
ANNALES SCIENTIFIQUES DE L’É.N.S.

JEAN-PIERRE BOURGUIGNON

HERMANN KARCHER
Curvature operators : pinching estimates and geometric examples

Annales scientifiques de l’É.N.S. 4e série, tome 11, no 1 (1978), p. 71-92
<http://www.numdam.org/item?id=ASENS_1978_4_11_1_71_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1978, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASENS_1978_4_11_1_71_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. sclent. EC. Norm. Sup.,
46 s6rie, t. 11, 1978, p. 71 h 92.

CURVATURE OPERATORS :
PINCHING ESTIMATES AND GEOMETRIC EXAMPLES 0

BY JEAN-PIERRE BOURGUIGNON AND HERMANN KARCHER

1. Summary of results

1.1. The most frequently used and best motivated curvature assumptions in qualitative
Riemannian geometry are bounds on the sectional curvatures of the Riemann tensor R.
Associated with R is the so-called curvature operator R : A2 Tp M —> A2 Tp M (Tp M = V
henceforth). The symmetries of R (not including the Bianchi identity) imply that R is a
symmetric operator. Special assumptions on R also have geometric consequences, for
example:

(i) a compact, connected and oriented Riemannian manifold with positive curvature
operator R has the rational homology of the sphere (this is a nice theorem of D. Meyer
proved in [4]);

(ii) the positivity of R implies that the Gauss-Bonnet integrand is positive (cf. [12]).
In both cases positive sectional curvature is known not to be sufficient {cf. [5] and [10]

for(ii)).

1.2. The linear map R has more geometric invariants than just its spectrum, since the
geometrically relevant orthogonal group which acts on all occurring tensor spaces is 0 (V)./\
For example the Bianchi identity for R does not make sense for the action of 0 (A V).
Further 0 (V)-invariants are connected with the rank of the eigenvectors. Notice then
the following geometric examples: ^.

(i) the eigenvector associated with the largest eigenvalue of R for the standard complex
projective space is the Kahler form;

(1) This article has been written under the program SFB40 "Theoretische Mathematik" at the
University of Bonn (F.R.G.).
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72 J.-P. BOURGUIGNON AND H. KARCHER

(ii) if one has a basis of eigenvectors which are forms of rank two, then the Pontrjagin
forms vanish (for further consequences of this assumption, see [13]).

The Bianchi identity is crucial for these further invariants.

1.3. The curvature tensor also acts on symmetric two-tensors (this fact was used in [3]
for example, but does not seem to have been studied systematically). Again the symmetries
of R, not including the Bianchi identity, imply that iR is a symmetric map of S2 V into
itself. The new feature is that S2 V is not irreducible under the action of 0 (V).

' ' ! /\ 0

In this paper we are concerned with both R and R since, when one relates various
second order differential operators, they are the only curvature actions which occur.

We aim at results which from sectional curvature bounds give information about the
y\ o

spectral and other invariants of R and R. As far as possible we develop algebraic and
geometric examples which illustrate the sharpness of our estimates and the use of curvature
operators.

1.4. Also, every curvature tensor admits a decomposition into 0 (V)-irreducible compo-
nents, namely its scalar, Ricci-traceless and Weyl components. In some geometric
applications not all components are relevant, for example:

(i) the Pontrjagin forms depend only on the Weyl component;
(ii) on an Einstein manifold the Ricci-traceless component vanishes and the Weyl

component is harmonic as a vector-valued two-form (see [2]).
Therefore we extend the estimates to the operators deduced from the various irreducible

components of the curvature tensor.

1.5. The principal results are the following (throughout m denotes the dimension of V):

PROPOSITION 3.3. — Let r^^ and r^^ be respectively the smallest and the largest eigen-
^ /\ /\.

values of R. Then the eigenvalues of R - l / 2 p A ^ lie in the interval [-(w-2) ?^x9

—(m—2) r^J (the bounds are achieved in C P", see 5.3). In particular if R is a positive^ /<
operator, then R-1/2 p A § ^ negative (here p is the Ricci curvature and A is defined in 2,2).

This is precisely what was needed to prove 1.1 (i).

PROPOSITION 3.8. - If the sectional curvature R of R satisfies 8 ^ R ^ A and if an
eigenvector of R for the eigenvalue ? has rank 2k, then

(§+A)-((4fe-l)/3)(A-5)^r^(5+A)4-((4fe-l)/3)(A-5).

In general the eigenvalues of R lie in the interval [(8+A)-((4[w/2]-l)/3)(A-8),
(8+A)+((4 [w/2]—l)/3)(A-5)]. Moreover the last upper bound is achieved on C P",
see 5.2.

PROPOSITION 4.3. - 7/'8 ^ R ^ A, then all eigenvalues ofR but one lie in the interval
[ - (1/2) ((5 + A) + (m -1) (A - 6)), - (1/2) ((8 + A) - (m -1) (A - 8))], the other lying in the
interval [(w -1) 8, (m -1) A]. The first upper bound is sharp for C P2 and the last lower
bound almost sharp for C P", see 5.3.
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CURVATURE OPERATORS: PINCHING ESTIMATES AND GEOMETRIC EXAMPLES 73

PROPOSITION 7.5.- The curvature tensor R^ == R^ - a R^ pa +3 a R^s for a ^ 0 (where
G2 '5 ^ ̂  Grassmann manifold of two-planes in R5) to.y r/^ sectional curvature range
[1 -a, 1 +2 a]. The Euler integrand^ (R^) ̂ mz ̂  E (R^) = 18 (5+3 a+12 a2-^ a3)
fi^rf is negative/or a ^ (XQ = 0.8227. 77^ pinching at oco ^ 1/15 (hence new counter-
examples to the algebraic Hopf conjecture).

1.6. The paper splits into two parts. Part One is purely algebraic and is divided
into three sections (§ 2 to 4): in section 2 we fix up our notations and conventions and
we study how a curvature tensor R acts on tensors. We establish our pinching esti-/\ ®
mates for R in section 3 and the ones for R in section 4.

Parts Two presents geometric situations which are enlightened by the consideration of
curvature operators. On the way we find global examples where our pinching estimates
are sharp. Part two is divided into three sections (§ 5 to 7): in section 5 we detail the
case of the projective spaces and their duals. The distance spheres in these spaces turn
out to be easily describable in terms of curvature operators and to provide nice global
examples of sharpness of our estimates: they are developed in section 6. We end up in
section 7 by studying the Euler integrand in our formalism, which provides insight in
Geroch's counterexample to the algebraic Hopf conjecture.

1.7. Some of our conventions are not the standard ones for various tensor operations,
but they have been chosen to minimize the occurrence of denominators in the formulas.

