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REPRESENTATIONS OF SOLVARLE LIE ALGERRAS.
II. TWISTED GROUP RINGS

BY J. C. McCONNELL

Introduction

This paper may be regarded as either an introduction to or a continuation of [4]. In [4]
it was shown that the simple algebras which arise in the representation theory of solvable
Lie algebras could be viewed as algebras of differential operators in which the multipli-
cation is altered by a Lie 2-cocycle. In this paper we show that these cocycle twisted
algebras of differential operators may also be viewed as (cocycle free) twisted group
rings.

We first recall the main result of [4]. Let g be a completely solvable Lie algebra over
a field k of characteristic zero and P be a prime ideal of U = U (g), the universal
enveloping algebra of g. Let

E = E ( U / P ) = { M + P : u + P ^ P a n d [g, nj+Pefeu+P for all geg}.

U/P has a simple quotient ring (U/P)E with respect to E. It was shown in [4] that

(U/P)^(KS®KKG)#,U(a),

where K is the centre of (U/P)e, KS is a commutative polynomial algebra,
KS = K [ji, . . . , Yn], n ^ 0; KG is the group algebra of a free abelian group of finite
rank m, m ^ 0,

KG=K[g,,gi-\...,gnp^1];

a is a subalgebra of the abelian Lie algebra ^ kSjQy^kgjSIQgj such that the ring of
in-

formal differential operators (KS ®^ KG) # U (a) is simple, (see Theorem 2.2); a is
a Lie 2-cocycle, a e Z2 (a, KS ® KG) and (KS ®^ KG) #a u (a) is the corresponding
"twisted ring of differential operators." (See Theorem 2.1 and Remark.) The key
result of this paper is that, under the conditions stated, the Lie cohomology group
H2 (a, KS ® KG) is isomorphic to a subgroup of H2 (a, K). From this it follows readily
that such a simple algebra (KS ® KG) #y\J (a) may be "turned upside down" and
viewed as a twisted group ring, (A,, ®^ U (w)) # KG^ where A,, is a Weyl algebra with
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158 J. C. MC CONNELL

centre K, U (W) is the enveloping algebra of an abelian Lie algebra W and G is a finitely
generated free abelian group of automorphisms of the coefficient ring A^ ® U (W).
Each element of G preserves the filtration on A^ ® U (W) and induces the identity auto-
morphism on the associated graded algebra and (A,, ® U (W)) # KG may be regarded
as an algebra J^(V, 8, G) constructed from a finite dimensional vector space V, an
alternating bilinear form 5 on V and a finitely generated subgroup G of the dual space V*.

It is shown that each such simple algebra ^(V, 8, G) may be expressed as a
(KS ® KG) #<,U(a) and as a (U(g)/P)E. Thus there are bijections between the iso-
morphism classes of simple algebras,

{(U(g)/P)E}, {(KS(g)KG)#,U(a)} and {^(V, 8, G)}.

It is also shown that a simple algebra ^ (V, 8, G) is a subalgebra of A^ ® A^, where
n = rank 8/2, m = rank G and A^ is the localisation of A^ at the powers of the element
x! x! ' • • -^m-

A necessary and sufficient condition for ^ (V, 8, G) to be simple is that V8 n V° = 0,
where V8 is the orthogonal complement of V with respect to 8 and V0 = n Ker \ (K e G).
The proof of this is elementary and is much easier than the proof of the corresponding
theorem of [4] which gave sufficient conditions for (KS ® KG) #y U (a) to be simple.
(See Theorems 2.2 and 4.7.)

Finally we consider when two simple algebras

^i == ^ (V, 8, G) and ^2 = ^ (W, y, H)

are isomorphic. We conjecture that these algebras are isomorphic if and only if there
exists a vector space isomorphism (p : V —> W such that (i) (p is compatible with 8 and y
and (ii) the dual map (p* induces an isomorphism H —> G. If such a (p exists then
j2/i ^ ^2- Conversely, if js/i ^ ̂  then we show that there exists an isomorphism (p
such that (ii) holds but we are unable to show that (p also satisfies (i) except in a special
case. However we do have four integer valued isomorphism invariants associated with
with ^(V, 8, G), (or with a primitive ideal P of the universal enveloping algebra of a
completely solvable Lie algebra g) and if the conjecture is true then there is yet another
integer valued isomorphism invariant. It is well known that if g is nilpotent then P
determines a single integer n, where U/P ^ A^ and 2 n is the dimension of the orbit of g*
associated with P, [6] (4.2.1).

We are indebted to L. Avramov and A. Rosenberg, (participants in the Leeds Ring
Theory Year), for their help with the cohomological questions considered in Sections 3.

1. Notation

k is a field of characteristic zero. An algebra is an associative fc-algebra with 1 and
homomorphisms preserve 1. If A is an algebra, Der A is the Lie algebra of ^-derivations
of A and Aut A the group of fe-algebra automorphisms of A. End A = End^ A and if
A is commutative, DiffA is the subalgebra of End A generated by Der A and the multi-
plications by elements of A.
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REPRESENTATIONS OF SOLVABLE LIE ALGEBRAS 159

If g is a Lie algebra and M a g-module, then CY (g, M) is the fc-space of /?-cochains,
V (g, M) the space of /?-cocycles and W (g, M) the corresponding cohomology group.
In particular C2 (g, k) is the space of alternating bilinear forms on g. M x g denotes
the split extension of M by g and if or e Z2 (g, M), M x y g denotes the extension corres-
ponding to a. (See [I], Chapter 13 Section 8 and Chapter 14 Section 5.)

If A is an algebra and G a subgroup of Aut A then A # k G denotes the corresponding
twisted group ring which as a fc-space is A ®j^ k G, where k G is the group algebra of G
over k, and multiplication is defined by

(^i ® 81) (^2 ® gi) = ̂ i Si (^2) ® gi gr

We will denote a ® g by ag as usual. A # k G is also a free right A-module with the
elements of G as a free basis. A # k G has the universal property that if B is an algebra
and (p is a homomorphism of A to B and \|/ a group homomorphism of G into the group
of units of B such that

^(gM^)==(pfe(^M(g),
for all a e A, g e G, then there exists a unique (fc-algebra) homomorphism of A # k G
to B which extends (p and v|/.

If V is a vector space and 8 an alternating bilinear form on V then a basis for V adapted
to 8 is a basis

xl9 Yl9 ' « • » xh Yh sl9 • • • » s!

such that 8 (x^ yj) = A,y (where A,y is the Kronecker delta) and

8(x,, x j ) = 8(x», Sj) = 8 Of, ̂ .) = 8(^, ŝ .) = 8(s», s^) = 0.

If A^ is a Weyl algebra with its usual filtration and U (W) the enveloping algebra of
an abelian Lie algebra W with its usual filtration then A^ ® U (W) is a filtered algebra
by

F^®U(W))= S F,(A,)®F^,(U(W)).
s=0

Thus ifA^k [x^ y,, ..., ^, ̂ ] (with [x,, ̂ ] = A.,), U (W) == fc [>i, . . . , ^] and V
denotes the subspace of A^ ® U (W) spanned by { x^ y^ . . . , x^ y^ s^, . . . , ^ } then

Fo(A^®U(W))=fel and Fi(A^®U(W)) = fel ©V.

