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STRUCTURE OF THE GROUP OF HOMEOMORPHISMS
PRESERVING A GOOD MEASURE
ON A COMPACT MANIFOLD

By A. FATHI

0. Introduction

We give proofs of the results announced in [FV].

Let M" be a compact connected manifold without boundary of dimension n. Let pbe a
probability measure on M" without atoms and which is strictly positive on each non empty
open subset of M; such a measure is called a good measure. We prove the following results.

THEOREM. — The group # (M", p) of u-preserving homeomorphisms is locally contractible
(for the compact open topology), i. e. there exists a neighborhood % of 1dy. in # (M", ) such
that the inclusion U = # (M", p) is homotopic to a constant map. Moreover, the inclusion
H (M", W< H# (M"), where H# (M") is the group of all homeomorphisms, is a weak homotopy
equivalence, i.e. it induces isomorphisms on all homotopy groups.

THEOREM. — Suppose that M" is differentiable or PL and that n=3. Let 5 ,(M", p) be
the path component of # (M", W) which contains the identity. The abelianization of
H (M", u) is isomorphic to a quotient of Hy(M", R) by some discrete subgroup. The
commutator subgroup [# o(M", n), # o(M", W) is a simple group; moreover, it is generated by
the elements of # o(M”, w) which are supported in topological n-balls.

In fact, we do not need that M” is differentiable or PL, the Theorem above is true under
more general conditions which are explained in the text. In contrast the condition n>3 is
essential for our methods; to our knowledge the case n=2is still unsettled. The case of S!is
treated by direct examination since # o (S?, p) is isomorphic to S*. Generalizations to the
non compact case are also given.

We will describe now the proofs of these Theorems; this will give a fairly good idea of the
content of this work.

The first ingredient is the von Neumann-Oxtoby-Ulam Theorem [OU,]; it says that given
two good measures p and v on M", there exists a homeomorphism # of M" such that
h,pn=v. What we need is in fact a parametrized version of this Theorem; more precisely we
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46 A. FATHI

would like that h depends continuously on pand v. We are not able to prove this fact, but
instead we remark that if we restrict to the subset of good measures which have the same
subsets of measure 0 as a fixed measure i, then the proof of Oxtoby and Ulam gives us a
homeomorphism h which depends continuously on p and v. As a consequence, we obtain
that 5# (M", p)is a deformation retract of the group # (M", p-bireg), where 4 (M", p-bireg)
is the group of homeomorphisms h such that hand h~! send subsets of p-measure 0 to subsets
of p-measure 0. Next we remark, as is well known, that the Cernavskii-Edwards-Kirby
technique shows that s (M", p-bireg) is locally contractible; this gives us immediately the
local contractibility of # (M", p). Then, we show that s#(M", n) g #(M") is a weak
homotopy equivalence by showing that s (M", p-bireg) c s# (M") is a weak homotopy
equivalence. This last factisa consequence, via a Theorem of Eilenberg and Wilder [EW], of
the local contractibility of s# (M", u-bireg) and the fact that it is dense in # (M").

The proof of the second Theorem begins with the construction of the mass flow
homomorphism; this is a group homomorphism 6 : 5 o(M”, ) > H; (M", R)/I', where I is
some discrete subgroup of H, (M", R). The existence of this map was first given by
Schwartzman [Sc]; its differentiable version is attributed to Weinstein [Th]. The definition
given here is inspired by Herman’s definition of the rotation number of a homeomorphism of
the circle [He,]. It is more convenient to define first & : J2,(M", u) » H, (M", R), where
H# o(M", 1) is the universal cover of 3, (M", w. Since o (M", p) is locally contractible,
an element of # , (M", 1) is represented by an isotopy (b, )i, y Such thatho=id and h,. p=p
for each t€[0, 1]; two such isotopies represent the same element if they are homotopic with
fixed extremities, the homotopy being through measure preserving isotopies. To define 8,
we first remark that H, (M", R)=Hom ([M", S'], R), where [M", S*]is the set of homotopy
classes of mapsfromM"toS!. We willidentify S! with T! =R/Z, this allows us to write the
group law on S! additively. Given (h,)e#,(M,, ) we define a homomorphism
8(h,) : [M", T'] > R in the following way:

Let f: M"—> T! be continuous; the homotopy fh,—f: M"— T?! verifies fhy— f=0,

hence we can lift it to a homotopy fh,— f: M" — R such that fho—f =0:

R
n 3> T1—
M i > T'=R/Z
By definition, 8(h,)(f)= j 1—fdp. One first shows that this gives a group
M

homomorphism [M”, T!] — R, then that 8(k,) depends only on the class of (h,) and finally
that § : #,(M", p) > H, (M", R) is a group homomorphism. If we put

C=8(Ker o o(M", ) > # o (M", p)),

we obtain by passing to the quotient a group homomorphism
0:H#o(M" p—->H;(M" R)/T. The subgroup I is discrete because it is contained in
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STRUCTURE OF THE GROUP OF HOMEOMORPHISMS 47

H,(M", Z). Weshow that 8 (hence 0) is surjective, if H, (M", R) has a basis represented by
imbedded curves having tubular neighborhoods. It remains to show that Ker 0 is simple,
and is generated by the homeomorphisms supported in topological n-balls. We then prove
this second fact in the case where M" has a handle decomposition, the proof is done by
induction on the number of handles; moreover, we show that Ker0 is generated by
homeomorphisms having support in arbitrarily small topological n-balls. This last fact
implies, by the classical method of Epstein and Higman ([E], [H]), that the commutator
subgroup [Ker 6, Ker 0] is simple. Then, we prove that Ker 6 =[Ker 0, Ker 0] by the same
method as in [F] where we proved that the group of bimeasurable Lebesgue measure
preserving transformations of [0, 1] is a simple group.

Some more facts and the extension to the non compact case are proven in the different
appendices.

The results of this work are of course related to results of Epstein [Ep], Herman [He, ],
Mather [Ma] and Thurston [Th] on the simplicity of difftomorphisms groups, and also to
results due to Anderson [A], Cernavskii, Edwards and Kirby [EK] on the algebraic and
topological structure of the homeomorphisms group of a manifold. Our debt to their work
is important, but our greatest debt is to the work of Oxtoby and Ulam,; their paper [OU ,]is
certainly the most important tool for any study of measure preserving homeomorphisms.

The part of this work centering around the first of the two Theorems mentionned above is a
-joint work with Yves-Marie Visetti, to whom I am most grateful. This work was done at the
instigation of Michel Herman and with his help and constant encouragements. It owes also
a great deal to the good will and encouragements of Larry Siebenmann. I want also to
thank Lucien Guillou who followed this work step by step and listened to all stupidities
without loosing his temper.
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48 A. FATHI

1. Some generalities on measures on compact metric spaces

Let X be a compact metric (non empty) space. We will denote by .# (X) the set of
probability measures on X. Recall that a probability measure on X is a non negative
measure, defined on the o-algebra of all Borel subsets of X, whose total mass is 1.

We put on ./ (X) the weak topology (see [DGS], p. 9 for a definition), with this topology
A (X)is a compact metric space. We will have sometimes to consider measures on a locally
compactspace Y. A Radon measure on Y is a measure defined on the o-algebra of all Borel
subsets, and which is finite on each compact subset of Y. Hence, such a measure is o-finite, if
Y is o-compact, in particular if Y has a countable basis of open sets.

In the remainder of this section, X is a compact metric space.

We recall some facts which are proved in chapter 2 of [DGS].

ProposiTiON 1.1. — If pis in # (X), then p is regular, i.e. for each Borel set B we have:

p(B)=sup { p(C)|Ccompact=B},
p(B)=inf{p(U)|Uopen>B}.

PrOPOSITION 1.2. — The weak topology on # (X) is the weakest topology on 4 (X) such that
each function p— pn(U), U an open set in X [resp. u— p(C), C a closed set in X], is lower semi-
continuous (resp. upper semi-continuous).

DeFinNITION 1.3. — A measure on X is good if it is a probability measure with no atoms and
whose support is X itself. We will denote by .# ,(X) the set of good measures on X.

Remark. — The support of pis X if and only if p is strictly positive on each non empty open
set.

ProposITION 1.4. — If X has no isolated point, then M ,(X) is a dense G subset of M (X).

Proof. — By[DGS],2.16, the set of non atomic measuresis a dense Gzin .4 (X). Wehave
now to show that the set { pe 4 (X)|support p=X }isadense G5. Let(U,),.y bea basis of
open sets of X, we can assume U, # @ for each n. It is easy to show that:

{ne (X)|supportp=X} = {pe#(X)|n(U,)>0}.
neN

Now each set { pe.# (X)|p(U,)>0} is open by 1.2. Moreover, if x,e U, and ve .# (X)
then, for each >0, (1 —t)v+ito, is in this set and, of course,

v=lim(1—-t)v+5, . Hence, {p|p(U,)>0} is open and dense.

t—0
An application of Baire category Theorem finishes the proof. [J

We put the compact open topology on # (X) the space of homeomorphisms of X. Since
X is compact metric, this topology is the same as the uniform topology, it is metrizable. In

fact, we can define this topology by a complete metric; if d is a metric on X, we define a metricd
on 4 (X) by:

d(f, g)=supd(f (x), g(x))+ supd(f ! (x), g ~* (%))

xeX xeX
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STRUCTURE OF THE GROUP OF HOMEOMORPHISMS 49

The metric d is complete and defines the uniform topology on 4 (X).

We recall for future reference that an isotopy between hy and h,, where hy and h, € # (X),
is simply a continuous path in s# (X) between h, and h,. It is also given by a continuous
map H : X x[0, 1] -» X such that, for each t€[0, 1], the map X > X, x—H(x, t) is a
homeomorphism, which is equal to h, for t=0and to h, for t=1. Anisotopy of X is simply
an isotopy between the identity of X and some other homeomorphism, i. €. a continuous path
in s (X) starting at the identity of X.

There is a natural map: # (X) x # (X) - # (X), (h, W)+ h, p, where h, pn is defined by
h,n(B)=u(h~1(B)) for each Borel set B in X.
ProrosiTiON 1.5. — The map # (X) x M (X) = M (X), (h, p)—> h p, is continuous.

Proof. — 1t suffices to show that if C is a closed set in X and « a real number, then the set
{(h, we A (X)x M (X)|hyp(C)<a} is open.

Fix hyand p, in thisset, we have po (hg ! (C)) <a. We can find a compact set K such that:
ho ' (C)cInt(K), and po(K)<a. The set

{he# (X)|h" 1 (C)cInt(K)} x {pe s (X)|p(K)<a}
is a neighborhood of (h,, po) which is contained in
{(h, We# () x MX)|hyn(C)<a}. O

Given a measure p on X, we define # (X, ) as the set of homeomorphisms of X which
preserve p:

H X, p={he# (X)|h,n=p}.

CoRrOLLARY 1.6. — If pis a measure on X, the set 3 (X, ) is a closed subgroup of # (X).

APPENDIX A.1

ON THE TOPOLOGICAL TYPE OF # ;(X)

THEOREM A.1. — Let X be a compact metric space without isolated points. Then, M ,(X)
(with the weak tolopoly) is homeomorphic to the Hilbert space 1. Moreover, the pair
(M (X), M (X)) is homeomorphic to ([0, 1]V, 10, 1[V).

Proof. — By the Anderson-Kadec Theorem ([BP], p. 189, Th. 5.2), the Hilbert space I? is
homeomorphic to ]0, 1[N, hence we have to prove only the last part of the Theorem.

We will use the apparatus of infinite dimensional topology. We will give reference to [BP]
and [To] for the quoted results.

First, .# (X) is a separable compact convex set of infinite dimension, hence by Keller’s
Theorem ([BP], p. 100, Th. 3.1), it is homeomorphic to the Hilbert cube Q=[0, 1]¥. To
finish the proof, all we have to do is to prove that . (X)— .# ,(X) is a Z-skeletoid (see [BP],
chap. IV and V). Since .#,(X) is convex and dense, it is easy to see that for each open
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50 ' A. FATHI

convex set U the inclusion U 4 ,(X)cU N #(X) is a homotopy equivalence, hence
by [To], Th. 2.3, # (X)— # ,(X) is locally homotopically negligible in .# (X). Remark that
MX)—M,X)isaF, ‘ince M ,(X)isa G;.  So, we have proved that & (X)— .4 ,(X)is a
Zset. To finish the proof, we must show that it contains a Z-skeletoid ([BP], p. 156,
Th. 3.2). Now, if xoeX, the set {5, +(1—t)p|t€]0, 1] and pe.# (X)} is an F, set
which is contained in . (X)— . ,(X), so it is a Z,-set; it follows then from [BP], p. 157,
Prop. 4.2, that this set is a Z-skeletoid. This finishes the proof. [J

Remarks. — (1) By using Dirac measures on X, we can imbed naturally X in .# (X) as a
Z-set. By using the action of #(X) on #(X), we obtain a group imbedding
H (X)c= # (A (X)) which gives us canonical extensions of the homeomorphisms of X to
homeomorphisms of .# (X)~Q. Since two Z-imbeddings of X in Q are ambient
homeomorphic, we obtain the following:

If Xis a Z-set in Q, we can construct a group homomorphism 3 (X) —» # (Q), h — h, such
that ZI X =h, for each he # (X).

(2) We will see in paragraph 3 that, if M" is a compact connected closed manifold and
ne M ,(M"), then # (M")/H# (M", n)~.# ,(M"), hence # (M")/# (M", p) is homeomor-
phic to 2. Applying this fact to I=[—1, 1], we obtain the well-known result
H ()=1*x {1d, r} where r : I > 1 is given by r(x)= —x. ‘

2. Some generalities on manifolds and measures on manifolds

We introduce the following notations:

B"={xeR" | || x|| <1} where || || is the usual euclidian norm;
1"=[0, 1]"< R";

H% = {(xy, ..., x,)eR"|x,20};

H% = {(xy, ..., x,)eR"|x,_;20and x,20}.