PART ONE: PINCHING ESTIMATES

2. Operations of a curvature tensor on tensors

2.1. Let (V, g) be a Euclidean vector space of dimension m. Via the metric g we always
identify V and V*. We denote the (once) contraction by y, the composition of linear maps
by o and their restriction by \. The extension of the scalar product to tensor spaces is
still denoted by g or ( , ). Throughout the discussion (^) is an orthonormal basis of V.

Our conventions on exterior products and symmetric products are, for a and b in V,

a/\b=a®b—b®a, a0b=a®b+b®a.

The extension to higher order tensors is made in order to preserve associativity.

2.2. We will be interested in the subspace ^ of (g^V consisting of curvature tensors,
i. e. tensors satisfying the following identities: for a, b, c, din V

(2.3) R(a, b, c, d) = -R(&, a, c, d) = -R(a,b, d , c ) = R(c, d, a, b)

and also the Bianchi identity:

R(a, b, c, d)+R(&, c, a. d)+R(c, a, b, d) =0,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



74 J.-P. BOURGUIGNON AND H. KARCHER

Simple examples of curvature tensors which turn out to be important are the following:
let s and t be two-tensors, we define s A tto be the four-tensor whose value on a, b, c, d is

(sAO(^, b, c, d)=s(a, c)t(b, d)+s(b, d)t(a, c)-s(a, d)t(b, c)-s(b, c)t(a, d).

If s and t are both symmetric, then ^ A ns a curvature tensor (cf. [12]). In particular
S A S ls tne curvature tensor of a Riemannian manifold (M, g) with constant sectional

m

curvature +2. This operation can be used to make © S2 A^ V into a commutative
algebra (cf. [12] again). f c= l

For a given curvature tensor R we define symmetric actions on A2 V and on S2 V as
follows:

(i) for © in A2 V put

R(co)(fl ,fc)= ^ R(ei,e,,a,b)^(e,,e,),
»'.j=i

/\
so that (s A 0 (0)) = 2 (^ o co o 5-* + ^ o o ) o ^ * ) where * denotes the adjoint of a map; in
particular /\

gAg=4IdA2v.

From (2.3) one easily sees that the map " imbeds ̂  into S2 A2 V;
(ii) for h in S2 V, put

0 m

R(h)(a, fc) = E R(^, ^, e,, fc)h(^, <?,),
»,7=1

so that (s /^t)(h) = trace (̂  o A) ?+trace (t o h) s— f o h o s — s o h o t .

We also have R (g) = y (R) = p, the Ricci tensor.
Again from (2.3) follows that the map ° sends ^ into S2 S2 V. The Bianchi identity

implies that ° is an embedding.

2.4. We now consider the various ways in which the curvature tensor can operate on
tensors. Since we want these actions to be 0 (V)-invariant, by H. WeyFs theorem
(cf. [16], p. 64), they must be expressible by means of contractions.

On the scalars the curvature can only operate via its scalar curvature u = j (p), since
there is, up to sign, only one nontrivial way of contracting twice a curvature tensor.

On V [on which 0 (V) acts irreducibly] two operations appear: one is via the Ricci
curvature p, the other is diagonal via u.g (here we again use that, up to sign, there is only
one nontrivial way of contracting R).

In ®2 V appears a new phenomenon: the group 0 (V) does not act irreducibly. The
space (^V splits into R.^ffiS^VOA^ (where S2 V denotes the space of traceless
symmetric two-tensors). If we restrict ourselves to contractions between the curvature
tensor R and an element t of ®2 V, because of the symmetries of R, only two possibilities
are left: either the contraction takes place on the first indices of R and t and the second

4® S^RIE — TOME 11 — 1978 — N° 1



CURVATURB OPERATORS: PINCHING ESTIMATES AND GEOMETRIC EXAMPLES 75

indices of R and t, i. e., for a, b in V, we set

R^O)^,^ S R(e,,e,,a,b)t^e^
i , J = l

or the contraction takes place on the first indices of R and t and on the third index of R
and the second of t, i. e., for a, b in V, we have

m

Rlt3(t)(a,b)= E R(e,,a,e^b)t(e,,e,).
»,j=i

From the skewsymmetry of R in its two first arguments follows that S2 V lies in the
kernel of R1'2 and that R l ' 2 | k A 2 V = R . If we decompose orthogonally t = co+A
with o) in A2 V and h in S2 V, using the Bianchi identity we get

R^O)^,^- E [(R(a,^,^,b)+Rte^,,a,fc))co(^^,)
i.j^i

-R(^,a,^,b)/i(ef,^.)],

so that using the symmetries of R and o we obtain R1 '3 \ S2 V = R together with
Rl^j^V =-1/2R.

2.5. For the action of^ on higher order tensors we will use the geometry as leading path:
we want to apply our estimates mainly to integrands in formulas relating various second
order differential operators naturally defined in terms of the Riemannian metric. These
operators will be assumed to operate on a space of tensor fields of a fixed type: as examples
think of the various Laplace operators that one can define on the space of exterior differen-
tial ^-forms by considering, for 0 ^ / ^ k, an exterior differential ^-form as an exterior
differential /-form with values in the bundle of (A:—/)-forms.

The curvature appears there as the skewsymmetric part of the double covariant deriva-
tive : as such, the curvature operates as a derivation and is contracted once with the tensor
field under consideration. If we want to get a tensor field of the same type as the given
one, one has to contract once more. Then only three possibilities are left: either the
second contraction is taken on the tensor field itself (in this case the curvature operates
as a derivation on a lower order tensor field), or the contraction is taken on the derivation
symbols themselves (in this case the skewsymmetric contribution drops out: the influence
of the curvature is then cancelled) or the contraction is taken on one derivation symbol
and the tensor field (in this case the curvature acts via its actions on two-tensor fields).

To summarize this discussion let us say that in formulas relating second order differential
operators acting on a space of tensor fields of a fixed type, the curvature operates as endo-
morphisms of this space of tensors necessarily via R or R (for illustrations, see [2]).

2.6. If we concentrate on 0 (V)-invariant actions one has also to decompose the space ̂
of curvature tensors into 0 (V)-irreducible subspaces. Using H. Weyl's invariant theory
one proves (c/. [12] for example) that R splits into R = U+Z+W where, if

p=y(R)=(M/m)g+z,

ANNALES SCffiNTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



76 J.-P. BOURGUIGNON AND H. KARCHEtt

we set
U=(M/2m(m-l))gAg, Z=l/(m-2) zAg

The various components U, Z and W are successively refered to as the scalar, the Ricci-
traceless and the Weyl parts of R.