If 9 is an automorphism of A^ ® U (W) such that 9 preserves the filtration and induces
the identity automorphism on the associated graded algebra then there exists a unique
X e V * such that for veV, Q(v) = r+X(u). Conversely, if XeV* then there exists
a unique automorphism 9 o f A ^ ® U (W) defined by 9 (v) = u+X (u), v e V, and 9 preserves
the filtration and induces the identity automorphism on the associated graded algebra.

The following notation is standard throughout the paper. kS will denote a commutative
polynomial algebra over k with n ^ 0 generators, k S = k \_y^ . . . , j^], and k G will
denote the group algebra over k of a free abelian group of finite rank m, m ^ 0,
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160 j. c. MC CONNELL

k G = k [^i, ̂  \ ..., g^g^1]. c denotes the abelian Lie subalgebra of Der (k G ® fe S),

c= ffea/^+i; feg /̂sg,.»=i j==i
This situation may be described more intrinsically as follows. The units in k S ® k G

are just the units in k G, i. e. are scalar multiples of the elements of G. Consider k S
with its usual graded algebra structure, (induced by the degree in^i, ..., y^) and let Grp (kS)
denote the pih subspace in this grading. Then c is the subspace of Der (k S ® k G)
such that,

(i) if cec and h is a unit in k S ® k G, then, c(h)ekh
and

(ii) c(G^(feS))£Grp_i(feS) for p^ l .

c = Ci C C2, where Ci == ^ fca/^, and c^ == ^ ̂  3/̂ ,. For /= 1, 2, ̂  denotes

the projection of c = Ci C c^ onto c .̂. If ^ e G, ^ e c* is defined by c (g) = \ (c) g
for all cec.

A subspace a of c is said to satisfy condition (Sim) when the following two conditions
hold :

(i) Tii (a) = Ci,
(ii) if g, heG with g ^ h then \ | a + ̂  | a. (See Theorems 2.2 and 3.2.)
(Note that Ci (respectively €2) as defined above corresponds to c^ (respectively c^)

as defined in [4] Section 5.)
a n c^ will be denoted by a°, i. e. a° = Ker (n^ a).

2. A SimpBcity Theorem

The following theorem is [4] (Theorem 2.8).

THEOREM 2.1. — Let A be a commutative algebra, g a Lie algebra, 9 a Lie algebra
homomorphism of g into Der A and CT a Lie 2-cocycle, a e Z2 (g, A). Let 1 = ly be the
ideal of U = U (A Xy g) generated by

y=[^-^^a.b-ab : a, fceA},

H^/^ a.b denotes the product of a and b in U and ab their product in A.
(1) If% is a homomorphism ofV into an algebra B then % | A is an algebra homomorphism
from A to B if and only if I <= Ker%.
(2) 7jf\|/ is the canonical homomorphism from U to U/I r/^ v|/1 Ax^ g fj- a monomorphism
and ifg^ ..., ̂  zs- a basis for g ayzrf we identify A x^ g H^A f^ ̂ ^? ^fifer \|/ then U/I
z^ fl?/r^ fe/^ A-module with the standard monomials in g^, ..., g^ as a free basis. •
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Remark. — A #y U (g) has the universal property that if B is an algebra, and 9 is a
Lie algebra homomorphism of A Xy g into B such that 9 | A is an algebra homomorphism
then 9 may be extended to an algebra homomorphism of A #<,U(g) into B.

THEOREM 2.2. - Let a be a subspace of c a n d creZ^a, k S ® k G). Then
(k S ® fe G) #g U (a) f^ a simple algebra if and only if a satisfies condition (Sim).

[Thus the simplicity of (k S ® k G) #y U (a) depends on the action of a and not on
the choice of a.]

Proof. — If 71:1 (a) ^ Ci then there exists 0 ^ y e ^ k y ^ such that a (y) = 0 for all a e a.
i

Thus y is a central non unit in (k S ® fc G) #<y U (a). If there exists g, h e G with ^ ^ A
and Kg \ a = X/, a then 1 —gh~1 is a central nonunit in (^ S ® A: G) #<y U (a). Thus (Sim)
is a necessary condition for (k S ® fe G) #c U (a) to be simple. That (Sim) is also
sufficient was proved in [4], Section 5, Theorems 5.2 and 5.3.

However in Theorem 4.7 we will give another proof of this, which is entirely elementary
for the case CT = 0 and the same proof can be used when cr 7^ 0 modulo Theorems 3.1
and 3.2. •

DEFINITION 2.3. — Let A be an algebra and g a Lie subalgebra of Der A. If, for
all a^ a^ e A, g (a^) = g (a^) for all g e g implies that a^—a^ek then we say that g separates
the points of A modulo k.

THEOREM 2 . 4 . — Let a be a subspace of c. Then a satisfies (Sim) if and only if a separates
the points of k S ® k G modulo k.

Proof. — If a does not separate points modulo k then, as in the proof of Theorem 2.2,
(k S ® k G) # U (a) contains central nonunits and so a does not satisfy condition (Sim),
by Theorem 2.2. Conversely, if a separates points modulo k then a must satisfy condi-
tions (i) and (ii) of (Sim). •

3. Cohomology

THEOREM 3 .1 . — Let A be a commutative algebra, g a Lie algebra and 9 a Lie algebra
homomorphism ofg into Der A. Let a, T e Z2 (g. A). 7/'<7, T are cohomologous cocycles
then there exists an isomorphism

(p' : A#,U(g)-^A#,U(g)

which extends the identity map of A to A.

Proof. — Since a, T are cohomologous there is a Lie algebra isomorphism
(p : A Xy g —> A x^ g which extends the identity map on A. (p may be extended uniquely
to an algebra isomorphism (again denoted by (p) of U (A Xy g) —> U (A x, g). Consider
the following diagram where I, \|/ are as in Theorem 2.1,

O^I^U(Ax,g)^A#,U(g)^0
i ^ ^ i^'

O^I^U(Ax,g)^A#,U(g)^0
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162 j. c. MC CONNELL

Since (p : Io->I,, (p induces an isomorphism of A #^ U (g)~^ A #, U (g) which we
denote by (p'. Since \|̂ , \|/, and (p induce the identity map on A, (p' also has this pro-
perty. •

The rest of this section is devoted to the proof of the following

THEOREM 3.2. - Let a be a subspace of c which satisfies condition (Sim). Let
aG = a n €2. Then for p > 0, there is an isomorphism of Lie cohomology groups,

IF (a, kS ® feG) ̂  H^a0 fe).

LEMMA 3.3 (Rees). — Let R be a commutative ring and x e R a non zerodivisor on R.
Let M be an R-module with x M = 0 and N aw R-module such that x is a non zerodivisor
on N.

(1) Extg(M,N)^Ex^(M,N/xN) for p ̂  1,
=0 for ^=0.

(2) 7/* ̂  TO?/? N->N ^nwz 6y n^xn is surjective (as well as injective) then
Extp (M, N) = 0 /or ^ ^ 0.

Proof (1) is the Rees Reduction Theorem [7] and (1) implies (2). •

The following lemma is a dual version of the Rees Reduction Theorem for the case
when the map N -^ N given by n h-> xn is surjective instead of injective. (Compare the
concept of a cosequence as introduced by Matlis [3].)

LEMMA 3.4. — Let R be a commutative ring and x e R a non zerodivisor on R. Let
M be an R-module such that x M = 0 and N an R-module such that x N = N. Then
for p ^ 0,

Ext^(M, N) ̂  Ext^,(M, Ann^x),

where Ann^ x = { n e N : xn = 0 }.

