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ISOPERIMETRIC CONSTANTS AND THE FIRST EIGENVALUE
OF A COMPACT RIEMANNIAN MANIFOLD

BY SHING-TUNG YAU*

Given a compact Riemannian manifold M^ the Poincare inequality tells us that for any

smooth function/defined on M with / = 0, we can estimate f2 in terms of | V/ P.
JM JM JM

By the minimax-principle, one knows that the best possible constant in the Poincare ine-
quality is given by the first eigenvalue of the Laplacian. While this constant has analytic
importance, it also gives strong insight in the geometry of the manifold.

The upper estimate of the first eigenvalue has been discussed by many authors. J. Hersch
[11] obtained an upper bound for manifolds homeomorphic to the two sphere. J. Cheeger
[5], I. Chavel and E. Feldman [4] (see also Mazet [12] for generalization) obtained upper
bound for manifolds with non-negative Ricci curvature. The comparison theorem of
S. Y. Cheng [8] gives s sharp upper bound for general Riemannian manifold in terms of
the lower bound of the Ricci curvature and the diameter.

While these progress had been made on the upper bound, not too many is known about
the lower bound of the first eigenvalue. The best result is due to Lichnerowicz (see [1])
who gives a computable sharp lower bound for manifolds whose Ricci curvature is bounded
from below by a positive constant. J. Cheeger [6] also gives a lower bound for general
manifolds in terms of some isoperimetric constants. These constants of Cheeger, however,
are not readily computable. Cheng [7] has observed that if the manifold is a two dimen-
sional convex surface, then the isoperimetric constant has a lower bound in terms of the
diameter.

In this paper, we give a computable lower bound of the first eigenvalue of a general
Riemannian manifold in terms of the lower bound of the Ricci curvature, the upper bound
of the diameter and the lower bound of the volume. Actually, we have obtained the lower
bound for the isoperimetric constants similar to those of Cheeger. We can also obtain
a Sobolev inequality for a general Riemannian manifold.

The first half of this paper is devoted to studying the two dimensional surfaces where
better estimates for the isoperimetric constants are obtained. The second half of the
paper is the proof of the main theorem. We shall come back to discuss the main theorem
in a latter occasion.

(*) This research was supported in part by the NSF GP 32460 X and the Sloan Foundation Grant
BR 1595 T.
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Finally, we would like to thank H. Samelson and L. Simon for helpful discussions. We
also want to thank S. Y. Cheng whose knowledge in this subject and whose papers [7]
and [8] stimulated my interest in this work. After the first version of the present paper
was finished, M. Berger pointed out to me the result of lemma 5 of paragraph 5 which
simplified the original version a lot. We wish to express our gratitude to him.

1. Isoperimetric constants for two dimensional manifolds with genus > 1

Let M be an yz-dimensional compact manifold (with boundary). Then following [6],
we define the isoperimetric constant h (M) of M as follows:

(a) When 9M = (p, set

h(M)=inf————A(H)———— where A( ),
min(V(Mi),V(M,))

denotes the (^—l)-dimensional measure, V( ) denotes the n-dimensional measure and
the inf is taken over all smoothly embedded hypersurfaces H dividing M into two sub-
manifolds Mi, M^ with common boundary 8M^ = 8M^ = H.

(b) If 8M ̂  (p, set ]

/i(M)==infA^ where H n 5 M = ( p
V(M,)

and Mi is the unique submanifold of M with 8M^ = H.

THEOREME 1. — Let M be any compact manifold. Then:
» \ / r \

(a) If8M = (p, inf | V/| |/| -1 = h(M) where inf is taken over all C1-
^ / \ J M /

function with /=== 0.
JM

(b) If 8M ̂  (p, h (M) = inf (| | V/| ) ( | |/| ) where inf is taken over all

^-function vanishing on the boundary of M.

Proof, — We only consider the case 8M = (p. The other case 8M =^ (p is similar.
As above, let H divide M into two parts Mi and M2. Suppose Vol (M^) ^ Vol (M^).

Then for 8 > 0, define a function Yg as follows. For x e M^, we define Yg (x = r/s when x
has distance r ^ s from H and/g (x) = 1 when x has distance r > e from H. For x e M^,
we define Yg (x) = —cr/e when x has distance r ^ e from H and/g (x) = —c when x has

distance r > e from H. Here c is chosen so that Vg = 0.
JM

Clearly when s -> 0, c tends to the constant Vol (Mi)/Vol (M^). Furthermore, | V/J
JM

tends to (l+c)A(H) and [/J tends to Vol (Mi) = c Vol (M^). Therefore,
JM

l imff |V/jVf j/jV^^M).
8-^0 \ JM / \ J M /
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COMPACT RIEMANNIAN MANIFOLD 489

The other inequality of theorem 1 follows from a direct application of the co-area for-
mula (see [14], Theorem 3.2.22, and [6]).

COROLLARY (Cheeger [6]). — Let ^ be the first eigenvalue of the Laplacian of M with
the first eigenfunction fsatisfying /* df\ 9M == 0. Then Xi ^ (1/4) h (M)2.

Proof. — This follows by applying the Schwarz inequality and

J /^ f /A /^ f |V/|2
JM JM JM

î / = /A/= |VJ
JM JM JM

to theorem 1.
Because of this corollary, it is interesting to find a lower estimate of h (M) in terms of

some other more computable geometric invariants.
In this section, we shall be only interested in two dimensional manifolds so that H can

m
be written as a disjoint union of smoothly embedded circles (J Si.