By a manifold M", we mean a Hausdorff topological space which is locally homeomorphic
to H" , and which has a countable basis of open sets. Locally homeomorphic to H” means,
of course, each point of M" has an open neighborhood homeomorphic to some open set
of H". By the definition we have given, our manifolds may have a non empty
boundary. If M"is a manifold, we will note by dM" its boundary and by M" its “interior”
M"—oM".

To avoid confusion, if A is a subset of a topological space X, we will note its interior as a
subset of X by Int(A), and its “boundary” as a subset of X will be called frontier and noted
by Fr(A).

If M" is a manifold, we will denote by #° (M") the subgroup of # (M") defined by:

H°(M")= {hes# (M")|h| oOM"=identity } .
The following Lemma is trivial and its proof is left to the reader.

LEMMa 2.0. — Let p by a o-finite measure defined on some space X. Let { A, | AeA}bea
family of disjoint measurable sets. There is only a countable number of A, such that p.(A,)#0.
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STRUCTURE OF THE GROUP OF HOMEOMORPHISMS 51

Note the following trivial consequences of Lemma 2.0.

(1) If M" is a manifold and p is a (Radon) measure on M" such that u(6M")=0, then we
can find (arbitrary small) coverings of M" by sets { B, },. such that each B, is homeomorphic
to I" and p(éB,;)=0.

(2) If pis a(Borel) measure on the cube I" such that p(d1")=0, then we can find (arbitrary
small) subdivisions of I" by hyperplanes into subcubes ¢4, ..., ¢, such that p(dc;)=0 for
each i.

We will need the following Proposition of Oxtoby and Ulam [OU,].

PROPOSITION 2.1. — Let M" be a compact manifold and p a (Borel) measure on M" with
p(@M™)=0. IfAisaclosed set of M" with int (A)=Q, then there exists a homeomorphism h
of M" such that ph(A)=0 and h [ oM"=Id. More precisely, the set
{he#’ (M")Ip(h(A))=0} is a dense Gy in H#° (M").

To prove 2.1, we must first give a Lemma.

LemMMA 2.2. — Suppose pis ameasure on1" such that p(01")=0, and S is a closed subset of 1"

such that int(S)=Q. Then, for each & and €>0, there exists a homeomorphism h of 1" such
that:

— h|o1"=id;

— h is &-close to the identity;

- p@E)<e.

Proof. — Let ¢4, ..., c, be a subdivision of I" by cubes such that diam(c;)<dé and

k
n(dc;)=0 for each i. We can find an open neighborhood U of ) dc;, such that
i=1
n(U)<e. Since S has empty interior, we can find, for each i, a small subcube c; cc; with
faces parallel to the faces of ¢; and such that Sn¢;=0.

For each i, we can define a homeomorphism A; of ¢; such that:
— h;|dc;=1d;

— hi(c;—ci)eUnc;.

Piecing together the h; gives the desired homeomorphism h. [

Proofof2.1. — LetB,, ..., B, be a covering of M" by sets homeomorphic to I" and such
p(0B;)=0 for each i.

Ifie{l,...,k} and jeN*=N- {0}, define a subset % (i, j) of #° (M") by:
1
G, j)= {heM(M")|p[h(A)nBi]<7}.

We clearly have:

{he ' M")|n(h(A)=0} = "%, j)-

So we must show that % (i, j) is open and dense in #°(M"). Denseness of % (i, j) follows
easily from Lemma 2.2. We prove now that % (i, j) is open.
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52 A. FATHI

Fix hoe%(i,j), we can find an open neighborhood U of h,(A)AB; such that
p(U)<1/j. If h is close enough to h,, we have h(A)nB;=U, which implies that
p(th(A)nB)<1/. O

Remark. — Proposition 2.1 is also valid when M" is not compact and when the compact-
open topology on M" is replaced by the fine topology.

We will use the following Theorems due to M. Brown.

ProprosiTioN 2.3. — Let M" be a compact connected n-dimensionnal manifold. There
exists a map ¢ : I" - M" such that:
(i) @ is surjective;
(i) @ | i is a homeomorphism onto its image;
(i) @ (A1)~ @ ({")=Q and in particular ¢ (01") has empty interior in M".

ProposITION 2.3, — Suppose M" is a connected manifold, with OM"# Q. There exists an
open imbedding \ : H" — M", where H" = {(x,, ..., x,)eR"|x,20}, such that:

@) ¥~ (@OM")=0H";

(i) Wy (H"™) is dense in M"; in particular M"—\ (H" ) is a closed subset of M™" with empty
interior.

The proof of 2.3 and 2.3’ can be found in [B]. The proof of 2.3 is also [CV], p. 461.

Complement to 2.3 and 2.3'. — If p is some (Radon) measure on M" such that p(0M")=0,
then, we can assume that (@ (81")=0 in the case on 2.3 and p(M"—\(H"% ))=0 in case
of 2.3

Proof. — Since ¢ (01") [resp. M" —{/(H" )] is a closed subset of M" with empty interior, we
can, by 2.1, find a homeomorphism h of M" such that p[h(p(d1")]=0 (resp.
plhM" =y (H%))]=0). We can now replace ¢ by h ¢ (resp. ¥ by h ) to obtain the desired
result. Remark that, in the case of 2.3’, we have not assumed M" compact, we can apply
2.1 in this case also by the remark following the proof of 2.1. [

The Alexander isotopy works also in the case of Lebesgue measure as we will see it now.
ProposiTION 2.4. — Let m be the Lebesque measure on 1".  Then
H (1", m={hex (1", m)lh]é‘l”:id}
is contractible.

Proof. — Wecanreplace, of course, ["=[0, 1]"byJ"=[—1/2, 1/2]". Introduce on R"the
norm | |defined by |(x;, ..., x,)| =max(|x,|, ..., |x,|). In this norm, J"is the ball of
radius 1/2 and center 0.

If he #°(J", m), define (h,),. ,, in the following way:

b . 1
h,(x)={th(—t—>’ lf IXIéEI,

X otherwise.
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STRUCTURE OF THE GROUP OF HOMEOMORPHISMS 53

We have hy=id, h; =h and each h, is a homeomorphism of J*. Moreover, h, depends
continuously on (h, t). It remains to check that each h, preserves Lebesgue measure, but

this is clear since a homothety in R” transforms Lebesgue measure into a scalar multiple of
itself. O

3. The von Neumann-Oxtoby-Ulam Theorem
and some of its consequences

If M" is a compact manifold, we define the subset .#(M") of .# ,(M") by:
MM™={pe,M")|p(@M")=0}.
Recall that we have a natural map:

# (M") x M (M" S 4 (M"),
(h, W hyp.

This map defines an action of the group s (M") on 4 (M"). The von Neumann-Oxtoby-
Ulam Theorem says that ./l‘; (M") is an orbit of this action.

THeEOREM 3.1 (von Neumann-Oxtoby-Ulam). — Suppose M" is a compact connected
manifold. If p and p, e./l‘f, (M™"), then there exists a homeomorphism h of M" such that
h|dM"=id, and h, p;=p,.

The proof of this Theorem can be found in [OU,], section II.

In the following, we fix a compact manifold M" and a measure po e #5(M"). We have
the map:

A2 (M) S M, (M),
h>h, yo.

Theorem 3.1 shows that this map is surjective and, in particular, that the induced map
H°(M")/H#°(M", po) > #5(M") is a bijection. In fact, this map is a homeo-
morphism, we will not prove this fact here, but note only that it can be deduced from
Theorem 3.1.

Question 3.2. — Does the (surjective) map m,: #° (M") - #°(M") have a (continuous)
section?

The answer to this question may be negative. The proof of Theorem 3.1, given by
Oxtoby and Ulam, can be used to give a partial positive answer to 3.2. We proceed to
explain this now.

Define .#°(M", p,) as the subset of .#%(M") consisting of the measures which have the
same sets of 0 measure as pi:

MM", po)={pe M (M")|VAc=M" Borel set p(A)=0<>p,(A)=0}.
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54 A. FATHI

Tueorem -3.3. — If M" is compact and connected, the surjective map
o : #° (M") > M5 (M") has a continuous section above M°(M", wo). In other words,
there exists a continuous map G : .,l{‘; (M", po) = #° (M™) such that ny o =identity.

We will first prove this Theorem with M"=1" and py=m the Lebesgue measure. We
formulate Theorem 3.3 in this case in slightly modified terms.

LemMa 3.4. — Let P be a topological space. Given any two continuous maps:
P- ./l';(l", m), p—v,, and pr>p,. There exists a continuous map: P - #° (1", p— £y,
such that, for each peP, (f,)y V,=H,.

Proof of 3.4. — The proof is divided in 4 steps.

First of all, define 5#° (I", bireg) as the set of biregular homeomorphisms of I" (fixing the
boundary). A homeomorphism h of 1" is biregular if h and h™! are absolutely continuous
with respect to Lebesgue measure. We have:

H° (1", bireg)={ he #° (I")|h,me #(1", m) }.

Step 1. — Suppose 1" is divided into two (closed) cubes ¢, ¢, by a hyperplane parallel to a
coordinate hyperplane. There exists a continuous map P — #° (I", bireg), p — h,, such
that:

— for each pin P, Bp(hy(ci))=v,(cy) and p,(h,(c2))=V,(c2);

— the family of homeomorphisms (k,),.p is equicontinuous.

Proof of step 1. — Let (h,),q 1y :1" — 1" be any (continuous) homotopy such that:
— Vtel0, 1[, h,e s#° (1", bireg);

— V', tel0, 1], t'>t, h, (Int(c,)) 2 h,(cy);

— hy(cy)=cy ndI" and hy (cq)=1I".

N . 7’
Y 'd
A Y v
A 7
N 4
Ny h,
c [ —_—
AN
'd N
' A
P4 N
7 N
N

Remark that if p e .#% (1", m), the map t — p(h,(c,)) is a strictly increasing continuous map
from [0, 1] onto itself. We can then define a map: P—|[0,1], p—t,, by
Hp(h, (c))=Vv,(ci). One can check that this map is continuous.

Since v,e.#5(I"), we have v,(c;)€]0, 1[ and hence t,€]0, 1[. This shows that
h,, e#° (1", bireg). Remark also that the family (h,,)pep is equicontinuous because it is
contained in the compact family (h,),(, y-

We can define the map P — #° (I", bireg), p+—h,, by h,=h, . [
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Step2. — If {¢cy, ..., ¢, } is a subdivision of I" in (closed) cubes by hyperplanes parallel to
coordinate hyperplanes, then there exists a continuous map P — #7° (I", bireg), p~ h,,, such
that:

— for each p in P and each cube c; in {c;, ..., c; }, p,(h,(c)) =V, (c));

— the family of homeomorphisms (h,),.p is equicontinuous.

Proof of step 2. — Induction using step 1.

Step 3. — For each £ >0, there exists a subdivision § of I" in (closed) cubes by hyperplanes
parallel to coordinate hyperplanes, and two continuous maps P — 5#? (1", bireg), pr—>h pand
p>g,, such that:

— Vceg, VpeP, p,(h,(c)=v,(g,(9);

— (hp),ep and (g,),.p are equicontinuous;

— Vce&, VpeP, diam(c)<e, diam(h,(c) <e and diam(g,(c)) <e.

Proof of step 3. — Let {c,, ..., ¢, } be a subdivision of I" in cubes of diameter <¢. By
step 2, we can find a continuous map: P — #7 (I", bireg), p+ h,, such that:

— VpeP,Vee{ey, ..., e} mp(hy(c))=v,(c);

— (h}),cp is equicontinuous.

Since the family (h,),., of homeomorphisms of I" is equicontinuous, we can find a
subdivision & of I", finer than {c¢,, ..., ¢;} and such that: VpeP, Vceg, diam(h,(c) <e.

By applying step 2 inside each cube c; (i=1, ..., k) to the subdivision ‘c’,[c,- and the
measures [v,|c;],.p and [(h;")4p,|cil,cp, We can obtain a continuous map:
P — #7° (1", bireg), pr>g,, such that:

— Vcek, VpeP, v,(g,(0)=p,(h, ()

— VpeP,Vi=1, ..., k, g,(c;)=c; and g,|dc;=identity;

— (gp)pep is equicontinuous.

It is easily verified that &, (h,),.p and (g,),.p have the desired properties. [l

Step 4, end of the proof of 3.4. — Using step 3, we can construct by induction on ieN,
subdivisions &' (in closed cubes) of I" and continuous maps P=#7 (I", bireg), p+> hi, and
p—gh, such that: '
 (a) £'*! refines EF;

(b) Viz1, VpeP, Vcet!, diam(c)<1/2), diam(hy...h5()<1/2", and
diam(g} ... gL(c)<1/2%

(c) Yi21,VpeP,Vcel!, gttt (o)=hit (0)=c;

(d) Vi21,VpeP,Vcetl, p,(h) ... hi(d)=v,(g} ... g5(©);

(e) Viz1, (h}),.p and (g}),.p are two equicontinuous family of homeomorphisms of 1".

More precisely, &'+ 1, (hi"1),.p and (g}, !),p are constructed by application of step 3 inside
each cube c of the subdivision &'. Condition (e) at step i insures that, if the diameter of each
cube in £'*! is small enough, then condition (b) will be realized at step (i + 1).

Define now Hi e s#7 (1", bireg) and G% e #° (I", bireg) by:
Hi=h,...h, and Gi=g)...g5.
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By (b) and (c), we obtain easily:

1

e 1 ot erieniety L
5 4G, G <z, dIE) T HF) <

d[H), HiV <

and

dIGH™, G5 < 5

These inequalities imply that HP = lim H; and G = lim G}, exist (for each peP) and
i—> i—0
belong to 7 (I").
Moreover, the two maps: P —» #°(1"), p—HY and p+— G, are continuous, since they
are uniform limits of continuous maps.

Using condition (a) and (c), we obtain:

Vcet!, HP()=Hi(0) and Gy (c)=G}(o).
Hence using (d), we have:

VieN, VpeP, Vcet!, p,(HZ(©)=v,(Gy ().

