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SUPERSINGULAR K 3 SURFACES

BY M. ARTIN

Let X be a K 3 surface over an algebraically closed field k. It is known that if k = C,
the rank p of the Neron-Severi group of X is at most 20 = b^—2h02. Igusa [8] showed
that the weak inequality p ^ b^ continues to hold if the characteristic is non-zero, and
in fact the stronger one does fail. There exist K 3 surfaces for which p = 22. The
first example of one was given by Tate [19] : The Fermat surface

x4+^4+z4+w4=0

has rank 2 2 i f ; ? E = 3 (modulo 4). More recently, Shioda [17], [18] has given other
examples : the elliptic modular surface of level 4 if p = 3 (modulo 4), and the Kummer
surface associated to a product of supersingular elliptic curves if p ^ 2 (1). Examples
in characteristic 2 also exist (see Section 2).

In our paper we propose to study these peculiar surfaces, using the formal Brauer^ /\.
group BrX [4]. If X is any surface whose Picard variety is smooth, Br X is a smooth
formal group of dimension h02 = dim H2 (X, 0), which pro-represents the following
functor on the category of finite local A:-algebras A with residue field k :

Br(A) = ker(H2 (X^, GJ - H2 (X, G,)),

where X A = X x S p e c A , and cohomology is etale cohomology. In joint work [4],
Mazur and I have related this formal group to the rank p by the theorem :

THEOREM (0.1). — Let X be a surface which lifts projectively to characteristic zero,
^ ^

and assume that Br X is a p-divisible formal group. Let h be the height [10] ofBr. Then
p ^ &2-2/L /\

We also conjecture that if Br is unipotent, i. e., is annihilated by some power of p,
then in fact p = b^.

In our case, where X is a K 3 surface, we have dim Br = h02 = 1. Formal 1-para-
meter groups in characteristic 7^ 0 are classified by their height h, which can take on any

0 According to Shioda, these three examples are all related by correspondences.
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544 M. ARTIN

,/\
value between 1 and oo [10]. The group having h = oo is the additive group G^, and
the groups with h < oo are /^-divisible. Therefore, the above theorem implies that any
projectively liftable K 3 surface X with p = 22 must have h = oo. We prove the converse
here for K 3 surfaces having a pencil of elliptic curves [Theorem (1.7)], and we conjec-
ture that this includes every case :

CONJECTURE (0.2). — Every K 3 surface X in characteristic p > 0 with h = oo carries
a pencil of elliptic curves.

Our result is some justification for the following :

DEFINITION (0.3). — A K 3 surface defined over a field of characteristic^ 7^ 0 is super-^\. ^\.
singular if h = oo, i. e., if Br X w Gy

Thus elliptic K 3 surfaces which are projectively liftable have p = 22 if and only if
they are supersingular. Note also that, as a consequence of (0.1) and (1.7), the case
p = 21 can not arise. Swinnerton-Dyer (unpublished) has constructed examples of
elliptic K 3 surfaces in characteristic p 1=- 0 having rank p = 19, and it seems probable
that all the remaining values 2 ^ p ^ 20 occur. However, as Swinnerton-Dyer has
remarked, it follows from Tate's conjecture ([19], [5]) that a surface with p odd can
not be defined over a finite field.

One reason for defining the notion supersingular in terms of the height h is that h ̂  r
is an algebraic condition (cf. Section 2) contrary to what occurs for p ^ r (though p = 22
seems, a posteriori, to be algebraic after all). As we show here, the elliptic supersin-
gular K 3 surfaces form a limited family, and depend on at least 9 moduli !

The later sections of this paper contain results which are still conjectural, since they
depend on as yet unproven duality theorems for flat cohomology. The conjectures
are stated in Section 3. We hope that they will prove to be accessible to presently avai-
lable techniques. In the remaining sections, we use them to derive further properties
of supersingular K 3 surfaces, analogous to properties of general K 3 surfaces over the
complex numbers. Among other things, we define the periods of X, which form a map
(4.10) :

N^Z22-^,

where N* is the dual lattice to the Neron-Severi group N. The kernel of (p is N, i. e.,
is the set of (< algebraic " vectors. So, although the rank of X is always 22, the group N
can vary with X to the extent that a vector v e N which is primitive on a generic super-
singular surface may become divisible by p on a specialization. This occurs when

/7-^eN*

and (p(/?~1 v) specializes to zero, and is reflected in a change in the discriminant —p200

of N [see (4.6)]. We show in the last section that all values 1 ^ CTQ ^ 10 actually arise
(7.8).

A number of obvious questions related to the Torelli theorem for K 3 surfaces [12]
arise in connection with the period map. These remain to be investigated.
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SUPERSINGULAR K 3 SURFACES 545

1. THE RANK OF A SUPERSINGULAR K 3 SURFACE. — Let X-"> S be a smooth family
of surfaces, with connected parameter space S of characteristic p -^ 0.

THEOREM (1.1). — Assume that Pic^X/S is smooth, and that the formal Brauer group/\
Br X, is unipotent for every geometric point s of S. Then the rank p (X,) of the Neron-
Severi group of X, is independent of s.

Let L, denote the Neron-Severi group of X^. If T| e S is a generalization of s, then
since X is smooth there is an injective specialization map

(1.2) L^L,

Thus p (X^) ^ p (X,). To prove the theorem we need to show that the opposite inequa-
lity holds. We may assume that S = Spec k [[^]], with k algebraically closed, and
that X^ & XQ == X^ are the open and closed fibres. So the theorem will follow from
this more precise assertion :

THEOREM (1.1 a). — With the above notation, assume that Pic" X/S is smooth and that/\
Br X^ is annihilated by p ^ . Suppose that the torsion group Pic^/Pic0 has p-exponent \.
Then the coke me I of (1.2) is a finite group anninilated by pv+^.

Proof. — We begin by reviewing the relative Brauer group £r X/S = R2 71̂  G^ [4].
The relative Picard scheme Pic X/S will generally not be smooth, because of jumps in the
Neron-Severi groups N. This will obstruct the pro-representability of Br X/S, though
that functor has a Schlessinger hull at every point ^o e H2 (Xo, G^). We work instead
with the complex G^ [oo] = [G^ —> G^ ® Q]. The etale cohomology of this complex
is the same as fiat cohomology of the sheaf u = (J j^ ([4], IV. 1.7). Moreover, when

n

Pic^X/S is smooth, the functor R^^G^oo] is pro-representable at every point

oco e H2 (Xo, G, [w]) = H2, (Xo, u),

and its tangent space it the same as that of £rX/S, i.e., is H2 (Xo, 0) ([4], IV. 1.5).
/<

Let H be the smooth formal group which pro-represents R2^ G^ [oo] at the origin.
Then H is a hull for Br X/S at 0, the closed fibre H x ^SQ is the formal Brauer group Br Xo,^ ,/\
and the completion of H at the generic point of its 0-section is Br X . Since this last
group is annihilated by ^v, it follows that H is, too.

We now proceed with the proof of (1.1 a). Let ZQ e Pic Xo be a given element, and
let n be an integer. Denote by oco e H^ (Xo, \ipn) the image of ZQ by the map § of Kummer
theory :

Pic Xo -^ Pic Xo ̂  H^ (Xo, ^n) ̂  Br Xo -^ Br Xo.

