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ON CONVEXITY,
THE WEYL GROUP AND THE IWASAWA DECOMPOSITION

BY B E R T R A M KOSTANK*)

1. Introduction

1.1. If p is a positive definite matrix how does the spectrum of p
change when p is multiplied by a unitary matrix ? C. Thompson in [14]
(Theorem 1) and much earlier A. Horn in [16], proved the following
theorem : Let p and q be any two positive definite n X n matrices and
let Xi ̂  x^ ̂ . . .^ Xn and y^ ̂  2/2 ̂ . . .̂  yn denote the respective sets
of eigenvalues. Then there exists a unitary matrix v such that pu and q
have the same spectrum if and only if det p = det q and

(1.1.1) x, x, . . . x, ̂  yi y, .. . y , for all 1 ̂  i ̂  n.

This rather nice theorem may be cast in a form which makes sense
for any semi-simple Lie group G. The point is that the theorem is then
true for G. Let

(1.1.2) G = K A N

be an Iwasawa decomposition for G. See e. g. p. 234 in [2]. If g€G
and g == kan where /c€K, a€:A and 7z€:N then a = a (g) is called the
a-component of g.

Now let a, fl ( r tC c() be the Lie algebras of A and G and let W be the Weyl
group of (rt, fl) regarded as operating in it (and A). For each x& rt let a {x)
be the convex hull of the Weyl group orbit W.rc. Correspondingly for
each & € A let

A (6) == exp n (log b)

[so that, multiplicatively, A (fc) is the convex compact set having the
Weyl group orbit W. fc as its extreme points].

(*) This paper was partially supported by a grant from the National Science Foun-
dation Grant N° GP 28969.
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414 B. KOSTANT

Now let b € A be arbitrary. In doing analysis on semi-simple Lie
groups or in representation theory, one is very often concerned with the
a-component, a (bu), of the product bu where y € K is arbitrary. (Recall,
for example, Harish-Chandra's well known formula [see (4.1.2)] for the
elementary spherical functions on G.) The generalization which we will
prove here of the Horn-Thompson theorem determines the set of all a {bu)
as v runs through K. Not only is a ( & y ) € A (&) but in fact one has

THEOREM 4.1. — Let fee A be arbitrary. Then

A (b) = \a{bv) ueK}.

The connection between the Weyl group convexity formulation in
Theorem 4.1 and the Horn-Thompson theorem may be clarified by intro-
ducing a natural partial ordering in G. This partial ordering is different
from (but was inspired by) a partial ordering defined by Thompson
for GL (n, C). Thompson's definition is based on the polar decomposition
and hence depends on a particular choice of a Cartan decomposition
of fl. One obtains an invariant partial ordering by just noting that any
element gdG may be uniquely written

(1.1.3) g==ehu

where e is elliptic, u is unipotent and h is hyperbolic and all three elements,
e, h and u commute. Write h = h (g). An element is hyperbolic if and
only if it is conjugate to an element in A. Now for any element gCG
let A (g)CA be defined by putting A (g) == A (&) where & € A is conju-
gate to the hyperbolic component, h (g), occurring in (1.1.3). It is easy
to see that A (g) is independent of &. Given /*, gGG define

(1.1.4) g=,f in case A(/-)CAQ/).

The ordering is independent of A since one has

THEOREM 3.1. — For any finite dimensional representation r\. of G and
any g€G let \ n (g) denote the spectral radius of n (g). Then if g, /*€ G
one has g^f if and only if 71 (g) ^ | TT (/*) for all finite dimensional
representations Ti of G.

REMARK 1.1. — In case say G C S L ( n , C ) for some n the ordering
in G induced by that in SL (n, C) is not necessarily the given ordering
in G. Thus it is not sufficient just to define the ordering in SL (n, C)
{see Remark 3.1.1).

Theorem 4.1 now says that a {bu) runs through all elements a€A
wherea ̂  b as u runs over K. That is, by Theorem 3.1, all a € A such
that | ^ (a) [ ̂  n (&) for any finite dimensional representation n.
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In case G = SL (n, C) and b = p, a == q are diagonal matrices, this just
means (I . I . I ) since it suffices to consider only the (fundamental) repre-
sentations T.I, of G, 1 ̂  i ̂  n—1, on the space A.1 C71 of alternating
i-vectors. But one has r.i (&) | = Xi . . . Xi and [ T^ (a) | == yi . . . y i ,
This in essence establishes the connection of Theorem 4.1 with the Horn-
Thompson theorem. Not quite, since the Horn-Thompson theorem deals
with eigenvalues and Theorem 4.1 deals with the Iwasawa decomposition.

Theorem 5.4 is the direct generalization of the Horn-Thompson theorem
to the arbitrary semi-simple case. Indeed for SL (n, C) it reduces to
Horn's theorem which is stronger than Thompson's result in that Horn
also proves the additional fact that if v is any unitary matrix and the
eigenvalues Zi, . . ., z^, of pu, (no longer necessarily positive) are ordered
so that Zi | ̂  | z^ ^. . .̂  | Zf, | then one has

Xi . .. Xt-^ Zi I . . . Zi for all i.

1.2. One may apply Theorem 4.1 to obtain some results on K-double
cosets. For any a € A let

G.==[geG \ p(g)^a\.

Here p (g) is the " positive definite 59 component of g relative to the
polar decomposition [see (4.2.6)].

Now one knows that

(1.2.1) G=KAK.

This fact is quite useful. It implies among other things that a spherical func-
tion on G is determined by its restriction to A. If we say that, /, g€G
are congruent when K f K = K g K then (1.2.1) of course says that
any element in G is congruent to an element of A. Now if we replace A
by a coset of N this is no longer true. Nevertheless one can now say
exactly which elements in G are congruent to this coset.

THEOREM 5.3. — Let a€A. Then

Ga = K a NK.

Since p (g) ̂  1 for all g€G the special case where a == 1 yields

THEOREM 5.1. — One has

G =- KNK.

REMARK 1.2. — Theorem 5.1 says that a spherical function is deter-
mined by its restriction to N (as well as its restriction to A). It is sugges-
tive therefore from Theorem 5.1 that it might be quite interesting to see
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416 B. KOSTANT

what the spherical functions look like on N. Geometrically, Theorem 5.1
says that if X is the symmetric space G/K then any two points on X
lie on some horocycle. In case X is the unit disc this is of course clear
since the horocycles are just the circles in the disc that are tangent to
the boundary.

An element a € A is called regular if G- a = a, a- € W, implies a is the
identity.

Another corollary of Theorem 5.3 is

THEOREM 5.5. — Let a€A be regular and let Da be the conjugacy class
of a. That is D,, === [ gag~1 | g€G }. Then

Ga == K D, K
[See Remark 5.5).

1.3. One of the main points of the paper [14] was to recast some
generalizations of the Golden-Thompson inequality made by Lenard
in [9]. The Golden-Thompson equality states that if x and y are two nX n
Hermitian matrices then

(1.3.1) tr e^ ey ̂  tr e^

The generalization made in [9] replaces the trace by the character of
any representation of GL (n, C). But now this generalizes to an arbi-
trary semi-simple Lie group in two steps, Theorem 6.1 and Theorem 6.3.

If g€G is hyperbolic and T. is a finite dimensional representation of G
then the eigenvalues of n (g) are all positive. Thus [ T. (g) then is just
the maximal value of TZ (g). Hence if /, g€G are hyperbolic and g^ f
then by Theorem 3.1 the maximal eigenvalue of n (g) is greater or equal
to the maximal eigenvalue of r. (/*). But the minimal eigenvalue of r. (g) is
less or equal to the minimal eigenvalue of TC (/*). Thus one cannot imme-
diately compare ^ (/*) and jr. (g) if ^ is the character of TI. However
one has

THEOREM 6.1. — Let /*, g€ G be hyperbolic and assume g ̂  /*. Then ifr^
is any finite dimensional representation one has

^ (9) ̂  ̂  (/')•

Now let k be the Lie algebra of K so that g = k 4" V ls a Cartan decom-
position of g where p is the (Killing form) orthocomplement of h in g.
If P === { exp x [ rr€:P } it is easy to see that P2 is the set of all hyperbolic
elements in G (see Proposition 6. 2). Thus if x^ y € y then ex e^ and e^
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are hyperbolic. As a dividend of the partial ordering based on (1.1.3)
rather than on the polar decomposition one has

THEOREM 6.3. — For any x, y€Sp,

(1.3.2) e-^ ev ̂  e^v

so that, by Theorem 6.1, /jz {e~1' e ' ' ) ̂  /^ [e^') for any finite dimensional
representation r. of G.

1.4. The relation (1.3.2) has a nice geometric interpretation. In fact
it is really a statement about geodesic triangles on Riemannian symmetric
spaces of negative curvature.

An element ^Gf l is called real semi-simple if ad x is diagonalizable
and has real eigenvalues. Let ICg denote the set of such elements.
One notes that the exponential map sets up a bijection between I and
all hyperbolic elements in G. Furthermore the partial order in G defines
a partial order in I. That is if x, y el then y ^ x if exp y^exprc.
This is equivalent to the condition that it (x)^a (y) where for any ^€l,
a (z) = a (^/) and ^€ rt is an element conjugate to z. The statement y^^x
is also equivalent to the condition that the maximal eigenvalue of 11 (y)
is greater or equal to the maximal eigenvalue of T. [x) for all finite dimen-
sional representations TI of G.

If x^l and [x, x) denotes the inner product defined by the Killing
form then {x, x) ̂  0 and one puts \x == {x, x) ' 1 ' 1 . For x, 2/el one
easily has

(1.4.1) U^^ implies y |^ x |.

The converse is false in general. See Remark 7.1.
Now let X = G/K so that X has the structure (normalized by the

Killing form on g) of a Riemannian symmetric of negative curvature.
For any two points r, s^. X let d (r, s) be the distance of r to s . , i. e. d (r, s)
is the length of the unique geodesic arc segment (r, s) joining r to s.

Now let o, r, and s be any three points in X and consider the corres-
ponding geodesic triangle. Let a = d (o, r), b = d (o, s) and c == d (r, s).
Also let ^ be the angle at o made by (o, r) and (o, s). Then the Law of
Cosines in fiat space is replaced by the inequality

(1.4.2) c^a2 + b'1 — 2abcos^

on the space X. See Lemma 4 in [11]. But the point is that a geodesic
arc segment (r, s) carries more information than just its lenght d (r, s).
In fact one can naturally associate to (r, s) a real semi-simple element

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



418 B. KOSTANT

x (r, s) el. In the language of Elie Cartan the motion of X defined by
exp x (r, s) is that transvection along the geodesic containing (r, s) which
carries r to s.

But now d! ( r ,5 )= x (r, s) and (1.4.2) is just the statement that
x (r, o) -}- x (o, 5)€l and ,

(1.4.3) \ x ( r , s ) \ ^ \ x ( r , o ) + x ( o , s ) \ .

What (1.3.2) amounts to (see the proof of Theorem 7.2) is that we
can remove the absolute value signs in (1.4.3).

THEOREM 7.2. — Let o, r, 5 € X = = = G / K be any three points. Then

x (r, s) ̂  x (r, o) + x (o, s).

1.5. Now let A i ^ A 2 ^ . . . ^ / ^ be any n real numbers and let
X == (Xi , Aa , . . ., X,,)€R71 = do. For any permutation cr on 1, 2, . . ., n
let crX = (>^-i(,), X^-^), . . ., X^-i^erto and let rto (X)C( io = IT be the
convex hull of all the vectors { G-X } for all permutations o-.

Now let x = (xij} be any nXn Hermitian matrix with eigenvalues
X i , . . ., \n. Then A. Horn in [3] proved that the " diagonal95 {x^^x^^.^Xnn)
of x, regarded as a vector in R", lies in rto (X) and that one obtains all vectors
in do (X) this way, by considering all Hermitian matrices x with the eigen-
values Xi , . . ., X,,. This result may also be generalized to all semi-simple
groups.