Using the last fact and the fact that lim diam&'=0, we obtain:

HP) 1p=(G) " vy

Define then f, by f,=G X (HF)"!. This gives us a continuous map: P —» s#° (I"), p Hf;,
such that (f,), H,=V,.

This ends the proof of 3.4. OO

Proof of Theorem3.3. — By 2.3 and its complement, there is a surjective map ¢ : 1" - M"
such that o | i» is a homeomorphism onto its image, ¢@(")n@(@I")=@ and
Ho (@ (01")=0. We can define a measure p, on I” in the following way:

If A is a Borel set in I”, then po (A)=po (@ (A)).

We have clearly p, € .# (1), hence by theorem 3. 1, there exists a homeomorphism g of I
such that g, m=p,.

If we put y =@ g, we obtain a surjective map I" - M", such that:

-V | i" is a homeomorphism onto its image;

— Mo (¥ (a1")=0;

— Yem=p,.

We define a map  : .45 (M", po) — 45 (1", m) by:

If pe #5(M", o) and A is a Borel set in I", then g(u)(A)=p(\jl(A)).

The reader will check, using the properties of , that \ is well defined and continuous (in
fact, it is a homeomorphism but we do not need that here). Moreover, we have $(p0) =m.
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We can also define a continuous map ¥ : #° (I") - 5# (M") by:
If he #° (1),

_(Yhyt on (i,
J’(”)‘l id on y(aI").

By 3.4, we can find a continuous section 0: .45 (1", m) » #° (I") of H#° (1") > .45 (1",
h—h,m.
It is easy to check that the composite map:

ALY LETARAIZY) L WRPVZL, DRAPPLE VI

is a (continuous) section of #° (M") > M5 (M™) above A5 (M", po). O
Define # (M, po-bireg) as the set of homeomorphisms h € 3 (M") such that hand h~! are
absolutely continuous with respect to po. We have:

H (M", po-bireg)={ he # (M")| h, poe M5 M", po) }.
Define also #° (M", p,-bireg) by:
H° (M", uo-bireg) = # (M", po-bireg) n #° (M™).

As an immediat consequence of Theorem 3.3, we have:

CoRrOLLARY 3.5. — If M" is compact and connected, then:

(i) o (M", po-bireg)= # (M”, po) x M5(M", po); _

(i) S (M™", po) is a retract by deformation of # (M", py-bireg), in particular the inclusion
H (M”, no) s # (M", po-bireg) is a homotopy equivalence;

(iii) o#7° (M", po-bireg) = H#° (M, po) X M5 (M", po); '

(iv) #°(M", uo) is a retract by deformation of #°(M", po-bireg); in particular, the
inclusion #° (M", uo)  H#° (M", po-bireg) is a homotopy equivalence.

Proof. — By 3.3, the surjective map: #° (M", p,-bireg) — M5 (M", po) has a continuous

section 6. A homeomorphism of #° (M", po-bireg) on #° (M", po) x M5 (M", po) can be
defined by: ‘

H° (M, po-bireg) — #° (M", o) x M5(M", po),
hi— ([0 (mo ()]~ " h, mo ().

This proves (iiij). — Remark that under this homeomorphism, s#? (M, p,) goes to the
subset #° (M, po) x { o }. Since 4 (M", po)is convex, { po } is a retract by deformation of
M5 (M", o). If we put the preceeding facts together, we obtain a proof of (iv).

We can prove (i) and (ii) in the same way since any section of m, :
H° (M, po-bireg) —» A5 (M", o)
is also a section of my: # (M, po-bireg) = A5 (M,, po). [
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We give now another application of the von Neumann-Oxtoby-Ulam Theorem.

PROPOSITION 3.6. — Let M" be a compact connected manifold and po € #5(M™).  Suppose

N"<M"is a compact connected codimension 0 submanifold, such that M" —N" is a connected
codimension O submanifold. If h:M" — M" is a homeomorphism such that h|N" is measure
preserving [i. e. for each Borel subset A of N", no(h(A))=po(A)], then there exists a measure

preserving homeomorphism h:M"— M", such that Z| N"=h | N*.
Proof — We define two measures v; and v, on the compact connected manifold
=M"—N". :
If A is a Borel subset of V”, then:

vi(A)=po(AnV")  and  v,(A)=po(h(An V™).

Clearly, p;=(1/v;(V")v;e #5(V"), hence, by 3.1, there exists fe#°(V") such that
feu1=H,. We have:

Vi (V) =po (V") =po (M"—N")= Ho (M") —po (N”)

=po (h(M") —po (h(N™)= uo(h(M" N")=v,(V"),
i.e.

vi (V) =v, (V").

We conclude from this, that f, v;=v;. Since f | 0V"=identity, we can extend f by the
identity on N” to a homeomorphism 7 of M". Tt suffices to define h by h=h 07‘ O

The proof of 3.6 is typical of most of the proofs given in this work.

Before stating the next Proposition, we recall the generalized Schoenflies Theorem.

Let C" be a parallelotope in R” (1 e. C"= H la;, b;), a;#b ) or an Euclidian ball of

(arbitrary) finite radius (more generally C" can be any locally flat ball in R" such that the
Lebesgue measure of dC" is 0). We have dC"=S"~!. Ifjis an embedding, j:0C" g R",
then, by the generalized Jordan Theorem, R" — j(0C") has two connected components one
bounded and the other unbounded. We will note the bounded component by B(j). In
general, B(j)is not a ball ([Ru], p. 47 and 69 or [CV], p. 417 and 461), but if j can be extended
to an imbedding j:U g R", where U is a neighborhood of dC" in R", then B(j) is
homeomorphic to C" and we can extend j to a homeomorphism j of C" onto B(j). This is
the generalized Schoenflies Theorem; for a proof, see [Ru], p. 48 or [CV], p. 461. We now
give the “‘measure preserving” version of this Theorem. Recall that m is the Lebesgue
measure on R”. '

ProrosiTioN 3.7. — Suppose j:0C" g R" is an imbedding which can be extended to an
imbedding of a neighborhood of 0C" in R". Suppose, furthermore, that we have:
m(j(@C"))=0 and m(B(j))=m(C"). Then, j can be extended to a (Lebesgue) measure

preserving homeomorphism j :C" = B(j).
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Proof. — We can extend j to a homeomorphism j: C"  B(j). We have two measures on
C",v;=(m|C")and v,=(j~ '), (m|B(j)). Itiseasily verified that we can apply to v, and v,
the von Neumann-Oxtoby-Ulam Theorem. We obtain he#°(C") such that
h,vi=v,. If we define j by j=joh, we obtain the desired homeomorphism. [

ProrosiTioN 3.8. — If pe #,(1"), then #° (1", p)is contractible. Inparticular,if M"isa
compact manifold, B is a subset of M" homeomorphic to 1" and pe #°(M"), then each
u-preserving homeomorphism of M", whose support is contained in B, is isotopic to the identity
via a p-preserving isotopy, whose support is contained in B.

An isotopy (hy),c, ) is p-preserving, if each h, is p-preserving. The support of h is
supp(h)={xeX|x#h(x)}, and the support of (h,),,y, is

supp (h,)={xeX|3te[0, 11h,(x)#x}.

Proof of 3.8. — The first part is an immediate consequence of 3.1 and 2.4. The second
part is a trivial consequence of the first. [

4. Local contractibility of 5# (M", ) and related results

We will have to use the Cernavskii-Edwards-Kirby results ((EK] or [R]). In fact,
Cernavskii and Edwards-Kirby worked with topological imbeddings, but we will need their
results for biregular topological imbeddings, i.e. topological imbeddings preserving sets of
measure 0. This is not a restriction because the Edwards-Kirby method works in this case
also; the author learned this fact from M. Rogalski.

Before giving the statements of the Theorems that we will need, we give some definitions
and some notations.

In the following, we fix M" a compact manifold and p, € .#5(M").

If Ais a subset of M", by an imbedding k of A in M ", we mean an injective (continuous) map
k:A o M", such that k is a homeomorphism of A onto k(A) and k~!(0M") is
A n0M". Remark that according to the general terminology a map k: A —» M"is called an
imbedding if k is a homeomorphism of A onto k(A), and an imbedding is said to be clean (or
proper) if we have k™1 (0M")=A n dM". As we will always work with clean imbeddings,
the word imbedding means in fact clean imbedding. The space of imbeddings of A into M"
will be denoted by £ (A; M"). Ifk:A — M"is an imbedding and A is a Borel subset of M”,
we can define a measure k* py on A by k* pg (B)=p, (k(B)) for each Borel subset BcA. We
will say that an imbedding k : A — M " is biregular (with respect to p,), if k* po and p, | A have
the same sets of measure 0. We will denote the set of biregular imbeddings of A in M" by
F(A; M", uo-bireg). We will say that an imbedding k : A — M" preserves the measure p, if
the measures k* p, and g | A are equal. We will denote the set of measure preserving
imbeddings by £ (A; M", o).

Suppose B is a subset of M”, we define £ (A, B; M") by:

J(A, B; M")={ke s (A; M")| k| B n A=identity }.
Similarly, we define £ (A, B; M", o) and £ (A, B; M", p,-bireg).
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All spaces of imbeddings will be endowed with the compact open topology.
We can now state the Cernavskii-Edwards-Kirby Theorem for biregular imbeddings.

THEOREM 4.1. — Let U be an open subset of M", Cc U a compact set, ahd D and D' two
closed subsets of M" such that DcInt(D’)cD’. There exists a neighborhood U of the
inclusion i: UcM" in # (U, D’; M", uo-bireg) and a continuous map

o Ux[0,1] - £ (U; M", no-bireg)

such that:
(1) @o(k)=k, VkeU;
(2) ¢, (k)| C=identity, Vkeu;
() ¢.(k)|DnU=identity, Vke¥, Vte(0, 1], i.e.

o %[0, 1)=# (U, D; M", po-bireg);

(4) o,(k)=k outside some compact neighborhood K of C in U, independent of t and k; i.e.
there exists a compact set K such that: CcInt(K)ceK<U and o,(k)|U-K=k|U-K,
Vkedl, Vtel0, 1}; ,

(5) moreover, if k|U n OM"=identity, then @,(k)| U n dM"=identity;

(6) o,()=i,Vtel0, 1].

The proof of Theorem is the same as the one given in [EK]for Theorem 5.1.  See appendix
B.4 for some indications.

Remark that if ¢, is given by Theorem 4.1, then k @, (k)" : @, (k)(U) > M" is equal to k
on C and is the identity outside ¢, (k)(K), hence we can extend it by the identity to a
homeomorphism of M”". This gives:

COROLLARY 4.2. — With the same notations asind.1,if ke # (U, D’; M", po-bireg)is close
to i, then we can extend k | Ctokes#t (M", po-bireg). Moreover, we have:

— k depends continuously on k;

i=identi ty;

— k|D n U=identity;

— if k|Un3dM™ is the identity, then k|OM" is the identity;

— moreover, if U’ is some given neighborhood of C, we can suppose that k is the identity
outside U’.

If we apply 4.1 in the case C=U=M", D=D’=0, we obtain:

COROLLARY 4.3. — The group # (M", po-bireg) and #° (M", py-bireg) are locally
contractible.

Since, by 3.5, #(M", po) and H#°(M", po) are retracts of 3# (M", p,-bireg) and
#° (M", po-bireg), we obtain:

THEOREM 4.4. — If M" is a combact manifold and y, e #°(M"), then # (M", p,) and
H° (M", o) are locally contractible.
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In fact to apply 3.5, we must assume that M" is connected. But, if M" is not connected
and M1, ..., M} are its connected components, then the group 3 (M", po) is locally

1
homeomorphic to the product [] # (M7, po). This fact legitimate the proof we have given
i=1

of 4.4.
We now want to prove the following Theorem:

THEOREM 4.5. — If M" is a compact connected manifold and poe #5(M™), then the
inclusions # (M", po) s ' (M") and H°(M", po) G #°(M") are weak homotopy
equivalences, i. e. induce isomorphisms on all homotopy groups.

We will prove 4.5in the case # (M", po)=# (M"). The proof of the other case is exactly
the same.

We know that 3# (M", uo) G H# (M", po-bireg) is a homotopy equivalence, so 4. 5 follows
easily from the following Lemma:

LEMMA 4.6. — If M" is compact connected and poe.#5(M"), then the inclusion
H (M", no-bireg) g # (M") is a weak homotopy equivalence.

To prove 4.6, we will apply a Theorem of Eilenberg and Wilder ((EW] § 2, pp. 615-617) or
([To] §2, pp. 98-102), which we recall now. We explain this theorem in terms suitable to
our needs. ‘

Suppose X is a metric space with metric d, A =X is some subset. Suppose furthermore
that, given € >0, there exists 8 > 0 such that each continuous map ¢ : S" — A (S" the r-sphere, r

arbitrary) with diam (¢ (S"))<& can be extended to a continuous map 6: B! - A with
diam (¢ (B"*'))<e. Then, the Eilenberg-Wilder Theorem says, in particular, the inclusion
A G A is a weak homotopy equivalence.

Suppose now that G is a metrizable group with metric d ; we can suppose that d is right (or
left) invariant. Suppose that H is a subgroup of G which is locally contractible. Then,
given £¢>0, we can find a >0 such that Nj;(e, H), the 8-neighborhood in H [i.e.
Ns(e, H)={heH | d(h, e)<8}], can be contracted to a point in N, (e, H). Now, using the
invariance of the metric d, it is easy to show that each continuous map ¢ :S" — H with
diam(@(S'))<8 can be extended to a continuous map ¢:B**'o>H with

diam (_q;(B’”))<s. Hence, the inclusion H G H is a weak homotopy equivalence. In
particular, if H is dense in G, then H g G is a weak homotopy equivalence.

Applying what we said above and 4.3, we have reduced Lemma 4.6 to the following:

LeMMA 4.7. — The subgroup H# (M", p,-bireg) is dense in # (M").
The proof of Lemma 4.7 follows from another Lemma, which we prove first.

LEMMA 4.8. — Given any measure pe.#(M"), then there exists a homeomorphism
he #° (M™), as close to the identity as we want, such that h,pe #5(M", po).