Our first observation is that we can assume both Mi and M^ are connected. This is
based on the following argument.

First of all, assume 8M = (p. Suppose we have found a number c (M) depending only
on some geometric quantity of M such that whenever both Mi and M^ are connected,

E iW
(1.1) ———l^1——————>c(M).

min(V(Mi),V(M2))~

Then we claim that (1.1) holds without any assumption on Mi and M^. We shall
prove this claim by induction on m.

I f w = = l , then both Mi and M^ are connected and (1.1) is valid. Therefore, it remains
for us to prove that if (1.1) is valid up to m, it is still valid for m+1. If both Mi and M2
are connected, then the last statement is valid by hypothesis. Otherwise we can assume
Mi is disconnected and Mi = N u P where 3N = Si u . . . u Sj, and 8P == S^+1 u. . . u S^+1
where 1 ̂  k ^ w.

Since M = N u (P u M^), we can apply the induction hypothesis and conclude that

(1.2) E !(S,) ̂  c(M)min(V(N), V(P)+V(M2)).
1=1

Similarly, we have

(1.3) "E1 l(S,) ̂  c(M)min(V(P), V(N)+V(M2)).
i=k+l

Combining (1.2) and (1.3), we conclude immediately

(1.4) "£ ;(S,) ̂  c(M)min(V(Mi), V(M,)),
»=i

which proves our claim.
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490 SHING TUNG YAU

In case 8M •^ (p, the argument is similar and will be omitted. For a latter purpose,
we record the following theorem ofBurago and Zaigaller ([3], p. 100).

THEOREM 2. — Let M be a two dimensional manifold which is homeomorphic to the disk.
Then

(1.5) V(M)^;(aM)R+ l(T K^-l^R2,

where K+ is the positive part of the curvature of M and R = sup d{x, 8M) is the radius
xeM

of the largest disk inscribed in M.

COROLLARY (A. Huber, [10]). — Let M be a two dimensional manifold which is homeo-
morphic to the disk. Then

(1.6) ifin- \ K^^M^HaM)]2.
\ JM /

Basing on this theorem of Huber, we derive the following:

PROPOSITION 1. — Let M be a two dimensional compact manifold. Let h (M) be a cons-
tant associated to M which is defined in the same way as h (M) except that we require all
the S\ s are non-homotopically trivial and M^, M^ are connected. Then

(1.7) h(M)^mm[h(M), ifin- f K^. 1 -1.
L V \ JM / ^/V(M)J

Proof. — If all the S,' s are non-homotopically trivial, then (1.7) is trivial. Otherwise,
assume S^ is homotopically trivial.

Let D be the unit disk and/: D -> M be a continuous map such that /maps ^D bijecti-
vely onto S^. Let n : M -> M be the universal covering of M. Then we have a conti-
nuous map /: D -^ M such that n o / == /. Since /[3D is injective, /(3D) is a Jordan
curve in M such that n [/(5M) is injective.

By the Jordan curve theorem,/(3D) bounds a domain D in M such that D is homeo-
morphic to the disk. If D is not a component of both n~1 (M^) and K~1 (M^), then for<»»
some i > 1, a component of n~ (S») lies completely in D. This component must be an
embedded circle which bounds a domain D, in D. Continuing in this way, we can find a
domain Dy in D such that Dy is homeomorphic to the disk and Dj covers Mi or M^. There-
fore, either M^ or M^ is a disk and QM^ = 8M^ = Si. (We use the fact that Mi and M^
are connected.) The inequality (1.7) then follows by applying Huber's theorem to this
domain.

COROLLARY. — Let M be a compact two dimensional Riemannian manifold. Let I (M) be
the infinimum of the lengths of all homotopically non-trivial closed geodesies in M. Then

(1.8) /,(M)^-___minr KM).. \l(^- f K l̂.VV(M) Lyv(M) v \ JM /j
4» sfiniE — TOME 8 — 1975 — ?4



COMPACT RIEMANNIAN MANIFOLD 491

2. Isoperimetric inequalities for doubly connected region

In this section, we shall consider doubly connected regions. They are fundamental
to the study of surfaces because they are the "handles" for building up surfaces. We
start with the following:

PROPOSITION 2. — Let M be a doubly connected surface bounded by two simple closed
curves (TI and a^. Suppose the curvature ofM is non-positive. Then

(2.1) V(M)^[^(aO+^(o,)]^l^(al)+l^(al)+d(M)^,

where d (M) is the shortest distance between a^ and CT^.

Proof. — It is well-known that every doubly connected surface is conformally equivalent
to an annulus { z | Ri ^ | z \ ^ R2 } in the plane. Hence, we can transform part of the
problem to the annulus. We first note the following

LEMMA 1. — Let p be a smooth subharmonic function defined on the annulus
[ z | RI ^ | z | ̂  R^ }. Then the function

log(/(r)) = logi" r"[expp(r, 9)]rd9"l

is a convex function of log r so that

(2.2) /(r)^max(/(RO,/(R,)).