We try to extend (XQ to a cohomology class on X/S. Let us denote by Po the image of ao
in H2^ (Xo, u) = R2 7^ G^ [oo] (k). Since R2 TT^ G^ [oo] is formally smooth, Po can be
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546 M. ARTIN

extended to a formal class P, i. e., to a sequence { ̂  ] of classes in

R2 T^ G, [a)] (S,), S, = Spec k [M]/(Q.

Since pn oco = 0, it follows that /?" P = p is a section of the formal group H. Therefore
^p = ^ v p = o.

The sequence

O-G^^G.M^G^oo]-^

shows that each P, can be represented by a class P; e R2 7^ G^ [^"+v] (S,), and moreover
the image y, of P; in R2 7^ G^ [N] (S,) is unique, i f N = p^^. Thus we obtain a formal
element y = { y, } in R2 71̂  G^ [N] extending the image yo of the given class ao. The
image a of y in R2 n^ G^ [/?"] via multiplication by pv+^ determines an extension of the
class pv+^ (XQ.

Now by construction, o^ (and hence Yo) maps to 0 in Br Xo. So, the formal element y
determines a formal deformation of 0 in Br X/S, which lifts to a section of the hull H,
and is therefore annihilated by pv. It follows that the image of a in Br X/S is zero.

Let P, = Pic X x sS,. By Kummer theory, a, lifts to P,///1 P, for every r. If we denote
by C,. the cokernel of the map P, —> PQ, then what we have shown implies that C./p" C,.
is annihilated by ^v+^ for every n and r. On the other hand, H2 (Xo, 0) is annihilated
by p, and so the exact sequences

0^xo^^-^x.-,->0

show that C, is annihilated by p1'. Hence C, is in fact annihilated by pv+^ for every r.
Thus our given element ZQ e Pic Xo has the property that pv+^ ZQ extends to a section
of Pic X/S over S,, for every r. By [I], it extends to a section over S. Therefore the
cokernel of Pic X -» Pic Xo is annihilated by pv+>•. This completes the proof.

REMARK (1.2). — Obstructions annihilated by powers of p certainly do arise, and are
one of the interesting aspects of this theory (see Section 7).

We now return to the case of supersingular K 3 surfaces. They have no torsion (cf.
•̂  y\

Section 8), and Br X w G^ is annihilated by p. So, theorem (\.\d) reads

COROLLARY (1.3). - Let S = Spec k [[t]\, and let X/S be a smooth family ofK 3 surfaces
such that X^ is supersingular. Then so is Xo, and the cokernel of the map N —> No of
Neron-Severi groups is an elementary p-group.

PROPOSITION (1.4). — Let X/S be a family of supersingular K 3 surfaces. The set of
points s e S such that X, is elliptic is an open set.

Proof. - It is easily seen that a pencil of elliptic curves on a general fibre X specia-
lizes to a pencil of elliptic curves on all fibres of some open set. So, what has to be shown
is that the property of being elliptic is preserved under generalization. We may there-
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SUPERSINGULAR K3 SURFACES 547

fore suppose that S = Spec k [p]], and that a pencil I Co ! of elliptic curves is given
on the closed fibre XQ. In this situation, we will actually prove

PROPOSITION (1.5). — With the above notation, either | Co or \ p CQ is the specialization
of an irreducible pencil of elliptic curves E^ | on X^.

Proof. — Let ZQ e Pic Xo = Lo be the corresponding element. By the above Corol-
lary (1.3), pZQ is the specialization of a class, say y^ on X^. Let D^ be a divisor in this
class. Then (D^)2 = 0, and it follows from Riemann-Roch (8.1) on X^ that either | D^ |
or | ~D^ | is a linear system of dimension ^ 1. Since y specializes to ?ZQ, it must be
\ D^ . We claim that ] D^ j is composite with a pencil of elliptic curves : Otherwise,

j D^ = I D^ + \, where D^ | is variable and A^ ^ 0 is the fixed component. Necessarily,
(D^)2 ^ 0 and (A^)2 < 0. Specializing this to Xo, we find that p Co is linearly equi-
valent to a sum Do = DQ+AO of positive divisors, with (Ao)2 < 0 and (Do)2 ^ 0. This
is impossible for | p Co ], which is composite with the pencil of elliptic curves | Co . Thus

D^ is composite with a pencil of elliptic curves E^ |, as was asserted. Since

| DO | = P Co

it is clear that [ D^ = E^ | or = p E^ .

LEMMA (1.6). — Let X/S be a limited family of super singular K 3 surfaces. There is
an integer n such that any pencil of elliptic curves Co on a fibre \ Xo | has a multisection
of degree ^ n.

Proof. — There is such an integer for every individual K 3 surface, by [5], Lemma
(5.18). We choose n to work for each one of the generic fibres X, and argue by specia-
lization using Proposition (1.5).

THEOREM (1.7). — Let X be an elliptic, supersingular K 3 surface. Then
(i) p ( X ) = 2 2 ;
(ii) Br X = H2 (X, G^) is a p-torsion group.

Proof. — Since X is a K 3 surface, H3 (X, jj^) = 0 for all / 7^ p . Therefore Kummer
theory implies that Br X is divisible by /. Also, Pic X has no torsion. So all vertical
arrows in the diagram below are surjective.

0 —> Pic XIT ——> H2 (X, .̂) —-> ̂ (BrX) —> 0
i i I

0 -^ PicX/F"1 -^ H^X, j^.-i) -> ^-i(BrX) ̂  0

It follows that if j(Br X) 7^ 0, we can construct an /-adic class, say a e H2 (X, Z^ (1)),
whose image a,, e H2 (X, u^) determines an element of order V in Br X. This a is a non-
algebraic class, and so p < b^ = 22. Thus (i) ==> (ii), and it remains to prove (i).

Let / : X —> Y be an elliptic fibration on X, and let A* —> Y be the minimal model of
the associated Jacobian fibration, which is again a K 3 surface. Assume for a moment
the following.
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LEMMA (1.8). - p (X) == p (A*), and Br X w Br A*.
Then we may replace X by A*, i. e., we may assume that the elliptic fibration

has a section. Let A' be the Weierstrass fibration [5] associated to A*. The
groups H2 (A*, Z, (1)) and H2 (A7, Z, (1)) differ by algebraic classes ([5], 2.1), and so
it suffices to prove that every class in H2 (A', Zj (1)) is Qj-algebraic.

Suppose not. Then since cup product is nondegenerate on the image of Pic X = N,
there is a class oc orthogonal to N and such that a u a 7^ 0. We now proceed as
in the proof of [5], (5.2), to show that there are homogeneous spaces X^ of A, of
arbitrarily high order /v-c, lying in a limited family F of K 3 surfaces. Since the
condition

.A. /S.

Br X w G,

is algebraic (Section 2), the supersingular surfaces in F form a closed subfamily S. Now
Lemma (1.6) implies that the X^ have multisections of bounded degree. This is a contra-
diction, and completes the proof of the theorem.

It remains to prove Lemma (1.8). The assertion of rank is well known and follows
immediately from the formula

p(X)=r+E(m,-l)+2,
y

where r is the rank of the Jacobian of the generic fibre Xy, and niy is the number
of components of the fibre Xy. This formula is elementary, and can be found in
[16], (1.5), for the case that X has a section. All terms on the right side agree for X
and for A*.

/\.
The assertion on Br is treated in the next section.