This time, however, the generalization, Theorem 8.2 is a statement
about the Lie algebra fl and adjoint representations of K on p rather than,
as in the case of Theorem 4.1, a statement about G and double K-cosets.
However the techniques, at least in one direction, of proving Theorem 4.1
and Theorem 8.2 are similar. Theorem 8.3 is an application of
Theorem 8.2.

CONTENTS
1. Introduction.
2. Preliminaries on elliptic, hyperbolic and unipotent elements.
3. The partial ordering in G and the spectral radius ^ (g), X e G.
4. The convexity theorem.
5. Applications : Some K-double coset theorems.
6. Character values and the partial ordering; a generalized Golden-Thompson inequality.
7. Applications to the geometry of symmetric spaces of negative curvature.
8. A conjugation convexity theorem; a generalization of a theorem of A. Horn.

2. Preliminaries on elliptic, hyperbolic and unipotent elements

2.1. Let g be any semi-simple Lie algebra over the real numbers R.
An element ^Gf i is called real semi-simple (resp. nilpotent) if ad x is
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diagonalizable over R (resp. ad re is nilpotent). In particular ad x has
real eigenvalues if x is real semi-simple.

Now let G be any Lie group having g as its Lie algebra and let exp : g —>• G
denote the exponential map. An element a€G is called hyperbolic
(resp. unipotent) if a is of the form a -= exp x where x is real semi-simple
(resp. nilpotent). In either case the element x is easily seen to be unique
and we write x ==• log a. Since only the identity l€ G is both hyperbolic
and unipotent there is no ambiguity in this definition.

An element e^G is called elliptic if Ad e is diagonalizable over C with
eigenvalues of norm 1. One has the following :

PROPOSITION 2.1. — Let g€G he arbitrary. Then g may be uniquely
written

g = ehii

where e is elliptic, h is hyperbolic and u is unipotent and where the three
elements e, h and u commute.

Proof. — Let gc be the complexification of g and let Gc C Aut flc be
the adjoint group of go. Thus the adjoint representation (Ad) of G maps G
into G,.

Now since Gc is algebraic one has the multiplicative Jordan decom-
position Ad g == Si Ui where Si, Ui € Gc, Si is semi-simple (i. e. diagona-
lizable), Ui is unipotent and Si and Ui commute {see e. g. [12], p. 4-11).
On the other hand by embedding Si in a complex torus of G,. it is clear
that we uniquely write Si = Ci hi where e^ hi € G, are two commuting
semi-simple elements where the eigenvalues of ei have norm 1 and the
eigenvalues of hi are positive. Thus one has the decomposition

(2.1.1) Adg=e,h,u,.

The uniqueness of Uj and Si imply (after conjugating by Ui) that all
three elements, ^i, hi and Ui commute.

Now since hi and Ui define automorphisms of flc and since all deri-
vations are inner we may uniquely write hi = exp ad x, Ui == exp ad z
where x, z^Qcj adz is nilpotent and ada? is diagonalizable with real
eigenvalues. But then the commutativity of hi and Ui implies the com-
mutativity of hi and ad z and then the commutativity of ad x and ad z
so that
(2.1.2) [x,z]==0.

Now let o- be the automorphism of gc defined by putting a = 1 on j
and — 1 on i Q. Then d i-> d^ == o- cfc- defines an automorphism of Gc.
Clearly Ad g is fixed under this automorphism. But then by the unique-
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420 B. KOSTANT

ness of the decomposition (2.1.1) it follows that ^4, h\ and Ui are fixed
by the automorphism so that g is stable under ^i, hi and Ui. But then 9
is stable under ad x and ad z so that a;, z€Sfl . But then x is real semi-
simple and z is nilpotent. Thus hy udG are respectively hyperbolic and
unipotent where
(2.1.3) h == exp x, u == exp z.

Moreover they commute by (2.1.2). Furthermore they commute with g
since Ad g commutes with hi and Ui and hence, by the uniqueness of x
and z, fixes x and z. Thus if
(2.1.4) e == gh-1 u-1

then e commutes with h and u. Also g •== ehu. But clearly Ad e •=== e^
and hence e is elliptic. Assume g = e' h' u' is another decomposition
satisfying the same conditions. Then by the uniqueness of (2.1.1) one
has Ad e ' •==- ^i, Ad h' = hi and Ad u' == Ui . But by taking the diffe-
rential of Ad one has

exp ad log h' === exp ad x == Tii and exp ad log u! = exp ad z == Ui.

Thus, by uniqueness, x = log h^ z = log u7 and hence h' = A, u' = u
and consequently e' = ^.

Q . E D .

Given g€G the components e, h and u of Proposition 2.1 will be
written e (g), A (g) and u (g) respectively and the decomposition
(2.1.5) g = = e ( g ) h ( g ) u ( g )

will be called the complete multiplicative Jordan decomposition of g.

REMARK 2 .1 .— Note that by uniqueness if/*e G then h {fgf~') = fh (g) />-1

(similarly for the elliptic and unipotent components). In particular f
commutes with g if and only if it commutes with all three components.
Furthermore it is then easy to see that if /*, g€G commute
(2.1.6) h(fg)=h(f)h(g), e (fg) = e (f) e (g) and u (fg) = u (f) u (g).

2.2. Now let g = k 4" V be a fixed Cartan decomposition of g. Thus
if K is the connected subgroup of G corresponding to k then Ad K is a
maximal compact subgroup of Ad G. Also p is the orthocomplement of k
in g with respect to the Killing form. Let d C p be a maximal commu-
tative subalgebra contained in p so that rt is a maximal commutative of
real semi-simple elements. Let Xo € d be any fixed element for which
(2.2.1) ^ - a

where p^0 is the centralizer of Xo in p (see e. g. § 1.3, [8]), and let uCQ
be the sum of all eigenspaces of ad x belonging to positive eigenvalues.
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Then n is a Lie subalgebra, all of whose elements are nilpotent, and one
has the Iwasawa decomposition

(2.2.2) 9 =k + a +n

of g. If A and N are, respectively, the subgroups of G corresponding
to ft and n then the map K X A X N -> G, (/c, a, n) ̂  kan is a diffeomor-
phism (see Theorem 5.1, p. 234, [2]) and one has the Iwasawa decompo-
sition
(2.2.3) G = K A N

of G.

The elements in K are clearly elliptic since Ad K is compact. Also the
elements in A are hyperbolic and the elements in N are unipotent (since
the maps ft —^ A, n -> N defined by exp are bijective).

If g€G is arbitrary then its components in K, A and N will be denoted
^Y k {g)^ a {g) ^d n (g) and

(2-2-4) 9 = ^ ( 9 ) a ( g ) n ( g )

is called the Iwasawa decomposition of g.

REMARK 2.2. — Both the complete multiplicative Jordan decompo-
sition and the Iwasawa decomposition write g as a product of an elliptic,
hyperbolic and unipotent element. One notes, however, that the Iwasawa
decomposition is not invariantly defined. It obviously depends on the
choice of K, A and N.

2.3. If Z is the center of G then Z is the kernel of Ad and hence by
definition the elements of Z are elliptic. We recall the following fact.

PROPOSITION 2.3. — An element e^G is elliptic if and only if it is
conjugate to an element in K. In particular ZCK. Furthermore any
element /c€= K is of the form k == exp y for some 2 /€k.

Proof. — Let Gi = Ad G be the adjoint group of G so that GiCGc.
If K, = Ad K, A, = Ad A and N1 = Ad N then G, = K, A, N, is
clearly an Iwasawa decomposition of Gi. In particular Gi/Ki is simply
connected since it is diffeomorphic to Ai X N1 {see Theorem 5.1, p. 234, [2]).
But then if K* = Ad~1 Ki one has G/K* ^ Gi/Ki is simply connected.
Thus K* is connected. But the identity component of K^ is clearly K.
Thus K^ == K.

We have already remarked that the elements of K are elliptic (since Ki
is compact) and hence any element conjugate to an element in K is
elliptic. Now let e€:G be any elliptic element. Then clearly the clo-
sure Li of the subgroup of Gi generated by Ad e is compact. But then Li
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422 B. KOSTANT

is conjugate to a subgroup of Ki. Thus e is conjugate to an element /c€ G
such that Ad/cGKj. But then / c € K ^ = = K . Hence an element is
elliptic if and only if it is conjugate to an element in K. Now k = ko © t
where r is the center of k and ho = [k, k] is semi-simple. But if Ko and C
are the connected subgroups of G corresponding to ko and r then K = Ko C
since Ko C is clearly a Lie subgroup whose Lie algebra is k. Thus if /c€ K
we may write k = /Co c where ko € Ko and c€C. But Ko is compact
since ko is compact semi-simple. Thus ko = exp y^ for some i /oGko . Also
c = exp z for some z€ Co since Co is abelian. Thus k = exp 2/0 exp z == exp y
where y = 2/0 + js€k, since [t/o, z] == 0.

Q. E. D.

2.4. Now the Weyl group W associated with (rt, g) is the finite group
defined as the quotient of the normalizer of A in K modulo the centra-
lizer of A in K. The Weyl group W naturally operates in it and A and
in such a manner that the isomorphism n -> A defined by exp is a W-iso-
morphism.

Now for each real semi-simple element x^Q (resp. hyperbolic element
/i€G) let w {x) [resp. W (A)] be the set of all elements in a (resp. A) which
are conjugate to x (resp. h).

PROPOSITION 2.4. — An element x^Q is real semi-simple if and only
if it is conjugate to an element in it. Moreover in such a case w (x) is a
single ^V-orbit in IT. Similarly an element h^G is hyperbolic if and only
if it is conjugate to an element in A and in such a case W (A) is a single
V^f-orbit in A.

Also if x is real semi-simple then W (exp x) = exp (w (^)).
Proof. — Since exp sets up a bijection between the set of real semi-

simple elements in g and hyperbolic elements in G and since exp com-
mutes with conjugation it suffices only to prove that if x is hyperbolic then
w (x) is a single W-orbit.

Let x be real semi-simple. Since ad x is diagonalizable x lies in a
Cartan subalgebra of g. But since the eigenvalues of ad x are real x
lies in the vector part of the Cartan subalgebra. But the vector part
of any Cartan subalgebra is conjugate to a subalgebra of a (see e. g.
Theorem 2 (2), p. 383, [13]). Thus x is conjugate to an element 2/Git.

Now assume z, y ^ a are (Ad G) conjugate. We have only to show that
they are W-conjugate. But for some g€G, Ad g {z) •= y. Let g = kan
be the Iwasawa decomposition of g. Then Ad an {z) = z + u where u € H
since A is abelian and A normalizes N. But then Ad k {z 4- u) = y.
But z, f / € p and p is invariant under Ad K, and p n n = 0. Thus u = 0.
Hence Ad k (z) == y so that z and y are Ad K-conjugate. Thus any
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CONVEXITY, WEYL GROUP, IWASAWA DECOMPOSITION 423

polynomial function on p which is invariant under Ad K takes the
same values on z and y. But then any polynomial function on a inva-
riant under W also takes the same values on z and y {see Theorem 6.10,
p. 430, [2]). Thus z and y are W-conjugate, say, by the argument in
Lemma 9.2 (p. 1029 in [6]).

Q. E. D.

Now extend the definition of W (h) from hyperbolic elements to all
elements as follows : For any g€G let W (g) = W (h (g)) where we recall,
[see (2.1.5)], that h (g) is the hyperbolic component of g. Thus we have
associated to an arbitrary element g€G a single W-orbit in A.

REMARK 2.4. — Obviously W (g) = W (/*) if /*, g€G are conjugate.
See Remark 2.1.

2.5. Propositions 2.3 and 2.4 dealt respectively with elliptic and
hyperbolic elements. An analogous statement for unipotent elements is
that an element is unipotent if and only if it is conjugate to an element
in N. More generally one has

PROPOSITION 2.5. — Let g€G. Then g is conjugate to an element
in AN if and only if e (g) = 1 [see (2.1.5) for the definition of the elliptic
part e {g) of g}. Moreover in such a case there exists / c€K such that
/cg/c^eAN.