Proof of 4.8. — We prove it in the case M"=1" and p,=m=Lebesgue measure. The
general case follows from this one, using a method similar to that given in the proof of 3.3.
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Letpe.#%(I"). We can find a subdivision of I" by hyperplanes into subcubes ¢y, . . ., ¢;
such that p(dc;)=0 and diam(c;)<&. Using the von Neumann-Oxtoby-Ulam Theorem

(3.1), in each cube c¢;, we can find a homeomorphism hes#’(I") such that
k

h| | dc;=identity, h(c;)=c; and h, pn|c;=(n(c;)/m(c;)) m.

i=1
The homeomorphism 4 is e-close to the identity and h, peﬂ‘;(M”, Wo). I

Proof of 4.7. — Let g be in # (M"), consider the measure p=g, nuo. Applying 4.8, we
obtain he #° (M"), as close to the identity as we want, such that h, pe.#%(M", po). The
homeomorphism hg is a as close to g as we want, and (hg), o € A ‘; (M", o), which means
hge # (M", po-bireg). [

The analogue of Theorem 4.1 is false for measure preserving imbeddings. We give an
example which contradicts its Corollary 4.2. Take two small intervals in S*, I, and I,, and
push them one towards the other using rotations. This small push cannot be extended to a
measure preserving homeomorphism of S*.

z N

We give analogs of 4. 2 for the measure preserving case when C is a locally flat codimension
0 submanifold. '

Recall that N"< M" is a locally flat codimension 0 submanifold if, for each x in N”, we can
find a chart U —» M", with 0e U< R" and ¢ (0)=x, such that:
— if xeM", then U=R", and either o(RM&N" or o(H%)=N"n@(R"), where

n={x=(xy, ..., x,,)IxngO};
— if xedM", then U=H" and either (H%)=N" or o(H" )=N"n @ (H?%), where
ne={x=(xy, ..., x,)|X,-120and x,20}.

ProprosITION 4.9. — Let N" be a compact locally flat submanifold of the compact connected
manifold M", such that M"—N" is connected. Let poe.#5(M"), and U be an open
neighborhood of N" in M".

For each ke # (U; M", w,) which is close enough to the inclusion i: U< M", we can find a
homeomorphism ke# (M", wo) such that:

— k|N"=k|N";

-k depends continuously on k;

— lT=identity;

— if k| U~ OM"=identity, then k|OM"=identity;

— furthermore, if P and Q are closed subsets of OM" such that Q is a neighborhood of P in
OM", we can insist that E]vP be the identity if k|Q is the identity.
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Proof. — Since N"islocally flat, V*=M"— N" is a locally flat submanifold of M". it is also
connected being the closure of the connected set M"—N". By 4.2, we can. for each
ke (U; M", po) close enough to the identity, find a homeomorphism k; of M", such that:

— kie# (M", po-bireg); '

— ky|N"=k|N";

— k, depends continuously on k;

— i, =identity;

— if k| U n 0M"=identity, then k, | oM™ =identity;

— k| P is the identity, if k, | Q is the identity.

Now remark that, since po (k(N"))=po (N"), a stupid substraction argument shows that
v=po (ky (V")) is independent of k;.

Define, for each k,, a measure p(k,) on V" by:
1 .
wlk)(A)=—po (ki (AN V")),

if AcV" is a Borel subset.

It is easily verified that p(k,) e .# (V" uo) where uo =(1/v) (1o [ V*)=u(i;). Moreover,
p(k,) depends continuously on k;, and hence on k.

By Theorem 3.3, for each pu(k,), we can find a homeomorphism k, € #° (V") such that
kz*a(,:u(kl), moreover k, depends continuously on pu(k,), and hence on k. Since
k, | 0V"=identity, we can extend, by the identity, each k, to a homeomorphism of M", which
we still call k,.

One can verify that k=k; k, is the desired homeomorphism of M". [

Let V"' be a compact connected manifold, and consider the manifold
V"~ 1x[0,1]. Consider four arbitrary but fixed numbers: O<c<a<b<d<l1. If
k:V"~1x]ec,d[ 5 V" ! x]0, 1[is an (open) imbedding, then V"~ x [0, 1]—k(V"~* x[a, b])
has two connected components; we call €;(k) the connected component containing
V"1 x{j},j=0o0r 1. With these notations, we can now state:

ProposiTION 4.10. — Let poe #5 (V! x[0, 1]). For each
ke F(V* 1 x]e, d[; V1 x]0, 1[, o)

close enough to the inclusion i:V" 'x]c, d[s V" 'x]0, 1[ and verifying
o (Bo (k) =po (V"1 x[0, af) [or equivalently po (€, (k))=po(V"~ ! x]b, 1])], we can find a
homeomorphism k of V"~! x[0, 1] such that:

— k preserves po, i.e. ke # (V"1 x[0, 1], po);:

— k| V"' x[a, B]=k| V"~ ! x[a, b);

-k depends continuously on k;

— k| V" 1% {0} U V" x {1} =identity;

- if k|6V” ! x]e, d[ is the identity, so isﬂaV"“ x [0, 1].
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The proof of 4.10 is almost the same as the proof of 4.9. We leave it to the
reader. Remark that since k preserves the measure, we have g (%o (k) =po (V™! x[0, a]) if
and only if py (€, (k) =po (V"1 xb, 1]).

In fact, 4.9 and 4. 10 are two particular cases of a more general Theorem, which we will
now explain. We will use only the particular cases given in 4.9 and 4. 10.

Suppose N"is a compact locally flat codimension 0 submanifold of the compact connected
manifold M", then M"—N" has a finite number of connected components

Cy, ..., C,. Moreover, each closure E,, is a compact connected locally flat codimension 0
submanifold of M". Suppose U is an open neighborhood of N” in M" and
Ho€ M°(M™). Letkbeanimbedding U< M" preserving po, then by 4.2, if k is close enough

to the inclusion UcM?", we can find a homeomorphism Ee%bmg (M", uo) extending

k | N". Weclaim that the set k (C,,) is independent of the particular extension of k | N"to M"*,
this follows easily from the Lemma:

LemMma 4.11. — If f:M" > M"is a homeomorphism of M" such thatf|N"=identity then
f(ch)=ch, h=1, ..., 4.

Proof. — Letp eC »— Ch (such a point exists because we assumed M"” connected). Then,
of course, pe Fr(N"). Since we assumed N" locally flat, we can find a neighborhood V of p

in M" such that V> W x]—1, 1] with W some connected open subset of H” !, such that
)

Vn N"-—;(p’ 1(Wx]—1,0]). Since Wx]0, 1[ is connected, the set ¢ (W x10, 1) is
contained in a unique component of M” — N”", which must be of course C,. This shows that
VnC,=Qifl#h. Andasaconsequence, C,is the only component of M”— N" such that p
belongs to its frontier. Now, since f | N"=id, the set f(C,) is a connected component of
M"—N", such that p= f(p) belongs to its frontier. Hence C,=f(C,). O

We can now state the generalization of 4.9 and 4.10.

THEOREM 4.12. — Keeping the notations given above, let k € # (U; M", n,) be an imbedding
close enough to the inclusion. Suppose moreover that if ke # (M) is an extension of k|N",
then pg (E(C,,))=p.o (C4) for each connected component Cy, ..., C, of M"—N".

There exists a homeomorphism k of M" such that:

— [ preserves p; i.e. ke # (M", po); .

— E|N"=k|N";

— k depends continuously on k;

= if k|oM" N U is the identity, so is k|OM".

The proof of 4.12 is the same as the one given for 4.9.

We conclude the section with the extension of isotopies.

THEOREM 4.13. — Let N”" be a locally flat compact codimension 0 submanifold of the
compact manifold M". Let U be an open neighborhood of N" and p, e./ll‘;(M"). Suppose
(k¢);epo, 1 is an isotopy of open imbeddings: U c M" such that ky is the inclusion i: U g M.
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A necessary and sufficient condition for the extension of (k, | N");cp0, 1) o M" preserving p is
the following condition:
(%) If (E,),E[O, y is an extension of (k, | N"),ep0, 1y t0 anisotopy of M", then, for each connected
component C of M"—N", we have pq (k,(C))=po(C), t€[0, 1].

Proof. — Remark that if (%) is satisfied by an extension of k.| N", it is satisfied by all. This
proves the necessity of ().

The proof of the sufficiency of (%) is the same (up to minor change) as the proof of 4.9, once
we know the existence of an extension (k,),¢0, ; Of (k| N"),po ; With each k,€ # (M", po-
bireg). But the existence of such an extension follows from 4.1 (see [EK], p. 79, proof of
Corollary 1.2). OO

APPENDIX A .4
Is #(M", p) AN ANR

We recall that a metric space X is an ANR (=absolute neighborhood retract) if it can be
embedded as a closed retract of some open set in a normed space, see [BP], chapt. 2, for
definition and some properties of ANR’s. The ANR’s are of interest because they form a
fairly large category of spaces which are “well-behaved™.

If M"is a compact connected manifold with n > 3, it is an open question whether # (M")is
an ANR or not. Itis known in dimension two [LM] that # (M")isan ANR. One can ask
the same question for # (M", ) where p is a good measure on M”".  This second question
can be trivially reduced to the first one, as we will see now.

ProposiTiON A.4.1. — Let M" be a compact manifold and let p be a good measure on M"
with n(0M")=0. If # (M")is an ANR, then # (M", p-bireg) and # (M", n) are ANR’s.

Proof. — We will use the results and terminology of [To].

By 4.3 and 4.7, #,., (M", p) is a locally contractible dense subgroup of #'(M"); this
implies [To], remark 2.9, that 5# (M")— 5 (M", p-bireg) is locally homotopically negligible
in # (M"). Hence, by [To], Th. 3.1, if 2 (M")is an ANR so is 5 (M", p-bireg). On the
other hand # (M", w) is a retract of # (M", p-bireg), and a retract of an ANR is
an ANR. O

COROLLARY A.4.2. — If M? is a compact 2-dimensionnal manifold and peJl‘Z (M?2), then
‘}fbireg (MZ’ l»l) and ‘W(MZ, IJ.) are ANR’s.

APPENDIX B.4

OUTLINE OF THE PROOF OF THE CERNAVSKII-EDWARDS-KIRBY
THEOREM IN THE BIREGULAR CASE

We outline, with few details, the proof of the Cernavskii-Edwards-Kirby Theorem for
biregular imbeddings.
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First, Theorem 4.1 is proved in the case where M " is an open set of R”, and the measure is
Lebesgue measure. The main Lemma is the following handle Lemma.

HanpLe Lemma B.4.1. — Consider B*xR"* endowed with m the Lebesgue
measure. There is a neighborhood U of the inclusion i:B*x4B" *cB*xR""* in
JF (B*x4B" % oB*x4B" "k BkxR""* m-bireg) and a deformation ¢, of ¥ inside
F (B¥x4B""* 0B* x4B"*; B* x R""*, m-bireg) such that:

- 0 (k)|B" xB" k=1d, Vke¥;

— o,()=i,Vtel0, 1];

— @.(k)=k outside B¥x3B" %, Vkeu, Vte[0, 1].

The proof of this Lemma is exactly the same as the proof given for Lemma 4.1 in [EK],
once we replace the immersed punctured torus argument by the furling argument explained
in [EK], §8. We have only to remark that the furling is done via some composition with
some PL (hence biregular) homeomorphisms, and that the final compression argument can
be done using a PL compression.

Once, we have this Lemma, we can obtain Theorem 4. 1 in the case where M " is an open set
of R" by using a small triangulation like in pages 71-73 of [EK]. Now, if M" is without
boundary and poe.#,(M"), a simple application of the von Neumann-Oxtoby-Ulam
Theorem shows that there exists an atlas { (h;, U;) | U; open in R" (in fact a ball) } such that
h¥ po is the Lebesgue measure (up to scaling). Using this, we can apply the usual chart by
chart argument (see [EK]) to prove Theorem 4.1 in this case. Of course this also proves
Theorem 4.1 in the case where IM"#Q but CnoM"=0Q.

It remains then to prove Theorem 4.1 in the case where C N 0M"#@. Here we have to
change a little the argument used in [EK]. In [EK], they apply the Theorem in the empty
boundary case, to the triple dM", C n dM", U n dM" and then they use a small collar to
extend the deformation and after that it remains to rectify the imbeddings in the
interior. We cannot do that here because during this kind of deformation, we are not sure to
obtain biregular imbeddings, for example if h:B" —» B" is even a measure preserving
homeomorphism, h|dB" might be very bad !

We get rid of this minor point by the following handle Lemma.

LemMMma B.4.2. — Consider [0, 1] x B¥ x R"™*~1 endowed with the product of Lebesgue
measures. There is a neighborhood U of the inclusion i:

[0, 1] x B¥x4B" ¥~ 1[0, 1] x B¥ x R" ¥~ !
in
F(0, ]xBEx4B" k"1 {1} xB¥xR"*"1 U [0, 1]xdB* x R"™*"1;
[0, 1] xB¥xR""*~! m-bireg)
and a deformation ¢, of U inside
F([0, 1] xB*x4B" k=1 {1} xB*xR" ¥~ 1[0, 1] x 0B¥ x R" "+~ 1;
[0, 1] xB*xR""*~1 m-bireg)
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such that:
- 0 (k)| [0, 1]xB*xB" ¥ 1=Id, Vke%;
- o.()=i,Vtel0, 1);
— ¢@,(k)=k outside [0, 1] xB*x3B""*~! Vke#, Vtel0, 1].
This Lemma can be proved along the same lines as the one above.

Once we have this Lemma, we can prove, using the standard techniques of [EK], the
following Proposition.