2. EXPLICIT CALCULATION OF THE HEIGHT. — Since the formal Brauer group is defined
rather abstractly, it may be worthwhile to show how it can be computed in the case of
an elliptic K 3 surface X/Y. Let A'/Y be the Jacobian Weierstrass fibration, and let A*/Y
be the associated minimal model. We can compute the formal Brauer groups of these
surfaces using their fibrations over Y = P1. Let us denote all the projections to Y by/,
the projections to Spec k by TT, and the map Y —> Spec k by g. The terms

E^=R^R^G,

which may contribute to R2 TT^ G^ are E20, El1, and E^2. Since/^ G^ = G^ and Y has
dimension 1, E20 = R2^ (/^ GJ is discrete, i. e., all deformations of elements are trivial.
Since / has relative dimension 1, R2/^ G^ is discrete, and hence E^2 is, too. Thus the
formal structure of R2 ̂  G^ is that of R' ̂  R1/^ G^ = R1 ̂  Pic X/Y (respectively Pic
A'/Y, Pic A*/Y). All three of these relative Picard groups differ by discrete group
schemes from the fibre system of groups A/Y. Thus we have shown
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SUPERSINGULAR K 3 SURFACES 549

/\. \̂. /\.
PROPOSITION (2.1). — Br X w Br A' w Br A* is the formal group which pro-represents

the functor R1 g^ A at the origin.
In particular, this completes the proof of Lemma (1.8).

Denote by A the formal completion of A along its 0-section.

PROPOSITION (2.2). - Br X (S) = H^r (Yg, A), where this cohomology may be computed
as Cech cohomology for any affine covering of Y.

Proof. — Let L denote the conormal bundle of the 0-section in A, which is R1/^ A'.

(2.3) degL=-2.

Let S c= S' be a length 1 extension of finite local schemes. Identifying the underlying
spaces of Yg, and Yg with Y, one has a sequence

0 -^ L -> As' -> As -> 0

(As = A x S), which is exact for the Zariski or etale topologies on Y. Consider the
diagram

(2.4) 0 ̂  HL (Y, L) -. HL (Y, As.) ̂  H^ (Y, As) -^ 0
I I [

0-^ He\(Y, L) -> He\(Y, As-) -> H^(Y, As) -^0.

Ordinarily there would be a coboundary map H° (Y, As) —> H1 (Y, L). But since deg
L < 0, induction shows H° (Y, As) = 0. Therefore this coboundary is zero. In any
case, the diagram and induction prove that the etale topology may be replaced by the
Zariski topology, and that moreover it can be computed using any affine cover of Y.
By [4], (11.1.7) and Proposition (2.1), H,\ (Y, As) w Br X (S).

/\
We now ask to compute Br X. The surface A' can be given in Weierstrass form over

P1 as follows [5], (2.5) : Let the coordinate rings of the standard covering of Y = P1

be k [^], k [?] with tt = 1. Over U = Spec k [^], we can write the Weierstrass form
for A' as

Y 2 Z-alXYZ-a3YZ 2 =X 3 +a2X 2 Z+a4XZ 2 +a6Z 3 ,

where a^ e k \t~\ are polynomials of degree ^ 2 i. We dehomogenise this equation to
obtain

(2.5) Z = ;C 3+^lXZ+a2 ;( ; 2 z+^3 z 2+^4^ z 2+^6 z 3•

A similar form exists over U = Spec k [^] :

Z = X 3+alXZ+^2 x 2 z+ a3 z 2+ f l4 ; c z 2+^6 z 3?

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



550 M. ARTIN

the two being related by the equations

x = t 2 x ,

(2.6) ^ z = t 6 z ,

{ a^)=t-2ia^

Using equation (2.5), z may be expressed as a series in x :

(2.7) z = .x3+alX4+(a?+a2)x5+(^l3+2fl lf l2+^3)^6+ . . . .
/s.

This series expresses A as a formal 1-parameter space over Y.
If (^i, z^), (^2, z^) are points of A on some Y-scheme Y', their sum may be computed

in the usual way, using addition of points on a plane cubic curve with equation (2.5).
Substitution of the series (2.7) for z^ in terms of variables x^ gives the addition law of/<
the formal group A, which we write as

(2.8) X^@ X2== xl^~x2+alxlx2~^ — •'

Let us review the cohomology of 0 (—2). This is a free module on the affines U, U,
and we can choose bases { u }, { u } over these opens, related by the equation

t2u==u.

A 1-cocycle for this cover ofY is any section on V = Spec k \t, ?], say /(?, t) u. The
coboundaries are the sections of the form

g(t)u+g(t)u=g(f)u+t2g(t)u.

Thus all terms of/(/, t)u can be eliminated except for the monomial ctu = ctu. Such
monomials represent the 1-dimensional cohomology of Q (—2) in a unique way.

The line bundle L of (2.3) has sheaf of sections (9 (—2), and as scheme, it can be written
as

Spec k [t, x], Spec k\t, x]

over U, U respectively, with
x = t 2 x .

The 1-cocycle which represents the universal cohomology class is given by the V-map
Spec k [t, t~\ [s\ —> L (s variable) :

x^—>ts,

x\—>ts.
/^

Now for our group A, a 1-cocycle parametrized by some artinian local ring R is any
map

(2.9) k [t, 7] [[x]] -^ k [t, 7] ® R = R [r, ^]
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sending x to a polynomial = 0 (modulo ffl^). We know that there is a universal 1-para-
meter formal cohomology class, and since the first-order approximation to A is L, it
must be represented by the formal 1-cocycle

(2.10) fe[^][M]-^[^][H],
x^->ts.

The fact that this represents a universal cohomology class means that any 1-cocycle (2.9)
is cohomologous to one obtained by a map k \_\_s}~\ —> R from (2.10). In particular,
this is true of the sum of two copies of (2.10) in A, which is the formal series ts © ts
obtained by substitution into the addition law (2.8). Therefore there is a map

( p : ^ EM] - [̂[̂ 2]:!

(a power series (p (^, ^)) such that

15i © t 5^ = t (p (si, 52) © B,

where B is the image of x under a coboundary map. This power series (p is the formal
group law on k [[^]] giving Br X.

The coboundaries are sums in A' of the two kinds of map

and

or

^/(5i, s,)ek[t] [[si, 5,]], /(O, 0) = 0

^7(si, s^ek[t] [|>i, S2]], /(O, 0) = 0

^^/(si,^).

So, B = /(^i, ^2) © ^/(^i, ^2)- Now the law © is ordinary addition, plus higher order
terms. Thus we can eliminate all monomials of ts^ © ts^ inductively using coboun-
daries except those of the form ts{ s{, thereby obtaining (p.

If we write each coefficient a^ of (2.5) out as

(2.11) a,(t) = ̂ o+^i t + . . . +a,,2^21,

then the group law (p (^, s^) appears as a series whose coefficients are integral polynomials
in { a,, }. y\

The height h of Br X can be calculated, by using (p to express multiplication by p as
a power series/^) = ^ c^ s\ Its first non-zero coefficient will have degree ph in s. Since
the coefficients ^ are integral polynomials in { a^ }, the condition h > i, which is

c, = c^ = ... = c^ = 0,

is exhibited as a closed condition of codimension ^ i. We have worked out the height
for low values in the case p = 2, and obtain the following result.
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THEOREM (2.12). — Let p = 2. Equation (2.5) can be chosen so that a^ (0=0 and
^12 = 1- Assume this done. Then

h=l if a^O,

h ^2 i/ a n = 0 ,

A ^3 f/ ^11=033=0 ,

^4 if ^ 1 1 = 0 3 3 = 0 5 6 = 0 .