Furthermore if g is conjugate to a^eAN where a € A , M G N then
W (g) == W (a) = W.a, the Weyl group orbit of a.

[REMARK 2.5. — Note a is not necessarily equal to h {an).]
Proof. — Let S = AN so that S is solvable and its Lie algebra is $ == a + n-
Now let /*€S so that f= an where a€:A, n € N . The decomposition

f == an is of course the Iwasawa decomposition of f. Let f == ehu be the
complete multiplicative Jordan decomposition of f. We wish to show
that e = 1, A € = S and u € N . Towards this end define subspaces fl^fl,
i == 0, 1, . . . inductively as follows : Let go = fl and if g, has been
defined let fl;+i = [n, g,] so that flA+i = 0 for some minimal k. Now if
g€ G is in the normalizer of N then ^ is clearly stable under Ad g for all i
and Ad g defines an operator on g//g/;+i and hence an operator which

we denote by Ad g on ® 4F/fl/+i = fl. Furthermore the eigenvalues
/'=0

of Ad g on j are the same as the eigenvalues of Ad g. But now f, a, n
are in the normalizer of N and Ad n = 1. Thus Ad f == Ad a. But the
eigenvalues of Ad a are positive. Hence the eigenvalues of Ad f and Ad a
are the same and consequently the eigenvalues of Ad f are positive.
But now if Ad f == Ci Ai Ui is the decomposition of Ad f defined as
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in (2.1.1) (where g == f) it follows that e, = 1. Thus Ad f = h, u, is
the multiplicative Jordan decomposition of Ad f. Hence hi and Ui are
polynomials in Ad /*. But u is stable under Ad f since f == an. Thus u
is stable under Ai and Ui. But, if, as in the proof of Proposition 2.1,
x and z are respectively the unique real and nilpotent elements in g such
that hi = exp ad x^ U j == exp ad z then clearly ad x and ad z are respec-
tively polynomials in hi and Ui and hence it follows that x and z are in
the normalizer of n. But now we recall that n (see § 2.2) is the sum
of the eigenspaces of ad x^ belonging to the positive eigenvalues of ad r^o.
If n' is the corresponding sum for the negative eigenvalues then
9 == n © n- © (T0 is a linear direct sum where fl'" is the centralizer of Xo.
But fl^ = a 4- w where in is the centralizer of rt in k (see e. g. Propo-
sition 8, p. 771, in [8]). Clearly ^ is in the normalizer of n. In fact
one recalls that the normalizer b of n in g is given by
(2.5.1) b = m ® a ® n .

For this it is enough to note that u ~ n b = 0. But if we embed rt in a
Cartan subalgebra t) C o 4- m then n is spanned by root vectors e^ for
some set R of roots and u~ is spanned by root vectors for the roots in — R.
But since 0 7^ [e.^ ^]et) and [^,^]et)1, where I)1 is the orthocom-
plement of t) in g for f^, (p€R, 9 7^ r^, it follows that n ~ n b == 0.

Thus by (2.5.1) x, 2 ; e m © r t © n . Let
x = x\ + ^2 + ^3 and z == ^ + ^ + ^3

be the respective components in w, a and n. Also for any y € b let ad y

be the operator on § == ,̂ g^+i defined by ad ^/ in a manner similar

to the definition of Ad g for any g € G in the normalizer of N. Clearly
the eigenvalues of ad y are the same as the eigenvalues of ad y. But now
ad n == 0 so that ad z = ad Zi + ad z^. But [m, a] = 0 so that ad Zi
and ad ^2 commute. However ^ j G l t i C k so that the eigenvalues of ad Zi
are pure imaginary and ^2 € rt so that the eigenvalues of ad z^ are real.
But the eigenvalues of ad z and hence of ad z are zero. Thus

a^d Zi == ad ^ == 0

since ad Zi and ad z^ are diagonalizable. Thus Zi = ^ = 0 and
hence jsen. But again since ad u = 0 one has ad x == ad Xi 4- ad ^.
Also ad ^i and ad x^ commute, since [m, rt] ==• 0, and the eigenvalues
of ad Xi and ad x^ are, respectively, pure imaginary and real. Since
the eigenvalues of ad x are real this implies that ad Xi = 0 and also Xi = 0
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since adrci is diagonalizable. Thus ^ € l l 4 ~ ^ • But now the hyper-
bolic and unipotent components h and u of f are given by h == exp x
and u = exp z [see (2.1.3)]. Thus h € AN and u € N and hence /iu = a' n'
where o^A, ^eN. But /*= eAu = ea' n ' ' . However Ad e = Ci = 1 as
shown above. Thus e € Z , the center of G. But then e € K by Propo-
sition 2.3. Hence f = ea' n' is the Iwasawa decomposition of f == an.
By uniqueness one has e = 1 or
(2.5.2) e(f)=\.

Thus f == hu = exp x exp z = exp [x 4- ^) by (2.1.2).
But now x^{\ -\- u = $ is a real semi-simple element. Thus x lies in

a Cartan subalgebra of 9. But IT is clearly a Cartan subalgebra of $
[since (see § 2.2) the existence of ^o€r t such that ad x^ is non-singular
on u shows that rt is its own normalizer in $]. However any two Cartan
subalgebras of a solvable Lie algebra are conjugate (see e. g. [5], Theorem 1,
p. 58). Thus there exists & e A N such that Ad b {x) = x^ € n. Let
^2 == Ad b (z). But then z^ € H since u is an ideal in a -[- n- But [x'^ ^2] = 0
by (2.1.2) and hence if 02 == exp x^ € A and n^ == exp ^2 then bfb~~1 = 02 ^2
is both the Iwasawa and the complete multiplicative Jordan decompo-
sition of bfb~\ Thus {see Remark 2.4) one has W (/*)== W (02) = W.02,
the W-orbit of 02. We assert that 02 = o. Indeed f = an so that
fc/Tr"1 = bab~1 bnb~i. But fcofc"1 = on.{ where n.^ E N (since n = [e, $]).
Thus fc/'fe"1 == on, where ^3 bnb~1 = n. € N. Hence 02 n^ = an,, so that
02 = a. Hence W (/*) == W.o.

To finish the proof we have only to show that if g€G is any element
such that e (g) = 1 then g is K-conjugate to an element in AN. Let g = hu
be the complete multiplicative Jordan decomposition of g and let x = log h,
z = log u so that [x, z] = 0 by (2.1.2). But then z is in the centra-
lizer, g', of x. But g' is reductive [see e. g. § 3, p. 352 in [7]). Further-
more z is not only nilpotent in g but also in %x which means that it is a
nilpotent element in the semi-simple Lie algebra [j% j^] {see e. g. (3.1.3)
p. 352, [1]). By the Jacobson-Morosov theorem there exists an S-triple
(y, z, w) in ^x in the notation of [6]. {See § 4, [6] p. 988.) In particular
there exists a real semi-simple element y of fl contained in ^x such
that [y, z\ == z. But x and y span a 2-dimensional abelian subalgebra &
whose elements are real semi-simple.

But then & can be embedded in the vector part of a Cartan subalgebra
of fl using the notation of [13]. However by Theorem 2 (2), p. 383 in [13]
it follows that & is conjugate, say by Ad /*, / 'CEG, to a subalgebra of a.
Furthermore by applying an element of the Weyl group W, if necessary,
we may assume that y is carried into the same Weyl chamber (see [I],
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p. 5) as XQ by Ad f. But since [y, z\ = z, i. e. z is an eigenvector for ad y
corresponding to the eigenvalue 1 it follows that from the definition of n
that Ad /*(z)€n. Thus Ad/* carries both x and z into rt + n. Since
g = exp {x + z) one has /g/^ € AN. However if /'-1 = kan is the Iwasawa
decomposition of f~1 then clearly k~1 g/cG AN since AN is obviously stable
under Ad an. Q. E. D.

3. The partial ordering in G and the spectral radius | T:\ (g) , geG, 7eG.

3.1. For any real semi-simple element x^Q let a {x) be the convex
hull of the Weyl group orbit w {x)Ca. Thus rt (x) is the compact convex
subset of rt having w {x) as its subset of extremal points.

Now, group-wise, for any g€G let A ( g ) C A be the compact subset
defined by putting

(3.1.1) A(^)==expa( log7 i (^ ) )

where we recall h (g) is the hyperbolic component of g [see (2.1.5)].
In particular note that W (g)CA (g) [and in a multiplicative sense A (g)
is the " convex hull " of W (g)].

REMARK 3.1.— Note the sets a (x) C n for x real semi-simple or A (g) C A
for g€G arbitrary, are invariant under the Weyl group.

The following definition is different from, but was inspired by a defi-
nition made by Colin Thompson for GL (n, C) in [14]. His definition
simplified a previous one made by A. Lenard in [9]. Thompson's defi-
nition has nothing to do with convexity and is based on the polar decom-
position. For SL (n, C) both agree on P. See section 4.2. This will
be clearer as a consequence of Theorem 3.1 below and the Horn-
Thompson Theorem, p. 470 in [14]. The definition here although defined
in terms of A is easily seen to be independent of the maximal " R-split
torus ?) A. The invariance of the definition is nevertheless more cogently
illustrated by Theorem 3.1.

Given /*, g€G we say that g^/1 if A( /* )CA(g ) [or equivalently if
W(/*)CA(g)] . This obviously defines a partial ordering on G.

REMARK 3.1.1. -— One should note that the partial order is not neces-
sarily the same as the partial order on G that would be induced by a
possible embedding of G in SL (n, C). Indeed it follows immediately
from Remark 3.1.2 that it GCG' where G7 is also semi-simple and /*,
g€G then if g =^ f in G one also has g^f in G7. It is the converse
which may be false. Indeed take for example the case where the R-split
rank (dim A) of G and G7 are the same, so that A is a maximal R-split
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torus in both G and G7, but that the Weyl group W of (A, G7) is larger
than W. If c r G ^ ^ — W and, say, a -= exp x^ {see § 2.2) then a,
a- a € A C G and a ̂  a- a in G7 but a 7^ a- a in G. It follows therefore that
if GCG'CSL (n, C) for some n then the partial ordering on G is not the
one induced on G by that on SL (n, C).

Now let G be an index set for the set of all equivalence classes of
irreducible finite dimensional representations of G.

Also for any ). € G let
(3.1.2) T:,: G->AutV,

be a fixed representation in the class corresponding to X.
Now for any g€G and let X e G let [ n/, (g) be the maximum of the

absolute values of the eigenvalues of r. (g). That is (as Helgason
reminded me) | TZ), (g) | is the spectral radius of r^ (g).

THEOREM 3.1. — Let /*, g€G. Then g^f if and only if
(3.1.3) 1^07)1=. ^(0

for all X € G.

REMARK 3.1.2. — Using say, complete reducibility, note that one
may substitute for the set of irreducible representations r^, XeG, in
Theorem 3.1 the collection of equivalence classes of all finite dimensional
representations, irreducible or not.

3.2. Before proving Theorem 3.1 (see § 3.5) we will need notation
which will be used in the proof and elsewhere. Let iV be the real dual
to rt and let FCn/ be the set of restricted roots. That is F is the set of
non-zero weights for the adjoint action of IT on g. An account of the
theory of restricted roots may be found in [1]. The set of positive res-
tricted roots r+ corresponding to n may be given by
(3.2.1) r ^ = { y e r | < y , . z ; o > ^ o i
where Xo is fixed as in section 2.2. Let 2 == { ^ii, . . ., p/J CF+ be the
set of simple, positive restricted roots so that every y E F is an integral
combination of the ^i and 2 is a basis of d7.

Now the Killing form on g induces a positive definite bilinear form
on rt and by duality a positive definite bilinear form on a\ Then one

0 /^ \
knows that for any y, oGF, ' 9V is an integer. {See § 2.4, [1]).