Proof. — Let r = e3. Then direct computations shows:

<2-3) ^^^T-^-1)2-^]-^!:'6-^-)-]2
^^-^-^^V
= ̂ '^{f^+iY+wi.e-ir r^ +iW,

/Jo [\8s ) \8Q) \ /UJ" \8s } J

where the last inequality is a consequence of partial integration.
By Schwarz's inequality it is clear that (d'i|ds'l) (log/) ^ 0 and lemma 1 is proved.
With lemma 1 we can prove proposition 3 in the following way.
Let T be a geodesic segment joining CTI and 03 such that / (r) realizes the distance between

CTI and (TS. Then cut M along this geodesic segment so that the resulting surface M is
simply connected.

ANNALES SCIENTIFIQUES DE •Ut.WVE. PIOIIMAI,E SpPfiWEVBE



492 SHING TUNG YAU

Let/? e M be such that d ( p , 8M) = sup d ( x , 8M). Then we claim that
xeM

(2.4) 2 d Cp, 8M) ̂  max (; (ai), ; (c^)).

In fact, let p be a closed curve passing through p which is not homologous to zero
in M and which has least length among all these curves. Clearly, p must cut the geo-
desic T at some point and hence

(2.5) 2d(p,aM)^;(P).

On the other hand, lemma 1 shows that passing through /?, we can find a closed curve
which is non-homologous to zero and which has length not gearter than max (/ (<7i), / (a^)).
The claim follows from this observation.

Using theorem 2, we see that

(2.6) V(M)^l;(p)[KaO+^02)+2d(T)]

l - . l^[^al)+^(a,)]^l^(a,)+l^a,)+ri(M)1.

Proposition 2 follows immediately from this.

COROLLARY. — Let M be a compact doubly connected surface with non-positive curvature.
Then

(2.7) W>minr^,^,-^1
i2d(M) V(M) 7v(M)J

Proof. — It is elementary to see from Proposition 2 that

^ o>. LU^^ • / 1 2d(M)\(2.8) /!(M)>min(————, ——— ,
\2d(M) V(M)/

so that (2.7) follows from (1.7).
By giving further restriction on the curvature, one can remove the dependence of d (M)

in (2.1). First we prove

LEMMA 2. — Let M be a simply connected two dimensional manifold bounded by a simple
closed curve a^. Suppose the curvature ofM is bounded from above by —c with c > 0.
Then

(2.9) V(M)^A^(a,)sinft-lf^c^al)Y
Jc \ K )

Proof. — We shall prove (2.9) by applying theorem 2 again.
Let p e M be a point such that d (p, 8 K) = R is the radius of the largest disk that can

be inscribed in M. Let D be the disk of radius R and center p. Then an application of

4® SEME —— TOME 8 —— 1975 —— ?4



COMPACT RIEMANNIAN MANIFOLD 493

the Gauss-Bonnet theorem shows that every point in D can be joined by a unique minimal
geodesic to p. (One has also to use the fact that M is simply connected.)

By an application of the comparison theorem (see [2]) one can now prove that the area
/»D

of D is not less than (2 n / ^ / c ) (sin h ^c x) dx. Applying theorem 2, we conclude
Jo

therefore
27i fR /-

(2.10) -T= (smh^cx)dx^l(G^R.
Vcjo

Since
1 /7'R 1 C^ i-

(2.11) 'sin/iX—^- (smh^/cx)dx,
2 2 Rjo

we conclude from (2.10) that

(2.12) R^^sin^^^^Y
YC \ 7C /

The conclusion (2.9) then follows from theorem 2 and (2.12).
Let us now assume that M is doubly connected, bounded by two simple closed curves

cTi and <72. Then by the minimizing procedure, we can find a simple closed curve a in
M which is non-homologous to zero and has the shortest length compared with any other
such curves.

By using the Jordan curve theorem, one can prove that a divides M into two parts M^
and M2. If o touches both a^ and (72 , then both M^ and M^ are essentially simply
connected domains whose boundaries have length not greater than max (/ ((7i)+/(a),
/ (<j2)+/ (o-)). (Essentially simply connected domain means that we can slightly deform o-
at certain points of its intersection with a, to form a simple closed curve.) Then we can
conclude from lemma 2 that

(2.13) V(M)^4[^a^7(a2)]sinh-^c(^Gl)+^(G2))1.
VG L n J

It remains to discuss the case where a intersects a^ only. Let M^ be the part of M
which contains 02. Then taking the normal of o- to be the one which points inside M^
one can see from the extremal property of or that a has non-negative geodesic curvature
everywhere.

The last fact enables us to assert the following statement from the Gauss-Bonnet theo-
rem: For any point/? e M^, there is at most one shortest geodesic joining/? and a.

Let N = { p e Mi | d (p, a) ^ inf d (x, a) }. Then N is homeomorphic to the annulus
.X;e<T2

{ z e C | l ^ | z | ^ R } with the inner circle corresponding to <r. Furthermore, on the
annulus, the metric of N is given by

(2.14) ds2=dr2+f(r,6)2dQ\

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPEBIEURE



494 SfflNG TUNG YAU

The condition that o has non-negative geodesic curvature tells us that

(2.15) |̂ 0,
8r

for r = 1.
On the other hand, direct computation shows that the curvature of (2.14) is given by

-OW/M. Hence

(2.16) ^c/.
8r

Consider the following function

(2.17) g(r) = r r p/o, e^e ̂ Y r^r, G)^ 1.
It must attain its maximum at some point /*o > 1. At this point,

^^ 8f Vf2" Y1

(2.18) 0^g'(ro)=l-g(ro) -'(^0)^9) /(ro, 9)d9 .o ar 7\ jo /

An easy application of (2.15) and (2.16) shows that

(2.19) ^/(ro,9)^c^o/(r,9)dr.
8r J i

Hence, (2.18) implies

(2.20) cg(ro)2^!.