There are in general two supersingular elliptic curves occuring as fibres of A'/Y; they
are given by a^ (t) = 0. Thus we have h > 1 if and only if these two supersingular values
coincide. We do not know a geometric interpretation of the condition h > 2.

In the future, we hope to check out the conditions h ^ ; for i > 4 by computer. This
is not a completely trivial task since it involves computation of the series to degree 210.
For the moment, we have only an idea about the condition h = co.

PROPOSITION (2.13). — (p == 2). Assume that all odd degree coefficients a^ (j odd) of
(2.5) vanish. Then X is supersingular.

In fact, the vanishing of the odd degree coefficients implies that the Weierstrass fibra-
tion A'/Y "depends only on t2 ", i. e., is obtained by pull-back of some other fibration
B'/P1 via the Frobenius map P1 —> P1. Moreover, B' will have a Weierstrass form (2.5)
in which deg a^ ^ i. Except for degenerate cases, this implies that B' is a rational sur-
face. Thus every A7 in an open set of such Weierstrass fibrations is purely inseparable
over a rational surface B'. Mumford (unpublished) has shown that every such surface
has p = b^. On the other hand, it is not hard to see that the generic such A', at least,
lifts to characteristic zero. Hence it is supersingular, and so the same is true of any
specialization.

The surfaces A' with all odd degree coefficients zero form a family depending on the
expected number of moduli, which is 8. So it is probable that every elliptic supersingular X
with section is one of these (2). Note that since A7 is purely inseparable over a rational
surface B', it is unirational, namely it has the purely inseparable covering B'17^

Recently Shioda has proved that the Fermat surface is also unirational if p = 3 (mo-
dulo 4). These examples give some indication that perhaps all supersingular surfaces
may be unirational.

3. STATEMENT OF A CONJECTURAL FLAT DUALITY. — Let X be a smooth surface over
an algebraically closed field k. Then there is a canonical isomorphism

H^ (X, u, ® ^) = Z/n

(2) Those having no section should depend on one more modulus, making 9 parameters in all [cf. (7.7)
(iii)]. This is because there is a continuous family of homogeneous spaces of a given A/Y, coming from
the family of elements in Br A* given by the map (4.3), (ii). The unusual phenomenon of continuous
families of homogeneous spaces occurs only for supersingular surfaces.
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SUPERSINGULAR K 3 SURFACES 553

([3], expose 18) for n prime to p, and cup product into this group defines "Poincare
duality", a perfect duality

H^X.u^H^X.^-^Z/n.

We want to state a conjectural extension ot this to general n, for flat cohomology. It
is analogous to certain conjectures of Grothendieck concerning flat cohomology of curves.

We replace H}^ (X, u^) by the functors R}^ TT* ̂  on the big flat (fppf) site, where

7i : X —> Spec k

denotes the structure map, and we drop the assumption that k is algebraically closed.

THEOREM (3.1). — The functors R^ n^ ^ are represented by finite type group schemes
over k.

The proof of this theorem will be published elsewhere. The conjectural duality concerns
these groups, but it is not complete as we do not know, even conjecturally, how to retain
control of their infinitesimal parts. So we pass to the associated quasi-algebraic groups
of Serre [14]. Let us denote the quasi-algebraic group associated to R ^ T T ^ O ^ by
W (X, n^). Since |̂  is torsion, so is W (X, u^). Therefore this is a qusisi-umpotent
group. We put it into an exact sequence

(3.2) O^U^X, ^)^H^(X, H^D^X, ^)-^0

where U^ (X, u^) denotes the connected component, which is unipotent, and where
D4 (X, a,,) is a finite discrete group scheme. It is easily seen that V1 (X, u ^ ) = 0 i f ^ = 0 , l .
We write U4 (X, a^), D^ (X, u^) for the points of the corresponding groups with values
in the ground field k, provided k is perfect.

The conjectures are based on the observation of Grothendieck that Q/Z is a dualizing
ind-object in the category (QU) of quasi-unipotent, quasi-algebraic groups, i. e., that
A* w A*00 in the derived category, where A'D= RHom (A*, Q/Z). For discrete A,

Horn (A, Q/Z) = A*,

the Pontryagin dual, and Ext4 (A, Q/Z) = 0 if q ^ 0. For A = G^, we have

Ext^.Q/Z^G,

and Ext^G,,, Q/Z) = 0 if q ^ 1. These facts can be shown easily, using the results
of Oort [11].

CONJECTURE (3.3). — The functors W (X, u^) are cohomology of a canonical complex
H* (a^) in the derived category of (QU), and there is an isomorphism

H-(X, ^)-^RHom(H-(X, u,), Q/Z)

of degree —4, functorial in n.
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Using the exact sequences (3.2), this assertion for given q has two parts :

(3.4) W w D4"^* (Pontryagin dual),

U^Ext^U5'^ Q/Z).

So the possibly non-zero unipotent groups are U2 and U3, and these must be dual via
Ext1 (*, Q/Z). Of course, the conjecture does imply the existence of a pairing

H^(X,^)xH^(X,^)-^Q/Z.

We will denote it by a u P. If k is algebraically closed, then the null space of this
pairing is just U^ (X, pj.

We will need to assume two naturality properties of their duality. First, the symbol
a u P should be compatible with specialization in the obvious sense : if n : X —> S is
a smooth family of surfaces over a connected scheme S, and if a, P are classes in R^ n^ H»
and R4"^^ ̂  respectively, then a u P is defined at each fibre. It shou'd be constant.
Second, assume a, P e H^ (X, ^) are classes represented by divisors D, E on X. Then
we should have

a u P = 1 (D. E) (modulo Z).
n

There are several formal consequences of (3.3), of which we will mention two : Consider
the inverse system of sequences (3.2) filtered by divisibility of n. It follows immediately
from Kummer theory that dim W (X, ^) is bounded by /z0^"1^/?04 for all n. There-
fore, since U1 = 0, the maps U2 (X, ^) —> U2 (X, p^) are surjective for large enough
m, n. Hence the leftside of (3.2) is an essentially zero inverse system for q = 2, and
so if we set

(3.5) W (X, T^ (H)) = lim H}, (X, ^v),
def <-

we have
H2(X,rT^))=}lmD2(X,^).

The pairing on D^ therefore induces a non-degenerate pairing on H2 (X, Tp (p))/torsion.
Now suppose k is a finite field. The functor (QU) —> (sets) taking A —> A (k) has

the derived functors W (G, A (/;)), where G is the Galois group of k over k. It is easily
checked that duality for Galois cohomology extends to (QU) to a duality

(3.6) H'(G, A(^))®H-(G, A0^))-^ H^G, Q/Z) w Q/Z.

Combining this with (3.3) leads to

COROLLARY (3.7). — Assuming (3.3), let X be defined over the finite field k. Then
there is a perfect pairing

H^(X, H,) ® H^(X, ^) -> H},(G, Q/Z).
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4. CONSEQUENCES OF DUALITY FOR SUPERSINGULAR SURFACES. — The remaining parts
of this paper depend on the conjectural duality of Section 3. So the results are valid
under

HYPOTHESIS (4.1). — A duality formalism as in Section 3 holds for K 3 surfaces.

PROPOSITION (4.2). — Let X be an elliptic super singular K 3 surface over an algebraically
closed field k, and assume (4.1). Then

H^(X,^)=0 for ^=0 ,1 ,4 ,
H^X.H^G,,
U^a^G,.