That is, if ^€il is an element corresponding to ,——. under the isomor-

phism rt-^ rt7 defined by the Killing form then <^ o, ^ y ^ > € Z for all oEF.
In particular <( y, x^ ̂  = 2.
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Moreover for any y C F there is an element T ( y ) e W (the reflection
defined by y) such that for any x^a,
(3.2.2) .(^^_^^^

and W is generated by these reflections.
Now let

(3.2.3) ^ = { x e a <^, ; r>^0 for i = = 1,2, . . . , r {

so that a+ is a Weyl chamber in il {see p. 5 in [8]). One knows that any x^ rt
is W-conjugate to a unique element in n+ (see e. g. p. 52 in [4]).

REMARK 3.2. — Note that by Proposition 2.4 that any real semi-
simple element y € f l is conjugate to a unique element in rt+.

The subset rt+ is a cone in rt. We define another cone Op in a as
follows. Let Xi = x^^ i = i, 2, . . ., k and put

(3.2.4) rrec x ==^ r, x^ ri ̂  0

so that {\p is the cone generated by the Xi. Since every positive root
is a non-negative combination of positive simple roots one clearly has x., € iVp
for any Y€F+.

Now by contragredience the Weyl group W also operates on the dual a\
Thus if c^ corresponds to il^ under the Killing form induced isomor-
phism a -> a/ then a^ is a fundamental domain for the action of W
in ft7. The cone tt^ may also be given by

(3.2.5) < = j ^ e n ' 0,a;>^0 for all x e a ^ } .

The cone n^Ca 7 corresponding to il^, on the other hand, is given by

( ' )
(3.2.6) a,= ^ea 7 ^^r^,r^0

( i=i )

and one has ye^ for any Y€=r+.
Finally a sequence of positive restricted roots Yi , va, . . . , y ^ will be

called a strongly positive sequence (of length n) if for any ^€=d+ one has
< T^ T (T/) T (T/-i) • • • T (Ti) ^ > ̂  0 for all 1 ̂ j ̂  i ̂  n.

Any element i 7^ cr€W may be written as a product a = T (-Vn) . . . T (vi)
where yi, . . ., ̂  is a strongly positive sequence. (One joins the interior
of n+ with the interior of o- it+ by a suitable line segment and considers
the root hyperplanes that are crossed in going from (l^ to o- ft+ along the
segment.) Now one has
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LEMMA 3.2. — Let a;€rt+. Then for any o-eW one has x — a x^Ctp.
Furthermore for any Xer t . one has

< ^, ^ > ̂  < >., <7 X >.

Proof. — We may assume o- 7= 1. Let ^i, . . ., -y^ be a strongly posi-
tive sequence such that G- == T (^) . . . ~ (^i)- P^

^ = T (T<) T (T/-i) • • • T (Ti) tx; and ^0 == :r-

Then Xi = Xi_^ — <( "p, ^_i )> a; ^. But <( •^•, r^_i )> ̂  0. Thus rr/_i — Xi^. dp.
Since dp is a cone this implies x — a x € o^. But now if A € d ^ one has
< A , ^ > ^ < A , a ^ > by (3.2.5).

Q. E. D.

3.3. Let vy, j = 1, 2, . . ., A- be the basis of a' such that < v/, ^ > == §,/.
Thus v / € i T ^ by (3.2.5) and in fact rt^ is the cone generated by the v/.
Now recall that rt (.r), for any ^Eit , is the convex hull of the W-orbit,
W.rK, of x.

LEMMA 3.3. — Let ^€r t+ . Then for any y € r t :
(1) y€ Ct {x) if and only if x — o- y^ a? for all crGW.
(2) If y^.^+ then y G d [x) if and only i f x — y€^.
Proof. — Since the orbit W.y always meets d+ and since y — cr y ^ ^ p

for any ?/€ tt+ and o-eW, by Lemma 3.2, and since ft (a;) is stable under W
it suffices only to prove (2). Assume y € r t [x). Then, by a property of
extreme points of convex sets, given any v E d ' there exists cr€W such
that < v, cr x > ̂  < v, y >. But if v == v/ € ̂  one has < v/, x > ̂  < vy, a a; )>

A

by Lemma 3.2. Thus < v / , . r — y > ^ 0 . But if x — y ==^ r, ̂  then
z'==l

<( vy, x — y y == rj. Hence rj ̂  0 for all j so that x — y^ dp.
Conversely assume t/€Sd+ and x — y € E ^ p . To prove that y ^ ^ { x ) it

suffices to show that y cannot be separated from a {x) by a hyperplane
or equivalently it suffices to show that for any v € ^ there exists or € W
such that < v , o - ^ ) > ^ < ( v , y / . But now given any v € i^ there exists cr € W
such that G - ^ v e ^ . But now if x — y ^ d p then ^ — o - ^ y e ^ since
y — (j~~1 y€ (tp by Lemm^ 3.2. Thus <( cr~1 v, ^ — C7~1 y )> ̂  0 by (3.2.5).
Applying or one has <( v, o- .r — y )> ̂  0 or <( v, q ^ )> ̂  <' v, t/ \

Q. E. D.

3.4. The proof of Theorem 3.1 reduces to the case of hyperbolic ele-
ments because of the following Proposition. Proposition 3.4 asserts that
the spectral radius T., (g) of T.) (g) depends only on the hyperbolic part
of g.
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Proposition 3.4. — Let A € G and let g€G. Let h = h (g) be the hyper-
bolic component of g [see (2.1.5)]. Then all the eigenvalues of r.\ (h) are
positive and \ TZ), (g) is the maximal eigenvalue of r^ (/i).

Proof. — Let T^ also denote the (differential) representation of g
and flc defined by the group representation TZ -,,. If ^€f l is nilpotent
then T:). (z) is a nilpotent operator. This follows, for example, from the
representation theory of a TDS {see e. g. [5], § 2.1) and the Jacobson-
Morosov theorem which asserts that any nilpotent element lies in a TDS
of g. Thus if u€:G is unipotent then all the eigenvalues of n, (u) are
equal to 1. If x^Q is such that ad x is diagonalizable then r.\ (x) is
diagonalizable, using the theory of weights, since x can be embedded
in a Cartan subalgebra t)c of flc. Thus TZ:, (g) is diagonalizable if g is
either elliptic or hyperbolic by Proposition 2.3. But if x is real semi-
simple then all the roots of (t)c, flc) take real values on x. But since
the weights of T.) are rational combinations of the roots, it follows that
the eigenvalues of TI) {x) are real and hence the eigenvalues of TI) (h)
are positive for any hyperbolic element AeG. Similarly if x^\\ then
all the roots take pure imaginary eigenvalues on x and hence the same
is true of the weights of TZ) . Thus r^ (k) has eigenvalues of norm 1 for
any /c€K by Proposition 2.3. But then, also by Proposition 2.3, r^ {e)
has eigenvalues of norm 1 for all elliptic elements in G.

Now let g = ehu be the complete multiplicative Jordan decompo-
sition of g [see (2.1.5)], so that r^ (g) = n, (e) r^ (h) r^ (u). Since the
three operators on the right commute the eigenvalues of r^ (g) use just
products of the eigenvalues of ^ (e), n, {h) and TI), (u) and hence it is
clear that | r^ (g) | is the maximal eigenvalue of r^ (A).

Q. E. D.
3.5. We now give the

Proof of Theorem 3.1. — Let g, /*€ G be arbitrary. Then there
exists unique elements x, ?/€a+ such that x is conjugate to log h (g)
and y is conjugate to log h (/*). By Proposition 3.4 we have only to show
that for any A € G the maximal eigenvalue of n, {x) is not less than the
maximal eigenvalue of ^ {y) if and only if y ^ a {x); or by Lemma 3.3
if and only if x — 2/€ dp.

Now let m be the centralizer of a in k and let 1)̂  be a maximal commu-
tative subalgebra in m so that l)o = n + t)m is a Cartan subalgebra of g
[see p. 221, [2]) and hence its complexification t)c is a Cartan subalgebra
of flc. Let t) = a 4- i t),,, so that t) is the set of all real semi-simple
elements (of gc) in l)c. Let A be the set of roots of (l)c, flc) so that AC I)7,
the real dual of 1). Furthermore if A() is the set of roots which vanish
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on a then the set of restrictions to rt of the roots in A — Ao is just F
(see § 2.4, p. 6, [1]). Furthermore we may choose a system of positive
roots A+CA so that Xo [see (2.2.1)] is in the corresponding Weyl chamber,
i. e. one has <( y, x^ )> ̂  0 for all cp€A+. Thus any root in A+ restricts
either to zero or an element in F+ as a linear functional on rt.

Now let ^Cj]7 be the co-Weyl chamber corresponding to A+. Thus the
elements in t)^ are the dominant integral linear forms on t). In particular

y\
we may regard GC^ by using, as an index set for the classes of irredu-
cible representations of G, the highest weights of the corresponding
representation of gc.

But now if A G G and if A C I)7 denotes the set of weights of the repre-
sentation TI, then the eigenvalues r^ (z) for any z^a are numbers of the
form < ( a , z ) > where ; J -€A. However for any [J-€:A\ one knows from
representation theory that A — p. is a sum of positive roots. Since posi-
tive roots restrict either to zero or elements of F+ on a it follows
from (3.2.3) that

(3.5.1) < 7 . , z > ^ < ^ z >

for any 2;€ix+. We assert first of all that (3.5.1) implies that

(3.5.2) ^ (ie<.

Indeed the set of restrictions of A) to a is clearly stable under the Weyl
group W. Thus if Ai = 7. \ a and o-eW is such that cr^iGo^ then there
exists a€A) such that LL | d = o-Ai. But for any z€it+,

< ̂  Z > = < ̂ , 2> ̂  < 7., 2> == < 7, Z >

by Lemma 3.2. But then one has / cr}.i, z y = ̂  A i , z )> by (3.5.1).
Since this holds for all z€ rt+ this implies A j = o-Ai € it7 establishing (3.5.2).

Now to prove the theorem we have to show that the maximal eigenvalue
of r^ {x) is not less than the maximal eigenvalue of r^ (y) if and only
if x — yd Ctp. But by (3.5.1) the maximal eigenvalues involved are <( X, x^
and <(X, y ) respectively. Thus we have to show<(X, x — y)>^0 if and
only if x — y ^ C i p . But if x — y d d p then < A , x — z /> ̂ . 0 by (3.2.5)
and (3.5.2). Conversely assume

(3.5.3) <?.,a;-i/>^0

for all A € G .
We must prove that x — 2/€ IT p .
Let II == i ai, . . ., a/ }CA+ be the set of simple positive roots. Then

the co-Weyl chamber t)^ is the cone generated by /.i, . . . ^ A / S t ) ' where
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(^l.\\ = °i.h where the inner product on I/ is induced on I)7 by the

isomorphism 1) — t)' defined by restricting the Killing form on flc to h.
Furthermore as one knows from representation theory the X, are the
highest weights of the fundamental representations of a simply connected
Lie group G;! having gc as its Lie algebra [see e. g. [4], § 13.1, p. 67).
But G;! has a finite center, say of order m. Thus the center is in the kernel
of the irreducible representation of G;' having highest weight m \i.
Hence m ?., is a highest weight of an irreducible representation of the adjoint
group Gc. But Ad maps G into G,. By taking the composition it follows
therefore that mA.eG. Hence t)^ is a cone generated by G. Thus

(3-5.4) < ^ a ; - y > ^ o

for all a€tL by (3.5.3).
On the other hand an element p-Gl)7 clearly lies in 1)̂  if and only

if (p-, a,) ̂  0 for i = 1, 2, . . . , ; . But now if v /ea ' is, as in section 3.3,
the dual basis to the x, then, in rt/, one has (vy, fJ,) ̂  0 for all 1 ̂  i,
j ^=.k by definition of x,. But now if we embed a' in \\' by regarding
the elements of iV as having zero restrictions to \},n then since i t)rn and a
are orthogonal with respect to the Killing form the inner product on ft7

is just the restriction to ^ of the inner product on t/. Furthermore
the map I/ -> rt', defined by restriction to a, is just orthogonal projection.
On the other hand one knows {see [I], § 2.8, p. 11) that any element
in II restricts either to zero or to an element in 2S. Thus (v/, a,) ̂  0
for i-=j-=k, i^i^l and hence

(^S^) ^•€l^ or <C1);,
k

But if x — y = ̂  ri Xi then rj = (vy, x — y) ̂  0 by (3.5.4). Thus
;'==i

x— yea^ by (3.2.4). Q. E. D.

