", n). Jfcno? it d^nes a homomorphism:

68 : Jf^o (M", n) -^ H i (M", R).

Proo/. - Let (U<=io. ̂  be in the kernel of ^y8 (M", ^) -)- Jf^ (M", n). This means that
ho^i^dand^laM^idforeachretO, 1]. By 5.2^x6]^", the loop {M^)| ̂ [0, 1]}
represents 8^ (/i,), but, for xe8M", this loop is constant. D

Remark that, if Hi (M", R) has a basis represented by imbedded curves having tubular
neighborhoods, the section of 8 constructed in Proposition 6.1 has image in ^y8 (M", n),
this shows in particular that Q8 is surjective.

The following Theorem can be proved along the same lines as Theorem 6.6.

THEOREM A.6.2. — Let M" be a compact manifold with 8M"^(D and
He^^(M"). Suppose that M" has a handle decomposition and that there exists a basis of
H i (M", R) represented by imbedded curves having tubular neighborhoods. The kernel of the
surjective map 68 : Jf^M", n) -> Hi (M", R) is generated as a group by its elements having
support in n-balls. Moreover given any open covering ^U ofM", we can write each element of
Ker6 as a composition of elements ofKerQ which are ^-small.

Let V" be a non compact connected manifold and let (A be a Radon measure (finite on every
compact set) which is strictly positive on each open set. We denote by Jfo (V", n) the group
of homeomorphisms h, such that h preserves (A, has compact support and moreover is
isotopic to the identity by a ^-preserving isotopy having compact support. We will denote
by ̂ yc (V", \i) the set of isotopies which have compact support and preserve (A. We have a

natural surjective map J^CV", n) -^ Jf^V", ^i), (Ue[o, n -> ̂ r The space ^^(V", n)
has a group structure defined by: (h^) (gi) = (^ ̂ ). Of course, p is a group homomorphism.

We will suppose that each compact set K <= V" is contained in some compact codimension
zero locally flat submanifold of V". This condition is realized, for example, if V" is
differentiable, or PL, or have a handle decomposition.

We now define a homomorphism: Qyn ^ : ̂ o(\", ̂ -^H^V", IR). We first define:
8v-., : ̂ ^(V", n) -> Hi (V", R).

If(^)(6p), i] e^^^V", n), we choose a compact submanifold N^cV" which contains the
support of hf and we define 8v"^(^() as the image of 8N",^|N••(^|Nn) under the map
H i (N"; R) ̂  H i (V", R) induced by the inclusion N"0: V". The fact that 8y", ^ (h,) is well
defined (i. e. independent from the choice ofN") is an easy consequence of the naturality of the
definition of 8isi", ̂ . It is easy to check that 8y", n is a group homomorphism.

LEMMA A. 6.3. - Let (^[(ui^^O^ H) verify h^idy., then 8v"^(^)=0.
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Proof. — Let M" be a compact submanifold which contains the support of h^, we can
suppose N" connected. By 5.2, the loop {fc((x) | te[0, 1]} represent 9N",dN"(^(|N") for
each x e N", but if x is in the frontier of N" in V" the loop {h^ (x) \ t e [0, 1]} is constant. D

By the above Lemma, the map Sy", n gives a well defined map:

ev-.n: jroC^.^H^.R).

LEMMA A. 6.4. — Let /lejfoC^H) be in the kernel of 9v"^» an^ let let
(^teto.i]6^^0^", n) &^ SMC/I (/iflt /ii==/i. TTi^r^ exists a compact submanifold M"
containing the support of(h^)^^^ and such that ̂ n ^H(h^\Mn)=0.