ProposiTioN B.4.3. — Let N"' be a manifold without boundary and with a good
measure v. Let K be a compact set, V an open neighborhood of K in N~ ! and let F<F’ be
two closed subsets of N"~*, with ¥’ a neighborhood of F. We endow [0, 1] x N"~! with
the product measure m xv where m is a Lebesgue measure on [0, 1]. There exists a
neighborhood U of the inclusion i:[0, 11xV<[0, 1] xN" 1 in

F(0,1]xV, [0, 1]xF U {1} xV; [0, 1] xN""!, m-bireg)
and a deformation ¢, of U in
J(0, 11xV,[0,1]xFu{1}xV;[0, 1]xN""!, m-bireg)

such that:

- 01 (0|0, 1] xK=Id, Vke#;

— o,()=i,Vtel0, 1];

— @,(k)=k outside some compact neighborhood of [0, 1]1xK in [0,1]1xV, Vke%,
Vtelo, 1].

Now, we can finish the proof in the following way. The boundary dM" of M" has a small
neighborhood homeomorphic to [0, 1] x dM". We can apply the without-boundary case to
deform the imbeddings so they become the identity on a compact neighborhood of
C—J0, 1[ x d0M™ and then finish to deform them to the identity by using Proposition B.4.3.

5. The mass flow homomorphism

Let X be a compact metric space. We recall that an isotopy of X is a continuous map
h:X x[0, 1] - X such that each map h,:X =X, x — h(x, #), is a homeomorphism and
hy=idy. We will use the notation (h,), ., ; or simply (h,) for anisotopy. Infact,anisotopy
is the same as a continuous path in # (X) starting at the identity. We will note by £ (X)
the space of isotopies of X. Of course, £.& (X)is endowed with the compact open topology.

We have, of course, a continuous surjective map:
IS X) D Ho(X),  (h)—hy,

where J# (X) is the path component of idy in # (X).
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We say that two isotopies (h,) and (g,) are isotopic with fixed extremities, which we note
(h;)~(g,), if hy =g, and there exists a continuous map I xI — # (X), t, s—H,_,, such that
H, ,=idy, H, ;=h;=g,, H, o=h, and H,, .=g,. The relation ~ is an equivalence
relation on £ (X). We note the set of equivalence classes by #,(X). The equivalence
class of (h,) will be noted by { h,} . The set A o (X) carries a topology, namely the quotient
topology obtained from the compact open topology on & (X).

The map £ (X) 5 H o (X) induce a continuous map 9?0 X) LN H(X). Remark also
that S¥(X) is a group, where the composition law is given by
(’Lx):e[o, 1° e, y=(":ge)icp, - This group structure induces a group structure on
Ho(X). The two maps S& (X) - H#((X), and #,(X) = H#o(X) are group homomor-
phisms.

In fact, if # (X) is locally contractible (or even 1-semi locally connected), then # o (X)is the
universal covering space of J#, (X).

Now, if p is a measure on X, we define:

SL X, W={(h)eSF X)|Vtel0, 1], he #(X, p)},
#HoX, W={h|3I(h)eSF X, p), hy=h}.

We can also define the equivalence relation ~ on £ (X, p) in the same way as above, and
define 57, (X, p) as the set of equivalence classes. If # (X, p) is locally contractible, then
# (X, p) is the universal cover of \gfo X, w.

We now consider the topological group T' =R/Z, which is isomorphic to the topological
group S'={zeC | |z| =1}.

We note by % (X, T?)the set of continuous maps from X to T*; it is an Abelian group under
addition:

(f+9X)=f(x)+g(x), VxeX

Recall that f, ge@ (X, T') are called homotopic, if there exists a continuous map
X x[0, 1] - T, (x, t)= f,(x), such that fy=f and f, =g.

Homotopy is an equivalence relation. We note by [X, T!] the set of homotopy classes; it
is an Abelian group, its addition is induced from the one defined above on % (X, T?).

If X is some good space, for example a manifold or a polyhedron, then [X, T!] is
isomorphic to H! (X, Z) the first singular cohomology group of X. In fact, H!(T!, Z2)~Z,
and a preferred generator c e H! (T, Z)is given by the natural orientation of the circle. We
can define a natural map:

ay: [X, T1-H'(X, 2),
f—f*o.

This map is a group homomorphism. If X is a polyhedron, obstruction theory shows that
ay is an isomorphism ([Sp], chap. 8). This result is then extended to ANR’s, and in
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particular to manifolds, since an ANR has the homotopy type of a polyhedron ([BP],
Cor. 6.6, p. 80 and [LW], Th. 3.8, p. 127).

Remark now that H! (X, Z)=Hom (H, (X, Z), Z). So, there is a natural map:
by: H;(X, Z)-» Hom(H'(X, 2), 2).
Composing by with af : Hom (H! (X, Z), Z) » Hom (X, T'], Z) gives us a map:
Bx: H;(X, 2)-» Hom (X, T}, 2).
There is also the Hurewicz map ([Sp], p. 387]:
hy: m (X, xo) = H; (X, 2),

where 7, (X, x,) is the fundamental group of X with base point x,. We will call o, the
composite By hy:

ox: 7y (X, xo) > Hom (X, T'], 2).
We can describe ay in the following terms: a loop I of X based at x, can be considered as a
map [:T'->X with /(0)=x,. Now, if f:X—>T! is a continuous map, then:
oy (I)(f)=deg (f ol), where fol : T' > X5 T, We will use this later.

Suppose that X is a good space and that H, (X, Z) is a finitely generated group; we note
here for future reference that the map By tensored by R gives us an isomorphism:

H, (X, R) > Hom ([X, T!], R)

' Bx®R l

H,X,2)® R ————» Hom(X, T!], 2 ®R.

~

In particular, if M" is a compact manifold, H, (M", R) is isomorphic to Hom ((M", T!], R).

DEFINITION OF THE MASS FLOW HOMOMORPHISM. — If y is a measure on X, we will define a
group homomorphism, noted 8y , or simply 0, and called the mass flow homomorphism:

#o(X, ) > Hom (X, T', R).

Suppose first (h,)e FZ (X, po); we define a map 8(h,) : €(X, T!) - R in the following
way:
If fe¢ (X, T!), then(fh,—f) : X - T ! is a homotopy such that fho— f = f — f =0; hence,

see [CV], chap. 13, we can lift it, in a unique way, to a homotopy: (fh,— f) : X = R, with

Sho—f=0:
R

(fh—1)

X T'=R/Z.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



70 A. FATHI

We define:
) ()= L(ﬂlx—f) dp.

We have (f +g) h,—(f +9)=(fh,— f)+(gh,—g); this equality imply the same one for the
liftings, and we obtain:

B(h)(f +9)=B(h) () +B(h)(9).

So 8(h,)eHom (¢ (X, T'), R). Suppose now that fe# (X, T!) is homotopic to a
constant map, then we can lift it to a map f:X->R. It is easy to verify that

fh,—f=fh,—f. This gives us
B(n)(f)= £(ih,—?)du= Lihldu— L}du=o,

since h, preserves the measure p. This fact shows that 9 (h,) induces a homomorphism
[X, T'] - R, which we still note §(h,).

Up to now we have defined a map:
[}
JZ (X, p)— Hom(X, T!], R).

We verify that this map is a group homomorphism. Let(h,)e FL (X, p,(g,)eFL X, 1)
and fe% (X, T!), we have:

fhege—f=(Mh—fg.+(fg.—f)

hence:

(fheg. =)=~ g.+(fg.—f),

which in turn implies:

B(h.g)(f)= J;(fhl_f)gl dp+ Jfg_l—fdu=9(h,)(f)+§(g,)(f),

since g, preserves .

Now we check that, in fact, 8 is well defined on (X, p). If (h,)~(g,), let H,  be a
homotopy between them. We have now a two parameters family fH, ;—f: X > T!,

lifting this two parameters family to fH, ,—f:X— T' shows easily that we have
fhi—f=fg1—f, which implies 8 (h,)(f)=8(g.) (/).
So we have shown the existence of the map 0 : # o (X, p) > Hom ([X, T, R).

The map © is continuous in the following sense: if fe%(X, T'), then the
map: #o(X, )~ R, {h,}—8(h,)(f), is continuous. In other words, if we endow
Hom ([X, T'], R) with the weak topology, then 8 is continuous.
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If X is a compact manifold, then Hom([X, T'], R)~H, (X, R), and each 8(h,) can
be interpreted as a cycle on X.

Example. — X=T", u=Haar measure. Weidentify Hom ([X, T], R) with R", by taking
the n projections p; : T" > T, (x,, ..., X,)—> X;, as a basis (over Z) of [X, T!]. Now, if
a€R" we can define anisotopy Ry : T" > T", x+—>x+ta. A simple calculation shows that
B(RY)=a.

The kernel of the natural map # (X, W — # (X, p) is the set

N (X, W= {{h}eHoX w|h =id};
N (X, W #oX, ) HoX, p).

We define ' Hom (X, T1], R) by:
L=8(A (X, p).

Passing to the quotient, & gives us a homomorphism 0:

0: #o(X, p)— Hom (X, T1], R)/T:

N (X, W) : > T=8(# (X, )
#o(X, b d > Hom ([X, T'], R)
Ho(X, p) 9 > Hom ([X, T!], R)/T.

D. Sullivan brought to our attention the following fact:

ProrosiTion 5. 1. — If X is connected and p.(X)=1, the group I is contained in the image of
the center of m (X, x) under the map ay : m, (X, x) > Hom([X, T'], Z)cHom (X, T], R).

LeMMaA 5.2. — If X is connected and p(X)=1and { h,} e & (X, p), then 8(h,) is the image
under o of the loop { h,(x)|t€[0, 1]}.

Proof. — Let f: X — T!, consider the lifting fh,—f : X > R. Since h;=id and X is
connected, fh;—f is a constant map whose value is an integer n. So

8(h)(f)= j ndu=n. It is easy to show that n is the degree of the map T!—>T!,

X
t— f(h,(x)). According to the description of the map a given before, we have proved the
Lemma. [

Proof of 5.1. — Let {h,}e A" (X, p). Define the loop I : [0, 1] » X by: t—h,(x). We
know that, by 5.2, a(/)=0( {h,}). So it suffices to show that | is in the center of m, (X).
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Let ¢ : [0, 1] = X be a loop based at x, c(0)=c(1)=x. Define a map [0, 1] x[0, 1] 5 X,
(s, t)>h,(c(s)). Looking at the restriction of H to the four sides of [0, 1] x [0, 1], we obtain
the following picture:

’6

iy /

So, I71 ¢~ ]c is homotopic to a constant map, and in n, (X, x), we have lc=cl. [

Remark as a consequence of 5.1, that if X is a compact connected manifold, then I is
contained in the integral part of H, (X, R)=Hom([X, T'], R). This shows that I is
discrete in the natural topology of H (X, R) [this natural topology is given by the fact that
H, (X, R) is a finite dimensional real vector space].

Example. — X=T" : p=Haar measure. Ifweidentify H, (T", R)with R" as before, then
I'=Z"<R",

LEMMA 5.3. — Let M" be a manifold, B be a subset of M" homeomorphic to the n-ball B" and
peM(M™). Suppose he # (M", p) is isotopic to the identity by a p-preserving isotopy
having its support in B, then® (h)=0. Ifhe s# (M", p) hasis support in B, then n is isotopic to
Idy. and 6(h)=0.

Proof. — Let (h,) be an isotopy such that h; =h. We will show that 6(h,)=0. Letfbein
%(M", T'). Remark that fh,—f is identically 0 outside B, this implies that the lifting

fh,—f: M"> R is also identically 0 outside B, hence G(h,)(f)=th,—fdu. Now
B

fIB:B— T' can be lifted to a map f : B— R, since B=B" is contractible. It is easy to
see that fh,—f |B=fh,|B—f, hence we obtain d(h,)=0. Since h,(B)=B and h, is
p-preserving.

The remaining part of the Lemma is a consequence of 3.8.[]

If o#o(X, p) is locally contractible, then the map 0 is continuous. This follows
immediately from the continuity of  and the fact that in this case J# o (X, p) = # (X, p)is a
covering map.

Remark. — The existence of the mass flow homomorphism is well known; see [Sc] for the
case of a flow and [Th] for the case of volume preserving diffeomorphisms. The definition
we gave is inspired by Michel Herman’s definition of a rotation number for homeomorphisms
of T! ((He,], chap. 2).
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WHY 0 IS CALLED THE MASS FLOW HOMOMORPHISM ? — Let A and B be compact spaces and
Ax{0,1 } % Bbesome imbedding. We define X by gluing A x [0, 1] to B using the map @:
X=(Ax[0,1]1[IB)/@(a, 0)~(a, 0), ¢(a, )~(a, 1),

Axl

\ i

*

Ax0

We can define a natural map f: X - T! by:

_jtmodl, if x(a, )eA x][0, 1],
=9, if xeB.

We obtain a covering X 5 X as the pull-back by f of the covering R » T*. The space X
can also be defined as in the figure below:

Ax0,=¢p(Ax0)
|

"Ax0_=¢@(Ax]1) Axl_z¢e(Ax1)

where each B; is a copy of B.
The map f : X —» R covering f may be defined by:

n, if xeB,, VneZ,
t, if x=(a, t)eAx[m, m+1], VmeZ.

fx)= {
Moreover, the covering transformations of X > X are generated by the map 1 : XX,

defined by:

c@)={ B, if XeB,,
(@, t+1), if x=(a, t)eA x[m, m+1).
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Suppose now that p is some measure on X, such that p | A x[0, 1]=v xdt, where v is a

measure on A and dt is Lebesgue measure on [0, 1].  We can “lift” p to a measure E of X [of
course E(§)= +o0]. Let (h)efF (X, n), we can lift (h,) in a unique way to
(ﬁ,) eSS (i, E), Moreover, (Z,) depends continuously on (h,) and (ﬁ,) commutes with the

covering transformations of X - X. Suppose that (h,) is close enough to the identity, then

we can define the region R(h,)=X which consists of the points between A x0, and

hy(Ax1/2).

l/A)(OJ, Axl1_
s&\%’ ( B
_ 1
[
R(h) 1< x2>

We also define R’ (h,) as the region between hy (A x1/2) and A x1.

PROPOSITION 5.4. — We have 8(h,)(f)=p [R (h,)]—p (A x[0, 1/2]).