4. The convexity theorem

4.1. Let &€A. One of the questions that seems to arise quite often
in doing analysis on semi-simple Lie groups or symmetric spaces (also in
representation theory) is : what is the a-component (in the Iwasawa decom-
position [see (2.2.4)]) when b is multiplied on the right by an element
in K. That is, if y € K what is a == a (bv) when we write

(4.1.1) bv==kan

for /ceK, a€A, n€N. In the notation of Harish-Chandra logo is
written H (bu). For example, the elementary spherical function ^
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corresponding to any v € t t c is determined by its restriction to A and its
value at any b € A is given by

(4.1.2) ^(b) = ( e^^^^^du
^R

[see e. g. p. 428, [2]).
Our main theorem here, Theorem 4.1, says that H (bu} lies in the

convex hull of the Weyl group orbit of H (fc) and that as v runs through K,
H (bv} runs through all the elements in this convex set. That is, in the
notation defined in section 3.1, one has

THEOREM 4.1. — Let & € A be arbitrary. Then

A.(b) == { a(bu) | y eK j .

The proof of Theorem 4.1 will be given after Lemma 4.8.

REMARK 4.1. — With regard to multiplication of b by elements in K,
A, or N note that only for right multiplication by elements in K is there
a difficulty in finding the a-component. (Because A normalizes N.)

4.2. As a first corollary we generalize Theorem 4.1 to the case where
b is replaced by any element g€G. Recall that g = h + V is a fixed
Cartan decomposition of G. But since all the elements in p are real
semi-simple all the elements in

(4.2.1) P = { peG | p = expx, X(EV }

are hyperbolic. The set P is closed, diffeomorphic to y by the expo-
nential map and the map P x K -> G, (p, u) \-> pv is a diffeomorphism.
In particular

(4.2.2) G = = P K

and every element g can be uniquely written g = pu, the polar decom-
position of g, and we write p == p (g) and u = u (g) {see e. g. [10], p. 155).

More explicitly, the Cartan involution 0 of fl (9 = 1 on k, 0 = — 1
on p) induces an automorphism of G, g t-> 9 (g). This is clear since 6
induces an automorphism of a simply connected group Gs having fl as
its Lie algebra. But G = G,/D where D is a central subgroup. However D
is fixed by 9 since by Proposition 2.3, D is in the subgroup corresponding
to k. Thus 0 induces an automorphism of G. For any g€G let

(4.2.3) ^=9(^)

so that

(4.2.4) (^)*=^*.
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In particular if g == pu is the polar decomposition of g then

(4.2.5) g* == v-1 p.

Now since the hyperbolic elements in G are in one-one correspondance
with the real semi-simple elements in g every hyperbolic element h has
a unique hyperbolic square root h^\ In fact K11 == exp 1/2 log h.
If h €P so is A172. From (4.2.5) one has that for any g€G, gg*€P and

(4.2.6) P^-W^eP.

Finally since the elements in p are real semi-simple any element y
in p is conjugate to a unique element in a+ by Proposition 2.4. Further-
more the argument in the proof of Proposition 2.4. shows in fact that y
is K-conjugate to such an element. Thus if A+ = exp ff+ any element p € P
can be

(4.2.7) p=/crf/c-1

for a unique d!eA+. But then by (4.2.2) one has the familiar product
relation

(4.2.8) G = K A + K

so that any g€G can be written

(4.2.9) g ^ k d v

for A-eK, deA+, yeK.
REMARK 4.2. — The k and the v in (4.2.9) are not unique but the d

is. In fact g == k dk~1 ku so that p (g) = k dk~^ Thus d is unique
by (4.2.7). We write d==d(g)eA^

Now as a corollary and a generalization of Theorem 4.1 one has the
following. Note that the set in question A (p) a {f) is still convex since
it is just the translation of A (p) by a (f).

COROLLARY 4.2. — Let g, / '€G be arbitrary. Then

A ( p ) . a ( f ) = { a ( g u f ) \ u ^ K }

where p == (gg*)172? A (p) is defined in section 3.1 and a (g) is defined in
section 2.2.

Proof. — Write g == /Ci dk^ where d = d (g)€A+ and A-i, k^ € K.
Then if f = kan is the Iwasawa decomposition of f so that a = a (/'),
one has gvf = ki dk^ vkan. But as v runs over K so does k^ uk and hence
if dk^ uk == V a' n' is the Iwasawa decomposition then as u runs over K,
a' runs over A (d) by Theorem 4.1. But dk^ uka = V a! an'\ where n"€ N,
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since A normalizes N. Thus A (d) a = [ a {guf) v € K ). But A {d) == A (p)
by Remark 4.2. Also a = a (/').

Q. E. D.

4.3. Now since jg == k + p is a Cartan decomposition of g one knowŝ.
that Q,, •= k 4- i V is a compact real form of g. Thus for each X e G
there exists a (by irreducibility) unique, up to scalar, Hilbert space struc-
ture on V, such that n/ (z) is skew-Hermitian for all ^ G f l / / . We will
assume henceforth that V is given this structure. Thus for any g€G
the operator norm || r^ (g) || is well defined. From standard properties
of the operator norm one has that

(4.3.1) ii ̂ ) IMI MO i] ̂  i ^ Q/nii
for any g, f^G. Also the operator norm is not less than the absolute
value of any eigenvalue so that one always has the inequality
(4.3.2) IIM^II^!^)

for any g€G.
On the other hand since TZ) (z) is skew-Hermitian for z ^ i y it follows

that TD {x) is Hermitian for x^y and hence r^ (p) is positive definite
for any p€P. For a positive definite operator, however, the spectral
radius is the same as the operator norm so that one has
(4.3.3) 1 ^ ( P ) 1 = | | ^ ( P ) 1 1

for all p€P. Thus under certain circumstances we can replace the
spectral radius by the operator norm in Theorem 3.1 obtaining

PROPOSITION 4.3. — Let p€P and g€:G be arbitrary. If for e^ery
^.

irreducible representation A € G one has

!!^(p) II ^ 1 1 ^ 0 7 ) 1 1
then p ̂  g {see § 3.1).

Proof. — Under the assumption in the Proposition one has
^ (P) I = II ̂  (?) || ̂  || TT, (g) || ̂  | TT, (g) I

tor all A € G by (4.3.3) and (4.3.2). The result then follows from
Theorem 3.1.

Q. E. D.

But now TT). (z) is skew-Hermitian for any z € = k and hence r.\ {k) is
unitary for any /c€K. Thus

(4.3.4) | |T:,(;C)|!=I

for all /c€K.
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Proposition 4.3 is applied to yield the following:

LEMMA 4.3. — Let p€P and let k, u^K be arbitrary. Then, with
respect to the partial ordering of section 3.1,

P =^ kpv.

Proof. — For any X e G one has

I I ̂  (?) I I ̂  I ! ̂  (kpu) ||
by (4.3.1) since || T., (/c) || = \ r., {u) || == 1 by (4.3.4). The result then
follows from Proposition 4.3.

We can now establish one half of Theorem 4.1, namely that

(4.3.5) a(bu)eA(b) for any yeK.

Indeed we write the Iwasawa decomposition bu = kan. Then /c"1^ == an.
But by Lemma 4.3 one has b ̂  an. That is A (an) C A (b). But by Propo-
sition 2.5 one has A (an) == A (a). Thus a {bu) = a€A (&) proving (4.3.5).

4.4. We now use the Horn-Thompson result for SL (2, R) (slightly
modified with unipotent elements).

LEMMA 4.4 (Horn-Thompson). — Assume g is isomorphic to the Lie
algebra of SL (2, R). Let b € A, M€ N. Then for any a € A (&) there exists /c,
v € K and n' € N such that

kbnv == an'.

Proof. — Let Gi, as in section 2.3, be Ad G (the real adjoint group).
We first observe the lemma is true for G if and only if it is true for Gi.
Indeed AN maps bijectively onto its image by Ad (since ZCK) . Thus,
if the lemma is true in G, by applying Ad, it is true for Gi. Conversely
if it is true for Gi then in G it is immediate that k, y, n' exist so that
kbnu = mn' where z is in the center of G. But z€= K by Proposition 2.3
so that one replaces k by z~1 k.

But now since G and SL (2, R) having isomorphic adjoint groups it
is enough to prove the result assuming that G = SL (2, R). We may
take K = SO (2, R), A is the set of all 2 x 2 unimodular diagonal matrices
with positive entries and N is the set of all lower triangular 2x2 matrices
with 1̂  along the diagonal. Note that W is the group of order 2 where
if 1 ̂  cr€W then cr d = d~1 for any deA. It follows then that if r f eA

is such that the eigenvalues (on R2) of d are x and - where x ̂  1 ̂  - > 0oc oc
then A (d) is the set of all ceA with positive eigenvalues y^ - such

1 1
that ^ ^ y ^ l ^ y ^ ^ > 0 . [Note that for c (resp. d) it is not speci-
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fled that y (resp. x) should be in the upper left hand corner or in the lower
right hand corner.]

Now write bn •== k\ dk^ where r fCEA and / C j , /c.j€K. Then k~^ bn = dk'i
so that b = a {dk^). By (4.3.5) one has fee A (rf). But now if a € A (&)
then certainly a€E A (rf). However by Lemma 3, p. 471 in [14] where x^ = x~^
there exists k^y /c/, €E K [Thompson says unitary but in fact the matrices
he constructs are in SO (2, R)] such that k^ dk-, = an" for some n"eN.
Now put k = k^ k~^ € K, u = k~/ k ' , € K then kbnu = k:^ dk., == an".

Q. E. D.

4.5. Now return to the general case. The real form g of gc is called a
normal real form (or R-split form, or Chevalley form) in case ftc, the
complexification of f t , is a Cartan subalgebra of j. In this case the
restricted roots are the roots in the usual sense, and W is the ordinary
Weyl group, and the root spaces are 1-dimensional.

To finish the proof of Theorem 4.1 we assert it is enough to prove the
theorem under the assumption that fl is a normal real form of fie- Indeed

•\r

^et r*Cr be the set of all restricted roots -y^ such that o ^F.

For example 2CF*. Note that since -y and 2 y define the same hyper-
plane in ft the Weyl group W is generated by T (y) for -yer*. But now
there exists a semi-simple subalgebra f l*^f l such that f t C g * and such
that fl* is a normal real form of its complexification of gc and ftc is a
Cartan subalgebra of flc. Furthermore F* is the set of roots of (ftc, flc)
and W is the usual Weyl group for (ftc, flc). Finally fl* is stable under 0
so that

(4.5.1) 9* = k * + v *

is a Cartan decomposition where k* = k H g* and p* = p H fl*. For the proof
of these statements see section 11.2, p. 786 in [8]. More specifically
see Propositions 2.1 and 2.3 noting that now fl* = b in the notation
there since now center fl == 0. See also Remark 14, p. 790.

Now let K* C G* be the subgroup corresponding to k* and fi* respec-
tively. Since fl* is semi-simple K* and G* are closed. Also K* C K
and ACG*. Also the definition of A ( & ) C A for any fee A does not change
if we replace G by G* since W is not changed. Also using Xo to define
n*Cj* in the manner of section 2.2 one has n* = u H f l * so that N * C N
where N* is the subgroup corresponding to n*. Thus for any g€G*
the a-component a (g)€SA does not change if we replace G by G*.

Now returning to the notation of Theorem 4.1 put

(4.5.2) C == { a(bv) \ ueK }.
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We have already shown [see (4.3.5)] that C C A (b). To prove Theorem 4.1
we must prove that A (&) C C. But now if we put C* = { a (bu) \ u € K }
then C*CC. However if we prove Theorem 4.1 under the assumption
that g is a normal real form of flc we can conclude that A ( & ) C C * .
But this implies A ( f c ) C C proving our assertion.