Proof. — The assertion H° = 0 is trivial, and H4 = 0 follows by duality. The fact
(cf. Section 8) that Pic X has no torsion implies H1 = 0. Again by duality, it follows
that D3 == 0, i. e., that H3 = U3 is connected. Now by assumption, Br X w G^. So
by Kummer theory, the formal groups of H2 and H3 are isomorphic to G^. The only
connected algebraic group with this formal structure is G^. This proves the remaining
assertions.

THEOREM (4.3). — With the assumptions of (4.2), we have
(i) The rank of H2 (X, Tp (a)) is 22;
(ii) H2 (X, GJ === Br X is annihilated by p, and in fact the map H2^ (X, u^) —> Br X

induces a surjection U2 (X, a^) —> Br X.
This theorem is proved in Section 5.

COROLLARY (4.4). — With the assumptions o/(4.2), the following diagram is exact:

j^N* -^U2 (X,Upv)-^BrX->0
I I I I
N ——.H^(X,^v)->BrX^O
I I

N/^N^D^X,^)

where N* denotes the dual lattice of the Neron-Severi group N.
Here the middle row is induced by Kummer theory, and the middle vertical is (3.2).

We know U2 (X, \ip) maps onto Br X, from which it follows immediately that U2 (X, |̂ v)
does too. This implies that N maps onto D2 (X, u^v). The duality pairing (3.4) on D2

is therefore induced by the pairing on N (reduced modulo ^v). Since it is non-degenerate
on D2, the kernel of N —> D2 is the set of vectors v e N such that (v.w) =. 0 (modulo p")
for all w e N, i. e., is /^N*. The remaining assertions of the diagram are now clear.

Since p = 22 on X, we have N 00 Zi w H2 (X, Z/ (1)) for every / ^ p. Therefore
the discriminant of the quadratic form on N is a unit at all / ^ p, i. e., is ± 1 times a
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power of p. Its signature is (+1, —21) by the Hodge index theorem, and so the sign
is - 1. We will show in the next section (6.7) that it is always an even power of p which
occurs, provided p ^ 2. So, we introduce the notation

(4.5) a+ao=l l ,

where

(4.6) discr N = - p2^ ( p ̂  2).

By Corollary (4.4), N* => N =» /?N*. Hence N*/N andN//?N* are elementary ^-groups,
of ranks 2<7o and 2<j respectively, and in particular

(4.7) D^X.a^^Z/^ (p^2).

The case <JQ = 0 would correspond to N unimodular. But the form on N is even
(cf. Section 8) and there is no even form with signature (+1, —21) ([15], p. 91, for ins-
tance). Thus this can not occur. Similarly, the case OQ = 11 would correspond to
N = p N*, i. e., that the form on N were divisible by p :

<i ; .w> = p~'l(v.w)eZ, all v, weN.

The form ( v . w ) would again be unimodular and even, which is impossible. Thus

(4.8) l ^ a , a o ^ l 0 (p^2).

NOTE (4.9). — The discriminant is also an even power ofp in the characteristic 2 examples
of Section 2, and the inequalities (4.8) hold for these examples.

Using the isomorphism U2 (X, ^pv) w G^, the map q^ defines a map (p == p~v^^ :

(4.10) N^Z^C.Oo)

determined up to multiplication by a non-zero scalar. It is easily seen that (p is inde-
pendent of v. We call it the periods of X. A choice of basis for N determines via (p
a unique point in P21 (k).

PROPOSITION (4.11). — The kernel of^ is N. In other words, a vector x eN* is repre-
sented by a divisor on X ;/ and only if its period (p (X) is zero.

Proof. — The map N —> H^ (X, Up) of (4.4) is given by Kummer theory, and so
a vector v e N maps to zero if and only if v is divisible by p in N. This map induces (pi.
Hence (p (x) = (pi (jpx) = 0 if and only if x e N.
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There are several analogies with K 3 surfaces in the classical case which we have listed
below.

TABLE OF ANALOGIES (4.12)

Algebraic, k = C Supersingular

Periods
Period vanishes iff. class is algebraic

H2 (X,^n) ^ C/im H2 (X, Z)
p + po = 22

Po ^ 2
P > 0

Periods
Same

H2 (X, GJ » G,/im N* (3)
<7 + C?o = 11

<7o ^ 1

or > 0

We propose the study of the variation of the period map as an interesting problem.

5. PROOF OF THEOREM (4.3). — The first part (i) of (4.3) is equivalent with the assertion
that Br X is annihilated by some power of p. This follows by passing to the limit over
the exact sequences

0 ̂  N/^ ̂  H^ (X, ^v) ̂  ̂  (Br X) -> 0,

in which all terms satisfy the Mittag-Leffler condition.

Let X -^ Y == P1 be a pencil of elliptic curves on X, and let A* -^ Y be the minimal
model of its Jacobian fibration. It suffices to prove (i) for A*, which is supersingular
by (1.8). For, we have R^G^ = 0 ([8], p. 98, or (5.1)) and hence

H^GJ^H^Y.^cX/Y).

Similarly, H2 (A*, GJ w H1 (Y, Pic A*/Y). There is a canonical exact sequence of
groups on Y :

0 -. Pic° X/Y -. Pic X/Y -> Z -> 0,

where Z measures total degree on the fibres, and it is easy to see that

Pic° X/Y = Pic° A*/Y.

This sequence shows that H2 (X, GJ differs from H1 (Y, Pic° X/Y) by a finite group,
and hence from H2 (A*, GJ by a finite group. So, Br X has bounded order if and only
if Br A* does.

We now work with the fibration A* —> Y, and use notation similar to that of [5]. Let
A'/Y be the associated Weierstrass fibration obtained by contracting all components
of fibres of A*/Y except the identity component. Let n : A* —» A' be the structure map.

LEMMA (5.1). — Let n : X—> S be a proper map. Assume X regular of dimension 2,
that the fibres ofn are of dimension ^ 1, and that S is of finite type over an excellent dede-
kind scheme. Then the sheaf R^ n^ G^ is zero for q ^ 2.

(3) See Remark (6.5).
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Proof. - This is similar to [7] (p. 98), and the proof in the case q ^ 3 is identical
to the one given there. The proof for q = 2 is also roughly the same, the only change
being that Lemma (3.3) of [7] has to be proved without the flatness assumption. We
proceed as in that proof, up to formula (3.3) on p. 103. Since the problem of giving
a locally free sheaf V and an isomorphism A w End V is clearly limit preserving (locally
of finite presentation), we may apply [1] to complete the proof.

This lemma applies to our map n : A* -> A'. Also, it is clear that R,\ TT^ G^ is concen-
trated at the singular points p of the fibres of A'/Y, and at such a point it is

A; =Hom(A^Z),

where A is the free abelian group on the exceptional curves for n lying over p. Let

A=EA, .p 'p

Then composition of functors yields an exact triangle.

(5.2) H (A', GJ ̂  H- (A*, GJ ̂  (A*)+,

in the derived category. Interpreting ̂  cohomology as etale cohomology of the complexff
G^ —> G^,, we obtain an exact sequence

(5.3) 0 -. H^ (A', a,) -> H^ (A*, ̂ ) -. A*/n

valid for all /?, where the right-hand arrow is of course restriction of cohomology to the
exceptional curves. Hence

LEMMA (5.4). — H^ (A', a^) is isomorphic to the subgroup of H2 (A*, u,,) orthogonal
to the exceptional curves for n.

LEMMA (5.5). — Let A/Y denote the group over Y of smooth points ofA\ and let A (n)
denote the complex A -"> A. Then H1 (Y, A (n)) identifies canonically with the subgroup
°f H2; (A*, ^) of elements orthogonal to the zero section and to the components of the
fibres of A*/Y.