P/w/. - By ([I], p. 348, Case 4 or p. 118, Case 4) with F = R/R x and A = R, there
is an edge homomorphism 9 in a spectral sequence,

6 : Ext^ (M, HoniR (R/R x, N)) ̂  Extg (M, N)

and by [1] (p. 349 or p. 118, Proposition 4.1.4) 9 is an isomorphism if

Exti(R/Rx,N)=0 for q > 0.

Since x is a non zerodivisor on R,

0-^Rx-^R-^R/Rx->0

is an R-projective resolution of^R/R x) and so Ext| (R/R x, N) = 0 for q > 1. Applying
HomR(—,N) to this exact sequence, we obtain

HoniR (R, N) -> HomR (R x, N) -^ Extp (R/R x, N) ̂  0,
1 1 ^ 1A ^

N———^———^N
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REPRESENTATIONS OF SOLVABLE LIE ALGEBRAS 163

where A is defined by n \-> xn. Since x N = N, A is surjective and Ext^ (R/R x, N) = 0.
Thus 6 is an isomorphism. Since R/R x is generated by 1 + R x and x.(l+Rx) = 0 + R ^,
HoniR (R/R x, N) ^ Ann^ x. •

Proof of Theorem 3.2. - Let a' be a subspace of a such that a = a' © a°. Let
a e C^ (a°, A:). <j may be extended to an element of C^ (a, k) by requiring that
o(xi, . . . , Xp) = 0 if there exists an ;, 1 ^ ; ^/?, such that x^ea'. The canonical
embedding k—>kl <= fe S ® fc G enables us to regard o e C^ (a, k) as an element of
C^ (a, fe S ® fe G) and clearly a e Z^ (a, A: S ® fc G). We now show that such a CT cannot
be a coboundary. For each x e a°, the image of x (viewed as an operator on k S 0 k G)
is contained in ^ kS® kg. For each /e C^"1 (a, 7c S ® /; G) and x^ ..., Xp e a°,

<^i
5/Oq, ...^^(-l)1'1^/^ —^ ...^p))(X, , . . . , XJ=^-1) Xf

i

and so 5/(^i, . . . , Xp) e ^ fc S ® A:̂ . Thus CT 9^ §/. Hence the induced homomorphism
»^i

of
W (a0 fe) ̂  C^ (a° fe) -^ H^ (a, k S ® KG)

is injective. It remains to show that this homomorphism is surjective.
Let U be the universal enveloping algebra of a, so U is a commutative polynomial

algebra. By [I], Chapter 13, Section 8,

H^a, feS®kG)^Ext&(fe , fcS®kG).

For g e G, k S ® kg is an a-submodule of k S ® k G and

f e S ® k G = © fcS®kg.
^eG

Since k is a finitely generated U-module and U is noetherian, k has a projective resolution
by finitely generated free U-modules. If F is a finitely generated free module then

Homu(F, f c S ® k G ) = = © Homu(F, feS ® feg).
flreG

Thus
Ext^(fe, feS ® feG) ̂  © Ext&(fe, kS ® feg).

^eG

The action of U of k S ® kg is induced by the action of a on k S ® kg which is given by :
for a e a and /e fe S,

^(/®g)=^(/)®^+/®^(g)=(a(/)+X,(a)/)®g.

We show first that if g + 4 then Ext^ (k, k S ® A^) = 0 for p ^ 0. If g ^ 4 then,
since a satisfies (Sim), there exists a^ e a with ^ (f?i) ^ 0. Choose a basis { ^, } for a
with ^i = ^i. Then there exist c^, . . . , €„ , j ^ e f c with ^ = \ (a^) + 0 such that

^(f^g)-((i c,a/a^+^i)/)®g,
Vv-i / /
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164 J. C. MC CONNELL

where 1= l^s. The map k S — ^ k S given by /-»(^ ^<9/<9^+ pi)/ is bijective. (It

is clearly injective and is easily seen to be surjective by induction on the degree of /.)
Thus, if g ^ Ie, then for p ^ 0,

Ext£(k, k S ® k g ) = 0
by Lemma 3.3 (ii).

We now consider Ext^ (k, k S ® k 1 )̂ and we will identify the U-modules k S ® A: IQ
and kS by the map/® lo1"^/ for/efe S. Since a satisfies (Sim), we may choose a
basis ^i, ..., x^ for a such that for /e k S :

^f=9fl8y, for 1 ̂  f ^ n,
=0 for n+l^i^t.

(Thus ^+i, ..., Xt are a basis for a°.) Since k has characteristic zero, x^ .k S = k S
and Ann^s^i = k \_y^ . . . , ̂ ]. So by Lemma 3.4,

Ext£(k, feS) ̂  Ext^(fe, ^[^2, . • . , ^n]),

where Ui = U/U^i ^ fc [x^ . . . , xj. By induction on n, we obtain

Ext£(fe,feS)^Ext^(fe,fe),
where

U, = U/Uxi+ . . . +U^ ̂  fe[x^,, . . . . xj.
Thus

H^ (a, fe S ® k G) = Ext^ (k, k S ® fc G) ̂  Ext^ (k, k) ̂  H^ (a° k).

Since these isomorphisms are all k-vector space isomorphisms the theorem is proved. •

Remark. — In the case when rank G = 0 and so kS ® k G = k \_y^ ..., y^\ and
n

a = ^ k 9 / 9 y ^ this theorem is classical, (Lemma of Poincare). See [2] (Theorem 2.2
i=i

and following remark).

NOTE 3.5. — Let a be a subspace of c with dim a > 0. In this case the converse
of Theorem 3.2 is also true, i. e. the monomorphism C^a0, ^-^H^a, kS ® kG),
p ^ 1, is an isomorphism for all p ^ 1 only if a satisfies (Sim). (This is easily seen by
reversing the steps of the proof of Theorem 3.2.) Thus there are three equivalent condi-
tions to (Sim), namely the simplicity of an algebra. Theorem 2.2; the separating points
condition. Theorem 2.4; and, when dim a > 0, the minimality of some cohomology
groups. Yet another condition was given in [4] which briefly is as follows.

w

°2= E kgj819g,
j= i

may be viewed as the space of diagonal matrices on kg^+...+kg^ by

^i Si 919 gi + • . • + ̂  grn 919§m -> diagonal matrix (^i, . . . , ̂ ).
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It was shown in [4] Section 5, that condition (ii) of (Sim) is equivalent to the condition
that the algebraic hull of n^ (a) i11 ^2 is ̂  [where the algebraic hull of n^ (a) is the usual
algebraic hull of a space of diagonal matrices].

4. Twisted Group Rings

In this section we construct the algebras ^ (V, 8, G) mentioned in the introduction.
Let V be a finite-dimensional vector space and 8 an alternating bilinear form on V. Let

V5 = [veV : S(v, v') = 0 for all i/eV}.

Then rank 8 = dim V-dim V6 is even, equal to 2 / say where / ^ 0. With this notation
we have

LEMMA 4.1. — Consider V as an abelian Lie algebra, k as a trivial \-module and 8
as an element of Z2 (V, K). Then

k#5U(V)^A,®U(V 8 ) ,

where A^ is a Weyl algebra and U (V8) is the universal enveloping algebra of the abelian
Lie algebra V5.

Proof. — Choose a basis for V adapted to 8 and use Theorem 2.1 (2). •

k #s U (v) ̂ U be denoted by Ug (V) and should be regarded as the algebra containing V
as a subspace and generated by the elements of V subject to the relations : for all v, v ' e V,
vv' —v' v = 8 (v, v').