Proof. — Since F=A x[—1/2,0]uBg U A x[0, 1/2] is a fundamental domain of X » X,

we have:
B(h)(f)= j (fhy—f)dp= j fhydp— Lidﬁ.

We compute first

j Fdn = j Fdn+ j Fdn+ j Fdn.
F A x[—1/2,0) B, A x[0,1/2)

Since f|B,=0, we obtain J fdp =0.

Bo

We compute then J

A x[—-1/2,0]

7dﬁ and J fdu:

A %[0, 1/2)

0o

- = 1
j fdu=f tdvdt=v(A)j tdt=——v(A),
Ax[-1/2,0] Ax[-1/2,0] 172 8

_ 1/2 1
J fdu='[ tdvdt=v(A) f tdt=—=v(A).
Ax(0,1/2] Ax(0.1/21 0 g8 .
This gives: J?dﬂ=0.
F
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Now we compute J ]Z, dﬁ:
F

j Fhydi= f Fd,
F hy (F)

but

hy(F)=t"'[R'(h,)]UB,UR(h,),
hence

Fhydii= j Fin+ | 7.
F

! [R'(h)]UB, R(h,)
Since t preserves E we have:
J fdﬁ:j jrdﬁ=£ (t+1)dvdt=j fdp+p[R k)]
R(h,) e~ [R (b)) “'[R (k) ™[R (h)]
Since T ![R(h)Jut ™[R/ (k)] UBy=A x[—1, 0] U B,, we obtain:
J;ﬁldﬁ=E[R(h,)]+ j fdu
Ax[—1,00UB,

_ 0 _ 1
=u[R(h.)]+V(A)f_1 tdt=p[R(h)]—7v(A)

=H[R(ht)1—E(A x [0%])

Finally:
G(h,)(f)=ﬁ[R(h:)]—E<A X [O%D g

Remarks. — (1) Proposition 5.4 can be interpreted by saying that d (h,) is the mass that has
passed algebraically through the “membrane” A x1/2<X. If we imagine A x[0, 1] as a
pipe, this explains the name of the mass flow homomorphism.

(2) Leta, b, ¢, de]0, 1[,c<a<b<d. Suppose that A is a connected manifold V"~!, and
that p| V"~ 1 x[0, 1]=v xdt, where v is (up to normalisation) a good measure on V"=, If
we define %, (h,) as the connected component of V"~ ! x[0, 1]—h, (V"™ ! x[a, b]) which
contains V" x 0, then we have, by 5.4, 8(h,)(f)=p(€o(h,))—p (V" x[0, a[). Hence we
can apply Proposition 4.10 to h, |V"’l x]e, d[, if and only if 8 (h,)(f)=0.
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APPENDIX A.5
ON THE DIFFERENT FORMS OF THE MASS FLOW HOMOMORPHISM

Suppose M" is a compact C* differentiable manifold with a volume form Q, such that

Q=1. Let £ *(M", Q) denote the set of C*® isotopies (h, ), ; With ho=1Id, which
.

preserve Q. There is a homomorphism VM.,Q =V, SP M, Q->H""1(M", R),
see [Th]. We will show that, up to Poincaré’ duality, V is equal to GM., ug where p, is the
measure obtained from Q.

First, we recall the definition of V. If (h, )iepo, 1y 18 in £F * (M", Q), we consider the time
dependent vector field X, on M" defined by:

oh, _
X,(m)= S [ (m)].

Since h, preserves Q, for each t, the (n— 1)-form i (X,) Q is closed, hence so is the (n — 1)-form
1 1

j i(X,)Qdt. By definition, V (h,) is the cohomology class of j i(X,)Qd:t.

o

0

PropOSITION A.5.1. — The cohomology class ¥ (h,) is the Poincaré dual of the homology
class 8(h,).

Proof. — Let @ be the canonical volume form on T!.
If f: M"—> T!, we have to show that:

j [Jl i(X,)th] A f*o=B8(h)(f).
M” 0

We will denote the left hand side of the equality above by ¢ V(h,), f>. By Fubini Theorem,
we have:

(V) fH= [(X)QlAdtAf*a.

M"x[0, 1] _

Remark that Q A f* =0, since it is an (n+ 1)-form on an n-manifold. We obtain then:
0=iX)[QAf*0]=[IX)QA [*o+(-1)"QA[i(X,) [*a].

Now:

V@) f>= —[i(Xt)Q]/\(f*m)Adt=(—1)"j QA(f* 0)(X,)dt]

M” x [0, 1] M" x[0, 1]

= J (f*o)(X,)dtAQ= j h¥[(f*)(X,)dt AQ)], by naturality of integration,
M*" x [0, 1] M" x[0, 1]

=J (f*o)(X,oh,)dtAQ, since h}Q=Q;
M* x[0, 1]

=J I:jlf*m(x,oh,)dt:lﬂ.
M" 0
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We have:

(F* @) (X, o b, (m)) = (f*w)< e )) (’;t"m) .

It follows easily that u—»f f*o(X,oh,(m)dt is a lift in R of the map [0, 1] - T!,
0
u— fh,(m)— f(m).
- t
This means that the lift fh,— f of fh,— f is just J f*o(X,oh,)du.
[1]

Hence we obtain:
<Vh).f> =L_fh1—m=L_fhl—fdun,

which is, by definition, 8 (h,)(f). O

In [Sc], Schwartzman gave for a flow another definition of the mass Now
homomorphism which we recall now.

Suppose that (h,),.r is a flow on a compact space X, and suppose that (h,)
preserves p. Given a function f: X - T?, consider the lift fh,— f: X >R of fh,— fwith
jho f=0, Schwartzman (using Birkhoff ergodic Theorem) shows that

lim (1/t)[fh,— f1(x) exists for p-almost every x, then he defines the “asymptotic cycle”

t— o

associated to (h,),.z and p by:

J; lim —[fh, F1(x)dp(x).

t— o

PROPOSITION A.5.2. — The limit lim 1/ t[ jh, f1(x) exists for p-almost every x and its p
integral is O (h,)(f). o

Proof. — First remark that:

Shoe—f =L —=f1h+ fh—f,
which can also be written as:
Uh, —f1h=fh o= f = fhi—f ().
Using the compactness of X, we obtain a constant K such that:
Vi'e[0,1], VteR, VxeX, [Uerr =f1) == f1(x)| <K (k).
Now, by Birkhoff ergodic Theorem,

7= tim 1 [ (=71

t—=
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exists for p-almost every x and moreover

Lf* dp= Lﬂh—fdw

‘-

By (x), we have:
L[ﬂu—f]h..(x)du= Jo{[jhu+l — 1) == f1(x) } du

=J' (=T 1) du— L[fh..—f](x)}du-

t

This gives for p-almost all x:

t+1
f*(x)= lim %J [fh.— f1(x)du.

t—= t

Using (%x%), it is easy to see that:

t+1 _—
lim —tf = 7)) du=lim (=7 169

t— o t t— o t

So the computations done above show that lim 1/¢[f o h,— f](x) exists for p-almost every x,

t— oo

and also that the integral of this function is L fhi—fau=0(,)(NH). O

6. Study of the Kernel of 0 in the case of a compact manifold

We will suppose that M" is a compact manifold and that p is in 45 (M").
We first consider the surjectivity of the map 8 : # oM™, w—-H,(M", R).

Examples. — (1) M"=T! xB""! where B""! is the Euclidian ball of dimension
n—1. We suppose that p is the product of the Haar measure dt on T', by the Lebesgue
measure m on B"~!. Remark that H; (M", Z)=~ Z with generator [T, x0].

Choose some continuous function ¢ :B" !> R, such that J‘; @dm=1 and
|0B" 1=0. If aeR define (%), , by: B
he: T'xB" '-T!xB"!,
(u, x)—u+ae(x)t, x).

Then hf|0B"~'=id, (hY),cp,y e#’(M", ) and D(h¥)=a[T! x0]. Moreover ()repo. )
depends continuously on a. This shows that  is surjective and, in fact, has a continuous
section. Remark that this section is also a group homomorphism.
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(2) M"=[[0, 1] x B"~!/(0, x)~(1, © x)] where 1 is the orthogonal symmetry with respect to
some hyperplan of R"~!. Infact, M" is the total space of the disc bundle obtained from the
non orientable (n—1)-vector bundle over T!, the 0 section being given by
[0, 11x {0} /(0, 0)~(1, 0)]=T*. TheLebesgue measureon [0, 1] x B"~! givesin a natural
way a measure pon M". We can show, as in example 1, that 8 is surjective (we only have to
replace the function @ by one which is T invariant). In this case also the construction shows
that ® has a continuous (group) section. Moreover, all our isotopies are the identity
on dM".

Recall now that, if M” is a manifold, an element ve H, (M", R) is represented by an
imbedded curve, if there exists an imbedding k : T* — M?, such that [k(T!)]=v. We say
that a curve k : T! - M" has a tubular neighborhood if there exists a vector bundle over

T.EST! ,and an open imbedding% : E — M", such that k restricted to the 0 section is the

mapk : T! - M". Remark that there are only two vector bundles of a given dimension on
T, the total spaces of their disc bundles are given in examples 1 and 2 above.

PROPOSITION 6. 1. — Let M" be a compact manifold, and pe .#°(M").  Suppose that we can
find a basis of H;(M", R) which is represented by imbedded curves having tubular
neighborhoods. Then, the map 0 : # (M", p)— H,(M", R) is surjective and has a
continuous section. Moreover, if n=3, this continuous section can also be choosen to be a
group homomorphism.

Proof. — First, we assume n=3. Letp,:E;-»T!,i=1, ..., q, be vector bundles and
@; : E;cM" be open imbeddings such that the images C; under the ¢; of the 0 sections
represent a basis of H, (M", R). Since n=3, by a general position argument, we can assume
that the C;s are disjoint, then, by shrinking down the E;’s, we can assume that
0i(E)noe;(E;))=0,i#j. IfD(E;)isthediscbundleinE;, then D (E;)is homeomorphic to
one of the two manifolds given in the examples above. We can also assume, by the von
Neumann-Oxtoby-Ulam Theorem, that the measure p restricted to D (E;) is taken, under
this homeomorphism, to a scalar multiple of the measure defined in these examples. Using
the examples, we find for eachi,i=1, ..., g, and each a € R an isotopy (h;" *), ., such that:

— support (h;*)c¢;(D(E,));

- 8(hi)=a[Cy];

— o> (h"®) is a continuous group homomorphism.

We define the section S : H,; (M, R) - #,(M", u) by:

S [Cil+a,[Col+. .. +°‘q[Cq])=(hl:'a' o...oh?%) 0 y-

The map S is clearly a continuous section of §. Moreover, it is a group homomorphism
since hi** commutes with k' #, their supports being disjoint.

We leave the case n=2 to the reader. We loose the group homomorphism property
because we cannot assume the C;’s disjoint; by general position, all we obtain is that C; and
C; intersects transversally in a finite number of points. [J
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Remark that the hypothesis of Proposition 5.1: “There is a basis of H, (M", R)
represented by imbedded curves having tubular neighborhood” is satisfied if M” is
differentiable [Hr] or PL [Hu]. It is also satisfied if n#4 since this is a consequence of the
stable homeomorphism Theorem, which is known in dimension #4 [K].

As a Corollary, we obtain:

COROLLARY 6.2. — Under the same hypothesis as 5.1, there exists a homeomorphism:

H,(M", n=(Kerd) xH, (M", R).

In particular, Ker® is connected and locally contractible.

Proof. — The existence of the homeomorphism follows from the existence of a continuous
section. Remark that 5 ,(M", p)is connected and locally contractible being a covering of
# o(M", 1), which is connected and locally contractible. Hence, the second part of the
Corollary follows from the first. [

CoROLLARY 6.3. — Under the same hypothesis as 6.1, the subgroup Ker 0 (<= o (M", p)) is
connected and locally contractible.

Proof. — First, we show that p(Ker 8)=Ker 0 where p : #o(M", p) > #o(M", ). Let
heKer® and hie #,(M", ) such that p(h)=h. Since 6(h)=0, we have B(R)el. By
definition of T, there exists g € Ker p such that 8(R)=8(g). Remark now that p(hig=)=h
and 8(hg~!)=0. Hence p(Ker)=Ker6.

Now, we show that p : Ker® — Ker 0 is a covering. Suppose S is a local section of
p: .;? oM", p) = H#o(M", p). This section is defined on some open set #3Idy.,
S:U-#o(M", p), poS=id, and S(idy.)= {idy. ] the constant isotopy on M". We
have of course 8[S(# N Ker0)]<T. Since I'is discrete and 8 and S are continuous, if % is
small enough then 8S(% ~ Ker0)= {0}. Thisimplies thatS(#% n Ker@)cKerd. Hence
p : Ker® — Ker 0 has a local section, which implies that it is a covering. Using this fact
and 6.2, it follows that ker 0 is connected and locally contractible. [J

We now explain what is a handle decomposition of a manifold.

First, a n-dimensional handle is simply a space homeomorphic to a product B¥ x B" ¥,
where B* and B"* are the Euclidian balls of dimension k and n—k. The number k is called
the index of the handle. If N" be a manifold and ¢ a locally flat () imbedding
@ : 0B*xB"™* - N", we can form the topological space M"=N"uU,(B*xB""¥). This
space is obtained from the disjoint union N" | [ (B* x B"~*) by identifying x with @ (x) for each
x in dB*xB" . In fact, M" is a manifold whose boundary is

OM"=[ON"— @ (dB* x B" %)} U (B* x dB"*).

(") Locally flat, in this case means that @ extends to an (open) imbedding of B* x (neighborhood of B"*in R"~¥)
into ON”". :
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We say that M" is obtained from N” by adding an n-handle of index k. Remark that
N"uU Bk x0 is a retract by deformation of M".

/-BtXO
kaBn—h

We will say that a manifold M” has a handle decomposition if M" can be obtained from a
ball B" by adding n-handles. Each differentiable or PL manifold has a handle
decomposition ((Mi], [Ru]). If M"isa topological manifold, the same is true if n < 3 (because
each manifold of dimension <3 can be given a PL structure, see [Mo]); if =6, then M" has
also a handle decomposition [KS].