The orthogonal complement of ^ imbedded by " in S2 A2 V is A4 V, the Bianchi
identity expressing that an element of ^ lies in the kernel of the orthogonal projector
P of S2 A2 V onto A4 V, where, for A in S2 A2 V and a, b, c, d in V,

3 P(A)(a, b, c, d) = A(a, b, c, d)-}-A(b, c, a, d)+A(c, a, b, d).
/^ /\

Notice that trace R = trace U = u.
y\

2.7. We summarize our notations on curvature tensors: R denotes R operating on
skew-forms, R on symmetric forms and R the sectional curvature viewed as a function on
the Grassmann manifold of two-planes.

3. Pinching estimates on R

3.0. The Bianchi identity will play a decisive but subtle role in this section. We start
by clarifying its influence on the respective size of the extreme eigenvalues of R (this is
just what was needed in [4]), then proceed to estimating components of the tensor R and^
eigenvalues of R in terms of bounds of the sectional curvature. We finally deduce the
estimates on the irreducible components of R.

3.1. The simplest elements in S2 A2 V are projectors on lines. If co in A2 V has length
one, then co ® o) is the projection onto R.o and since 24 P (co (x) (o) = O)ACO, we see that
co ® co is a curvature tensor (i. e. satisfies the Bianchi identity) if and only if co is decompo-/<
sable. Therefore if R is a curvature tensor and R = ^ r^ o\, ® co^ is the spectral decom-

^ v

position of R, then its eigenvectors ©^ and eigenvalues r^ satisfy the relation

(3.2) ^r,G),Ao),=0.
. . . V

To o in A2 V associate the element co A <o of S2 A2 V. Since 6|3(coA<o) = --coAco,

24co®(o=4(4(o®o)+coA®)—(oAco,

is the decomposition of 24 G) 00 co into a curvature tensor and a four-form. If co is the
complex structure of a complex vector space, then 4co(x) (o+o)A ( ois the nondiagonal
part of the curvature tensor of complex projective space.

The proof of the next Proposition is inspired by some work of H. Maillot (for genera-
lizations to 7?-forms and geometric applications, see [4]):

3.3. PROPOSITION. — Let ?nam and r^^be respectively the smallest and the largest eigen-
values of R. Then the eigenvalues of R — l / 2 p / \ g lie in the interval [—(w—2)r^x»
- (m - 2) ?n^] (the bounds are achieved on C P"; see 5.3).

^- /\ /\
In particular if R is a positive operator, then R—1/2 p A § is a negative operator.

4° SERIE — TOME 11 — 1978 — N° 1



CURVATURE OPERATORS: PINCHING ESTIMATES AND GEOMETRIC EXAMPLES 77

Proof. — Notice first that for co in A2 V and A in 002 A2 V, we have
w

(A, gAco) = S A(6?,, e j , 6?fc, ^)
i , j , k , l = l

x(g(^ ^M^» ei)+g(ej, ^)co(^, (?fc)-g(^, ̂ (o(^, ̂ )-g(^, ̂ M^-, ̂ ))
m

=4 ^ (o(6?,, ^.)A(^, ̂ , ̂ , ̂ )
i,j\k,l=l

=4 ((^^(A)).

In ((o,y1'3 (A)) only the skewsymmetric part of y1 '3 (A) contributes: we denote it by
Y^A).

We now consider the sequence of maps

A^V^^V^^V^V.

For any nonzero element co in A2 V, we have

(3.4) (y^Rc^gAo))), (o) = 2(Ro(gA(o), gAco).

We first consider the case where R is a positive operator (i. e. r^ > 0). Then the
^ ^ iright hand side of (3.4) is positive since it is trace (Ro (gA (°) )•

On the other hand a straightforward computation using the Bianchi identity (compare [4],
p. 264) gives

ysk(RO(gAo)))=(pAg-2R)((o).

According to (3.4) by taking the scalar product with o, we get

(R°(gAco),gAco)=-((R-l/2pAg)(co),o))
/s. /\ ^

which proves that R—1/2 p A S ls negative when r^n > 0.
In the general case R —1/4 ?min S A § is positive and has p - ?min (l/^) (m ~ 1) § as Ri^

curvature. A direct check gives the expected bound. •

3.5. COROLLARY. — Let W be a Weyl tensor, w^^and u^ax be respectively the smalles
•A ! ! . '• ' . .. . ,

and largest eigenvalues ofW. Then we have

-(m-2)w^ ̂  w^ ̂  0 ̂  u^x ̂  ~(m-2)u^.

The last estimate is sharp for C P", see 5.2.

3.6. If R is a curvature tensor its sectional curvature function is denoted by R. Moreover
if 8 ^ R ^ A, it is very convenient to center R by setting

Ro-R-(A+8)/4gAg.

In particular [ Ro | ̂  (A-8)/2.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE 11



78 J.-p. BOURGUIGNON AND H. KARCHER

In the rest of the paragraph we will suppose that we are in this situation. For all
proofs one can assume that A and 8 are sharp bounds and allow larger bounds
only in the final statements.^ ^ _

If all eigenvalues of R lie in \_r^, r^], then the sectional curvature R satisfies
1/2 ^min ^ R ^ 1/2 ?max (the factor 1/2 comes from our conventions). The bounds are
achieved if a corresponding eigenvector is a decomposable form, this occurs in particular
for hypersurfaces in spaces of constant curvature.

The next Lemma is essential for the proof of Propositions 3.8 and 3.16. Notice that
the Bianchi identity will be used only here.

3.7. LEMMA. — For unit vectors a, b, c, d in V, the following estimates hold:

|Ro(a, b, c,d)\^ 2(A-§)/3, \R(a, b, c, d)\ ̂  Max (A, -5, 2(A-5)/3)

and the estimates are sharp for C P", see 5.1.

Proof, — By using the Bianchi identity one proves that, for a, b, c, d in V,

6R(a, b, c, d)= R(a, b-^-c, b+c, d)-R(b, a+c, a+c, d)
-R(a,b-c, b-c, d)+R(b, a-c, a-c, d).

Each term on the right hand side is the difference of two sectional curvatures up to
scalar factors like (6+c, b+c).

Applied to Ro for which we know that | Ro | ̂  (A-8)/2, we get

6\R(a, b,c, d)\^((b+c, fc+c)+(a+c, a+c)+(a-c, a-c)+(b-c, fc-c))(A-5).

Hence, if a, b, c and d are unit vectors, we have

and
|Ro(a,&,c,rf) |^2(A-5)/3

| R(^, fc, c, d) | ̂  4/3 max (A, -8).