As noted in Section 1, if X e V * then there corresponds a unique automorphism 6^
of Us(V) defined by 63, (v) = v+'k(v), veV. Let ^ : V*^AutUs(V) be given by
K \-> 9^. If ^, p, e V* then 9^ + ̂  = 9^ 9^ so <5) is a group monomorphism of the additive
group V* into Aut Ug (V). If G is a subgroup of 0 (V*) then the inverse image of G
under 0 will be denoted by G and if H is a subgroup of V* then 0 (H) will be denoted
by H. If G is a finitely generated subgroup of V* then G is a torsionfree group (since k
has characteristic zero) and hence is a free abelian group of finite rank.

We note in passing that if X e V* then 9,, = exp d^ (exponential dy), where ^ is the
unique derivation of Ug (V) such that

U8(V)-^U5(V)

T . T
V———>k

is commutative. ^ ls locally nilpotent and exp ^ is defined, (since k has characteristic
zero), and is an automorphism of U§ (V) which coincides with 9^ since they agree on V.

Thus given a finite dimensional vector space V, an alternating bilinear form 8 on V
and a finitely generated subgroup G of V* we can form the twisted group ring
Ug (v) # kG and we will denote this algebra by ^ (V, 8, G). Conversely an algebra
(A; ® U (W)) # k G, where G is finitely generated and each element of G preserves
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166 J. C. MC CONNELL

the filtration and induces the identity automorphism on the associated graded algebra,
is an s4 (V, 8, G), where

V = W + ̂ kx^ky,
1=1

and for v, v' e V, 8 (v, v') == [v, v'~\.

Two specialisations of ^ = s/ (V, 8, G) are the following. If G = 0 and 8 is non-
singular on V then ^ ^ Ap, where 2p = dim V. If 8 = 0 and m = rank G = dim V
and G spans V* then ^ ^ A^. To see this let g^ . . . , g^ be a set of generators of G,
let ?4, . . . , X^ be the corresponding elements of V*, which are a basis for V*, and let
v^ ..., v^ be a dual basis for V with ^ (pj) = Ay. So [ĵ , i?y] == A^. g^ and

^ = fekl» g^\ • • • » ̂  Sm1. V^ . . ., !;„,].

Set Xi = .̂ and y^ = ^~1^. With the notation as defined in Section 1 we have

THEOREM 4.2. - Let a be a subspace of c which satisfies (Sim) and let
a e Z2 (a, k S ® fc G). TTz^/z ̂ /^ exists a finite dimensional vector space V, ̂  alternating
bilinear form S on V and a finitely generated subgroup G of V* 5'̂ c/z that

(kS ® feG) #<,U(a) ̂  j^(V, 8, G).

Proof. — By Theorems 3.1 and 3.2 we may assume that CT e C2 (a, k). Also if
T e C2 (a, fc) then a and T determine isomorphic algebras if a | a° = T | a0. Thus if a'
is a subspace of a such that a = a' © a° then we may assume that a' is a-orthogonal
to a. Let rank (a | a°) be 2 r and let W be the subspace of a0 which is the a-orthogonal
complement of a°. Let V be the subspace S ® a of (fc S ® k G) #y U(a), where S
denotes the space of homogeneous elements of degree one of k S. 8 e C2 (V, k) is defined
by

8(1;, i/) =[>,<], i;,i/eV.

By (Sim), n^ (a') == c^ and so the subalgebra generated by S and a' is A^, where n is the
Krull dimension ofk S. By Theorem 2.1 (2), the subalgebra generated by a0 is A,. ® U (W)
and the subalgebra generated by V is A^+r ® U (W) and so is Ug (V).

For ^ e a and geG, [a, g} =\(a)g or equivalently ga = (a—\(a))g. ^ea*
and Kg may be extended to an element of V* by setting \ (S) = 0. Thus for v e V and
geG,

gv = (v - \ (v)) g or gvg~1 == v - \ (v).

Thus each g e G determines an automorphism of Ug (V) given by u ^-> gug~1 and i{g, he G
with g ^ h, then ̂  I a 7^ ^ a by (Sim) and so g and /? determine distinct automorphisms
of Ug (V). Since

( feS®feG)# ,U(a )^ feG®A;S®U(a) ,

as vector spaces, (k S ® ^ G) #y U (a) is a free right Ug (V)-module with the elements
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of G as a free basis. Thus

(kS ® feG) #<,U(a) £^(V, 8, G),

where G = { —\ : g e G ] is a subgroup of V*.
*s/(V, 5, G) satisfies the following universal property.

THEOREM 4.3. — Let ^ (V, 8, G) be as above. Let B be an algebra, % : V —> B be a
k-module map and v|/ : G —> (Vnits of B) be a group homomorphism such that

(i) [X 00, X 00] =8(r,i/) , i ; , i /eV,
(ii) ^)x(^)=(x(t0+^00m^).

Then there exists a unique homomorphism %' : sf (V, 8, G) —> B such thai ^ \ V = %
and for \eG, ^ (6,) = v|/ (X).

Proof. - By the remark following Theorem 2.1 and (i), % can be extended to an algebra
homomorphism of Ug (V) to B. By (ii) and the universal property of a twisted group
ring, there is an algebra homomorphism %' as required. •

LEMMA 4.4. - Consider an algebra ^(V, 8, G). If G spans V* then for each
r 6 <s/ (V, 8, G) with r ^ k there exists \e G such that exp d^ (r) ^ r and there exists
g e G such that gr -^ rg.

Proof. — Let 0 ^ X e G, denote exp d^ by g, set V = Ker ^ and choose v e V so that
V = V © fcu. As ^-modules,

U6(V)^U8(V')®fe[>].

For r e Ug (V), ̂ -1 = exp ̂  (r). If r = ^ /-, ® u1, where r, e Ug (V'), f = 0, . . . , j,
»=o

and r, 7^ 0 then, since

exp^(i/)=0;4-X(tO)1,

the coefficient of Vs ~1 in exp d^(r)—r is 5'X,(u)r,. So if exp ^ (r) = r then,
X (iQ r, ^ 0, 5- = 0 and r e Ug (V). Thus if r commutes with g for all g e G, then

r6nU5(Ker)i)=U5(nKer?i),
?i x

by a Poincare-Birkhoff-Witt argument. Since G spans V*, Ug (Q Ker K) = k. m
x

NOTATION 4.5. -- Let V be a finite-dimensional vector space, 8 an alternating bilinear
form on V and G a subgroup ofV*. Set V° = Q Ker X, (X e G). V8 denotes the 8-ortho-

x
gonal complement of V and (V0)8 the subspace of V° which is 8-orthogonal to V°.

THEOREM 4.6. — Let V be a finite-dimensional vector space, 8 an alternating bilinear
form on V and G a finitely generated subgroup o/V*. The following conditions are equi-
valent.
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(i) ^ (V, 5, G) = Ug (V) # k G is a simple algebra.
(ii) { r e U (V5) : exp ̂  (r) ^ r for all K -e G } = k.

(iii) G | V8 spans (V8)*, i.e. V° n V8 = 0.
(iv) U (V8) is the only non-zero ideal of U (V8) which is invariant under G.
(v) ^ (V8, 0, G I V8) = U (V8) # k H, w/^ H = G | V8, fy a w^fc subalgebra

o/^(V,8,G).