We omit the proof, which is like that of [5] (1.4). Note also that elements of

H1 (Y, A (n))

may be interpreted, as in [5], as pairs (X, D) consisting of a principal homogeneous
space X under A and an n-fo\d multi-section D of X'/Y.

LEMMA (5.6). — Let A'/Y be a Weierstrass fibration such that the associated minimal
model A* is a K 3 surface. Let (X, D) represent a e H^ (A*, p^v). Then

(D)^P(a) (modulo 2 A
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where i f / ? ^ 2 , P (a) e Z/2^ = Z/2 © Z/^ is a u a in the second summand. I f ^ = = 2 ,
we define P (a) only for those a which lift to a class a G H2 (A*, Tp (^)), setting
P (a) = residue of a u a (modulo 2V+1).

Assume the lemma for now. Then we run through the argument of [5], Section 5,
once more : Assuming rank H2 (A*, Tp (^)) > 22, we can choose a class a orthogonal
to algebraic classes, with a u a ^ 0. As in [5], this leads to surfaces X^, which are
homogeneous spaces under A of large order pv~c, lying in a limited family. Moreover,
the X^ are supersingular by (1.8), and hence lie in a limited family of supersingular K 3
surfaces. This contradicts Lemma (1.6) and completes the proof of part (i) of the
theorem.

Consider the assertion of (ii). By (i), we know Br X is annihilated by some pv. Thus
Kummer theory yields

(5.7) H^ (X, ^v) -̂  Br X ̂  Br X -. H^ (X, ^v).

Therefore Br X is isomorphic to a subgroup of H^ (X, ^v), which is G^ (k) by (4.2).
So, Br X is annihilated by p . Thus we can take v == 1 in the sequence (5.7). Combi-
ning the left and right arrows gives a map H2^ (X, [ip) —> H}j (X, \ip) which is easily seen
to the Bockstein map 5 :

H^X, H^H^X, ̂ -^(X, ̂ -^(X, ̂ ).

Clearly ; induces an isomorphism on U2. Hence the kernel of 8 is finite, and so 8 induces
a surjection U2 (X, ^) -. H3 (X, ^) = G,. Thus BrX-^H^(X,^) in (5.7), and
U2 (X, Up) —> Br X is surjective.

Proof of Lemma (5.6). — Our proof is rather brutal. We try to lift the pair (X, D)
to characteristic zero, compatibly with a lifting of the Weierstrass fibration A'/Y. Let
A^, (X-r, D^) be such a lifting, where say T = Spec R and R is some discrete valuation
ring with residue field k. By [2] there is a Brieskorn resolution n^ : A^ —> A^, if T is
replaced by some ramified extension. The pair (X-r, D^) induces a class o^ in

H^(A^),

and by our hypothesis on the duality formalism, cup product is constant on the family
A^/T. The number (D)2 will also be constant, and so we will be able to apply the known
result [5] (2.3) in characteristic zero, if p ^ 2. If p = 2, we divide the class by 2r before
lifting.

For the moment, let Ag be any family of Weierstrass fibrations over Yg == P^, para-
metrized by some scheme S. Let A' = AQ be the fibre at SQ e S, and let XQ be a homo-
geneous space under Ao. Consider deformations of Xo, i. e., the functor from pointed
schemes over (S, So) to sets defined by

(5.8) (T, to) \—> (isom. cl. of homog. spaces X^ under A^ with fibre XQ at to).

The formal properties of this functor are easily described. Say that R' —> R is a sur-
jective map of local ^-algebras whose kernel I satisfies I2 = 0. Let XR be a homo-
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geneous space of A^ over YR. It is given by a class in H1 (Y^, A^), and so extensions
to R/ are explained by the cohomology of the exact sequence of group sheaves on Y^
for etale topology

O^L^OOjI/I2 -> AR. -^ AR -^ 0,

where L is the bundle of tangents to the fibres of AR. The sheaf L (g) I/I2 is coherent.
Hence H2 (Yg, L ® I/I2) = 0, and so every homogeneous space X^ extends to Spec R'.

COROLLARY (5.9). — The functor (5.8) has a formal hull, say T, smooth over
S == Spec Os,so ana °f ^'elative dimension h1 (YQ, Lo).

Now let S be the parameter space of a family Ag of Weierstrass fibrations which is a
versal deformation of our given surface A' = AQ over the ring of Witt vectors W (k).
S is smooth over W (k). The formal space T classifies deformations of X = Xo, and
we now ask to extend the multi-section D. By Proposition (8.5), extension of the line
bundle OQ (D) = Lo is possible above a closed subset Z c: T. Adding fibres to D if
necessary, we may suppose Lo ample. Then L^ is an ample sheaf on the formal defor-
mation on X^, which is therefore projective and so is induced by a scheme over Z. This
gives the required lifting, provided Z contains a point of characteristic zero. So, we are
done unless Z contains points of characteristic p only. But by (8.5) Z is defined in the
smooth scheme T by one equation. So, this bad case can occur only if Z is the whole
scheme T x Spec (W (k)/?^ for some v. In that case we can at least replace the pair
(Xo, Do) by a generic deformation in characteristic p, i. e., we can assume AQ is generic.
Then AQ is smooth : AQ = Ag, and deformations of (Xo, Do) are in one-one corres-
pondence with deformations of the associated class (Xo e H^ (AQ, Opv). By [4], such a
class can be lifted to characteristic zero provided Br A'o is ^-divisible. Therefore we are
done by the final lemma :

LEMMA (5.10). — A generic Weierstrass fibration A'/Y which is a K3 surface is not
supersingular.

Proof. — Since the condition h = oo is closed, it suffices to show that some Weier-
strass fibration A'/Y has minimal model A* which is not supersingular. By (1.7), this
will be the case if A* is projectively liftable and has p < 22. If p = 2, we made the
required calculation (2.12). If/? 7^ 2 we can use the Kummer surface associated to E x E'
where E, E' are non-isogenous elliptic curves. This has rank 18 [18].

6. THE CASE OF A FINITE GROUND FIELD. — We continue to derive consequences of the
conjectures of Section 3. As in the previous section, hypothesis (4.1) is in force here.

Consider the case that an elliptic supersingular K 3 surface X = Xj^ is defined over
the finite field k = Fq, and that k is large enough so that G = Gal (k/k) acts trivially
on the Neron-Severi group N of X^. The Hochschild-Serre spectral sequences

E^ = H^G, H^(X,-, F))=> H^(X,, F)
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show that

(6.1) BrX^BrX,)0,

H^X^u^H^X,,^)0

An analysis of diagram (4.4) shows that its G-invariants again form an exact diagram

0
I

(6.2) j^N* ———> G^(k) ——> BrXfc-^0
1 . l I 1
N——>H^(X, ,^v)^BrX,^0
i I

N/^N*^^^^?^*.
i
0

The top row of this diagram for v = 1, together with (4.7), shows that Br Xj^ is finite
and gives its order :

(6.3) |BrX,|=^|N*/N|-1 .

COROLLARY (6.4). — The conjectural formula (C) ofTate [20], Section^, is a consequence
of (4.1), for elliptic supersingular K3 surfaces.

In fact, since p = 22, the polynomial P^ (X, q~3) appearing in the zeta function of X is

P,(X,q-s)=(l-ql-s)22.