To improve the estimate on | R (a, b, c, d) \ we first choose unit vectors b' and c ' in the
planes P == { a, b} and Q = { c, d} such that (b\ c ' ) is maximal. We then choose unit
vectors a' and d1 such that (a\ V) = 0, (c', d1) = 0 and {a', d ' ) ^ 0. The special choice
of V and c' forces a' to be orthogonal to c ' . Setting cos x = (b\ c ' ) and cosy == (a\ d ' )
we have

R (a, b, c, d) = R (a\ V, c\ d ' ) = Ro(a\ b', c\ d1)- (8+A)/2 cos x cos y,

But for any real numbers X, and p we have

6Ro(a', &', c', d') = 6Ro(X^, H-1 &', HC', X-1^)
=Ro(^, V+c\ fc'+c', d')-Ro(a', V-c1, fo'-c', d ' )

--RoOT1 fc', ?ia'+^c', ?ia'+nc', X-1^)
+RoOr1 b ' , X^'-HC', Xa'-HcU"1^).

4° SERIE — TOME 11 — 1978 — N0 1



CURVATURE OPERATORS: PINCHING ESTIMATES AND GEOMETRIC EXAMPLES 79

The first two terms together are again bounded by 2 (A — 5).
The arguments in the alternating pairs of the last two terms are not orthogonal, therefore

choosing K2 = sin x and \i2 = sin y improves their estimate to (A — 5) (1 + sin x sin y). •

3.8. PROPOSITION. — If 5 ^ R ^ A and if an eigenvector of R for the eigenvalue r has
rank 2 k, then

(A+5)-((4k-l)/3)(A-5)^?^(A+§)+((4^-l)/3)(A-8).

In general the eigenvalues of R lie in the interval [(8+A)-((4 [w/2]-l)/3) (A-8),
(5 + A) + ((4 [w/2] -1)/3) (A - 5)]. Moreover the upper bound is achieved on C P", see 5.2.

/\.
3.9. COROLLARY. — The curvature operator R is positive as soon as the sectional

curvature is ^-pinched with a = l-(3/(2[w/2]+l)) (recall that this means that
a Max R ^ R ^ Max R). The bound is almost sharp for distance spheres, see 6.5.

^ ^ ^proof. — We denote by r an eigenvalue of R. If co is an eigenvector of R
[i. e. R (®) == r co], then we have

(3.10) Ro(co)=roco, with 7-0=?-(A+5).

For any skewsymmetric two-form co of rank 2k there exists (see [15], p. 24) some
orthonormal basis (e^) of V in which one can write

k

co = ^ co^A^. (where i' = i+fe).
1=1

With respect to this basis, (3.10) reads:
k

2 ̂  (OfRo(^, ̂ , € j , e^ = roco, (j =1, ..., k).
1=1

We single out the scalar equation for which | (o, | is maximal. Using Lemma 3.7
for i i=- j we get

|ro| ^2 S |o),/co,|.|Ro(^, ̂ , ^,, ̂ ) | ^ (A - 8) ((4/3) (k -1) +1)
»=i

and the proposition follows. •

3.11. Our method is in spirit an L°°-method. Therefore we cannot get any information
on the distributions of the eigenvalues in the range that we described. The I^-estimate
of [8] (in m312) tells us that not too many eigenvalues have the size allowed by the
L°°-estimate.

3.12. We now come to estimating the operators associated to the irreducible compo-
nents U, Z and W of R. For the Ricci curvature p = y (R), we get

(m- l )5^p^(m- l )A

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



80 J.-P. BOURGUIGNON AND H. KARCHER

(here p denotes the function on the unit sphere defined by p), so that

(3.13) |po|^(m-l)(A-5)/2, \~z\ ̂  (m-l)(A-5) {see 2.6)

and
|Mo|^m(m-l)(A-5)/2, JMoi^(A-§).

3.14. Remark. — One can actually improve the estimate on UQ a bit to

|Mo|^(m(m-l)-2)(A-8)/2

(choose a basis spanning two-planes on which the extremal values of the sectional
curvature are achieved).

3.15. If (ei) is a basis which diagonalizes z (the eigenvalues of z are denoted by z;) one./\ /\ '
easily sees that Z = l/(m—2) z f^g operates diagonally in the basis (^ A ej) of A2 V
with eigenvalues (2/(w-2)) (z^+Zy). In particular all eigenvectors of Z have rank two.
From (3.13) we deduce that

|z|^4(m-l)(A-8)/(m-2).
^ ^

To estimate the eigenvalues w of W it is more convenient to use the formula
W=RO-(UO+Z). Notice that Uo+Z = l/(w-2) (pol\§-W{m-l))g{\g\ so
that, using the same basis as above and (3.13), we have the inequality

Therefore we get
I UQ+Z [ ̂  (3 m-2)(A-5)/(m-2).

| w | ̂  (4 [m/2]/3 + 8/3 + 4/(m - 2)) (A - 5),

giving the following:

3.16. PROPOSITION. — If the sectional curvature R satisfies 5 ^ R ^ A. then the eigen-/\ ./\ /\
values of the operators V, Z and W associated to the irreducible components of
R(R = U+Z+W) satisfy

(3.17) | 2 5 ^ M ^ 2 A , |z|^4(l+l/(m-2))(A-8),
( \w\ ̂  (4[m/2]/3+8/3+4/(m-2))(A-8).

Moreover if the curvature tensor R is Einstein (i. e. ^Z = 0), the estimate (3.17) for
w can be sharpened as follows:

(3.17') | w | ̂  (2/3) (2 [m/2j +1) (A - 5) (for an application, see [2]).

This estimate is asymptotically sharp on C P".

3.18. Remark. - If we know that 5 ^ r ^ A, then the estimates are unchanged
-! /< ' ' ^^ ' /< ^ ; ^ ' • ' ' ' •"' ' •
for u and z (with A/2 replacing A and 5/2 replacing 8 as mentionned in 3.6) but the
estimate for w becomes

|w|^5(l+l/(m-2))(A--8).
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4. Pinching estimates on R

4.1. Two new features appear in the study of R:
(i) the map R h-> R from S2 A2 V to S2 S2 V is injective only on ^ (indeed for a four-

form Q, 0. = 0) and the orthogonal complement to its image is not easy to describe;
(ii) the space S2 V on which R acts is not irreducible under the action of 0(V); for

0 0

the decomposition of R into irreducible components R = U+Z+W, only U and W
preserve the irreducible subspaces of S2 V. The constant sectional curvature case g A g
has already two distinct eigenvalues: 2(m-l) on the line R.g and -2 on the other
irreducible subspace consisting of the traceless symmetric two-tensors. The description

o - ' ' ' '• • ^

of R in the general case will also be more involved than that of R.
We now estimate the eigenvalues of R and RQ (compare 3.8) in terms of sectional

curvature bounds:

4.2. LEMMA. - Let h be an eigenvector of RQ, say Ro (h) = f-o h, which as linear map
on V has rank k. Then

| ro |^(fe- l)max|Ro| .
k

Proof. — We choose an orthonormal basis (^) in which h is diagonal, i. e. h = ^ A, e^e^

From the system of k equations
fe

(RO (A)), = E hi ̂  (^. ̂ . ̂ , e,) = ro hj (j = 1, . . . , fe),

we single out the equation in which [ hj ] is maximum (hence ^ 0) to get the estimate
for fQ. •