Pnw/. - (i) -^ (ii) -^ (iii) -> (ii) ->- (iv) -> (i), (iv) ~> (v) -> (iii), (i) -» (ii) If there exists an
r e U (V8) with r i k such that exp d^ (r) = r for all \ e G then r is a central non unit
in cfi/ (V, §, G) and so this algebra is not simple.

(ii) -> (iii). If r e V8 then exp t4 (r) = r+'k (r).
(iii) —^ (ii) by Lemma 4.4.

(ii) —» (iv). Let I be a nonzero ideal of U (V8) which is invariant under G. If 0 7^ r e I
and r has minimal degree then 19 exp d^ ( r )—r which is zero or has degree less than r.
Thus exp d^ (r) = r for all ^ e G and so I n k ^ 0.

(iv) —> (i). We use a variation of a classical "minimal length of a relation" argument.
(The particular case when V8 = V may be deduced from [5], (Theorem 1.5 and the
remark on pp 260-261).) Note first that if v e V, 0 ^ u e Ug (V) and g = exp ̂  e G then

[v, ug] = vug-u(v^-K(v))g^([v, u]-K(v)u)g

and if X (r) ^ 0 then [y, u ' ] — ' k (v) u + 0 since degree [y, ^] < degree u. We show that
if J is a nonzero ideal of Ug (V) # fe G then J n U (V8) is a nonzero ideal of U (V8) which

5

is invariant under G. Among the non-zero elements of J, choose r = ^ ^ g^ with
» = = i

the property firstly that s = length r is minimal and secondly that degree u^ is minimal.
Without loss of generality we may assume that g^ = \Q. Firstly MieU(V8), since
otherwise there exists 0 ^ i^eV with degree [i;, u^} < degree u^ and [u, r] eJ, which
contradicts the minimality of r. If length r = s > 1, suppose ^ = exp d^ and choose
v e V with u i Ker X^. Then

[^]= i([v,u^(v)u,)g^Q,
1=2

since X^ (tQ 7^ 0, and this contradicts the minimality of r. Thus J n U (V8) ^ 0.
(iv) -^ (v). That j^ (V8, 0, G | V8) is simple follows from (iv) -> (i) by supposing

that V = V8. It remains to show that ^ (V8, 0, G | V8) may be regarded as a subalgebra
of ^ (V, 8, G). Consider the canonical homomorphism G —» G V8. G | V8 is finitely
generated and hence free abelian so the exact sequence

0 -, Ker -^ G ̂  G | V8 -> 0

splits and we may regard G V8 as a subgroup of G. Thus ^ (V8, 0, G V8) may be
identified with a subalgebra of ^ (V, 8,. G). (This is the only place in the proof of the
Theorem where the assumption that G is finitely generated is used).
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(v)^(iii) is the particular case of (i)—> (iii) corresponding to V == V8. •
We now give the alternative proof of part of Theorem 2.2.

THEOREM 4.7. Let a be a subspace ofc which satisfies (Sim) and a e Z2 (a, k S ® k G).
Then {k S ® k G) #^ V (a) is a simple algebra.

Proof. — Consider first the case when CT == 0.
Then by Theorem 4.2, (k S ® k G) # U (a) ^ ̂  (V, 5, G), where V8 = a° and so

^ r\\° == 0.
If CT ^ 0 then by Theorem 4.2 again,

(feS ® feG) #,U(a) ̂  ̂ (V, y, G),

where V7 c Vs = a°. So V^n V0 = 0. In either case apply Theorem 4.6 (iii). •

THEOREM 4.8. - Let ^ = ca^(V, 8, G) be a Simple algebra. Then
(i) There exists an abelian by abelian completely solvable Lie algebra g and a prime ideal'P

of U = U (g) such that
^(U/P)E.

(ii) ^ ^ (k S ® k G) #y U (a),/or a .y^W?fe cAofc^ o/ S, G, a <= c satisfying (Sim)
and a e Z2 (a, fe S ® fe G).

Proo/. - (i) Let dim (V0)8 = ^ and dim V° = 2p+q. Since j^ is simple, V° n V8 = 0
and we can choose a basis

xl9 Vl9 • • • ? ^» Ylf 5l, . . ., S^

for V adapted to 8 so that ^p+i, ..., y?+q is a basis for (V0)8 and

•^l? ^1» • • • ? xp9 Yp9 Vp+lf Yp+29 ' ' • ? ^P+4

is a basis for V0.
Let ^i, . . . , g^ be generators for G corresponding to linear forms ^4, ..., ^eV*.

(Recall that G is free abelian of rank m.) Consider the Lie algebra g of dimension
m

21+t +m+\ defined as follows, g = kw+ ^ ^»+V, i.e. g has a basis
»=i

^ ^1» • • • > ^m» Vl> • • • » ^p+g; ^p+g+l» • • • > ̂  ^1» - " , ^h Si, . . ., Sf,

and relations [^», y ^ } == A^j w,

[gi,v]=Wg, for t;eV,

and all other commutators of basis elements are zero.
^gi, ' ' ' .Sm^y^ ' ' ' > Yp+q span an abelian ideal h of g and g/h is abelian. w e Centre g

and if E denotes the subsemi-group of U generated by g^ ..., g^ then

(U/(w-l))^^,

by Theorem 4.3 and the simplicity of .a/. (The Heisenberg algebra of dimension 2 /+1
is the subalgebra of g spanned by x^ y^ and w, 1 ̂  i ̂  I and it is easy to see that g is a
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subalgebra of the Lie algebra which is the direct sum of the Heisenberg algebra of dimen-
sion 2 7+1 and m copies of the two dimensional solvable Lie algebra. Compare
Theorem 4.9 below.)

(ii) In ^, set k S = k |>i, ..., ^+J, k G = k ̂ , g^\ . . . , g^ ^1] and let a
be the space spanned by

X^, ^2, . . ., Xp, Xp+i, . . ., Xp+q, Xp+q^.^ .. ., Xj, Yp+q+^y . .., ̂ j, 5^, . . ., 5,.

Then a c e and x^, ..., Xp spans a n c^ and

xp+q+lf • ' • ? xh Yp+q+19 ' ' • ? Yh 5!? • • • » ^

spans a0. The 2-cocycle CT e C2 (a, A:) is the restriction of 8 to a. •
In the next section we show that the integers/?, q, 2 /+1 and m == rank G are isomorphism

invariants for ^ = ^ (V, 8, G). ^ may be presented as (k S ® k G) #y U(a) and
conversely, (Theorems 4.2 and 4.8) and these integers appear in the two different presen-
tations as follows :

q = dim(V°)8, p = ̂ (dimV-dimCV0)8), 2?+r = dimV (and 21 = rank8);

Krull dimension of k S is /? + q,
dim(anci) = p, dim a = 2l+t -p-q,

dim a G =2 ;4 - f~2p -2^ [and if CT e C2 (a, fe) then ll-lp-lq = rank(a| a0)].

THEOREM 4.9. ~ Let ^ = *E/ (V, 8, G) &6? a ^f/72/?fe algebra. If rank 8 = 2 / and
rank G = w ^/? j^ is a subalgebra of A; ® A^.

Proo/. - Choose a basis x^, ̂ i, .... x^, y^s^ ..., ̂  for V adapted to 8. Let ̂ i, ..., g^
be generators for G and suppose that

[^^]==^g., [ S p y i ] = ^ j i g j and kj,S(]=v^gy.

A, = ̂  [Xi. Yi, ..., X,, Yj with [X,, Y,] = A,,
Let

and
A,. = fe[U,, UF1, Vi, ..., U^, U;1. V,] with [U,, V,] = AyU<.