The formula (2.20) happens at the maximum point of g, we conclude therefore,

n 2n ^ rin

(2.21) f(t,Q)dQdt^——\ f(r,0)d6,
0 VcJ0

for all 1 ̂  r ^ R.
Let 03 be the curve which forms the other part of the boundary of N. Then (2.21)

means

(2.22) V(N)^^?3).
Vc

Our next step is to see that / (03) ^ / (a^). Let N1 be the sets of points of Mi which
can be joined to a by a shortest geodesic. Then N1 is a closed subset of Mi where the
metric tensor on N1 can be written in the form (2.14). We assert that 5Ni is equal to 3M
by replacing certain parts of 8M^ by minimal geodesies.

4® S^RIE —— TOME 8 —— 1975 —— ?4
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w
It suffices to prove the following statement: Let q e 5N\ be a point in the interior of M^

and let T be the minimal geodesic joining q and a. Suppose q^ is the first point where T
intersects o^ and q^ is the last point beyond q where T intersects CT^. Then the part of T

«w _

lies in between q^ and ̂  ls P^ °f Ae boundary of N1. In fact, if there were a point q
in this part of T which is an interior point of N1, then we can join all points near q to a
by a minimal geodesic so that we have a strip covering T. This contradicts the existence
of^r

From our assertion, we conclude that 3Ni is rectifiable and / (3Ni\(7) ^ / (a^). On
the other hand, since on N\, we have the representation (2.14) with (9ff8r) ^ 0, we obtain
/(o3)^/(aNi\a)^/(a2).

Putting lemma 2, (2.22) and the last fact together, we have

(2.23) V(M,) ̂  l(a2) + ^l(^)smh-1 (^l^)\
\/c \/° \ n j

THEOREM 3. — Let M be a doubly connected compact two dimensional manifold bounded
by two simple closed curves 04 and a^. Suppose the curvature ofM is bounded from above
by - c with c > 0. Then

(2.24) V(M) ̂  ̂ +^ + ̂ (g^mh-^2^1^}
Vc ^c \ " 7

^H^sin/.-f2^^).
^c V " 7

Remark. — An optimal result seems to be that ^/c V (M)/[/ (oi) + / (02)] is bounded
by an absolute constant. This can be checked for many important cases.

Finally, we generalize proposition 2 in the following manner.

THEOREM 4. — Let M. be a doubly connected compact two dimensional Riemannian mani-
fold bounded by two simple closed curves CTI and 02. Suppose the curvature of Mis bounded

from above by a positive constant c > 0. Then if | K"*" < it and cd(M)2 < 2 with

d(M) = sup { d (x, 01), d(x, 02) }:

(2.25) V(M) ̂  J(gl)±J(g2-)[^a.)+^a2)+2^(M)]4- l2^+l2^\.
2-cd(M)2 idn-!^}

Proof, — The proof will depend on a combination of arguments that we gave in propo-
sition 2 and theorem 3.

Let a be a single closed curve in M which is non-homologous to zero in M and which has
shortest length among these curves. As in theorem 3, we can assume <j intersects a^ only.
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Let NI and Mi be the sets defined as in theorem 3 and o-1 be the part of the normal
bundle of <j where all the normal vectors point inside Mi. Then we claim that every point
in NI can be joined to a by a unique minimal geodesic.

By the Rauch-Warner [15] comparison theorem and the fact that a has non-negative
geodesic curvature, we know that the focal length of a is not less than (n/2 ̂ / c ) ^ d (M).
Let q be a point in N1 which is closest to a and which can be joined to a by two
distinct minimal geodesies TI and T^. Then we claim that, by the argument of
Klingberg [24] TI and T^ form a smooth geodesic at q. In fact, let TI, ^2 : [0, /] -> a1

be the preimagesof TI and Ta under the exponential map where { TI (0), T^ (0) } c: or
and exp (TI (/) = exp (1:2 (/)) = q. Let pi, p^ be two curves in a1 which pass through
T! (O? ^2 (0 respectively and have distance equal to / from a. Then by our knowledge
about the focal length, the images of pi and p^ under the exponential map are smooth.
IfTi and T2 do not form a smooth geodesic at q, the images of Pi and p^ will meet trans-
versally at q. Then it is not hard to find a point q near q which can be joined to CT by two
distinct minimal geodesic and whose distance from a is less than d (q, a). This
contradicts the minimality of /. Hence, TI, T2 and part of or form a simply connected
region with exactly two corners. As these two corners have angle 7i/2, the Gauss-Bonnet

theorem shows that K4' ^ 71, a contradiction.
JM

Therefore, N1 is isometric to the domain D = = { z e C | l ^ | z | ^ g (arg z) } with the
metric d r 2 - ^ / 2 (r, a) da2. Here the curve a is mapped to the circle | z | = 1.

For each 6, let TQ be a point where/(r, 6) attains its maximum in [1, g (6)]. Then
(9f/6r) (FQ, 9) ^ 0 and as in theorem 3,

rgw ri
(2.26) /(g(9),9)-/(ro,9)^-c /(s, Q)dsdt

Jro Jro

^-^gW-^f^Q).