4.3. PROPOSITION. - If the sectional curvature ofR satisfies 5 ^ R ^ A, then all eigen-
values of R but one lie in the interval

[-(l/2)((A+5)+(m-l)(A-5)), -(l/2)((A+8)-(m-l)(A-8))],

the other lying in the interval [(m-l)8, (w-l)A].
The first upper bound is sharp for C P2 and the last lower bound almost sharp for C P",

see 5.3.
proof. - The result follows from Lemma 4.2, the knowledge of the eigenvalues

of R-Ro together with the following:

4.4. LEMMA ([9] p. 126). - Let A and B be two symmetric linear maps on a Euclidean
vector space F with eigenvalues respectively (a,) and (?,) naturally ordered. Then
if C == B — A has eigenvalues (y,) we have

sup] Pi—a, | ̂  sup|yj. •
i i
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4.5. We have the following partial result on the rank of an eigenvector h of R for
the eigenvalue r^ [with value 2 (m-1) for g A g]: h has maximal rank if the sectional
curvature is a-pinched with a ^ l—(2/m)—(3/m2).

This follows by estimating angles between h and g.

4.6. PROPOSITION. - If the sectional curvature of R satisfies 8 ^ R ^ A, then the
eigenvalues of the irreducible component Z of R acting on symmetric two-tensors satisfy

; z | ^((m~l)(m+2)/(m--2))(A-8)

awrf rAe eigenvalues of U ^W W <w traceless symmetric two-tensors satisfy

(4.7) - 2 A ^ M ^ - 2 § , | w [ ^ l / 2 (m+4+(4/(m-2)))(A-8).

Moreover if the curvature tensor R ^ Einstein,

(4.7') H^(m/2) (A-8).

Proo/. — We first notice that

Z(70=(l/(m-2))((g, /i)z+(z, h)g-zoh-hoz).

If (6?,) is an orthonormal basis of V in which z is diagonal [we set z (e^ e,) == zj, then,
for ; ̂ 7, e, 0 e^ is an eigenvector of Z for the eigenvalue -2/(w-2) (z^+Zy).

m
On the w-dimensional space © R.(^ ® ^,) we consider (w-2) Z as the sum of the

1=1
rank-two operator h h-> (g, h) z+(z, h) g and of the operator h -> z o h+h o z.

Using the estimates (3.13) we get that any eigenvalue z of Z on © R. (e, 0 ^/) satisfies
».7=1

i ° i ^|z|^2(m-l)/(m-2) (A-8).
m

On the other hand on © R.(^» ® ^»), we have only
1=1

H^((m+2)(m-l)/(m-2)) (A-8).

Since ^ lies in the kernel of W, we only have to estimate W on traceless symmetric
two-tensors. We avoid using the previous estimate by noticing that on traceless symmetric
tensors the quadratic form h i-> (m-2) (Z (A), h) reduces to h t->-2 (z o h, h).

If h is a unit eigenvector of W for the eigenvalue w, we have

w=(W(/i), h)=(Ro(h\ /0+(2/(m-2))(zo/i, A)+Mo/m(m-l),
so that

\w\ ̂  1/2 (m~l+(4(m-l)/(m-2)))(A-8)+Mo/^(m-l).

Therefore using (3.13) and Lemma 4.2 we have

]w | ^ l / 2 (m+4+(4/(m-2)))(A-8)
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and if R is Einstein
[wi^(m/2)(A-5).

4.8. If R is Einstein, we can bring into the estimates the Einstein constant k related
to the scalar curvature by m k = u. In this case R preserves the decomposition of S2 V
into irreducible subspaces. The next proposition was suggested to us by [11].

4.9. PROPOSITION. - Let R be an Einstein curvature tensor with Einstein constant k and
with sectional curvature satisfying 5 ^ R ^ A. Then the eigenvalues r o/R on traceless
symmetric tensors satisfy

f e — m A ^ r ^ f e — m 8 .

Proof. - After introducing R' = R-5/2 g /^g so that 0 ^ R', the proof goes as in
Lemma 4.2, the positivity of R' replacing the estimate on Ro. •

PART TWO: GEOMETRIC EXAMPLES

5. Projective spaces and their duals

5.0. Surprisingly the sharpness of many of the previous inequalities can already be
demonstrated with the curvature tensors of the simplest symmetric spaces, namely the
projective spaces, or of simple examples derived from these.

5.1. We consider the complex projective space and its dual.
In terms of the complex structure J, we have for the curvature tensor R^pn and the

operators R^pn and R^pn (opposite signs for the dual)

2 R c p n = g A g + J A J + 4 J ® J

(with this normalization the sectional curvature ranges between 1 and 4), for co in A2 V

Rcpn(co) = 2(co-Jocooj-(J, o))J)

and for h in S2 V,
Rcpn(^)=-^+trace(h)g-3JohoJ.

Of course Rcpn is Einstein (so that Z^pn = 0) and its diagonal component is

UGpn=(n+l) / (2n-l) gAg.

As four-tensor applied to a, b, c, d in V, we get

Rcpn(^, b, c, d) = (a, c)(b, d)-(a, d)(b, c)
+(Ja, c)(J&, d)-(Ja, d ) ( J b , c)+2(Ja, &)(Jc, d).
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5.2. We give the spectral data for R^pn (notice that, for u and t; in V,

J o ( M A i / ) o J = — j M A J y ) :

Eigenspace Dimension Eigenvalue

R J 1 4 w + 4 = 2(dimCP" + 2)
(c/. Prop. 3.8)

span {UAV - J u ^ J v } (u,v C-linearly
independent ) . . . . . . . . . . . . . . . . . . . . . . . . n (n - 1) o

span {u^v + J « A J u} (^, y C-linearly
independent) . . . . . . . . . . . . . . . . . . . . . . . . n (n - 1) 4

span { « A J « — y A J i ? } . . . . . . . . . . . . . . . . T! — 1 4
^

The curvature operator R^pn has many eigenvectors of rank 4 which makes it very
special. Notice also the large multiplicities.

5.3. We give the spectral data of R^pn (notice that for u and v in V,

J o ( M O ^ ) ° J = - J u O J v ) :

Eigenspace Dimension Eigenvalue

2 ( w + l )
(cf. Prop. 4.3)

-4

R.^ 1
span {u o v - J u o J v } . . . . . . . . . . . . . . . . . . . n(n+\)
span { u o v - ^ - J u o J v } ( v orthogonal

to « ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . „ („ - i)
span { « o « + J « o J M — y o y — J v o J v }

[with (u,u) = (v, v ) ] . . . . . . . . . . . . . . . . . . . . . . ^ - 1

The curvature operator R^pn has also many eigenvectors of rank 4 and eigenspaces
with large multiplicities.