Proof. — Let N" be a compact submanifold containing the support of (^)(e[o,i]- 8y
hypothesis, the image of 9^", p|N" (^t |N n)m H i (V, R) is 0. This implies that there exists a
compact set K => N" such that the image of 8^", dN" (^i \ N") in H i (K, R) is 0. We can then
take for M", any compact submanifold containing K. D

We will suppose now that 5V"=0 and each compact set of V" is contained in a compact
submanifold which verifies the hypothesis of Theorem A. 6.2. Using what was said above
and Theorem A. 6.2, it is easy to prove the following Theorem:

THEOREM A. 6.5. — Under the hypothesis above on V", the map
6 : Jfo (V", \i) -> H i (V", R) is surjective. The kernel of 6 is generated by its elements having
support in n-balls. Moreover, given any open covering W o/V", any element h e Ker 9, can be
written as a composition ofW'small elements of J^o^V", ft).

7. The algebraic structure of the kernel of 6
in the case of a manifold

We will suppose in this section that M" is a compact connected manifold without boundary
and that ft is a good measure on M", i.e. ^e^^M").

The following Lemma is proved essentially in [OUJ, p. 895.

LEMMA 7.1. — Given any two points x, yeM", there exists he^o(M", [i) such that
h(x)=y; moreover we can assume that h is a composition of (^-preserving) homeomorphisms
supported by (topological) n-balls. In particular, Ker 6 operates transitively on the points
ofM\

Sketch of proof. — First prove that given two points x, y in 1" there is a Lebesgue measure
preserving homeomorphism h of I" such that h(x)=y and h 131"= id. Then extend this
result to M" using its connectedness and the fact that its boundary is empty. D

We will use the well known fact that in I" we can find a locally flat arc with positive
measure. We prove this fact now.

LEMMA 7.2. — There exists an imbedding (p : [0, 2] xB""1 -^P such that
(p"^!")^ xB"~1 and a=(p([0, 1] xO) has Lebesgue measure equal to 1/4.
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Proof. — We can always find an imbedding ^f :[0, 2]xBn~l->!" such that
^~l(81n)=OxBn~\ and such that the Lebesgue measure of\|/([0, 1] xO) is 0.

—v|/([0,2]x0)

, ———/^—————.
v|/([0,2]xB"-1)

Let m denote Lebesgue measure on I" and m denote Lebesgue measure on [0, 1]. Define a
measure ^ on I" by:

H=^m+^(v|/|[0,l]x0)^m.

The measure n is good, moreover n(3I")=0 and ^[^([0, l]x0)]==l/4. By the von
Neumann-Oxtoby-Ulam Theorem, we can find a homeomorphism h of I" verifying
h^\i==m. The imbedding (p==fc\|/ has the desired properties. D

In the next Lemma, we will have to assume that the dimension is ^ 3. This will put the
same dimensional restriction on our final result.

LEMMA 7.3. — Suppose h is a homeomorphism of I " , n^3, which preserves the Lebesgue
measure m and such that h\ 3I"==Id. We can write h==h^h^ with:

— h^ and h^ are homeomorphisms of I " which preserve m;
— for f = l or2,^ |aP=Id;
— for i = 1 or 2, the support of hi is contained in a locally flat (topological) n-ball B, such that

m(Bi)<3/4,m(8Bi)=OandBi^81n==8Bir}8^isa(n-l)-baUlocallyflatin8Biandin81n.

Proof. — Let a be the arc given in 7.2. Since n ̂  3, the set I" — (a u h (a)) is connected; we
can, by 2.3', find a locally flat n-ball Bcp-(oc u fc(a)) such that w(B)> 1/4, m(3B)=0 and
Bn5P==aBn(3P is a (n-l)-ball locally flat in SB and 81". By the generalized
Schoenflies Theorem (see section 3 before 3.7), B i = P — Bisa locally flat n-ball in I", such
that BI n3P=3Bi n5P is a (n-l)-ball locally flat in 5Bi and 81". By construction,
au/i(a) is contained in Int(Bi). Let B' be a locally flat n-ball in I" such that ac:B',
B' u ^(B^dntBi, m^B^O and B' n 81n=8Bf n 31" is locally flat in 3B' and 8V, we can
take (for example) for B' the image under (p (see 7.2)of[0, 1 + e] x (small neighborhood ofO in
B"~1). Using the generalized Schoenflies Theorem, we can construct a homeomorphism h i
ofBi such that h 118 Bi= identity and h i IB^AJB ' . Applying 3.7, we see that we can add
that h i preserves m. We extend h i by the identity to I". We define h^ = h f 1 h, the support
of h^ is contained in B2=I"—B' , we have m(B2)<3/4 since B' contains the arc a. D
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Remark. — In the above situation, if U is a neighborhood of I" in R", for i= 1, 2, we can
find a homeomorphism with support in U and sending B; on I". This is a consequence of the
generalized Schoenflies Theorem, since B» is a locally flat n-ball in I" such that
B f U 8V ==8^,1^81" is a (n-l)-ball locally Hat in 3B, and 81".