Henceforth until Theorem 4.1 is proved we will assume that g is a
real normal form of gc-

4.6. Now for any root y G F let a1 be the hyperplane in rt orthogonal
to y. Also for any xe a let { x, -. (9) x } C a be the line segment joining x
to its reflected image T (y) x through the hyperplane a1. Thus { x, T (y) x }
is perpendicular to the hyperplane ft^ unless of course it reduces to a
point (i. e. if rceit1). Let

(4.6.1) r = logC == {\oga(bu) \ y e K ^ C a .

LEMMA 4.6. — c is stable under the Weyl group. In fact for any x^c
and any root -yer we claim

{ x , r ( ^ ) x } C c .

Proof. — As in 3.2. let ^, i == 1, 2, . . ., I be the simple positive roots.
Fix 1 ̂ i ̂ l and write n1 = a^ so that
(4.6.2) ,^.^,i

where a, is the one-dimensional subspace spanned by xi = XQ^ {see § 3.2).
Also let e^ /^Gf l be root vectors corresponding, respectively, to the roots 8;
and — [?,. The real 3-dimensional space, i^, spanned by x^ ei and fi
is a Lie subalgebra isomorphic to the Lie algebra of SL (2, R) (a real TDS).
Furthermore since 9 x,• = — xi and 9 (R e,) = R fi (because 9 = — 1
on rt) it follows that g, is stable under 9 and
(4.6.3) .̂̂ .̂ .̂ .

is an Iwasawa decomposition of fl, where \\i == k 0 fl^ n, = n C\ Qi• = R ei
and rt;, defined above, is also given by rt;: = l ing/.

Thus if K;, Ai and N, are the subgroups of G corresponding to k;, IT/,
and n, respectively, then G, = K, A, N, is an Iwasawa decomposition
of G, and if g€G,, then, by uniqueness, the Iwasawa decomposition
of g is the same whether we regard g as an element of G, or an element
of G. In particular the a-component, a (g) is the same and a (g )eA^ .
However, the Weyl group of G, operating on A, or it, is of order 2 where
the non-trivial element is defined by restricting T, = T {^i) to A, or rt,.
Also for any g^G, let A / ( g ) C A , be defined as in section 3.1 but
with respect to G/ not G.
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Now let n1 Cg be the space spanned by all root vectors belonging to
all positive roots y€r+ where y 7^ p,. Thus

(4.6.4) n ==n,®nl.

Now n, is not only an ideal in n but in fact one has

(4.6.5) [^nl]Cnl.

This is clear since if y € F+- where y 7^ ^ and -y — p/ is a root then -y — p, € F+
(otherwise P, would not be simple). It follows therefore that if N1 is
the subgroup corresponding to u, then not only is

(4.6.6) N = = N , N i

a semi-direct product but

(4.6.7) Gi normalizes N1.

Now let 2/€c. Thus if a = exp y then there exists u, / c€K and n € N
such that

(4.6.8) bv = kan.

Now we want to show that { y , T, y \ C c. But if we write y = yi• -\- y1

where yi € o, and y1 € d1 then

(4.6.9) { v ^ i y } = { , t y i + y l -i^t^l;.

But if A1 is the subgroup of A corresponding to a1 then a = ai a1

where exp yi = a^eA^ and exp y1 == af'eA1. But then since^i ^- ^-i

A, (di) = { exp ty, | - 1 ̂  / ̂  1

exp { y , -iy ) == A, (^) a-*-
one has

by (4.6.9). Thus to show ! y , T , z / } C c one must show A^a^a^CC.
Now write n = ni n1 where n;€N/, n^eN1 according to the decompo-

sition (4.6.6). But then by (4.6.8) one has

(4.6.10) k~1 bv == di a1 n, n1 = a; T^ a1 n1.

The commutativity of n, and a1 follows from the relation

(4.6.11) [^,^=0.

The relation (4.6.11) is immediate since ^ vanishes on tt1.
But if Ci^A.i (a,) then by Lemma 4.4 there exists k,, y ; € K / and n;€N,

such that

(4.6.12) ki 0.1 ni Vi = Ci n ' i .
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However by (4.6.10)
ki A:-1 b Wi = ki 0.1 Hi a1 n1 Ui.

But by (4.6.7) there exists m^esN1 such that n1 Vi = u, m1. However Ui
commutes with a1 by (4.6.11). Thus

(4.6.13) ki k~1 bWi = ki 0.1 Hi v^ a1 m1

== dn'i af-mf- by (4.6.12)
== CiCif-n'i mf- by (4.6.11)
== Ci a1 m

where m = ^m^eN. But if kky1 == /c'eK then by (4.6.13) :
bwi = k' Ci a1- m

and hence

(4.6.14) a (bWi) = d af- € A, (^) a^

But ci is arbitrary in A, (a,). Thus A^a^a^-CC since yy.eK so that
(4.6.15) {y^^}^

for any y ^ c and i^i^l. In particular T , i /€ r . Since W is gene-
rated by the reflections T/, 1 ̂  i ̂  I, this first of all implies that c is
stable under the action of W.

But now if y€r is arbitrary (since y can be embedded in some simple
set of roots) there exists i^i^l and cr€W such that a-, cr~1 = T (y).
Now let rr€c be arbitrary and put y = o-"1 x. Then by (4.6.15) one
has | ?/, T ;y } C c. However since c is stable under W one has cr { y , T^ y } C r.
But by linearity o- { y , T, t/ j is the line segment joining a y = x to
O-T, y == CTT, cr"1 G- i/ === T (y) x. Thus { n;, T (y) ^ j- C ,c.

Q. E. D.

4.7. Now for any root yCF and any subset S)Ca we define the subset

(4.7.1) ^(T^-U^^)'
•x-eti

It is easy to give examples where, if b is convex, then { b, T (y) b } is
not necessarily convex. However if b is on one side of the hyperplane a1

then { b, T (y) b } is indeed convex.

LEMMA 4.7. — Assume bCa is any convex subset such that <( v, x )> ̂  0
/br aH a;eb. T/i^n { b, T (y) b } 15 convex.

Proof. — Let ^ e { b, T (y) b j , i = 1, 2. If r,, i = 1, 2, are positive
numbers such that r j 4- ^ == 1 we must show that

y = f i z / i + r .^eS ^ T ( Y ) I » }.
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In fact if t / , € { Xi, T (y) x,•}, i = 1, 2, where ^€& it suffices to show
that z / € { ^ , T (y) ^ ! where x = r^ x^ + 2̂ ^2. This is clear since x^.
But now T (y) ̂  = x,:— < y, ^ > o;v, by (3.2.2) where by assumption
<^ Y? ^i ^ ̂  0. Thus

J ^ , - ( Y ) ^ J = { X i -tx. | 0^^<y,^>t .

Hence there exists

(4.7.2) O ^ ^ < Y , ^ >

such that y i = x, — ti x^ Thus y = x — sx^ where s = r^ d + ^ ^.
But

< Y, a? > == < y, ri Xi + r, .̂2 > = ri < y, ^i > + r., < v, ^2 >.

Thus 0 ^ 5 ^ < Y , ^ > by (4.7.2) and hence

i / e= i : r ,T (y ) : r iC jb ,T (Y) i> j .
Q. E. D.

4.8. The proof of Theorem 4.1 is now an immediate consequence of
the following general fact about convexity and the Weyl group.

LEMMA 4 .8 .— Let t» C (i be any subset such that for any z € ̂  and root -y € F
the line segment { z, ' (y) z } lies in t». Then for any x^ the convex hull ft {x)
of the Weyl group orbit w (x) = W.^ of x also lies in b.

Proof. — Since T (y) z € & for any y C F and z€^ it is clear that & is
stable under the action of W. Thus it suffices to show that ft {x) C ̂
for any ^€^n f t+ . Let n ;€^nf t+ and assume, inductively, for any n
elements, c^eW, 1=1, 2, . . ., n, the convex hull, c ((7i, . . ., cr,,) of the
vectors x, c?-i ^, . . ., o-,, x lies in tr. The assumption is obviously true
if n = 0. We now wish to prove that c (o-i, . . ., c^+i)Ci» for any n 4- 1
elements o-,eW. We will prove this statement by induction in the
following way : In section 3.2 we defined what we meant by a
strongly positive sequence -yi, . . ., y,/, (of positive roots). Assume induc-
tively that for any such sequence of m positive roots and any n ele-
ments o-,€W the convex hull c (o-i, . . ., o^, ^i, . • • 5 fm) of x, o-i {x), . . ., On {x)
and the additional element T ("^m) T (^m-i) . . .T (^i) ^ = ^m lies in b.
The statement is clearly true for m = 0 if x^ = x. We will now prove
that c (cri, . . ., an, YI , . . ., Ym+i) c^ tor any n elements cr.eW and a strongly
positive sequence ^i? • • • ? Tm+i of positive roots. Put y = ym+i. Now by
definition of a strongly positive sequence one has < y, ^m > ̂  0 since x€ ft+.
One also has <Y, .T>^O. On the other hand for any i^j-=n one
has <( Y, 2/^> ̂  0 for either y == ( j y x or for y == T (y) (T/ re, the reflected image
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of cry x. Put ^ = cry or T (y) cry, so that < y, cry ^ > ̂  0. But now by
induction &i = c (cr7,, . . ., cr^ yi, . . ., ^)C&. On the other hand &i lies
on one side of the hyperplane ft1. However if z € & then by assumption
[ z , T ( Y ) ^ } C & . Thus { & , , T ( Y ) & , }Cb. But by Lemma 4.7 { &i, - (y) &J
is convex. However cry^G ; &i, - (y) &i } for any j since cry is one of the
elements cr^ or T (y) c^.. But also

Thus
^+1 = T (T^+l) ̂  == " (T) ^m€ St»i, T (v) t>i j.

C (CT,, . . ., (7n, YI, . . ., Y/»+i)Cjbi, T (y) hi j

since { & j , - (^) &i } is convex. Hence c (cr-i, . . ., cr,,, y,, . . ., y/^) Cb proving
the induction statement on m for all m. But now given c^+iGW there
exists a strongly positive sequence y i , . . . , y ^ of positive roots such
that c^+i == ym.ym-i . . . 71. Thus c (cri, . . ., cr^i)C& for any n + 1 ele-
ments cryGW proving the induction assumption on n for all n. Putting n
equal to the order of W one obviously has ft (x)C^.

Q. E. D.

REMARK 4.8. — Note that the argument at the end of the proof of
Lemma 4.6 shows that one can weaken the assumption in Lemma 4.8
in that v can be restricted to be simple.

We now give the

Proof of Theorem 4.1. — Recalling the notation of Theorem 4.1 we
must prove that if C C A is defined by (4.5.2) then C = A (b). As remarked
after (4.5.2) we have only to show that A ( & ) C C or if c is defined
by (4.6.1) and x = log b we have only to show that ft (x) C c. But x^t
[by choosing v == 1 in (4.5.2)]. On the other hand for any z^c and yeF
one has { ^ ^ ( ^ ) z } C c by Lemma 4.6. But then by Lemma 4.8 one
has ft (x) C c.

Q. E. D.

5. Applications : Some K-double coset theorems

5.1. Now by (4.2.8) one has that G = KAK. This fact is important
in analysis on Lie groups since, among other things, it says that a sphe-
rical function on G is determined by its restriction to A. On the other
hand a corollary to Corollary 4.2 is

THEOREM 5.1. — For any semi-simple Lie group G one has

0 == KNK.
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Proof. — If x^a then the sum y == 'Yo-.r, over all 7GW equals zero.

This is clear since y is a W-invariant in n and, since F spans a7, only 0
is a W-invariant. Thus O G t t ( ^ ) for any rc€r t and hence
(5.1.1) l€A(/-)
for any ^eG. But if g€G is arbitrary then l € = A (jo) where p = p (g)
and hence by Corollary 4.2 there exists y € K such that a (gu~1) == 1.
That is gv-^ = kn where /c€K, n€N. Hence g= /cny€ :KNK.