Therefore, if 1 > c(g (O)-!)2^,

(2.27) sup /(r,9)^_—————-^(g(9), 9).
i^^(9) [2-c(g(9)-l)2]

It is easy to see from (2.26) that passing through any point in N1, we can find a simple
closed curve which is non-homologous to zero and which has length not greater than— w
(2/2 — cd (M) ) / (3Ni\<7). The proof of proposition 2 then shows

(2.28) V(Ni)^ ^(aN^cy)[^(aNl)+2d(M)].
1-cdW

Since /(5Ni\o-) ^ /(c^) {see the proof of theorem 3), one can deduce (2.24) from
from (2.28) as we did in theorem 3.

4® S^RIE — TOME 8 — 1975 — ?4



COMPACT RIEMANNIAN MANIFOLD 497

3. Isoperimetric constant for the torus

In this section, we apply the isoperimetric inequality in paragraph 2 to a compact sur-
face M with genus one.

Let Si, ..., Sfc be disjoint simple closed curves in M whose union decomposes M into
two connected domains Mi and M^. Then the addition formula for euler numbers shows
that x(Mi)+x(M2)=0.

In order to compute the number h (M) we defined in paragraph 1, we can assume both
Mi and M2 are not homeomorphic to the disk so that ^ (Mi) = % (M^) = 0. Hence,
both Mi and M2 are doubly connected surfaces bounded by two simple closed curves
Si and 82.

At this point, there are two ways to attack the problem. One is to apply theorem 4
to Mi or M2 directly. The other is to apply theorem 4 to find a lower bound for /(S^)
and / (82). Since the latter gives more information, we prefer to estimate a lower bound
for /(Si) and /(S2).

Let a be a shortest closed geodesic in M. Then we have to estimate / (<r). We cut the
torus along the simple closed curve a to obtain a doubly connected surface M whose boun-
dary consists of two isometric copies of a. It is an easy exercise to see that the quantities
d(M) and d(M) defined in theorem 4 is bounded from above by 2d(M) where rf(M)
is the diameter of M.

Let c be an upper bound of the curvature of M. Then if K4' < TT and c d (M)2 < 1/2,
JM

theorem 4 implies

(3.1) V(M)^———^———[J(a)+2d(M)]+ l(a)2

(2B- fK t )\ JM /
1 — 2 ca (M)

Since we also have / (a) ^ 2 d (M), we conclude

^ ' 2 ) ^(a)^v^ )^4(l-2cd(M)2)- l+f27^- f K^'T1.
g2d(M)L \ JM / J

Under the assumption K-'1' < TT, the Gauss-Bonnet theorem shows that every non-
JM

trivial simple closed geodesic without corner is homotopically non-trivial. Hence, a
result of Klingberg [24] and (3.2) show the following.

THEOREM 5. — Let M be a compact surface with genus one. Suppose the curvature

ofM is bounded from above by a constant c > 0 such that c d(M)2 < 1/2 and K4" < 71.
JM

Then the injectivity radius ofM is bounded from below by nl^/c or half the quantity shown

ANNALES SCIENTIFIQUES DE I/ECOLE NOBMALE SUPERIEURE
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in the right hand side of (3.2). Furthermore,

(3.3) h(M)^tmn^ld(Mrl[4(l-2cd(M)2)-l+(2^t-! K^X1'}'1

K^-JM^^T}-

4. Isoperimetric inequalities for higher dimensional negatively curved manifolds

Let M be a w-dimensional complete simply connected manifold with sectional curvature
bounded from above by -K where K. ^ 0. Let r be the distance function from a fixed
point p e M. Then it is well-known that r 2 is a smooth function. Furthermore, by using
the comparison theorem, one can prove that

(4.1) Ar2^^

when K == 0, and

(4.2) Ar2^2+2(n-l)K l / 2rcothK l / 2r ,

when K < 0.

The inequalities have immediate applications to isoperimetric inequalities for domains
in M. The inequality (4.2) is particularly interesting in connection with theorems in
section 2.

PROPOSITION 3. — Let D be a compact domain in a complete simply connected manifold
with sectional curvature bounded from above by —K where K > 0. Then

(4.3) VoKD^-A^),
(n-^^/K

where A (9D) is the area of 3D.

Proof. — This follows because (4.2) implies

(4.4) Ar ^ (n-l)^/Kcoth^/Kr ^ (n~l)^/K.

Integrating this inequality over D and applying the divergence theorem, (4.3) follows
immediately.

In case K = 0, Hoffman and Spruck [16], using the method of Michael and Simon [17],
has been able to prove that

(4.5) [VoKD^-^^A^D),

where ̂  = [2"~1 n n/(n-1)] (2 o),)"17" with ©„ == volume of the unit ^-sphere.
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Putting (4.3) and (4.5) together, we have

(4.6) Vol(D)^mnJ A(aD) (cJ^-^EA^D)]^-^ .
l(n~l)VK

COROLLARY 1. — Let M be a compact manifold (with boundary) which is isometric to a
domain of an n-dimensional simply connected complete Riemannian manifold with sectional
curvature bounded from above by a negative constant — K. Then

(4.7) h(M) ̂  max[(n-l)VK, ^(VoKD))-17"].