Construction. — We can find two sequences ofn-balls (C,.),^i, (D,),^i contained in 1" and
such that:

— the Cf's are all disjoint;
— Di intersects only D f _ i and D f + i . i n particular the D2i's the disjoint and the D^+ i's

are disjoint;
— C f U C f + i is contained in 6, , hence DfnC^=0 ifj^i, i+l;
— the Df's and the C,'s converge to some point p in I", this means that each neighborhood

of p contains all but a finite number of the Ci's and the D^'s;
— m(BDf)=w(aC,)=0,andm(Cf+i)==(3/4)m(Cf) .

With this notations, we now prove:

THEOREM 7.4. - Let n be ^3. // /ejf^P, m) has its support in I", then f is in
the commutator subgroup of ^(P.m). More precisely, we can write
/==[fei, ^2] • • • [kiq-i. k^q] with kfGJf^I", m), support (fe^d'1.

By definition, here and in the following, [5, t]=sts~11~1.
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Proof. — First case: support (/)<=Ci introduced above.
We apply 7.3 to / and C\ instead of h and I". We can write f=h^h^, with

hfejf^Ci, m), support (/if)c:B, with m(Bf)<(3/4)m(Ci). Moreover by the remark
following 7.3, we can find a homeomorphism with support in Di sending B. onto Ci. Since
there exists a homeomorphism with support in Di sending Ci to a subcube of C^ having
measure equal to m(Bf)<(3/4)m(Ci)=m(C2), we obtain, by 3.6, two homeomorphisms g^
and gf2^^(Di,m) such that gi(Bi)^C^ We extend g^ and g^ to I" by the
identity. Define now f^ ==^i h^ g\1 g-z h^ g ^ 1 , we have support C/^^Ca, and

ff^-h.h^g^h^g^g.h^g.^h^gi^^h^g^h.h^^h.g^1]^

Hence we can write /==[5i, t^\ [s[, t[]f^ with support 0/2) ̂ Cz and support (si), support
(s'i), support (^i) and support (ri)c:Di.

Using the above procedure, it is easy, by induction, to construct sequences of elements in
^(P, mK/^, (5,),^, (5^1, (^i and (r;),^ such that:
- /i =/and support (/f)c:Ci;
- support (Sf), support (sQ, support (ti) and support (^)c:D,;
- /-[s.rj[s;,rn/,^.
Define now ki by fei=[5i, t i][s^, ^/]=/l/l-^ll. The support of k^ is contained

in Df. Since the D^s are disjoint, the infinite composition k^^ = k^ k^ k^ kg • • • ^21 • • • has
a meaning, it is also clear that this composition preserves Lebesgue measure, moreover it is a
homeomorphism because the Df's converge to a point. In the same way,
^odd^i^s^s - • • ^2i+i • • • ls a homeomorphism preserving Lebesgue measure. Since
ki==fifi+\ and the support of the //s are disjoint, we obtain:

feodd=/ l /21 /3/41 . . .=(/ l /3/5. . . ) ( /21 /41 /61 . . . ) .

feeven^/a1^-1 . . . =(/2/4/6 . . Wfs1 . . •).