5.4. The curvature tensor R^pn of the quaternionic projective space is in terms of three
orthonormal imaginary quaternions I, J, K given as follows:

2RHp"=gAg+IAI+4I®I+JAJ+4J (x ) J+KAK+4K®K.

The main difference between the operators R^pn and R^pn and the operators R^pn
and Rcpn lies in the dimensions of the eigenspaces: for example Rupn has the three-
dimensional eigenspace span { I, J, K } with the "large" eigenvalue 8 n ( = 2 dim H P")
not quite as large in terms of dimension as in the complex case.

6. Distance sphere in the projectives spaces and their duals

6.0. The distance spheres in the complex projective space have frequently been treated
since they furnish the famous counterexamples for lower bounds on the injectivity radius
of the exponential map. The distance spheres in the dual give almost sharp geometric
examples for the inequality of Corollary 3.10.
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6.1. We determine the curvature tensor of the distance spheres with the Gauss-equation.
The shape operator S (or second fundamental tensor) of the distance spheres is obtained
as follows: call N the outer unit normal field of the spheres. In the complex case we
have a distinguished tangent vector JN and its orthogonal complement, in the quatemionic
case we have a distinguished three-dimensional tangent subspace span {IN, JN, KN }
and its orthogonal complement. Jacobi fields along the radial geodesies with initial
data in the distinguished subspaces behave as in the case of constant curvature 4 ( — 4 in
the dual), since in these Symmetric spaces the curvature tensor and hence the distinguished
subspaces are parallel; the Jacobi fields orthogonal to these subspaces behave as in the
constant curvature 1 ( — 1 in the dual) case.

6.2. Now let r\—>j(r) be a normal Jacobi field with j(0) = 0 (i. e. coming from a
variation by radial geodesies), then j (r) is a tangent vector to the sphere of radius r.
Now the Weingarten formula gives the shape operator of the distance spheres in terms
of these Jacobi fields:

S,0(r))=-D,^N(r)

[where D^(^)N (r) = D/(dr)j(r)~^ since N(r) is tangent to the radial geodesies.
We list the spectral data for the shape operator Sy of the distance sphere of radius r:

Eigenvalue

Eigenspace Dimension Compact case Dual case

Complex case :
span { J N } . . . . . . . . . . . . . . . . . . . 1 2 cot 2 r 2 coth 2 r
{HJN}-1 . . . . . . . . . . . . . . . . . . . . 2n-2 coir coth r

Quatemionic case
span {IN, JN, KN } . . . . . . . . . . . 3 2 cot 2 r 2coth2r
{ N . I N . J N . K N } ^ . . . . . . . . . . . . 4 ^ - 4 cotr coth r

6.3. In the complex case, trace S,. = (2 n— 1) cot r—tan r and in the quatemionic case
trace S^ = (4^-1) cot r—3 tan r so that in these two cases there is one and only one
distance sphere which is minimal. Its radius depends on the dimension. No such
minimal sphere exists in the dual spaces for obvious reasons.

6.4. The Gauss equation for a hypersurface M with shape operator S in a manifold M is

I^R^+l^ SAS,

where, in terms of the orthogonal projection P : Tp M -^ Tp M

(R130 (a, b) c, d) = (R (P a, P b) P c, P d).

This enables us to get very easily our hands on the curvature tensor of the distance
spheres. In the following list we give only sectional curvatures of special two-planes,
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but it is easily seen that they contain the maximum and the minimum of the sectional
curvature (we restrict ourselves to the complex case):

Two-plane Compact case Dual case Lim

u A v (u, v l JN; u i y, J v ) . . . . . . . . . . . . . . . . .
« A J M ( « I N , J N ) . . . . . . . . . . . . . . . . . . . . . . . .
«AJN(« IN) . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum of the sectional curvature......
Minimum of the sectional curvature.... . .
Length of the shortest closed geodesic. . . .

1 + cot2 r
4 i /^vf-2 y~\~ L/Ul r

cot2 r
4 + cot2 r

cot2/-
n sin 2 r

— 1 + coth2 r
- 4 + coth2 r

/••/•»•(• It 2 y\AJ Lll »

coth2 r
- 4 + coth2 r

-0
-3

1

Note that n sin 2 r < 2 n (4+cot2 r)-1/2 as soon as tan2 r > 2, these are the famous
"small injectivity radius" examples. Similar examples fail to exist in the quaternionic
case, since the sectional curvature for planes in the distinguished 3-dimensional tangent
subspace is equal to 4+(2 cot 2 r)2, i. e. is larger than 4+cot2 r if tan2 r > 2. Exactly
at the radius at which the examples start to appear in the complex case does, in the
quaternionic case, the sectional curvature of distinguished planes become too large.

6.5. Since, in the complex case, R13" differs only slightly from the curvature tensor
of CP"~1 (resp. its dual), namely for u orthogonal to N and JN

R13" (u, JN) v == (JN, v) u - (u, P) JN,
^

one can write down the eigenvectors of R1^ as in 5.2 and of 1/2 S A S from the spectral
data of S quite easily. We list the spectral data of R for the distance spheres in the
complex projective space:

Eigenvalues

Eigenspace Dimension Compact case Dual case

span { J180 = P o J o P } . . . . . . . . . . . . 1 4 w + 2 cot2 r
span [ u ^ v — J u ^ J v } (u, y ± N ,

JN; u, v] linearly independent
over C ) . . . . . . . . . . . . . . . . . . . . . . . . (n - 1) (n - 2) 2 cot2 r

span {u^v + J « A J u } (u, y JL N,
JN; u, v linearly independent
over C ) . . . . . . . . . . . . . . . . . . . . . . . . (n - 1) (n - 2) 4 + 2 cot2 r

span {u A J u } (u i N, J N ) . . . . . . . . . n - 2 4 + 2 cot2 r
span { u A JN } (u i N, JN). . . . . . . . . 2 n-2 2 cot2 r

- 4 ^ + 2 coth2 r

2 coth2 r

- 4 + 2 coth2 r
4 + 2 coth2 r
2 coth2 r

The lowest eigenvalue is never 0 in C P", showing a global situation where a one-
parameter family of curvature operators is positive as long as the sectional curvature is.
The lowest eigenvalue is 0 in the dual situation if coth2 r = 2 n. At this radius the
pinching of the sectional curvature is 1-(2/^) = l-(4/(l+dim S2""1)); in other words
we get negative eigenvalues already for rather narrow pinching. This is also almost
sharp in view of Corollary 3.9 [the best possible is l-(3/l+w))].
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6.6. Finally it is also interesting to look at the Ricci curvature of these examples.
Again we use the Gauss equation. The contribution to the Ricci tensor from the shape
operator is well known:

y(SAS)==(traceS)S-S2.