COROLLARY 2 (McKean [13]). — Let M be an n-dimensional complete simply connected
manifold with sectional curvature bounded from above by a negative constant —K. Then
^ (M) = sup Xi (D), where ̂  (D) is the first eigenvalue (for either the Dirichlet problem
or the Neuman problem) of the Laplacian for the compact subdomain D, is not less than
[(n-WjK.

COROLLARY 3. — Let M be a closed manifold mth sectional curvature bounded from above
a non-positive constant ~K. Then for any point p e M, the (n—\)-dimensional measure
of the cut locus of p is non-zero.

5. Another isoperimetric constant

In this section, we shall be interested in another isoperimetric constant. While this
constant is different from h (M), it makes the computation of the first eigenvalue of the
Laplacian of a compact manifold more tractable. As a result, this constant is more delicate
than h (M).

Given a compact manifold M (with boundary), I (M) is defined to be
inf[A (3Mi n aM^^/min (Vol (Mi), Vol (M^))] where the infis taken over all decompo-
sitions M = Mi u M2 with Vol (Mi n M^) = 0. Similar to theorem 1, one has the
following well-known.

THEOREM 6. - I(M) = inff I V / I H inf 1/--P | ) where the inf is taken

\ JM / V p e R j M /
over all C^-function defined on M.

Proof. — Let / be any C^function defined on M. Then define /+ = max (/—fc, 0),
/" = —min (f—k, 0) where k e R is chosen so that

Vol{x [/+ (x) > 0} ̂  IvoKM) and Vol{x |/~ (x) > 0} ̂  IvoHM).
2 2i

As in theorem 1, one can apply the co-area formula to obtain

f [vr^^f [/+! and f |vr|^I(M)f I/-|.
JM JM JM JM
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Therefore

(5.1) f |V/|^I(M)f |/-fe|.
JM JM

The converse of theorem 9 can be proved in the same way as we did in theorem 1. In
fact, if Vol(Mi) ^ Vol(M2), we can define a function/g as follows. For jceMi, we
define /, (x) = 1. For x e M^, we define /, (x) = 1 -(r/e) when x has distance r ^ e
from 5Mi n 8M^ and ̂  (^) = 0 when x has distance > e from 3Mi n 9M^ Clearly

we can choose k^ so that [/, - kA = inf |/e - P | and A:, -> 0. Therefore,
JM p JM

A(^naM.) ^^/r y r \-
mm(Vol(Mi),Vol(M2))-^oUM' 'Ap jM ' • 7

COROLLARY 1. — Let M be a compact manifold (with boundary). Then for any C1-
function f defined on M, we have

(5.2) f IV/l^l^f (/-^,
JM 4 JM

/or ^y A: e R satisfying

Vol{x|/(x) ̂  fe} ̂  IvolCM) and Vol{x|/(x) ̂  fe} ̂  ^VolCM).

Z/i particular, if \ f = 0,

(") " fiv/ra'-^f/'.
JM 4 JM

Proof. - Clearly,

(5.4) fy+/ -=o.
JM

Hence, by using the co-area formula again,

(5.5) f (/-fe)^ f (r+/-)2^ f (D^ f CT)2
JM JM JM JM

^i^^i^'^^^^w-
The inequality (5.3) follows from (5.5) by Schwarz's lemma. Inequality (5.3) follows

from (5.2) becauce if /= 0,
JM

(5.6) f /^ in f f (/-fc)2.
JM k JM
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6. A lower estimate of I (M)

In this section, we give a lower estomate of I (M) for a general compact Riemannian
mamnifold. In particular, we obtain a lower estimate for the first eigenvalueof the Lapla-
cian of a general Riemannian manifold.

Let M be an ^-dimensional manifold (with boundary) such that for some p e M, every
other point in M can be joined to p by a minimal geodesic. Then the exponential map
at p is surjective and we can identify a domain in the tangent space at p with the open set
in M which is within the cut locus of p. Let S (p) be the unit sphere in the tangent space
Tp (M). Then we can write the domain in polar coordinate as

(6.1) D(p) = {(r, 9)|9eS(p), 0 ̂  r ̂  r(9)},

where r (6) is a function defined on S (/?).
For every point q e D (p), we can write the volume element of M as ^ / g (p, q) r"~1 dr dQ.

For every measurable subset E of D (p), we define the cone ofp over E to be

(6.2) Cp (E) = { (r, 9) | for some 7, (r, 9) e E }.

LEMMA 4. — Let h be a Lipschitz function defined on D (/?). Then for
E = { x e M | h (x) = 0 }, we have

(6.3) H [S (p) n C, (E)] | h(p) \ ̂  f 8h [/g(p, x) pTx"-1] -l dx,
Jcp(E) 8r v

where p, denotes the euclidean measure on S (p), dx denotes the volume element of M and
p, x denotes the distance between p and x.

Proof, — Let (r, 9) e Cp (E) be an arbitrary point. Then for some r ^ r (9), we have
h (r, 9) = 0 and

Fixing r, and integrating (6.4) over the set S (p) n Cp (E), we obtain

r r r^ ^
(6.5) |^,9)|^ —drdQ.