Q. E. D.
Theorem 5.1 says that a spherical function on G is now determined

by its restriction to N.
REMARK 5.1.1. — It might be interesting to explore what the sphe-

rical functions look like on N. In the case of A the elementary spherical
functions appear in exponential form [see e. g. (4.1.2)]. Although we
have not investigated this it seems likely that for N these functions
might have a natural power series expansion instead.

Of course just by dimension considerations it is clear that the sphe-
rical functions on N do not separate points; thereby creating "level
surfaces ". This is also true for A but in that case the level surfaces
are finite sets whose cardinality is at most the order of the Weyl group.
One can approach this situation at least in the case where rank K == rank G
(existence of the discrete series case, by Harish-Chandra's theorem).
In fact if rank K = rank G and k = dim A then one can find a connected
abelain subgroup No C N where dim No = k such that
(5.1.2) G = K N o K .

In fact one can find k orthogonal restricted roots -y, where y, | \}rn == 0.
These define k commuting TDS's and (5.1.2) follows already using (4.2.8)
and the Horn-Thompson theorem on SL (2, R).

REMARK 5.1.2. — The relation (5.1.2) can be thought of as saying
that No carries the non-compact part of G. It should be easy to deter-
mine the measure decomposition of G defined by (5.1.2). It might then
be interesting to investigate what the representative functions of, say,
the discrete series look like on No.

5.2. Theorem 5.1 can be given a geometric interpretation. If X is
the symmetric space
(5.2.1) X = G/K

then a horocycle is an orbit of a conjugate g N g~1 [== k N k~1 where
k = k (g)€=K] of N on X. Theorem 5.1 says .the same then as

THEOREM 5.2. — Any two points in X can be embedded in a horocycle.
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Proof. — If o € X is the coset of K then the statement of Theorem 5.1
is the statement that every point of X lies on a horocycle through o.
Theorem 5.2 is just an application of the transitivity of G on X.

Q. E. D.

REMARK 5.2. — One sees Theorem 5.2 immediately in the case of
SL (2, R). Here X can be identified with the unit disc in C and the
horocycles are just the circles in X which are tangent to the boundary.

5.3. Theorem 5.1 says that every double coset of K in G contains a
point of N. This, no doubt can be proved in a much simpler way than
the one given here. In fact if rank K == rank G we have already indi-
cated such a proof [see the paragraph after (5.1.2)]. A stronger use of
Corollary 4.2 is the following generalization of Theorem 5.1. In effect
it says that if N is replaced by a coset /*N, /*€:G, then it is no longer true.
More explicitly

THEOREM 5.3. — Let a € A be arbitrary and let

(5.3.1) G.=[geG \ p ( g ) ^ a }

where p (g) is defined by (4.2.6) and the order relation p (g) ̂  a is defined
(in terms of convexity) in section 3.1. Then for any /*€ G one has

G, ==K/ 'NK
where a = a (/*).

Proof. — If we write f = A-i ani where /Ci € K, ni € N then clearly
K/*NK = K a NK. Let L denote this set. If g€L then there exists k,
y^GK, n € N such that g = kanu~1 or gu = kan. Thus a (gu) = a.
But then by Corollary 4.2 one has a€A (p (g)) or p (g) ̂  a. Thus g€G«.
Conversely if g€G and p (g) ̂  a then by Corollary 4.2 there exists v € K
such that a (gu) == a. That is gu = kan for some /c€K, n€N. Hence
g = kanu~1 eL.

Q. E. D.

5.4. The statement of Theorem 4.1 involves the Iwasawa decompo-
sition and is expressed in terms of the a-component. The Horn-Thompson
theorem on the other hand is an invariant formulation involving the
complete multiplicative Jordan decomposition (since it is a statement
about eigenvalues) and hence is expressed in terms of the hyperbolic
component. The generalization of the Horn-Thompson theorem to the
arbitrary semi-simple case follows, however, from Theorem 4.1.

THEOREM 5.4. — Let p€P = exp p. Then for any /c, y € K one has
k p u ^ p . That is, h (kpu) ̂ p using the notation of (2.1.5) and sec-
tion 3.1. Conversely given any hyperbolic element h ^ _ p there exists k,
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u € K such that h (kpu) is conjugate to h. Moreover k and v can he chosen
so that the elliptic component e (kpu) = 1.

Proof, — The statement that kpu ̂  p is just Lemma 4.3. Assume h ̂  p
where h is a hyperbolic element. Since the statement is only up to
conjugacy and since any hyperbolic element is conjugate to an element
in A we may assume / i = a € A . But now by Corollary 4.2 there
exists y €: K such that a (pu) = a. That is pu = k~1 an for some /c€SK,
n€N. Thus kpu = an. But, by Proposition 2.5, h (an) is conjugate
to a. That is, h (kpu) is conjugate to a. Also e (kpu) = e (an) == 1 by
Proposition 2.5.

Q. E. D.
5.5. Theorem 5.4 amounts to a reformulation of Corollary 4.2, using

Proposition 2.5. Similarly Theorem 5.3 can be reformulated using
Proposition 2.5.

For any a€:A let
(5.5.1) D// == { ge.G h (g) is conjugate to a and e ((/)== 1 !.

REMARK 5.5. — In case a € A is regular hyperbolic in the sense that
the centralizer of x = log a is just n + til note that D,/ is exactly the
conjugacy class of a. Indeed rt -|- m has no non-trivial nilpotent elements
and hence no non-trivial unipotent element can commute with a. Thus in
this case u (g) == 1 as well as e (g) == 1 for any g€D,/.

THEOREM 5.5. — Let a € A be arbitrary and let Da be defined by (5.5.1).
Let G,/, as in (5.3.1), be defined by putting G , , = = { g € G p (g) ̂  a j .
Then

G, = KD, K.
Proof. — By Proposition 2.5 one clearly has

D,=:M^NA- 1 .
/ GR

Thus KD, K = K a N k = Ga by Theorem 5.3.
Q. E. D.

6. Characters values and the partial ordering;
A generalized Golden-Thompson inequality

6.1. Now by Theorem 3.1 if g, f^G then g^f if and only if the
spectral radius r^ (g) | of r., (g) is greater than or equal to the spectral^.
radius \^\(f}\ of riy (/*) for every irreducible representation T.:, XeG,
of G. Now if g and f are hyperbolic then by Proposition 3.4. the eigen-
values of T.) (g) and r.\ (/*) are positive so that g ̂  f if and only if the
maximal eigenvalues of T: (g) is greater than or equal to the maximal
eigenvalues of r. \ (f) for all X € G. But in such a case the minimal eigen-
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value of TD (g) is less than or equal to the minimal eigenvalue of r^ (/*).
Thus if y\ is the character of the representation TD it is not immediately
obvious whether or not /, (g) ̂  y , (/*) in case g ̂  f. However it is
true. The question of comparing character values was inspired by the
Golden-Thompson inequality and Thompson's proof of it {see § 3 [14]).
But the point of view taken here is that a comparison of character values
can be made whenever g and f are hyperbolic and g=^/1, not just in the
special case where g = e 1 ' er and f == e^ for x, 2/€p.

THEOREM 6.1. — Let /*, g€G be any two hyperbolic elements. Then
/s. ^

i/ 'A€:G is arbitrary and y\ is the character of the irreducible representation r^
one has

^(<7)^(0
in case g ̂  /*.

Proof. — Since character values and the order relation in G are inde-
pendent of conjugacy we may assume g, /'GA and g ̂  f. Let y = log g
and x == log f so that rc€ n (y).

But now since ( -> e1 is a convex function on R it is immediate that
if v^o^ the multiplicative character z ̂  e0'^, z^a, is a convex func-
tion on a. However if y\ is the function on il defined by Y), (z) = y\ (exp z)
then ^ is a finite sum of such multiplicative characters and hence y>,
is a convex function on IT. But since x^a [y) there exists for each cr€W

a positive scalar Ca such that ̂  ^ = 1 and x = V c^ o- y. Thus
^ e w cr e w

(6.1.1) -^ (a:) ̂  ̂  c^, (o y).
crew

But /A is clearly invariant under the Weyl group. Thus y\ ((T y) = y, (g)
for any ^eW. Also /) (x) = /, (/'). Thus (6.1.1) becomes

^ (0 ̂  (̂  S ca) ̂  (̂  or %A </') ̂  ̂  (^)-
\<7ew /

Q. E. D.

REMARK 6.1. — It is unknown to us whether or not the converse of
Theorem 6.1 is true. That is whether or not g^f if and only if
%.A (g) ̂  y,A (f) tor all X € G where g and /* are hyperbolic.

6.2. Now let LeG be the set of all hyperbolic elements in G.
We know PCL where P is defined by (4.2.1). But also P 'CL and in
fact

PROPOSITION 6.2. — One has
P2 = L.
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Proof. — Lei g€SG and p€P. Then first note that

(6.2.1) gpg^P

where g*€G is defined by (4.2.3). Indeed if f= gp1^ then g p g * = ff*.
But ff* € P as noted in (4.2.6). Now if q € P then q"1 pq^ € P by (6.2.1)
since ( f 1 ' 1 = (y17'2)*^?. But pq = q^2 (^1/2 pq^'2) q1^2 so that pq is conju-
gate to q^1 pq^1' Hence pq is hyperbolic or P'^CL. On the other hand
if h € L then h is conjugate to an element of A C P. That is there exists g € G
and p€P such that h = gpg~1 = (gpg*) (g*)~1 g"1- But gpg* = p i€P
by (6.2.1) and q, = (g*)~1 g~1 €P by, say, (6.2.1), since clearly
(g*)-1 == (g-1)*. Thus h = pi g i€P 2 . Hence L = P2.

Q. E. D.

6.3. Now if x, y^V then by Proposition 6.2 one has e ' 1 ' e^' is hyper-
bolic, writing e ' " for exp x. But e ' 1 ' ^ ' is also hyperbolic. The Golden-
Thompson inequality states that in the case where G = SL (72, C)
[actually GL (n, C) but the added scalars are trivially dealt with] and p
is the set of Hermitian matrices in Q then
(6.3.1) ire^ ey^tre-^y .

This has been generalized by Lenard for the case where trace is replaced
by the character of representations of G. But this follows from Theorem 6.1
as soon as one knows that e1' e^ ̂  e ' 1 ' ^ ' in the order relation. In fact
Thompson's proof of (6.3.1) in effect proves e'1' e' ̂  e ' 1 ' ^ ' . This very nice
proof however, carries over to the case where G is an arbitrary semi-
simple group and we repeat it word for word.

REMARK 6.3. — Even if we could embed G in SL (n, C) tor some n
where p corresponds to a subspace of Hermitian matrices the statement
that e ' " e^ ̂  ̂ r+y in SL (n, C) does not imply this holds in G (see
Remark 3.1.1). It is just that Thompson's proof works for G.

Theorem 6.3. — Let x, f /G? be arbitrary. Then C1' ey and e '̂̂ ' are
hyperbolic. Moreover
(6.3.2) e^ ev^e^v

so that, by Theorem 6.1, for any XeG one has
(6.3.3) "̂  (e^ ev) ̂  %, (e^v).

Proof. — Let g€G be arbitrary. We first observe that
(6.3.4) 99^9^

Indeed since gg*€P it is enough to show by Proposition 4.3 that
II ̂  (gg*) || ̂  || r., (g2) || == |[ (T., (g))2 || for any A€=G. But since r., (g*)
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is the Hermitian adjoint of r., (g) by (4.2.5) one has the familiar operator
norm relation || n, (gg*) |] == \ T^ (g) \\ However || n, (g) |]2 ̂  || {^ (g))2 ||
by (4.3.1) establishing (6.3.4).

More generally for any positive integer n one has (gg*)" ̂  g2". Indeed
this follows from a similar argument as that above or from the general
fact that
(6.3.5) g^f implies g71 ̂  /\

The relation (6.3.5) is an immediate consequence of the fact that if x,
y ^ a and a; Gil (y) then clearly nrc€a (m/) = n a (y). We are also impli-
citly using the obvious fact that

h (g71) == h (a ) ' 1

[see (2.1.6)].
Now let a, & € P and put g == ab. Then gg* = aV a and g2 = abab.