The contribution from R13" (as follows easily from the explicit formula for R) has JN
as eigenvector (eigenvalue 2n—2) and { N, JN }1 as eigenspace (eigenvalue 2/2+1) in
the complex case (take the opposite in the dual case) and IN, JN, KN as eigenvectors
(eigenvalue 8+4^—4) and eigenspace { N, IN, JN, KN }1 (eigenvalue 12+472—5) in
the quaternionic case. This gives the following spectral data for the Ricci tensor of
the distance spheres:

Eigenvalues

Eigenspace

Complex case :

{ J N } - 1 . . . . . . . . . . . . . . . . . . . . .

Quaternionic case :
snan UN. JN. KN L . . . . . . . .

Dimension

. . . . . 1
2n-2

.... . 3

Compact case

(2n-2) cot2 r
2 n + (2 n — 2) cot2 r

(4 n - 2) cot2 r

Dual case

(2n-2) coth2 r
- 2 n + (2 n - 2) coth2 r

(4 n — 2) coth2 r(4 n - 2) cot2 r
+ 2 tan2 r + 4
(4 n - 2) cot2 r{IN, JN, KN }1-. 4 ^ - 4

+ 4 n + 4

We have here four one-parameter families of examples in which the Ricci tensor has
only two distinct eigenvalues: in three of them the eigenvalues remain far apart, but
for the distance spheres in H P" with radius determined by tan2 r = 2 n we recover
Jensen's examples (cf. [7]) of non-standard Einstein metrics on the spheres S4""1. The
eigenvalues of S are l/(^2n)-^/Yn on span {IN, JN, KN } and l/(^/2^z) on
{IN, JN, KN, N }1. The sectional curvatures vary between l/2n and (l/2w)+4 so
that the pinching goes to 0 when n goes to infinity.

Similarly the 15-dimensional distance sphere in the Cayley projective plane with
tan2 r = 8/3 is also a non-standard Einstein space.

6.7. The spheres in the noncompact case have for large r a very negative Ricci tensor,
namely all but one eigenvalue negative (all but three in the quaternionic case) and negative
scalar curvature for still larger r. This is as negative as it is possible for a homogeneous
space, since negative Ricci curvature on a compact manifold allows only a finite
isometry group.

7. The Euler integrand

7.0. The systematic use of the curvature operator enables us to present a simple
construction of six-dimensional counterexamples to the conjecture that "positive sectional
curvature implies positive Euler integrand" (the first one was given by Geroch in [5],
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see also [10]). For that we study curvature tensors R which are linear combinations
of the curvature tensors of the only irreducible 6-dimensional symmetric spaces S6, C P3

and G2 '5, the Grassmann manifold of two-planes in R5. Following R. S. Kulkarni
(cf. [12]), we compute the Euler integrand of R in a diagonalizing basis for R. To
determine the range of R, we need detailed information about G2'5; this is again obtained
by using curvature operator techniques.

7.1. Both G2'5 and C P3 are Kahler-Einstein and when we consider linear combinations
of their curvature tensors we will do this in a way compatible with the complex structure.
The manifold G2 '5 is naturally identified with the space of oriented geodesies of S4 (cf. [1])
and therefore a tangent vector to G2'5 is represented by a normal Jacobi field j along
a great circle of S4; the complex structure of G2 '5 maps j onto its derivative /, which
is again a Jacobi field.

To get the curvature tensor we view G2 '5 as the symmetric space SO (5)/SO (3) x SO (2)
and use the standard formula R (a, b) c = [[ ,̂ 6], c] in terms of the Lie bracket
of so (5) (see [6], p. 180).

Later we prefer to compute with eigenvectors of the curvature operator rather than
with matrices; therefore we choose the following basis of the tangent space V6 of G2 '5:

a = = ^ A ^ 4 , b-=e^/\e^, c=e^f\e^,
J a = = ^ A ^ 5 , J b = ^ A ^ 5 , J c = ^ A ^ 5 ,

where (^i, . . . , €5) is an orthonormal basis of R5, ^ A ej are elements of so (5) and the
complex structure for G2*5 described above is, in this basis, the given J. The subspace
span { a, b, c ] can be thought of as the space of normal Jacobi fields vanishing at a point
of a great circle.

7.2. Of course Rge = 1/2 ̂  A ̂  (so that Rge = 1).
Also on any complex space, we have in terms of the complex structure J

Reps = l /2(gAg+JAJ+4J®J) (so that 1 ̂ Rcps ^ 4).

We know from section 6 that the following basis of A2 V consists of eigenvectors of the
curvature operator R^pa (s is + or -):

2 c o < ^ = = a A & - 8 J a A J f c , 2 ( o ^ = a A J f o + s J a A f c ,
2o)^ = f r A c - e J & A J c , 2o)£5 = f c A J c + s J & A c ,
2o) ' 3=cAa-sJcAJa , 2 c o 6 = c A J a + s J c A f l ,

2o)'i = a / \ J a - b / \ J b ,

2^/3 0/2 = ^ A J ^ + f c A J f c - 2 c A J c ,
y6o ) ' 3= f lAJa+&AJfc+cAJc (=J ) .

The eigenvalues are also given in section 6.

4® SERIE — TOME 11 — 1978 — N° 1



CURVATURE OPERATORS: PINCHING ESTIMATES AND GEOMETRIC EXAMPLES 89

The Lie bracket computations left out in 7.1 show that, fortunately, this basis of A2 V
is also a basis of eigenvectors of the curvature operator of G2'5. Since the curvature
operator of S6 is twice the identity, we have already the spectral decomposition of the/<
curvature operator R, where R = ^ Rs6+p. R^pa+v Ro2,5 with eigenvalues:

A =2'k on o^ for i = 1, . . . , 6, C=2?i+4j i on o);~ for i == 4, 5, 6,

B = 2 ^ + 4 ^ i + 4 v on o),~ for i = 1, 2, 3, C = 2 X + 4 p . on o);' for i = 1, 2,

D=2X+16n+6v on co^.
/\

Notice the large kernel of Roi.s; the two-forms co^ (i = 1, . . . , 6) lie in the kernel
since G2'5 is Kahlerian.

7.3. The formula for the Euler integrand (see [12] or [14]) is, in dimension 2 k,

Efc(R) = ^ R(co,,)A . . . AR((O,J(X)O^A . . . AO),,,
ie®k

where (o\) ^s an orthonormal basis for A2 V. If the basis (o\) is of the form (pi/\Vj)
with (Vi) an orthonormal basis ofV, then the formula reduces to the wellknown expression
in the curvature tensor components; if the { o\ } are eigenvectors of R, we obtain

Efe(R) = E. ?,i • • • ̂ ii A ... Ao,^ ® 0^ A ... Aco^,
l6®k

an expression which is much more manageable than the one in the curvature tensor
components.