JeeS(p)nCp(E) J 9 eS (p)nCp (E)J 0 ffr

By definition, the volume element dx is given by \/g(p, x) r " " 1 dr dQ and so (6.5)
implies

(6.6) f \h(r, 9)| ̂  f 9h [7g(p, x)p^xn-lYldx.
JeeS(p)nCp(E) JCp(E) or

Letting r -> 0 in (6.6), we obtain (6.3).
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LEMMA 5. — ^/g (p, q) = ̂ / g (q, p) whenever they are well-defined.
The referee says that this is a folk result which seems to be proved explicitly in the lite-

rature only in the real analytic case (see [21], formula (2) on page 19 or [22], proposi-
tion 1.4). A proof for the C°° case follows easily from the formula

(6.7) B,(s)=A(s)|A" l(0[A~ l(0]*A on page 31 of [18].

Now let M be any general Tz-dimensional manifold (with boundary). (We drop the res-
triction that we assume at the beginning of this section.) Let Mp be the subset of M which
can be joined to p by a smooth minimal geodesic. Then applying lemma 4 to Mp, we have

(6.8) o),(E)|A(p)| ̂  ̂  [̂ g(p, x)p7?-1]-1^,

where Op (E) = p [S (p) n Cp (E n Mp)].

Integrating (6.8), we obtain

(6.9) f \h(p)\dp^[ f ^(x) [co/E)^?^)^-1]-1^^
JM j M j M or

^([ [Vft j^supff [(o^E)^?,^^"-1]-1^.

To evaluate the last integral, we use the exponential map to identify a domain in the
tangent space at x with the open set in M which is within the cut locus ofx. Using lemma 5
and the same notation as before, one sees

r - _ r r*r(9)
(6.10) [o^ (E) 7g(p, x)p,xn-lYldp=\ [o)̂  e) (E)] "' dr d6.

JM J S ( x ) J O

LEMMA 6 :
rr(Q)

[(o/E^-^VoKEnM^r1 sup ^g(p, (r, O))^1^.
ees(p) Jo

Proof. — By definition,

(6.11) Vol (E n Mp) ̂  Vol (Cp (E n M^))

r r^ /-
^(P.^Q^r^drdQ

J 9 € S (p)nCp (EnMp) J 0

^(9)
^ (O^(E) sup Vg(p, (r, O))^'1^.

9eS(p) Jo06S(p) J O
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Putting (6.9), (6.10) and (6.11) together, we have

(6.12) f H ^ f f |V^n|sup sup f ^g(p,(r,Q))rn~ldr\
JM \JM /L P BeS(p ) Jo J

r /• ___ 1

x \ sup [Vol(EnM^)7g(^ P)^"?""1]"1^ }•
[ x J M J

In the inequality (6.12), h is an arbitrary Lipschitz function and E is the zero of/?.
Suppose/is any Lipschitz function defined on M. Then for some number k,

[ No\{x\f{x)<k}^i^o\(M\
(6.13) < \

Vol{jc | / (x)>fc}^-Vol(M).
\

For this k, we define

(614) /M-i^^ if fw^k9(6•14) . / iW-j o otherwise;

( f(x)-k if f(x)^k,
(6-15) ^W-i 0 otherw^.

Clearly, f(x)-k =/i (x)+/2 (^")- Furthermore, the volume of both the zero sets of
/i and /2 are not less than (1/2) Vol (M).

Since

f \f-^\-\ N + f \M and f } V / | = f |V/J+f |VA|,J M ' J M ' J M ' JM J M JM

it follows from (6.12) that

(6.16) f \f - k | ^ f f | V/|^) [sup sup | (e) 7^ (^ 9)) ̂ ~' ̂ H
J M \ JM /L P eeS(p)Jo J

c r - __ )
x \ sup sup [Vol (E n Mp) ̂ / g (x, p) xTp""1] ~1 dp ̂

[ E x JM J

where E ranges over all subsets of M with Vol (E) ^ (1/2) Vol (M).
When M is compact, M = Mp :

(6.17) sup sup [VoKEnM^^x.rtx.'T1"1]"1^
E x JM

r fr(9)
^VoKMr'sup drde^VoKMr^MMn),

x Js(x)Jo

where a (n) is the volume of the (n-^-dimensional unit sphere.
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Putting (6.17) into (6.16), we have
r p»'(e)

)-1 [sup sup l^(e) ̂ / g ( p , (r, 9)) r"-1 rfrt.
L P eeS(p)Jo J

(6.18) I(M)~1^2^n)d(M)'Vol(M)~l\sup sup ^g(p, (r, 9))r""1 rfr
L P eeS(p)Jo

To state the main theorem, we shall use the following convention : ̂ / —K~1 sinh ^/ — K r is
interpreted as r when K = 0, •\/K~1 sin ^/K r when K > 0. Then when the Ricci curva-
ture of M is bounded from below by (n—1) K, the comparison theorem (see [2]) says that
^ / g ( P , (r, 8)) r " ' 1 ^ (^/-K-1 sin h ̂ /^K r)"-1. It follows therefore from (6.10)
that

^d(M)ra (M) ___ _
)"1 (V-K'^in/iy-Kr)"-1^.

Jo
(6.19) I(M)~1 ̂  a(n)rf(M)Vol(M)"

THEOREM 7. — Z^ M be a compact n-dimensional manifold without boundary whose
Ricci curvature bounded from below by (n—l)K. Then (6.19) holds with a (n) equal to
the volume of the unit (n—\)-sphere. Since Xi (M) ^ I (M)2/^, we find a lower bound of
7.1 (M) in terms of d(M), Vol (M) and K.