Consider the vector space map,

given by
V-^feX,+feY,+feV, (f=l, ...,U==1, ...,m)

î

x^X,+f^V,,
y-i

^Y.+E^V,,
7s 1

^- Zv,,v,.
y==i
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By the universal property of.a^. Theorem 4.3, this map extends to an algebra homomorphism
^ —> Ai ® A^ mapping gj —> Uy for 1 ^ / ^ w. Since j^ is simple this homomorphism
is a monomorphism. •

The class of simple subalgebras of Aj ® A^, each of which is the image of a simple
algebra ^(V, 8, G) as in the proof of Theorem 4.9, may be described intrinsically as
follows.

In Ai ® A^, let Wi = f; kXi+kY,, W^ = f; fcV, and W = W^+W^. Let TI^
1=1 j= i

and 7C2 be the canonical projections of W onto W\ and W^ respectively. If w e W^ then
[w, U,] = ^ (w) U,, where X^ e W^. The map

w-^Diag(Xi(w), . . . ,X^(w))

is a linear transformation of W^ into the space of diagonal matrices acting on
fe U i+ . . . 4-fc U^, and we identify W^ with this space of diagonal matrices.

THEOREM 4.10. — Let V be a subspace of W. Then the subalgebra o/Aj ® A^ generated
by V ^/zrf ̂  units of Ai ® A^ Is a simple algebra if V satisfies

(i) Tii (V) = Wi and

(ii) r/z^ algebraic hull of n^ (V) = Wa, [wA^r^ TC^ (V) and W^ are considered as spaces
of diagonal matrices].

Proof. - By [4], Remark before Theorem 5.3, the algebraic hull of 71:2 (V) is Wa if
and only if X^ 1712 (V), ..., ^ 171:2 (V) are linearly independent over the rational field Q.
If g is a unit in Aj (g) A^ then g is a monomial in Ui, U^"1, . . . , U^, U^1. Let ^ e W^
be defined by [w, g ' ] = \ (w) g for w e W2.

If g and /? are units in A^ ® A^ with g ^ h then K^ n^ W? • • • » ^w | ̂ 2 W are linearly
independent over Q if and only if \ \ 7^2 (V) ^ \\^z (V). If the latter condition holds
then the subalgebra generated by V and the units is of the form s^ (V, 8, G) and this is
a simple algebra since V8 n V° =0. •

REMARK 4.11. - Ai ® A^ ^ Diff(k S ® fc G) c End (k S ® fe G), where

feS = fc[Y^, . . . , YJ and feG = fe[Ui, U,-1, . . . , U,, U;1].

The simple algebras of Theorem 4.10 are simple subalgebras of Diff(fe S ® k G) which
do not necessarily contain the multiplications by elements of k S ® k G. Is there a
sense in which they are " dense subalgebras " of DifF k S ® k G?

5. Isomorphism Theorems

We now consider when two simple algebras of the form ̂  = ̂  (V, 8, G) are isomorphic.
If G = 0 then *c/ ^ A^, where 2 w = dim V and A, ^ A^ if and only if n = w, by [6]
(2.6, Proposition). If G + 0 then, unlike A,, sS (V, 8, G) has units which do not belong
to k. So it is sufficient to consider the case when G ^ 0 and we examine how ^ (V, 8, G)
is built around its group of units.
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LEMMA 5.1.- Consider ^ = ^ (V, 8, G), where G + 0 and lei V be a subspace o/V
such that V = V° © V.

(i) C, the centraliser in ^ of the group of units of ^, is Ug (V0) ® k G.
(ii) Z^r L be the Lie subalgebra ofs^ defined by r e L <=> [r, ^] e A^/or ^cA MmY g e ̂ .

Then L = C+V.
(iii) D, the centre of C, ^ U ((V0)8) ®kG.
(iv) The first two terms of the upper central series ofD as an L-module, are k and k + (V0)5.

Proof. - (i) Clearly Ug (V°) ® k G cz C since the units of ^ are just the scalar multiples
of the elements ofG. Now ̂  == Ug (V) # k G ̂  Ug (V°) ® Ug (V) ® k G, as ^-modules
but not as algebras. Since G V spans (V)*, C n Ug (V) = k by Lemma 4.4. Thus,
by a unique representation of elements argument,

C = UgCV0) ® k ® feG = U^V0) ® feG.

(ii) Choose ^i, . . . , gs e G, where ̂  corresponds to ?i, e V* such that the corresponding
elements of (V7)*, ^ | V, . . . , ^ V, are a basis for (V)*. Let i^, . . . , v, be a dual
basis for V with ^ (y,) = A^.. Then [̂ ,, .̂] = A^. ̂ ,. We show first that

{ r e A : [g, r ]eC}=C+Ci; i+. . .+C^.
This follows from

[g,, cv\... t;/... <| = icg ;̂ ... vi~1 ...vt

modulo elements of lower degree, for 1 ̂  / ^ s. Also [gi, c^ v ^ + . . . +c, rj = c^
which belongs to kgi if and only if c ^ e k . Thus L = C+V.

(iii) Let V^ = (V0)5 and let V^ be a subspace of V0 such that V0 = V^ ® V^. Then
8 | ¥2 is non singular and Ug (¥3) ^ Ap, where /? = (1/2) dim V^. Thus

C ^ A p ® U ( V i ) ® f e G

and so the centre of C is U (V\) ® Jk G.

(iv) As an L-module, D is a direct sum of L-submodules, D = ^ U (V\) ® A:̂ . If
f f e G

^ + \Q then no nonzero element of U(Vi)®^ is annihilated by ad L. [Compare
the proof of (Theorem 4.6 (iv) ==> (i)).] Hence the upper central series for D, as an
L-module, is just the upper central series for U (V\) as an L-module and the assertion
follows at once since V0 n Vs = 0. •

LEMMA 5.2. — Lei ft be a subspace ofc which satisfies (Sim) and a e Z2 (a, k S ® k G).
Let S^ denote the subspace k+ky^ + . . . +ky^ of k S. Then

M = { r e ( f e S ® f e G ) # ^ U ( a ) : [s, r]ekfor seSi and [g, r]ekgfor geG}

is the Lie algebra (k S ® k G) x „ a [considered as a subspace of (k S ® k G) #y U (a)].

P/w/. — Let L be as in Lemma 5.1. Then

M = { r e L : [5, r j e f e f o r s e S i } =( feS®feG) x,a

by a similar argument to that used in Lemma 5.1 (ii). •
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The following theorem should be compared with Theorem 3.1.

THEOREM 5.3. — Let a and b be subspaces of c each of which satisfies (Sim). Le
a e Z2 (a, k S ® fe G) a/zrf T e Z2 (b, fe S ® fc G). 77^ there exists an isomorphism 9
of (k S ® fe G) # yV (a) o^o (k S ® A: G) # ,U (b) w/H'cA ^^/zA ^6? f^fty w^ /n?m
f e S ® f e G ^ A : S ® f e G ; / and only if a = b fl^ a cwrf T are cohomologous cocycles in
Z2 (a, k S ® fc G).