This implies:
^odd ^even == Jl = ./•

Remark also since kf=[Si , ^-][Si', t^ ] that:

^odd = ̂ odd » ^odd 1 l^odd » ^odd ]'

^ —k t IFs' ^ / 1—even — L"even * "even J I." even * "even J •

/ = [sodd ' ^odd 1 l̂ odd » ^odd ] Peven ' ^even 1 Peven ' ^even 1 •

Hence, / is a product of commutators.
General case. — Since support (/)c:t", by 4.5, we can write /=/i. ....fq, where

/ieJf^(IW ,m) has support contained in a cube K^cl" with measure ^m(Ci). Since
m(K?)^m(Ci). there exists ^,e^(I", m) such that ^,(K?)<=Ci. By the first case, the
homeomorphism ^i/i^r1 is a product of commutators, hence, by conjugation, /, is also a
product of commutators. This implies that / is a product of commutators. D
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Using 7.4 and 6.6, we obtain immediately:
THEOREM 7.5. — Let M", n^3, be a compact manifold without boundary, having a handle

decomposition and such that there exists a basis of Hi (M", R) represented by imbedded curves
having tubular neighborhoods, and let [i be a good measure on M". The kernel of the map
6: J^o (M", n) -> Hi (M", IR)/r is perfect, i. e. equal to its commutator subgroup. Hence it is
also equal to the commutator subgroup of JfotM^ M)» since Hi (M", R) is abelian.

We now explain the Epstein Higman argument ([Ep], [Hi]). This is a general argument
showing essentially that perfectness implies simplicity for a group of geometric
transformations satisfying some mild hypothesis. We will explain this in our context.

Suppose that M" and \JL are as in Theorem 7.5 and suppose furthermore that M" is
connected, we will show that Ker9 is simple, i.e. has no non trivial normal subgroup.

Let H be a normal subgroup of Ker9, suppose H^{Id}. Choose then /eH, with
/ + Id. By this last hypothesis, we can find some non empty open subset U of M " , such that
Un/(U)=0.

Suppose that h, geKerQ have both support in U. Remark that
[^' f]=hfll~l f~l==(hfll~l)f~l is in H since it is a normal subgroup, remark also that
[h, f] = h (jh ~1 f~1) and that fh ~1 f~1 has support in / (U) which is disjoint from U. Since
g has support in U, the last fact implies that g commutes with fh~1 f~1, hence:

[[h,f],g]=h(jh-lf-l)g(fhf-l)h-lg-l

^(jh^f-Wf-^h^g-^hgh^g-^^g].

Since [h, f] is in H, the commutator [h, g]=[[h, f], g] is in H.
So we have showed that if h and geKerQ, have support in U, then [h, g]eH.
By 7.1, since Mn is connected, ^ = { k ~1 (U) | k e Ker 9 } is an open covering

of M". Choose some metric defining the topology of M" and let e>0 be a Lebesgue
number, with respect to that metric, for the open covering ^, this means that each set of
diameter less than e is contained in some member of ̂ . We will show now that if h, g e Ker 9
have their supports e/2-small, then [h, g]eR. We consider two cases. The first one is
support (h)r\ support fo)=0, in this case [h, ^]==IdeH. The second case is support
(h) n support (g)^ 0, hence support (h) u support (g) has diameter less than e, which implies
that it is contained in some member of (3U, say k~l (U). The homeomorphisms khk~1 and
kgk~1 have both their supports in U, hence k [h, g] k~1 = [khk~1, kgk~x] is in H, since H is
normal this implies that [h, g]eH.

Up to now, we have shown, in particular, that if h and geKerQ have their supports
e/2-small, then they commute in Ker 9/H. By 6.6, Ker 9 is generated by its elements having
support e/2-small, hence Ker 9/H is abelian. We conclude that [Ker 9, Ker 9] is contained
in H; since Ker 9 is perfect, we obtain Ker 9 = H. Hence Ker 9 is simple. Remark also that
the same argument proves that Ker9 is the smallest normal subgroup of ^fo(M", ^i).