The torsion on X is trivial, and a(X) = 1. Thus Tate's formula (C) reads

(6.4) |BrX| . |discrN|=^,

which follows from (6.3) and (4.6).

REMARK (6.5). — The surjective map U2 (X^, \ip) == G^ (k) -> Br X of (6.2) has finite
kernel N*/N independent of k, and it may be tempting to identify Br X with the quotient
variety GJim N*, which is of course isomorphic to G^ again. As the formula (6.4) shows,
this is not correct functorially. The functor Br X = R2 n^ G^ is not representable, but
is the "presheaf quotient" Br X (S) = G^ (S)/im N* of G^ by the discrete group im N*.

Tate [20], (5.1) has shown that arithmetic Poincare duality defines a skew-symmetric
pairing on Br Xj,, provided that group is finite. His proof carries over without change
to the case of/?-torsion groups :

(6.6) There is a non-degenerate skew-symmetric form on Br X^ (p ^ 2).
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Thus ] Br Xk is an even power of p. This has two consequences : First of all, if k
contains Fp2, then q is an even power of p. Hence by (6.4) :

(6.7) j discr N [ is an even power of p (p^2).

A specialization argument shows that this is true for any elliptic supersingular K 3 surface,
not necessarily defined over a finite field. Thus (4.6) follows.

Secondly, now that we know that [ Br X^ | and discr N are even powers of p, it
follows that q is, too :

(6.8) Suppose p 7^ 2. If X is defined over Fg and G acts trivially on N, then Fg => Fpi.

REMARK (6.9). — Going back to the case of an algebraically closed field k, it is concei-
vable that some subgroup of finite index r c= H2 (X, Tp (^)) can be lifted to charac-
teristic zero over a lifting X^ of X. If so, then the compatibility of specialization with
cup product would imply that | discr N is an even power of p. For, this evenness is
preserved if we pass to the subgroup F, and the lifting of F would be of finite index in
H2 (X^, Tp (n)), which is unimodular. However, the problem of deforming p, cohomo-
logy classes when X is supersingular seems quite delicate, and we have no results on that
beyond lifting of individual classes done in Section 5.

7. A FILTRATION ON THE MODULI SPACE. — Hypothesis (4.1) remains in force here.
Consider a versal family M of polarized, projectively liftable K 3 surfaces in charac-y\.

teristic p. As we have remarked, the conditions height (Br X) = h ^ i are closed alge-
braic conditions on M. We define a decreasing filtration by these conditions :

(7.1) M, : h-^i,

so that in particular M = Mp Since p ^ 1, Theorem (0.1) implies that M^ and M^
have the same reduced structure. Moreover, M^+i is defined locally be one equation
in M, (cf. Section 2).

Now consider the family of supersingular surfaces M^ and suppose p ^ 2. We res-
trict attention to the open set (1.4) of elliptic members. So, let us replace M by an open
set, on which M^ contains only elliptic surfaces. It follows from (1.1 a) that the vector
spaces V = N ® Q defined at each point form a local system on M. Let us further
replace M by an etale extension on which this local system can be trivialized, and choose
a trivialization.

One sees easily that only finitely many lattices L c: V arise as Neron-Severi groups
of fibres of M^. For each such lattice L, we define a closed subscheme 2^ (= ^oo ^Y
the condition

(7.2) SL ; L^N.

Clearly this is defined scheme-theoretically, and not only as a closed set. If L' => L,
then SL, c: 2^. Suppose that moreover L'/L w Z / p . Let v e U — L be arbitrary. Then
i^ is defined in S^ by the condition v e N, which is given by one equation (8.5) :
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(7.3) If L'/L = Z / p , then £^ ls cut °^t locally by one 1 equation in 2^.
Define a (L) and <jo (L) by CT+OO = 11 and discr L = -p2^. We set

(7.4) 2,= U SL,
(T(L)^l

so that Zf is a decreasing filtration on M^, and the reduced structures of M^ and S^
are equal (4.8). Obviously, the 2^ can be defined without reference to a trivialization
ofV.

Now suppose p = 3 (modulo 4), and let Xo be the elliptic modular surface of level 4.
This is certainly liftable, and it has p == 22 by Shioda [18]. Hence it is supersingular.

PROPOSITION (7.5). — Let XQ be the elliptic modular surface oflevelA in characteristic ̂  2.
Then

(i) H°(Xo,e)=0;
(ii) Any infinitesimal deformation Xg of Xo over S = Spec k [ _ t ' ] / ( t 2 ) , such that the

Neron-Severi group N of XQ extends to Xg, is trivial.

We defer the proof, and look at some consequences when p = 3 (modulo 4).

Denote by M the formal versal space for deformations of Xo as unpolarized surface
of characteristic^. This is a smooth 20-dimensional formal scheme (8.4). Let M c: M
be the closed set defined by some polarization which is a specialization from the modular
surface in characteristic zero. By Grothendieck's existence theorem [6], we can view M
as parameter space of an actual family of K 3 surfaces.

Let LQ = N denote the Neron-Severi group of Xo, and say or (Lo) = i. Then the
proposition implies that S^ = S, is the "origin" m^ e M, scheme-theoretically.

Consider the filtration defined above :

(7.6) M =) M = Mi =3 . . . =D MH 3 M^ => Zi = ) . . . => £10.

If we work only with reduced structure for the moment, then we have M^ = M^ = S^,
and so this chain contains 21 members, each having codimension ^ 1 in its predecessor
[cf. (8.5) for the first inclusion]. Since M is irreducible and 20-dimensional while
dim 2f = 0, it follows that; = 10 and that all terms of (7.6) are equi-dimensional, of the
expected dimension.

COROLLARY (7.7). — Assume (4.1), and that p = 3 (modulo 4). Let Xo be the elliptic
modular surface of level 4. Then

(i) The dimension of M, at Xo is 20-L In particular,
(ii) All possible values 1 ̂  h ^ 10 for the height are taken on by K 3 surfaces in cha-

racteristic p;
(in) The family M^ of supersingular surfaces is of dimension 9 at Xo;
(iv) discr N = -p2 for XQ.
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Now consider the £ filtration on M^, scheme-theoretically. Let L^ be the Neron-
Severi lattice of a generic deformation in M^. Then dim 2^ ^ of dimension 9. Clearly
L^ c: LQ. We can refine this inclusion to a composition series for Lo/L whose successive
quotients are Z / p . Therefore (7.3) and the fact that £j^ consists of the origin alone
imply or(L^) = 1, and

COROLLARY (7.8). — With the assumptions o/(7.7), we have

(i) For any L c: L() which is the Neron-Severi lattice of a generalization of Xo, Sj, is
smooth at Xo, of the expected dimensions <JQ (L)—l.

(ii) If'L is a Neron-Severi lattice as in (i), so is any L' between L and LQ.
(iii) £, ^ a Mmwz of smooth varieties 5^ of dimension (10—f), ^ XQ.

Proof of Proposition (7.5). - Let Xg be a deformation, as in the lemma. Let C be
an irreducible curve on X = Xo, and L = Q (C). Then /z1 (X, L) = 0. This implies
that the sections of L extend to the (unique) invertible sheaf Lg over Xg inducing L, which
exists by hypothesis. Hence C is induced by a Cartier divisor Cg on Xg. This reaso-
ning applies in particular to the elliptic fibration of X over Y, to the 16 sections F; corres-
ponding to points of order 4, and to the components of the reducible fibres. So, Xg is
an elliptic fibre system over Yg = P1 xS with given 0-section Fog, and 15 other sections
r,g extending the F,.