From (6.10), we also obtain :

THEOREM 7. — Let M be a compact n-dimensional manifold (with boundary). Then for
co = infinfcOp(E) where E ranges over sets with volume ^ (1/2) Vol (M),

p E
I(M)-1 ^ a(w)rf(M)r).

In order to obtain a useful estimate, we weaken theorem 7 and proceed as follows:
For each/? e M, let Bp (r) be the geodesic ball of radius r around/?. Then for

x7p ̂  { d (p, 8M), B, \^d (p, 8M)} c= M,. J^O^M)!^

In particular for every point x e Bp [(1/3) d(p, 8M)], Bp [(1/3) d ( p , 8M)] c M^. Hence
for every Lipschitz function/defined on M, we have

(6.20) (inff l/-Pl)ff WY
\ P jBp[(l/3)rf(p.aM)] /\jBp[(2/3)d(p.5M)] /

^ 4 a (n) d (p, 3M) Vol [a? ( 1 d (p, aM)YI

r r''^ /- ~ix I sup sup Vg(^ (r, Q^r^'dr .
L^.P^(1/3)<<(P.5M) 6eS(g)Jo J

LEMMA 7. — Z/^ a be a minimal geodesic segment in a Riemannian manifold M with
dimension n. Suppose at each point CT (t), the Ricci curvature of M in direction a ' (t) is
given by K (a' (t)). Then

(6.21) ^(a(0), o(r)) ̂  expf fY- ̂  F K (a'(r)) T2 dr) A"|.
LM ^ J0 / J
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Proof. - Denote the distance function from a (0) by r. Then as in [1] p. 137, we have

(6.22) 9([og^)=Ar-n^l,

when r is smooth.
On the other hand, by the fundamental theorem for the index form, one can derive

(cf. [19]) :

(6.23) ^ r ^ n - ^ l - l \ r K( t ) t 2 d t .
r r Jo

The inequality (6.21) follows immediately from (6.22) and (6.23). Putting (6.21)
into (6.20), we have :

THEOREM 8. — Let M be a compact manifold with boundary. Let p c- M be a point such
that d ( p , 8M) = r. Let

G = sup exp f f7 - 1 P K (c/ (T)) T2 dx\ dt\
LM t J° / J

where a ranges over all minimal geodesic segment with length I ^ (2/3) r and p, a (0) ^ r/3.
Then for all Lipschitz function /;

r d.r"'^1 r /r\n~1 r
(6.24) inf |/-p|^__a(n)Vol B, r G |V/|.

P jBp(r/3) 3n L ^/J JBp(2r/3)

Remark. — The main point of (6.24) is that when G is uniformly bounded
and Vol [Bp (r)] grows up at least like r", then (6.24) is exactly similar to the Poincare
inequality (without compact support) in euclidean space. This enables one to push the
standard R^-arguments to manifolds. (See the conclusion at the end of next section for
introducing the constant G.)

7. Remarks

The estimate of I (M) in section 6 depends on a lower bound of the volume of M. We
suspect that this may not be necessary. (However, examples show that dependence on
the lower bound of the Ricci curvature and the upper bound of the diameter of the mani-
fold is essential. This is easily illustrated by the flat torus.)

In case M is a minimal submanifold in a complete simply connected manifold N with
non-positive curvature, one can obtain a lower estimate of the volume of a geodesic ball
of M as follows.

Let p e M c: N be an arbitrary point. Let R be the distance function of N from p.
Then straightforward computation (using the comparison theorem, see [2]), shows that
when we restrict R2 to M, we have

(7.1) AR2^^
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Let Bp (r) be a geodesic ball of radius r in M. Then integrating (7.1) on this ball, we
have

(7.2) 2rVol[3B(r)] ̂  2 | R|VR| ^ 2nVol[B^(r)].
J 5Bp (r)

Since Vol [B (r)] == (3/5r) (Vol [Bp (/•)]), (7.2) implies Vol [Bp (r)] /- -"is non-decreas-
ing and hence

(7.3) Vol[B,,(r)]^a(n)r".

A consequence of this inequality is that a complete minimal submanifold of a complete
simply connected manifold with non-positive curvature has infinite volume. (The immersion
is not assumed to be proper.) Another consequence is that if M is a compact minimal
submanifold of a complete manifold with non-positive curvature, then 711 (M) is non-trivial
and it grows up at least polynomially with order ^ dim M. (For definitions and arguments,
see Milnor [20]).

Putting (7.3) into (6.24), one sees that for a minimal submanifold in a complete simply
connected manifold with non-positive curvature, we have

(7.4) inff [/-Pl^rcf |V/|.
P jBp(r/3) jBp(2r/3)

where €„ depends only on n = dim M.

Since Sobolev inequality was proved for manifolds of the above type in [17] and [16],
one can apply the standard De Giorgi-Nash-Moser result (see [23]) to prove a "Harnack
inequality" on such manifolds. Such a "Harnack inequality" will imply "Liouville's
theorem" on such manifolds if the manifold M is complete and G is uniformly bounded
on M. In particular, if M is a complete minimal submanifold in a complete non-positively
curved manifold and if for some 8 > 0, K (a' (Q) r24"6 is uniformly bounded, then M admits
no non-constant bounded harmonic function.

Remark. - - The inequality (7.3) is also obtained by H. Alexender (private communi-
cation from L. Simon) in case N is the euclidean space.
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