In particular, if a curvature operator has the eigenvectors of 7.2 and the eigenvalues
A, B, C, D, then, from a list of triple exterior products of the eigenvectors, one obtains

24E3(R) = 54A2B+90A2C+18A2D+45B2C+9B2D+35C3+15C2D+4D3 .

Notice that the expression (3.2) of the Bianchi identity reduces to the linear relation
6A-3B-5C+2D =0.

7.4. PROPOSITION. —The sectional curvature function of R = ̂  Rge+^i Rcp3+ v Ro2,5
achieves its minimum (= min(?i+|J-, X+4jj,+v)) on a holomorphic plane, its maximum
(= max(^+^+v, X+4^i+2v)) on a real plane if 3 p,+v ^ 0 and vice versa if 3 ^i+v ^ 0
(we suppose v ^ 0).

Proposition 7.4 directly gives the following interesting geometric:

7.5. PROPOSITION. - The curvature tensor R^ = Rge - a R^ps + 3 a Ro2,5 has the sectional
curvature range [1 -a, 1 +2 a]. The Euler integrand^ (R,) = 18 (5+3 a+12 a2 -28 a3)
is negative for a ^ (XQ = 0.8227. The pinching at (XQ is 1/15.

Klembeck's example (cf [10]) is obtained at a = 1.
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(From Corollary 3.9 follows that in dimension six a pinching > 4/7 for the sectional/\.
curvature implies that R is positive.)

Proof. — The sectional curvatures ofR^pa are given in terms of the angle (p ofholomorphy
[if x and y are orthonormal, then cos (p = (J x, y)~\ by

Reps { x , y } = l + 3 cos2 (p.

The situation is considerably more complicated in G2'5; it will be described by the
following Lemma. As can be seen from the definition of a, b, c in 7.1, the most general
tangent vector (up to isometry) to G2'5 is

x = cos Y (cos P. a + sin P. b) + sin y. J a.

7.6. LEMMA. — For the sectional curvature ofG2'5 we have:
(i) the holomorphic sectional curvature o/G2'5, h2 (x), is given by

h2 (x) = (Re2,5 (x, J x) x, J x) = 1 + sin2 P. sin2 2 y;

(ii) the quadratic form y \—> (Ro2,5 (x, y ) x, y ) on span { x, J x }1 can be represented by a
symmetric operator which has on span { c, J c } the eigenvalues 1/2 ± 1/2 (2— h2 (x))112

(hence ^ 1), and has on span { d, J d } (where d = (—sin P.a+cos P.&) cos y—sin y . J b )
the eigenvalues 0 and 2—h2 (x) (hence ^ 1), the latter with the eigenvector

e' = cos2y.d+cosp.sm2Y.Jrf,

such that ( € ' , € ' ) ==2-h2(x);
(iii) (Ro2,5 (x, J x) x, y ) = sin P. sin 2 y.(e\ y).

7.7. With this Lemma we complete the proof of Proposition 7.4.
Obviously the sectional curvature of R on real planes has K + [i as minimum and X + [i + v

as maximum; the holomorphic sectional curvature of R has X+4 p+v as minimum and
^+4^ i+2vas maximum. It remains to estimate the sectional curvature of a plane with (p
as angle of holomorphy. We have

R { x, (cos (p. J x + sin (p. y)} = 'k + p- sin2 (p + 4 \\. cos2 (p + v cos2 (p
+ v [R.G2.5 { x, y } sin2 (p + 2 (Ro2.5 (x, J x) x, y) sin (p. cos (p

+(RG2.5{x,Jx}-l)cos2(p].

Now the expression in the last bracket is nonnegative since from Lemma 7.6 we have

(Ro2,5 (x, J x) x, y)2 ̂  Ro2.5 { x, y } (R^s { x, J x } -1),
hence

R { x , (cos(p.Jx+sin(p.y)} ̂  min(^+p, X+4n+v).

To derive the maximum, let v|/ be the angle between y and span { d, J d }, so that

(e\y)2^cos2^(2-h2(x)),
RG^{X, y ] ^ sin2 ̂ (1/2+1/2 (2-h2(x))l/2)+cos2vl/(2-A2(x)).
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We clearly have

12 sin (p cos (p (Ro2,5 (x, J x) x, y) \ ^ 21 sin (p cos (p cos \|/11 e' \ (h2 (x) — 1)1/2

^ cos2^ (2 - h2 (x)) + sin2^ cos2 \|/ (/i2 (x) -1),

hence the bracket expression is less than 1, so that finally we have

R { x , (cos(p.Jx+sin(p.}Q} ̂  max(^+n+v, ^+4^i+2v). •

7.8. Proof of Lemma 7.6. - Since

x / \ J x =(cos2^cos2J-{-sm2y)a/\Sa+sm2^cos2y.b^3b
+ sin P cos P cos2 y (a A J b + & A J a)
+ sin P sin y cos y (a A fc + J a A J b),

we get from the spectral decomposition of Ro2,5 (see 7.2)

RG2,5(xAJx)=2J+2s inps in2y(aA^+JaAJ&) .

From this, a direct computation gives

Ro2,5(x, Jx)x = 1/2 Ro2.5 (x A J x) (x) (with our convention)
== Jx+sinpsin2y.^

with e == sin P sin 2 y.J x+^'.
This proves (i) and (iii).
Similarly we have

Ro2,5(x, c)x ==cos2Y.c+cospsinYCOSY.Jc,
Ro2.5 (x, J c)x = cos P sinycosy.c+sn^y.Jc,

which proves that span { c, J c } is an invariant subspace of the mapping y i-> R^.s (x, y ) x
with eigenvalues 1/2 ± 1/2 (2-h2 (x))172.

7\,

Finally x A d and x A J d have most of their components in the kernel of R^.s leaving
us with

RG2.5(xAd)=2cos2y(aAfc+JaAJfc ) ,
Ro2,5(xAJd) = 2cosps in2y(aAfc+J f lAJ&) .

This proves that the operator which represents the quadratic form y h-» (Ro2,5 (x, y ) x, y )
on span { d, J d } has the eigenvalue 0 on the vector cos P. sin 2 y.rf-cos 2 y.J rf (which
is orthogonal to e'). The vector e ' is also an eigenvector for the eigenvalue
cos2 2 y+cos2 P sin2 2 y (we get it as a trace) completing the proof of (ii). •
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7.9. Remarks:

(i) with obvious changes the proceeding proof will also handle G2^;
(n) another example of a linear combination with small integer coefficients where the

Euler integrand vanishes is R = 4 Rge-S R^pa+S R^.s with A = 8, B = 28, C = -4,
D = 8 as eigenvalues of R (^ 7.3). The sectional curvature range is [0, 9].
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