LEMMA (7.9). — The sections T^ are of order 4 in the group Ag/Yg of smooth points of
Xs/Ys.

Proof. — The fact that 1̂  is of order 4 can be expressed by the assertion.

4 r f — 4 r o ^ 0 (modulo components of fibres),

i. e., that a certain canonically constructed line bundle is trivial. Its extension to Xg is
unique, and hence is also trivial. Therefore F^ is of order 4, too.

We now claim that there is a cartesian diagram

(7.10) Xs-^X
i i
Ys-Y

compatible with the inclusion of X/Y into Xg/Yg. It will be automatic that Yg —> Y
commutes with Spec S —> Spec k, and so this will show that Xg is a trivial deformation.

Consider the problem of constructing (7.10) locally on Y, to begin with. Let U be
the open set of Y above which X is smooth, i. e., where j -^ oo. This U represents the
functor of elliptic curves with level 4 structure, X being the universal element. Since
Xs/Ys comes with sections T^ of order 4, there is a unique diagram (7.10) over U, and
it is unique when pulled back to any V lying over U. To construct (7.10) globally,
it suffices to do so locally, say for the etale topology, at the points of Y which are poles
of j. The uniqueness will imply global existence by descent.
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Let Xy be a fibre at which y = oo. It will have Kodaira's form 14 ([9] and [16], 4.2),
i. e., will be Xy = Co+Ci+C2+C3, the curves forming a quadrilateral. We are given
Xy together with a group law on the smooth locus Ay, and the 16 points y^ of Ay of order 4
are fixed. Let G = (Z/4)2 be the group underlying this point set, acting on Xy by trans-
lation. We denote the element of G corresponding to y^ by g^.

We consider flat deformations of the structure (Xy, { y^. }, G) consisting of the curve Xy,
the 16 points y^ , and the action of G on Xy. It is obvious that the structure (Xy, { y , })
has no infinitesimal automorphisms. This implies that the group action will extend
uniquely, if at all, to any deformation of this structure. It follows that the deformations
of (Xy, {y , }, G) form a closed subfunctor of the deformations of (Xy, { y, }). Since
this last space has a hull Z, so does the first, say Z' c Z.

The dimensions of Z and of Z' are easily computed. To determine a deformation
of Xy, we have to assign local deformations at each of the 4 singular points p^ ...,^4,
and then to choose the 16 deformations of the y^. (There are "no" locally trivial defor-
mations of Xy.) The 1-parameter group of automorphisms of each Cy as subscheme
of Xy allows any two deformations of one point y^ to be equalized uniquely. Thus Z is
a smooth space of dimension 4+16—4 = 16.

When does a deformation lie in Z' ? The group G acts transitively on the set {p^} .
This means that the local deformations at the p^ must all be isomorphic via the action.
Then, once one point y^ has been extended, the action of G determines extensions of the
remaining y^. Thus at most one parameter remains, namely the choice of a local defor-
mation, say at p^. On the other hand, the fibration X —> Y furnishes us with a 1-para-
meter deformation which is locally versal at p^. So, it is a versal deformation of the
structure (Xy ,{y ,} ,G) . Since Xs-^Yg also has such a structure, this fibration is
obtained formally at y by pull-back. In other words, a diagram (7.10) exists formally,
and versality insures that it can be chosen compatibly with the inclusion X/Y c= Xs/Yg.
By [1] the formal diagram may be approximated by one locally for the etale topology,
as required.

The assertion H° (X, ©) = 0 is proved easily using the universal property of X over U.

8. APPENDIX: NOTATIONAL CONVENTIONS AND BACKGROUND MATERIAL. — All Schemes
or algebraic spaces occurring are understood to be noetherian. Algebraic spaces occur
only incidentally, as total spaces of families of smooth surfaces.

Cohomology means etale cohomology except when otherwise stated. But when wor-
king with smooth coefficient groups such as G^, we often pass informally to the flat topo-
logy, invoking Grothendieck's theorem ([7], p. 171) that it yields the same cohomology.

We use the notation Br X for the Brauer group of a smooth algebraic surface. This
is the same as the cohomological one H2 (X, GJ ([7], p. 76). The symbol Br X denotes
the functor R2 n^ G^, where n : X —» Spec k is the structure map.

The Neron-Severi group of a surfacelX isjdenoted by N = N (X).
Here is a brief review of the invariants of a K 3 surface X. By definition, we have

^(X) = 1, i. e., 5c(^x) = 2, and 0^ w 0^ This means h01 = 0 and h02 = 1. It
follows that Pic X is discrete : Pic X = N.
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If C is a divisor on X, its genus is p (C) = (1/2) (C)2+1, an integer. Hence the inter-
section form on N is even, and the Riemann-Roch formula is

(8.1) X^(C))=^(C)+1=1(C)2+2.

It is known that /^ (G (C)) = 0 for q ^ 0 if C is an irreducible curve.
A consequence of (8.1) is that N has no torsion. For, let L = 0 (C) represent a non-

trivial torsion class in N. Then h° (L) = h2 (L) = 0. By (8.1), we get % (L) = 2, hence
h1 (L) = -2, which is absurd. Another consequence is that a pencil of elliptic curves
on X can have no multiple member.

The Hirzebruch Riemann-Roch formula reads 12^ = c\^c^ and c\ = 0. Hence
c^ == 24. It is known that c^ can be calculated as the Z-adic Euler characteristic

(8.2) c,=I;(-l)^,

where bq = rank W (X, Z^), for any / ^ ;? = char k. (This follows from Igusa [8].
and [13].) Since Pic X is discrete, we have b^ = 0. So, rank H2 (X, Z^) = b^ = 22,
for all / ^ /?. Since N has no torsion, neither do H2 (X, Z^) and H3 (X, Zj). Since
Q2 w 0, the pairing D1 ® ̂  -^Q2 shows that ^1 » ©. Serre duality therefore gives

(8.3) ^(X^^^X.O),

while ^ (€>) = —20. It is not known whether K 3 surfaces in characteristic p ^ 0 can
have vector fields. This is an interesting question. We can prove only that any one
having a vector field must be unirational. But for a surface without vector fields, we
have

(8.4) If h° (X, 0) = 0, then h2 (X, 0) = 0, and h1 (X, 0) = 20. Moreover, the versal
deformation of X is unobstructed, of dimension 20.

We will make frequent use of the following fact.

PROPOSITION (8.5). — Let Xs/S be a local family, possibly formal, ofK 3 surfaces. Let
LQ be an invertible sheaf on the closed fib re XQ at SQ. There is a closed subset T <= S such
that LQ extends to an invertible sheaf L^ on X^, and such that T is universal with this pro-
perty. Moreover, T is defined in S by one equation.

Proof. — The existence of T is standard, and we omit it. Let us show that T is defined
by one equation. Say that S = Spec R, let I be the ideal defining T, and let T' == Spec R/I2.
The truncated exponential sequence

0 -^ ̂  ® I/I2 ̂  0^ -^ 0^ -^ 0

defines an obstruction o e H2 (X, ^r ® I/I2) to the extension of L^ to X^. Since X^
is a family of K 3 surfaces, H2 (X^, 0 ® I/I2) w I / I 2 . By definition of T, L^ can be
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extended no further. This means that if J is any ideal between I2 and I and J ^ I, then
the obstruction to extending L^ to Spec R/J, which is the image of o in I/J, is not zero.
Since this is true for all J, the element o is a generator for I/I2. Any representative in I
will generate I.
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