Proof. — Suppose 9 exists. By Lemma 5.2, 9 induces a Lie algebra isomorphism

(feS®feG)x^a -> ( feS®feG)x,b

which is the identity map on k S ® /; G. For ^ e k S ® fe G and a e a, [a, S;] = [9 (a), ̂ ].
Thus, viewed as elements of Der (k S ® k G), a? = 9 (a). Since b and a are subspaces
of c, this implies that b = a and that 9 induces the identity map from a to a in the following
diagram of Lie algebras, where the horizontal map are the obvious inclusions and projec-
tions :

0-^feS®feG^(feS®kG)x,a-) -a-^0i, i. i.
0 - ^ k S ® k G - > ( f e S ® f e G ) x , a - > a = 0 .

Thus or and T are cohomologous cocycles. •

DEFINITION 5.4. - Let J^(V, 8, G) and j^(W, y, H) be simple algebras. These
algebras are said to be locally isomorphic if there exists a vector space isomorphism
(p : V —> W such that

(i) 8 (v^ v^) = Y ((p (^i), (p (pz)\ for all v^ v^ e V and
(ii) the dual map (p* : W* —> V* restricts to an isomorphism of H onto G.

THEOREM 5.5. — If^ (V, 8, G) and ^ (W, y, H) are simple algebras which are locally
isomorphic with respect to (p : V —> W then there exists an algebra isomorphism
\|/ : ̂  (V, 8, G) -^ ̂  (W, Y, H) w/McA ^^w& (p.

Proof. — For ^ e G let g (^) denote the corresponding element of G and similarly
for H.

Set v|/ (g (X)) = h (((p*)~1 (X)) and \|/ (u) == (p (iQ, X e G, u e V. Then by the universal
property (Theorem 4.3) \|/ extends to an algebra homomorphism of ^(V, 8, G) onto
^ (W, Y, H) and \|/ is injective since ^ (V, 8, G) is a simple algebra. •

CONJECTURE 5.6. — If ^ (V, 8, G) and ^ (W, y» H) are simple algebras which are
isomorphic (as algebras) then they are locally isomorphic.

We will prove this conjecture in the case when V° = (V0)5, [i. e. when the centraliser
in ^ (V, 8, G) of its group of units is a commutative algebra] and go some way towards
answering it in the general case.

Let ^=^(V, 8, G), where G ^ 0. By Lemma 5.1, C = U 8 ( V G ) ® f e G ,
L = Ug (V°) ® k G+V, D = U ((V0)8) ® k G and fc+CV0)5 are subsets of ^ which
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are independent of the presentation of ^ as ^ (V, 8, G). Denote dim (V0)8 by q and
then dim V0 = 2p+q for some integer p ^ 0. So C ^ Ap ® D. If I is an ideal of
Ap ® D which is generated by an ideal of codimension one of D then Ap ^ C/I and the
Krull dimension of C/I is p by [8]. The Subalgebra of ^ generated by the units is k G
and the Krull dimension of k G is m = rank G. Also dim L/C = dim V is uniquely
determined by ^ so we have four integer valued isomorphism invariants for ja^, viz/?, q, m
and dimV = dimV'+2^+^.

Suppose now that / is an isomorphism of ^ (V, 8, G) onto ̂  (W, y, H). We endeavour
to define a vector space isomorphism (p : V —> W which satisfies the conditions stated
in the conjecture. Let Vi = (V0)8 and ¥2 be a subspace of V° such that V0 = ¥3 © Vi
and define Wi and W^ similarly. The essential difficulty is that the only information
that we have on % (Ug (¥3)) is that % (Cy) = C^, i. e. :

X (Us (V2)) ® (U (Wi) ® fe H) = U, (W2) ® (U (Wi) ® fe H).

By Lemma 5.1, ^ (Vi) c: fc+Wi. Let 71 be the projection of k+W^ onto Wi with
Ker 7i == A- and define (p on Vi by (p = 7150. Extend (p to V0 by (p (V^) = W^ and (p
is compatible with 8 N^ and y W2. Let V0 be the 8-orthogonal complement of V^
in V. Then V = V^ ® V^ Since no element of V\ is orthogonal to V0, we may choose
a subspace ¥3 o^ such that Vi n ¥3 = 0, 8 | ¥3 = 0 and 8 is non singular on Vi © ¥3.
Finally let ¥4 be the 8-orthogonal complement of Vi+V2+V3 in V. So

V=V i©V2©V3©V4 .

Thus ¥3 +V4 is a complementary subspace V to V° = Vi+V2 as in Lemma 5.1. Let
Ly, Lw, Cy, C^ be as in Lemma 5.1. ^ (Vs) is a subspace of L^ such that C^ n X (V^) = 0.
Let W be the subspace of W such that

W'+Cw/Cw=x(V3)+Cw/Cw.

For ^€¥3, choose w 'eW such that %(v)+C^ = w'+C^. Then, for

1:1 e Vi, 8 (i;i, i;) = [50 (i;i), x (^)] = [x (^i), ̂ ] == Y (q> (^i), w).

Hence y | W is non singular. Hence there exists W3 <= W such that

W'=Wi©W2©W3,

W3 is y-orthogonal to W^ and y | W3 = 0. We now extend the domain of (p from Vi 4-^
to Vi+V2+V3 by, for 1:3 €¥3, let w^eW^ be the unique element such that
X^sHCw =»3+Cw and define (p (1^3) = ^3- So (p : Vi+V2+V3-^Wi+W2+W3
and (p is compatible with 8 and y by construction.

Let W4 be the y-orthogonal complement of Wi+W2+W3 in W. Define

(p : V4 -> W4 by (p (1:4) = W4 where % (^4) + Cw = 1̂ 4 + Cw.

^ now show that (p : V —> W satisfies the second condition in Conjecture 5.6. Let X e G
and ̂  be the corresponding element of G. Then % (gy) = a h^ where a e fe and ^ e H
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corresponds to peH. Then, by the construction, we have that for all veV,
^ 00 ̂  = [^» v], so after applying % we have

'k(v)dh^ = [a^, /(r)] = [a^, (p(i?)] = ̂ i((p(i;))a/^,

since % (v)+C^ = (p 00+C^. Thus X (i;) = ^ ((p (i;)) for all ueV, i.e. ^ == ^up or
(p* H == ^. Thus (p* : W* —> V* induces an isomorphism (p* : H —> G. However we
are not able to prove that (p | ¥4 is compatible with 8 [ V4 and y | W4. This difficulty
becomes clearer when we write ^ (V, 8, G) in the form (kS 0 kG) # y\J (a) as in

p
Theorem 4.8 (ii) with V^ = ^ kx^ky,. Then

»=i

a= £fcc,+V3+V4,
»=i

¥4 is a° and
^(V, 8, G) ̂  (kS ® feG) #<,U(a),

where CT = 8 | a and so a e C2 (a, fe). Similarly, since there exists (p : V —> W which
satisfies condition (ii) of conjecture 5.6,

j?/(W, Y, H) ̂  (feS ® feG) #,U(a),

where T = y | a. Thus if ^ (V, 8, G) and ^ (W, y, H) are isomorphic then they are
cocycle twisted variants of the same "untwisted algebra" (k S ® k G) # U (a), (but CT
and T need not be cohomologous). The next theorem shows that the "untwisted algebra"
is independent of the presentation.

THEOREM 5.7. — Let a and a' be sub spaces ofc and c' respectively each of which satisfies
(Sim) and CT e Z2 (a, k S ® k G) and T 6 Z2 (a\ fe S' ® fc G').