PrOPOSITION 6.4. — Let M" be a compact manifold having a handle decomposition, and such
that there exists a basis of H, (M, R) represented by embedded curves having tubular
neighborhood. Let pe #5(M"). Ifhe# o(M", ) is in Ker 6, then h can be written as a
composition h=h ... h,, with each h;e # o(M", p) and support (h;) is contained in a
topological n-ball (a topological n-ball is a subset of M" homeomorphic to B").

Proof. — We will use the fact that H, (M, R) has a basis represented by curves having
tubular neighborhood, only to apply 6.3 and obtain that Ker 0is connected. Since Ker 0 is
connected, it is generated, as a group, by any neighborhood ofid,,;.. Hence, we can assume
that h is close to the identity.

We will prove 6.4 by induction on the number of handles in a handle decomposition
of M". We have to prove then the following thing:

If
M"=N"uU B*xB" ¥
with
N"AB¥xB" ¥*=gN"nB*xB" *=9Bk xB" ¥

and if 6.4 is true for N”, then it is true for M".
We will denote by BX some concentric ball contained in B¥, for example:

Bt = {xeR"

1
Ixlls3 ) (xere | x] 1}

Remark that N3 =M"—(B% x B"~*) is homeomorphic to N”.  We can assume by 2.1 and
the von Neumann-Oxtoby-Ulam Theorem that ul B* x B" is, up to normalization, equal to
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Lebesgue measure on B*xB" *cR*xR" " *=R". Since dNjcdM" U B xB""*, we

have pu(0Nj)=0, hence po=(1/p(N’(',))p|N'(',e./{‘;(N3). We will show that if k is in

Ker 6., where 0. : # o(M", p)—>H,;(M", R)/T"y, and is close to idy., then it can be

written in 3 ,(M", p) as a composition h=fg with support (f)c=B*xB" ¥xB",

support (g)=NG, and 0Oy, (g|N3)=0, where Oy, : H#o(NG, po)—= H; (NG, R)/T y.

Since N is homeomorphic to the manifold N”, for which 6.4 is true, this will finish the proof.
We distinguish four cases depending on k the index of the handle.

First case: k=0. — The manifold M"is the disjoint union of N"=Njand B". Wedefine f
by f|B"=h, f]N"=id, and g by gIB"=id, g]N"::h.

Second case: k=1. — We have B'=[—1, 1], which we can of course replace
by [0, 1]. Hence M"=N"uU [0, 1] xB"~! with

N"A ([0, 1] xB"~1)=dN" ([0, 1] xB" )= {0, 1} xB""1,

In this case, N3=N"U|[0, 1/4]xB" 1 U[3/4, 1]xB"" . If heKer0,,. is close to the

“identity, and (h,) is a small isotopy with h,=h, then 8y.(h,)=0. We can then apply
remark (2) after Proposition 4.4, and obtain fes# (M", no) such that support
(N<[0, 1]xB* tand h=f on[1/4, 3/4] x B"~!; moreover, if h is the identity so is f, and f
depends continuously on h. If we define g=f"'h, then g is the identity on
[1/4,3/4] xB""!, it depends continuously on h and is the identity if h is the
identity. Clearly, g | N9 preserves pq and is isotopic to the identity, since it is close to the
identity if h is close enough to the identity.

We must now show that 8y, (g | N?2)is 0. Let(g,) be a small isotopy, preserving p, with
support in N and such that g, =g. Remark that if ¢ : M" > T is continuous, we have:

By (90) (@) =10 (N3) By, (9. | N2B) (0 | NB).

Since N§ U [1/4, 3/4] x 0 is a retract of M" and since T! is path connected, each continuous
map N — T can be extended to a continuous map M" — T!. So we have to show that
0, (g.)=0. Using that (g,) is small, this follows from

By- (9) =0y (f 1) +0y» (H)=0+0=0.

We have 0(f ~!)=0, because f is isotopic to the identity by an isotopy having support in
[0, 1] xB""!~B".

Third case: k=2. — Since B2xB" " 2—B3xB" 2 is connected by 4.9 for each
he s (M", p) which is close enough to the identity, we can find f € # (M", p) with support
(f)cB?xB" 2andh=fonB2 xB""2. Moreover, f depends continuously on h, and is the
identity if h is. We define then g= f ~! h, and take a small isotopy (g,) € £ (M", p) with
g=g, supported in N3. We have to show that if he Ker 0 then GN,) (g, | Ng)=0. Remark
that if a continuous map ¢ : Nj — T! can be extended to M", then, as in the second case
above QN.Q (9, | N5)(@)=0. Now,since N3 UB2 x0is aretract of M", amap ¢ : N3 —» T!
can be extended to M" if and only if ¢ | 0B% x0 is null homotopic, which is equivalent to
deg(p|0B3 x0)=0, where ¢|dB3x0:0B3x0=T!—>T! Hence, if each map
@ : N§ - T verifies deg (¢ | B3 x0)=0, we obtain By, (g,)=0.
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It is possible that some map ¢ : Nj— T* does not verify deg(¢|9B3 x0)=0. In this
case, let @, : N3 — T! be such that:

deg(po| B3 x0)=min {deg(p|BF x0)| ¢ : N§ —» T*, and deg(¢|0BF x0)>0}.

Then as a group, we have:
[N3, T!]=Z o+ {@ : Ny - T'|deg(p| B} x0)=0}.

This implies that By, (¢,| N3)=0if and only if 8, (g,|N%)(9o)=0. Of course, we have to
modify (g,) to obtain this condition.

Using example 1 given in the beginning of 6, we can find an isotopy (s,) € £#& (M", ), with
support (s,)cB?xB" 2—BZxB""2xT!xB""!, and such that

B (5| N2 (9 0)= —By; (9:|NB) (@)

This implies that QN.-, (s, g, | N#)=0. Hence, if we define g'=s, g and f'=fs{ !, we obtain
h=f'g' with support (f")=B? xB"~2, support (g')=N§ and 6(g'|N§)=0.

Fourth case: k> 3. — Using 4.9 asin the third case, we can write each he 5 o (M", p), close
to the identity, as h= fg, with f and ge # o(M", p), support (f)=B* x B"~*, and support
(9)=N§. To prove that By, (g | Ng)=0, if heKer0,,., it suffices to show that each
continuous map Nj — T! extends to a continuous map M" —» T!. Using the fact that

» U B is a retract of M, it suffices to remark that each continuous map B§=S*~! —» T
extends to a continuous map B{~B* —» T, since k—122. O

Remark. — Using in the proof of 6.4, a handle decomposition with handles of small
diameter, we see that we can add in Proposition 6.4 that the supports of the h; are as small as
we want. This follows also from the next Lemma.

LEMMA 6.5. — Let m be Lebesgue measure on 1" and €>0. Given any he 5 o (1", m), we
can write h=h, h, ... h,, with h;e # (1", m) and diam [support (h;)] <e.

Proof. — We will show how to write each he # (1", m) as a product h=h, ... h,, with
support (h;) contained in either [0, 3/4] xI"~! or [1/4, 1] xI"~!, moreover

37 . 37 ...
h; [O'Z:l xI" ‘e.}?o([O,z_ x1 ‘,m)

_1 n—1 1 T n—1
hi‘h4,1:|xl e#o([“,l“xl ,m).

Of course, 6. 5 will follow by ““applying the preceding result in smaller and smaller cubes”, we
leave these details to the reader.

or
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Since (1", m) is (by definition!) connected, we can assume h close to the

identity. Since
3 n—1_ 1 n—-1) _ 13 n—1
([O’Z:IXI [0,4] xI >_[4,4]x1

is connected we can apply 4.9 and obtain for each he s o(1", m), close to the identity, a
homeomorphism h, of I" preserving the measure such that support

(hy)< I:O%] xI""!*  and h,=h on [0%] xI"~1,

moreover h, depends continuously on h and is the identity if h is. We conclude from this
that, if f is close enough to the identity,

3 n—1 3 n—1
[O'Z])(I e.}fo<[0,4]xl ,m),

moreover h,=h{ ' h has support in
1 1|xIn?! nd h 1 1 xI"tesw 1 1 xI""Y'm
4» a 2 41 € 0 4’ ’ .

since h=h, h,, this finishes the proof. [

If % is some open covering of M ", a homeomorphism of M" is called #-small if its support
is contained in some element of %.

hy

We restate the results obtained above.

THEOREM 6.6. — Let M" bea compacymanifold having a handle decomposition and such that
there exists a basis of H,(M", R gepresented by imbedded curves having tubular
neighborhoods; moreover let ue./l';(M”). The map 0 : # o(M", p) > H,(M", R)/T is
surjective. The kernel of @ is generated as a group by its elements having support in
n-balls. Moreover given any open covering % of M", we can write each element of Ker 0 as
a composition of (u-preserving) homeomorphisms, which are %-small.

APPENDIX A.6

THE CASE WHERE THE HOMEOMORPHISMS ARE THE IDENTITY
ON THE BOUNDARY AND THE NON COMPACT CASE

Let M" be a compact connected manifold with dM"#® and pe #%(M"). Consider

S M", W= {(h)eSFM", p)|h,|0M"=id for each ¢},
HH(M", p)= {hla(h,)e.fy"(M", w) with h, =h} .
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We have a natural map £&°(M", p) - #9(M*, p), (h,)—h,. The restriction of
0: FYM", W->H,(M", R
gives a map noted 8° : £¥°(M", p) > H, (M", R).

LEMMA A.6.1. — IfOM"#Q, themap®® : #5°(M", p) > H, (M", R)is zero on the kernel
of FS°(M", p) —» # o(M", p). Hence it defines a homomorphism:

0°: #LM", p-H,(M" R).

Proof. — Let (h,),¢p, ) be in the kernel of LM, ) - #%5(M", ). This means that
ho=h,=idand h,|0M"=id foreacht€[0, 1]. By 5.2,ifxe M", theloop { h,(x)| &[0, 1]}
represents 8° (h,), but, for xe 9M", this loop is constant. [J

Remark that, if H, (M", R) has a basis represented by imbedded curves havmg tubular
neighborhoods, the section of & constructed in Proposition 6.1 has image in £%° (M", p),
this shows in particular that 6° is surjective.

The following Theorem can be proved along the same lines as Theorem 6.6.

THEOREM A.6.2. — Let M" be a compact manifold with OM"#Q and
peJ{‘Z(M”). Suppose that M" has a handle decomposition and that there exists a basis of
H,; (M", R) represented by imbedded curves having tubular neighborhoods. The kernel of the
surjective map 0° : #%(M", p) » H, (M", R) is generated as a group by its elements having
support in n-balls. Moreover given any open covering 4 of M", we can write each element of
Ker0 as a composition of elements of Ker © which are -small.

Let V" be a non compact connected manifold and let p be a Radon measure (finite on every
compact set) which is strictly positive on each openset. We denote by #°§ (V", p) the group
of homeomorphisms h, such that h preserves u, has compact support and moreover is
isotopic to the identity by a p-preserving isotopy having compact support. We will denote
by £7¢(V", ) the set of isotopies which have compact support and preserve p. Wehavea

natural surjective map S &£(V", p % Ho(V", W, (h)iep0,y = h1.  The space FF(V", )
has a group structure defined by: (h,)(g,)=(h,g,). Of course, p is a group homomorphism.

We will suppose that each compact set K = V" is contained in some compact codimension
zero locally flat submanifold of V". This condition is realized, for example, if V" is
differentiable, or PL, or have a handle decomposition.

We now define a homomorphism: 0y. , : #5(V", p) = H;(V", R). We first define:
Oye, 1 FL(V", > H, (V" R).

If (h,)e0, y € F L (V", p), we choose a compact submanifold N" < V* which contains the
support of h, and we define By. ,(h,) as the image of By. ,n-(h,|N") under the map

H;(N"; R)> H, (V", R) induced by the inclusion N"<V". The fact that ﬁv o () is well
defined (i. e. independent from the choice of N") is an easy consequence of the naturality of the
definition of 8y. ,. It is easy to check that dy. , is a group homomorphism.

LeMMA A.6.3. — Let (h,), .0 y€ S (V", p) verify hy=idy., then By. , (h,)=0.
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Proof. — Let M" be a compact submanifold which contains the support of h,, we can
suppose N” connected. By 5.2, the loop {h,(x)| te[0, 1]} represent §N._“IN. (h,|N") for
each xeN”, but if x is in the frontier of N" in V" the loop { h,(x)| 1€[0, 1]} is constant. [

By the above Lemma, the map 8. . gives a well defined map:

Oy-, 1 H5(V", w—H, (V" R).

Lemma A.6.4. — Let he#o(V", ) be in the kernel of Oy.,, and let let
(h)icpo, n €FSL(V", W) be such that hy=h. There exists a compact submanifold M"
containing the support of (h,),co y and such that By - (h,| M")=0.

Proof. — Let N" be a compact submanifold containing the support of (h,), - By
hypothesis, the image of By ,|n- (8| N")in H; (V, R) is 0. This implies that there exists a
compact set K > N" such that the image of GN.' u|Ne (h, | N")in H; (K, R)is 0. We can then
take for M", any compact submanifold containing K. O

We will suppose now that ¢ V"= and each compact set of V" is contained in a compact
submanifold which verifies the hypothesis of Theorem A.6.2. Using what was said above
and Theorem A.6.2, it is easy to prove the following Theorem:

THEOREM A.6.5. — Under the hypothesis above on V", the map
0:#5(V", W— H,(V", R)issurjective. The kernel of0 is generated by its elements having
support in n-balls. Moreover, given any open covering % of V", any element he Ker 0, can be
written as a composition of U-small elements of #§(V", p).

7. The algebraic structure of the kernel of 0
in the case of a manifold

We will suppose in this section that M" is a compact connected manifold without boundary
and that p is a good measure on M", i.e. pe #,(M").

The following Lemma is proved essentially in [OU,], p. 895.

LemMMa 7.1. — Given any two points x, ye M", there exists he # o(M", u) such that
h(x)=y,; moreover we can assume that h is a composition of (u-preserving) homeomorphisms
supported by (topological) n-balls. In particular, Ker 0 operates transitively on the points
of M™. .