We have just proved the following Theorem.
THEOREM 7 . 6 . — Let M", n ̂  3, be a compact connected manifold without boundary, having

a handle decomposition and such that there exists a basis of H^M", R) represented by
imbedded closed curves having tubular neighborhoods. Let [i be a good measure on Mn. The
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kernel of the map 9:Jfo(M", iA)->Hi(M", R)/T is a simple group. Moreover it is the
smallest normal subgroup of .^(M", \i) and it is also equal to the commutator subgroup of
^o(Mn,^.

Question. — What happens in the case of a compact surface (i. e. n == 2) ? Remark that, for
n=2. Theorem 4.4 is false for C°° diffeomorphisms preserving m; in fact [Ba], there exists a
surjective homomorphism R:Diffc°(I2, m)-> R and the kernel of R is simple. As it is
defined R has no meaning for homeomorphisms, and to our knowledge the existence (or non
existence) of an extension of R to ^fc(t2. m)ls stl^ an QP^ question.

APPENDIX A. 7

THE NON COMPACT AND THE NON EMPTY BOUNDARY CASES

Suppose that M" is either non compact or 8M" + 0 (or both). Let \i be a Radon measure
which is > 0 on non empty open sets and has no atoms. Consider the group Jf^8 (Mn, \i) of
^-preserving homeomorphisms isotopic to the identity by a ^-preserving isotopy which has
compact support contained in M" (the interior of M"). We have (see appendix A. 6) a
homomorphism 0: ̂  (M", \i) -> Hi (M", R).

THEOREM A. 7.1. — Suppose n ̂  3 and suppose that each compact set of M" is contained in a
compact codimension 0 submanifold N" having a handle decomposition and such that there
exists a basis of Hi(N", R) represented by imbedded curves having tubular
neighborhoods. Then, the map Q: ̂ V (M", ^i) -> Hi (M", R) is surjective and its kernel is a
simple group which is equal to the commutator subgroup of ^Q8 (M", ^i). Moreover, Ker 9 is
the smallest non trivial normal subgroup of ^Q8 (M", |i).

The proof of this Theorem is the same as the proof of Theorem 7.6, once we have the results
of appendix A. 6.

Index of notations

B", Euclidian n-ball in R";
I", n-cube [0, 1]";
H"+, half space in R";
H"+ +, first quadrant in R";
IA", interior of the manifold M";
SM", boundary of the manifold M";
]nt(A), interior of the A as a subset of a topological space;
Fr(A), frontier, boundary of A as a subset of a topological space;
J^(X), homeomorphisms group of X;
Jfo(X), path component of Idx in jf(X);
Jf(X, u), group of u-preserving homeomorphisms;
J^(M"), homeomorphisms fixing 5M";
Jf(M", u-bireg), group of homeomorphisms biregular for u;
^ (M", n-bireg), ^ (M") n Jf (M", ^-bireg);
^o (X), set of homotopy classes of isotopies of X, also the universal cover of ^fo (x) ̂ e^ it exists;
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^(A; M"), set of imbeddings of A in M";
^(A,B;M"), {7e^(A;M") | j |B=id};
^(A; M", (A), set of ^-preserving imbeddings of A in M";
^(A; M", u-bireg), set of u-biregular imbeddings of A in M";
^(A,B;M",u) ^(A;M",u)n^(A,B;M");
^(A, B; M", u-b ireg), ^(A, B; M", u-bireg) n ̂ (A, B; M");
^yW, set of isotopies of X;
^y[X, u), set of ^-preserving isotopies of X;
^(X), set of probability measures on X;
^ff(X), set of good measures on X;
^(M"), set of good measures u on M" such that u(5M")=0;
^(M", Uo), set of ue^(M", Uo) which have the same sets of measure 0 as Uo.
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