(i) Consider the following diagram

0-^feS ®feG -^(feS ® f c G ) x ^ a -^a -^0a! p! 4
O-^feS'OfeG'-^kS^feG^x.a'-^a'-^O

7/* ̂ /^ ^xf5-^ ̂  algebra isomorphism a wzrf Lf^ algebra isomorphisms P, T| ^^cA that this
diagram is commutative, (where the horizontal map are the canonical inclusions and projec-
tions), then there exists an algebra isomorphism

y : (feS®feG)#^U(a)^(feS'®feG')#,U(a')

which extends P.
(ii) If there is an algebra isomorphism

9 : (feS®^)^^)^^'®;^')^^')

then there exists an algebra isomorphism a and Lie algebra isomorphisms P,
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T| such that

0->feS ®kG ->(kS ® f e G ) x a -^ a -^0

•! •I •!
0 -^ k S' ® fe G' -^ (fe S' ® fe G') x a' -> a' -> 0

^ commutative and hence there is an isomorphism

P ' : ( feS®feG)#U(a)->(feS '®feG' )#U(a ' )
which extends P.

Proo/. - (i) follows immediately from the universal property of (k S ® fc G) #y U (a),
^ Theorem 2.1 and the remark which follows it. Note also that a | k S is a filtered
algebra isomorphism from k S to k S' since the terms of the usual filtration of k S are
precisely the terms of the upper central series o f A ; S ® A ; G a s a ( f c S ® A : G ) x ^ a-module
[compare Lemma 5.1 (iv)].

(ii) Denote G' by H where necessary. Consider (kS ® k G) #o U(a). Let b be
a subspace of a such that a = b © a0. Without loss of generality we may suppose that
a e C2 (a, k) and that b is o-orthogonal to a. Similarly, let a' = b' © (a')" and suppose
that T e C2 (a', k) and b' is T-orthogonal to a'. Let S and S' be the spaces of homogenous
elements of degree one ofkS and k S' respectively, (k S ® k G) #y U (a) ^ ^ (V, 5, G),
where V = S © a and 8 is defined by 8 (a, s) = [a, s], a e a and s e S, 8 | S = 0 and
8 | a == <7. Similarly

(feS' ® feG') ^U(a') ̂  ̂ (W, Y, H),

where W = S' © a. Define 81 e C2 (V, k) by requiring that 81 coincides with 8 on S © b
and a° is 8i-orthogonal to V. Similarly define yi e C2 (W, k) by requiring that Yi coincides
with Y on S' © b' and (a')" is Yi-orthogonal to W. Then

(feS ® kG) # U(a) ̂  ̂ (V, 81, G) and (feS' ® kG') # U(a') ̂  j^(W, Yi, H).

Since j^ (V, 8, G) ^ j^ (W, y, H), there is a vector space isomorphism (p : V --> W
which satisfies (ii) of Conjecture 5.6 and (p is compatible with 8 and y except possibly
from ¥4 = a° to W4 = (a')". Thus (p satisfies both (i) and (ii) of Conjecture 5.6 with
respect to 81 and Yi. Recall that (p : Vi —> Wi and also that (p : \^ —> ̂ 2 may be chosen
arbitrarily subject to being compatible with 8 and y. Thus we may suppose that (p restricts
to a vector space isomorphism from S to S'. Since V = S © a and W = S' © a', (p induces
a vector space isomorphism ^ : a—»a' by §(a)+S' = (p^+S', aea. The required
maps a, P and n are now defined by a | S = (p, a | k G is induced by ((p*)"1, P is the
extension of a defined by P (a) = ^ (^), a e a, and T| = !;. •

Theorem 5.7 is unsatisfactory since one would like to prove that if there is an
algebra isomorphism 9 as in 5.7 (ii), then there exist a, p and T| which make the diagram
in 5.7 (i) commutative. However, this is equivalent to an affirmative answer to Conjec-
ture 5.6.
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EXAMPLE 5.8. - Let rank G = 2 and

feG=fe [g ,g~ 1 , h, h~1] and a == kg818g+kh818h.

Set a^ = g 8/8g and a^ = h 8/8h. Then

H2 (a, fe G) ̂  H2 (a, fe) = C2 (a, fe),
by Theorem 3.2.

C^a, fe) ̂  k via a»->CT(^i, a^), aeC^a, fe).

Define TeC^a.fc) by T^i, a^ = 1. It is easy to see that kG #<,U(a) ̂  A;G#,U(a)
if <j T^O. By [4], Example 5.8 or by Theorem 5.9 below, A:G#,U(a) is not isomorphic
to k G # U (a) and so the 2-cocycle twisted variants of k G # U (a) fall into exactly
two isomorphism classes.

THEOREM 5.9. — If ̂  (V, 8, G) and s^ (W, y, H) are simple algebras which are iso-
morphic and 5 | V0 = 0, or equivalently the centraliser of the group of units ofs^ (V, 5, G)
is a commutative algebra, then ^/ (V, 8, G) and ^ (W, y, H) are locally isomorphic.

Proof. — Let ^ be an isomorphism. It is sufficient to show that the map (p : N—> W
which was constructed earlier is compatible with § and y. Let v, t/ €¥4.

Then % (v) = (p (v)+r, % (i/) = (p ( v ' ) - \ - r ' for some r, r ' e C^. Now 5 (t;, i/) = [v, i/],
so, after applying 7, we have

80;,t/)=|xOO,xOQ]
=[(p00+r,(p0/)+r']
= [(p (t;), (p (i/)] + [r, (p (t;')] + [(p (i;), r'],

since C^y is commutative.
Now

[(p (i;), (p (i/)] = Y (q) (i0, (p (t/)) e fe
and

[r, (p(i/)]+[(p(i;), r']e ̂  U(Vi)®feg.
fl'^i

So [r, (p (u')] + [(p 00, r'] = 0 and (p satisfies the required property. •

EXAMPLE 5.10. — We now consider the algebras ^ (V, 0, G) in the special case when
dim V = 1 and rank G = 2. Let v be a basis of V. If Xi, ̂  e V* then ̂  and ̂  ̂
linearly independent over Q if and only if X^ (v) and X^ (v) are linearly independent over Q.
Let ^-i, ^2, Hi .n^V* have the property that ^ and ^2 (respectively Hi and n^) are
linearly independent over Q and denote the subgroup of V* generated by { ^i, ̂  } and
{ Pi» ^2 } by GI and G^ respectively. By Theorem 5.9, ^ (V, 0, Gi) ^ ^ (V, 0, G^)

if and only if there exists 0 + p e k and a 2 x 2 unimodular matrix ( zl zl\ with integerVs ^7
coefficients such that

/z, ^AA, M
\Z3 24^ ^2; KV^l2/
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Thus if k is R or C then there are infinitely many non isomorphic simple algebras
^ (V, 0, G) with dim V = 1 and rank G = 2.

REMARK 5.11. — If Conjecture 5.6 is false then there are simple algebras ^ (V, 5, G)
and ^ (W, Y? H) which are isomorphic but not locally isomorphic. Let

V=Vi+V,+V3+V4

be a decomposition of V as considered earlier with dim V^ = 2p > 0. Set V = Vi + ¥3 + V4.
Then

^ (V, 8, G) ̂  Ug (V,,) ® ̂  (V, 8, G | V)
^Ap®^(Y,S,G\Y).

By a similar decomposition,

^(W, Y, H) ̂  A^ ® ̂ (W, Y, H | W).

Now ^ (V, 8, G | V) and ^ (W, y, H | W) cannot be locally isomorphic by the
hypothesis, and so are not isomorphic by Theorem 5.9. But

Ap ® ̂ (V, 8, G [ V) ̂  Ap ® ̂ (W, y, H | W) !
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