Sketch of proof. — First prove that given two points x, y in i” there is a Lebesgue measure
preserving homeomorphism h of 1" such that h(x)=y and h | 0I"=id. Then extend this
result to M" using its connectedness and the fact that its boundary is empty. [J

We will use the well known fact that in I" we can find a locally flat arc with positive
measure. We prove this fact now.

LeMMA 7.2. — There exists an imbedding ¢ :[0,2]xB"" ! 1" such that
¢ 1(@1")=0xB"" ! and a=¢ ([0, 1] x0) has Lebesgue measure equal to 1/4.
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Proof. — We can always find an imbedding V :[0, 2] xB" ! - I" such that
Y~ 1(@1")=0xB""!, and such that the Lebesgue measure of ([0, 1] x0) is 0.

——|— V(0. 2] x0)

(0, 2 XB"Y)

Let m denote Lebesgue measure on 1" and m denote Lebesgue measure on [0, 1]. Define a
measure | on I" by:

3 1 -
u=zm+z(\ll|[0, 1] x0), m.

The measure p is good, moreover p(0I")=0 and p[Y ([0, 1]x0)}=1/4. By the von
Neumann-Oxtoby-Ulam Theorem, we can find a homeomorphism h of I" verifying
h,n=m. The imbedding ¢ =h\ has the desired properties. [

In the next Lemma, we will have to assume that the dimension is =3. This will put the
same dimensional restriction on our final result.

LeEmMMA 7.3. — Suppose h is a homeomorphism of 1", n=3, which preserves the Lebesgue
measure m and such that h|01"=1d. We can write h=h h, with:

— hy and h, are homeomorphisms of 1" which preserve m;

— fori=1or2, h|01"=1d;

— fori=1or2,thesupport of h;is contained in a locally flat (topological) n-ball B; such that
m(B;)<3/4,m(0B;)=0and B;n01"=0B; n 01" is a(n—1)-ball locally flat in 0B; and in 01"

Proof. — Let a be the arc givenin 7.2. Since n=3, the set 1" —(a U h(a)) is connected; we
can, by 2.3’, find a locally flat n-ball B<1"— (o U h(a)) such that m(B)>1/4, m(0B)=0 and
BnoI"=0Bnadl" is a (n—1)-ball locally flat in 0B and d1". By the generalized

Schoéenflies Theorem (see section 3 before 3.7), B, =1"—B is a locally flat n-ball in 1", such
that B; n0I"=0B, ndI" is a (n—1)-ball locally flat in éB; and dI". By construction,
a U h(a) is contained in Int(B;). Let B’ be a locally flat n-ball in I" such that ac=B’,
B'Uh(B)cIntB;,m(dB)=0and B'n 01"=0B’' n 01" is locally flat in B’ and 01", we can
take (for example) for B’ the image under ¢ (see 7.2) of [0, 1+ €] x (small neighborhood of 0in
B"~1). Using the generalized Schoenflies Theorem, we can construct a homeomorphism h
of By such that h, | 9B, =identity and h, |B’=h|B’. Applying 3.7, we see that we can add
that h, preservesm. We extend h, by the identity toI". We define h,=h{! h, the support

of h, is contained in B, =I"—B’, we have m(B,)<3/4 since B’ contains the arc o. (]
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A ¥

B’/ ‘“ '\h(a)

Remark. — In the above situation, if U is a neighborhood of I" in R", for i=1, 2, we can
find a homeomorphism with support in U and sending B;onI". This is a consequence of the
generalized Schoenflies Theorem, since B; is a locally flat n-ball in I" such that
B;n0I"=0B;n 01" is a (n—1)-ball locally flat in B, and 1"

Construction. — We can find two sequences of n-balls (C,),», , (D,);», contained in {” and
such that: ) )

— the C;’s are all disjoint;

— D;intersects only D,_, and D, ,, in particular the D,;’s the disjoint and the D,;,,’s
are disjoint;

— C;uUC,,, is contained in D, , hence D;nC;=0Qif j#i,i+1;

— the D;’sand the C;’s converge to some point p in I", this means that each neighborhood
of p contains all but a finite number of the C;’s and the D;’s;

— m(@D;)=m(0C;)=0, and m(C;+,)=(3/4m(C;).

G,

With this notations, we now prove:

THEOREM 7.4. — Let n be 23. If fe#° (1", m) has its support in 1", then f is in
the commutator subgroup of H#°(I",m). More precisely, we can write
S=lki, ky] ... [kag-1, ko] with k;e #° (1", m), support (k,-)Ci".

By definition, here and in the following, [s, t]=sts~ !¢
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Proof. — First case: support (f)=C, introduced above.

We apply 7.3 to f and C, instead of h and I". We can write f=h, h,, with
h;e #°(C,, m), support (h;)cB; with m(B;)<(3/4)m(C,). Moreover by the remark
following 7.3, we can find a homeomorphism with support in D, sending B; onto C,. Since
there exists a homeomorphism with support in D, sending C, to a subcube of C, having
measure equal to m(B;) <(3/4)m(C,)=m(C,), we obtain, by 3.6, two homeomorphisms g,
and g,e#°(D,, m) such that g;(B;)=C,. We extend g, and g, to I" by the
identity. Define now f,=g, h, g7 'g,h, g5, we have support (f,)=C,, and

f2t=hyhyg,h; g3 gy hi gy =hy[hy, g2l hi [k, g1l =[hi ho hT', hygo by '1[hy, g4).

Hence we can write f=[s,, t,][s}, t1] f> with support (f;) =C, and support (s,), support
(s1), support (¢,) and support (¢;)=D;.

Using the above procedure, it is easy, by induction, to construct sequences of elements in
H° a, m)(fi)i;l’ (5iz1> 5 )iz1s (E)izs and (¢{);5, such that:

— fi=f and support (f;)=C;

— support (s;), support (s{), support (¢;) and support (t;)<D;;

= fi=lIsi, tillsi, ti]1 fivr-

Define now k; by k;=[s;, t;1[s{, t;1=f;fi+4. The support of k; is contained
inD;. Since the D,;’s are disjoint, the infinite composition k.., =k, ks ke kg . . . ky; . . . has
a meaning, it is also clear that this composition preserves Lebesgue measure, moreover it is a
homeomorphism because the D;’s converge to a point. In the same way,
kogas=ki1ksks...kyirqy... is a homeomorphism preserving Lebesgue measure. Since
k;= f, f4 and the support of the f;’s are disjoint, we obtain:

kodd=f1f2_lf3f;l ---=(f1f3f5~~-)(f2_1f;1f6_1 ce)
keven=f2f3_1f4f5_1 -'-=(f2f4f6"')(f3_lf5_l e

This implies:
kodd kcven =fl =f

Remark also since k;=[s;, t;][s;, t;] that:

Koaa =[Soda » toda][Sedd » toaa]s

k t,

S even ] *

’
even ~ [ even * tcvcn] [scven 4

’

f = [Sodd 4 todd] [Sr;dd ’ t(idd] [seven ’ tevcn] [scven ’ te,ven]'

Hence, f is a product of commutators.

General case. — Since support (f)<i”, by 4.5, we can write f=f;. .... fq, where
fie#° (1", m) has support contained in a cube K'ci" with measure <m(C,). Since
.m(K»)<m(C,), there exists g;e #° (I", m) such that g;(K?)=C,. By the first case, the
homeomorphism g; f;g; ! is a product of commutators, hence, by conjugation, f; is also a
product of commutators. This implies that f is a product of commutators. []
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Using 7.4 and 6.6, we obtain immediately:

THEOREM 7.5. — Let M", n=3, be a compact manifold without boundary, having a handle
decomposition and such that there exists a basis of H; (M", R) represented by imbedded curves
having tubular neighborhoods, and let p be a good measure on M". The kernel of the map
0:#,(M", - H; (M", R)/T is perfect, i. e. equal to its commutator subgroup. Hence it is
also equal to the commutator subgroup of #,(M", ), since H, (M", R) is abelian.

We now explain the Epstein Higman argument ([Ep], [Hi]). This is a general argument
showing essentially that perfectness implies simplicity for a group of geometric
transformations satisfying some mild hypothesis. We will explain this in our context.

Suppose that M” and p are as in Theorem 7.5 and suppose furthermore that M” is
connected, we will show that Ker 0 is simple, i.e. has no non trivial normal subgroup.

Let H be a normal subgroup of Ker, suppose H¥#{Id}. Choose then feH, with
f#I1d. By thislast hypothesis, we can find some non empty open subset U of M ", such that
Un f(U)=0.

Suppose that h, geKer® have both support in U. Remark that
[h, fl=hh~ ' f~'=(hh~ 1) f~' is in H since it is a normal subgroup, remark also that
[h, f1=h(fh~! f~')and that fh~! £~ has support in f (U) which is disjoint from U. Since
g has support in U, the last fact implies that g commutes with fh=* f~!, hence:

[T, 1 gl=h(h~t f~ Y g(ff " H)h~1g™"
=hg(~t Y (fHf " Hh g~ =hgh~t g~ =[h, g].

Since [k, f]is in H, the commutator [h, g]=[[h, f]. g] is in H.

So we have showed that if h and geKer0, have support in U, then [k, g]e H.

By 7.1, since M" is connected, %= { k™! (U)l keKer} is an open covering
of M". Choose some metric defining the topology of M" and let e>0 be a Lebesgue
number, with respect to that metric, for the open covering %, this means that each set of
diameter less than € is contained in some member of . We will show now thatif h, ge Ker 0
have their supports £/2-small, then [h, gJe H. We consider two cases. The first one is
support (h) nsupport (g)=0, in this case [h, g]=IdeH. The second case is support
(h) n support (g) # @, hence support (h) U support (g) has diameter less than g, which implies
that it is contained in some member of %, say k™' (U). The homeomorphisms khk~* and
kgk~! have both their supports in U, hence k[h, glk~*=[khk ™!, kgk~'] is in H, since H is
normal this implies that [h, gle H.

Up to now, we have shown, in particular, that if h and geKer 6 have their supports
€/2-small, then they commutein Ker 0/H. By 6.6, Ker 01is generated by its elements having
support £/2-small, hence Ker 6/H is abelian. We conclude that [Ker 8, Ker 0] is contained
in H; since Ker 0 is perfect, we obtain Ker6=H. Hence Ker8issimple. Remark also that
the same argument proves that Ker 0 is the smallest normal subgroup of #,(M", p).

We have just proved the following Theorem.

THEOREM 7.6. — Let M", n>3, be a compact connected manifold without boundary, having
a handle decomposition and such that there exists a basis of H, (M", R) represented by
imbedded closed curves having tubular neighborhoods. Let u be a good measure on M".  The

4° ségns — TOME 13 — 1980 — N°1



STRUCTURE OF THE GROUP OF HOMEOMORPHISMS 91

kernel of the map 6:#,(M", ) » H,;(M", R)/T is a simple group. Moreover it is the
smallest normal subgroup of #,(M", u) and it is also equal to the commutator subgroup of
HoM", p).

Question. — What happens in the case of a compact surface(i.¢. n=2) ? Remark that, for
n=2, Theorem 4.4 is false for C* diffecomorphisms preserving m; in fact [Ba], there exists a
surjective homomorphism R : Diff (12, m) - R and the kernel of R is simple. As it is
defined R has no meaning for homeomorphisms, and to our knowledge the existence (or non
existence) of an extension of R to (12, m) is still an open question.

APPENDIX A.7

THE NON COMPACT AND THE NON EMPTY BOUNDARY CASES

Suppose that M" is either non compact or IM" # Q (or both). Let p be a Radon measure
which is >0 on non empty open sets and has no atoms. Consider the group 5#%° (M", ) of
p-preserving homeomorphisms isotopic to the identity by a p-preserving isotopy which has
compact support contained in M" (the interior of M"). We have (see appendix A.6) a
homomorphism 0: 5#%°(M", p) > H, M", R).

THEOREM A.7.1. — Suppose n= 3 and suppose that each compact set of M" is containedina
compact codimension O submanifold N" having a handle decomposition and such that there
exists a basis of H;(N", R) represented by imbedded curves having tubular
neighborhoods. Then, the map 0 : #%° (M", p) » H, (M", R) is surjective and its kernel is a
simple group which is equal to the commutator subgroup of #%°(M", u). Moreover, Ker 0 is
the smallest non trivial normal subgroup of #%°(M", p). ’

The proof of this Theorem is the same as the proof of Theorem 7. 6, once we have the results
of appendix A.6.

Index of notations

B", Euclidian n-ball in R";

I, n-cube [0, 1]%;

H", half space in R";

H" ., first quadrant in R";

M*, interior of the manifold M";

oM", boundary of the manifold M";

Int(A), interior of the A as a subset of a topological space;

Fr(A), frontier, boundary of A as a subset of a topological space;
i (X), homeomorphisms group of X; "

H o (X), path component of Idy in 5 (X);

H (X, w, group of p-preserving homeomorphisms;

H#°(M"), homeomorphisms fixing dM";

X (M", u-bireg), group of homeomorphisms biregular for p;

#°(M", u-bireg), H°(M")n # (M", p-bireg);

#o(X), set of homotopy classes of isotopies of X, also the universal cover of #, (X) when it exists;
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F(A; M"), set of imbeddings of A in M";

JS(A, B; M"), {ief(A; M")|j|B=id};

F(A; M, ), set of p-preserving imbeddings of A in M";

£ (A; M", u-bireg), set of p-biregular imbeddings of A in M”%;

F(A B, M" p) FA; M", pn F(A, B; M");

JF(A, B; M", p-b ireg), £ (A, B; M", u-bireg) n # (A, B; M");

S (X), set of isotopies of X;

SL X, p), set of p-preserving isotopies of X;

M (X), set of probability measures on X;

M ,(X), set of good measures on X;

Mo (M), set of good measures p on M” such that p(OM")=0;

Mo (M", 1), set of pe #%(M", po) which have the same sets of measure 0 as p,.
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