It is then clear that (gg*)" == aV {a- &2)"-1 a. But then a (gg*)^a-1 = (a2??2)".
But since (gg*)" ̂  g2" one has a (gg*)" a-1 ̂  g2^ so that (a2 fc2^ ̂  (a6)2".
Now put n = 2/l-l for some positive integer A\ Thus (a2 fc2)2'"1 ̂  (afc)2 '.
Iterating this relation backwards on k one gets the relation

(6.3.6) d1' b^^W.

But then if a == e^, b == e ' 7 ' 1 1 ' one has

(6.3.7) ^ e.' ̂  (e-7 /2/- er/2A)2/•.

But one knows lim {e^ e^Y = e^ as t -> oo (5ee e. g. [15], p. 110, 112).
But then by taking the limit in (6.3.7) as k -> oo one has ex ^ ̂  e^'.
The continuity of the order relation is an immediate consequence of
Theorem 3.1 since the spectral radius is a continuous function on the
space of operators.

Q. E. D.

7. Applications to the Geometry of Symmetric Spaces
of Negative Curvature

7.1. The inequality (6.3.2) has a geometric interpretation which,
I think, may be useful to elaborate upon. In effect (6.3.2) is a state-
ment about geodesic triangles in a symmetric space of negative curvature.

In section 3.1 we defined a partial ordering in G. However it
could have been in g as well. In doing so now we limit the order rela-
tion to the set I of all real semi-simple elements. If x and y are two such
elements define y ̂  x if exp y ̂  exp x. That is, if

(7-1-1) t^^OO.
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Note that if y ̂  x then for any positive number r one has

(7.1.2) ry ^rx,

[since clearly a (rx) •== r a (rr)] for any ^€5.
Now since ( -> e1 is a monotonic increasing function on R, Theorem 3.1

implies
_ ^\.

THEOREM 7 . 1 . — Let x, yd. Then y ̂  x if and only if for every A € G
the maximal eigenvalue of r^ (y) is greater or equal to the maximal eigen-
value of T^ (x).

Now for x^l let {x, x) denote the inner product defined by the Killing
form. Clearly [x, x) ̂  0. Put x = [x, x)1^. Since the Killing form
is invariant under conjugation and since its restriction to rt is invariant
under W it is obvious that

(7.1.3) y|=, x\

in case y ̂  x.

REMARK 7.1. — The converse is obviously false. That is, if, for
example, x, y € o then saying that y ̂  x is giving more information than
saying y ^ | x |. The latter refers only to the sphere generated by y
while the former refers to the smaller W-invariant convex set generated
by y. An implication of this additional information is given in
Theorem 7.1. But it is this additional information that (6.3.2) will give
concerning geodesic triangles in symmetric spaces of negative curvature.

7.2. Let X == G/K so that X has a natural structure (normalized by
using the Killing form) of a Riemannian symmetric space of negative
curvature on which G operates as a group of motions.

Now to every two points r, 5 € X we may associate a real semi-simple
element x (r, s) € I as follows : Let k, be the Lie algebra of an isotropy
subgroup at r. Thus if p/ is the orthogonal complement of k, in g then
g = h,. + p, is a Cartan decomposition. But the exponential map o-, at r
defines a bijection of p, onto X, recalling that any two points of X can
be joined by a unique geodesic. Thus there exists a unique element
a; (r, 5 ) € V / C l such that a-,. {x (r, s)) = s. Since G operates as motions
on X one clearly has

(7.2.1) A d g ( x ( r , s)) ==x(g.r, g . s )

for any g€G where g . r and g . s are, respectively, the image of r and s
under the action of g.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



450 B. KOSTANT

In the language of Elie Cartan, the one parameter group of motions
on X generated by x (r, s) is the group of transvections associated with
the geodesic joining r and s. But then if d (r, s) is the distance of r to s,
one has

(7.2.2) rf(r,s)== x ( r , s ) .

Now let o, r, and s be any three points in X and consider the geodesic
triangle generated by these three points, and consider the corresponding
three real semi-simple elements x (r, o), x (o, s) and x (r, s).

Now if instead of X we were dealing with ordinary Euclidean space
then we would have x (r, o) 4- x (o, s) = x (r, s) so in particular

[ x (r, 6) + x (p, s) | = | x (r, s) .

However since we are dealing with a symmetric space of negative curva-
ture then the geometry of such a space yields the fact that d (r, s) is
bigger than it would be in a flat space, or

(7.2.3) x (r, o) + x (o, s) ^\x(r,s) - d (r, s).

REMARK 7.2. — This relation is proved in [11]. In fact if a = d (o, r),
b = d (o, s) and ^ is the angle between x (o, r) and x (o, s) then

x (r, o) + x (o, 5) i2 = a2 + 62 - 2 ab cos ^

since easily one has x (r, o) = — .r (o, r) [see e. g. (7.2.6)]. But then
if c = d (r, s), so that a, b and c are the lengths of the sides of the geodesic
triangle made by o, r, and s, then (7.2.3) (by squaring) is just the sta-
tement that the law of cosines in flat spaces is replaced by the inequality

(7.2.4) ^ + b2 - 2 ab cos ^ ̂  c2

is a symmetric space of negative curvature. But (7 .2 .4) is exactly
Lemma 4, p. 35 in [11].

But the point now is that a geodesic arc in X carries more information
than just its length. Theorem 7.2 says that we may remove the absolute
signs in (7.2.3) {see Remark 7.1).

THEOREM 7.2. — Let o, r and s be as abo^e, Then x (r, o) + x (o, s)
is real semi simple and

x (r, o) + x (o, s)^x (r, s).

Proof. — Let r. : P -> X == G/K be the map defined by T. (q) = q^ K.
It is clear from (4.2.2) that Ti is a bijection. But now if /*€ G let Tf: X — X
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be the motion induced by the action of f on X. Thus T/ (g K) = fg K
for any g€G. We now note that

(7.2.5) T/T: (g) = T: (fqf*)

for any grGP. Indeed Ty TZ (gr) == f q^ K. But for any g€G one has
g K = p ( g ) K b y ( 4 . 2 . 2 ) . ' Thus T, r. (y) = p (^ K = (^f*)^K = r.(^*)
using (4.2.6).

Now for any p, ^€P we next assert that

(7.2.6) exp x (TT (p), TT (̂ )) = (^p-01/2

recalling that qp~~1 is hyperbolic by Proposition 6.2. Indeed by (7.2.5)
one has T^,,/., r. (1) = T. (p). Now let r f € P be defined by T/,_i/, T. {q) = r. {d)
so that T^i/,. T: (rf) == 71 (q). Thus T^,.,/.:, carries the unique geodesic joi-
ning T. (1) and ii (d) onto the unique geodesic joining Ti (p) to ri (^) and
hence by (7.2.1) Ad p^ x (r. (1), n (rf)) = ̂  (r. (p), T. (q)) or

(7.2.7) p1/2 exp x (n (1), T: (d)) p-1/2 = exp re (TT (p), TT (g)).

But Vr.w=V and hence ^ (r. (1), T. (rf)) = 1/2 log ri so that (7 .2 .7)
implies
(7.2.8) exp x (TT (p), TT (g)) == p1/2 d1/2 p-1/2.

On the other hand since T ^ i / - i r. (ri) == Ti (y) one has p172 rip172 == ^ by (7.2.5).
Multiplying on the right by p"1 one has p172 rip"172 = qp~1 and hence
pi/^p-i/^ (yp-1)1^. Comparing with (7.2.8) then yields (7.2.6).

Now return to the points o, r, 5€X. Without loss [using (7.2.1)
and the fact that the partial order is preserved by conjugation] we may
assume T. (1) = o. Let p, y € P be defined so that Ti (p) = r and 11 (g) = 5.
Now by (7.2.6) exp x (r, o) = p"'72 and exp a; (o, 5) = y'72. But then x (r, o)
and x (o, 5) lie in p and hence rr (r, o) -{- x (o, 5 )€y is real semi-simple.
But by (6.3.2) :

exp (2 x ( r , o) + 2x (o, s)) ̂  exp 2 re (o, s) exp 2 a; (r, o) = gp~1.
Hence

2 (a; (r, o) + x (o, 5)) ̂  log qp -i = 2 x (r, s),

using (7.2.6). But then x (r, o) + x (o, 5) ̂  ̂  (r, ^) [see (7.1.2)].
Q. E. D.

8. A Conjugation Convexity Theorem
and a Generalization of a Theorem of A. Horn

8.1. Lemma 4.8 may be used also to prove sort of an additive version
of Theorem 4.1. That is a theorem in g rather than G where the adjoint
action of K on p replaces multiplication in G. The theorem we will
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prove will bear a relation to a theorem of A. Horn [see [3], Theorems 4
and 5) that Theorem 5.4 bears to the Horn-Thompson theorem.

To state this result of Horn let po denote the set of all nXn complex
Hermitian matrices and let d o ^ p o denote the space of all diagonal Her-
mitian matrices in po. Consider the projection T : po -> ^o defined so
that if r rGpo then F x has the same diagonal entries as x. That is if Xi/
is the i, jf-component of x then (F x)fj = ̂ ./^./.

Now let r rGpo and let Xi ^/^ ̂ . . .^X,, be the eigenvalues of x
and y € r t o be the diagonal matrix whose diagonal entries are the A;.
That is yij == Sij X/. Furthermore if o- is any permutation of 1, 2, . . ., n
let o - y € = t t o be the diagonal matrix obtained by performing the permu-
tation G- on the diagonal entries of y . Thus (cr y),j == S// A^-i,. Next
let do (y) C do denote the convex hull of the finite set j a- y }, over all
permutations cr. Then not only does one have x^^o (y) but in fact, the
following is true : Let 0 {y) denote the set of all Hermitian matrices
with the eigenvalues A i , ).2, . . ., A/i [so that e. g. x^.0 (y)], then Horn's
theorem states that
(8.1.1) r 0 (y) = no (y).

8.2. We will generalize (8.1.1) [more precisely (8.1.1) for the traceless
Hermitian matrices. However the addition or subtraction of the scalar
matrices is trivially dealt with] to the arbitrary semi-simple case g.
Using the notation we have established so far let n be the orthocom-
plement with respect to the Killing form of rt in p so that
(8.2.1) y = a + fl

is an orthogonal direct sum. Let

(8.2.2) r: y - > o

be the orthogonal projection of p on a.
Now for any y € p let 0 (y) = Ad K (y)^V, the Ad K-orbit in p defined

by y.
THEOREM 8.2. — For any y € p one has

r 0 (y) == a (y)

where a (?/) is defined in section 3.1.
Proof. — Since any element in p is Ad K conjugate to an element in d

we can assume y € d. Now if there exists z € 0 (y) such that F z ̂  a(y) then
by the separation theorem there would exist a linear functional v E n 7

such that for all o"€W :
(8.2.3) • 0, r z > > < ^ y > .
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Furthermore we can choose v so that

(8.2.4) 0 , ^>^0 for all ye r

[see § 3.2) since such linear functionals form a dense set in rt7.
Now assume such a z and, hence v, exist. But then since 0 (y) is

compact the function x ^-> (p {x) = < ( v , T x ̂  on 0 (y) has a maximal value.
Hence we can choose z so that the maximal value of (p is taken at z, and
(8.2.3) is satisfied. But now if v corresponds to the element w € d under
the isomorphism (l —^ rt^ defined by the Killing form then

(8.2.5) (w, x) == 0, T X ' ) = c? (a-)

for any x^O (y) where round brackets denote the Killing form inner
product. On the other hand by (8.2.4) one has •(•y, w )7^ 0 for all yCF
so that [using, say (2.2.2)] the

(8.2.6) centralizer of w in p is n.

But now for any x^k the function ^ on R given by

^ (Q == (w. Ad (exp te) z)

has zero derivative at ( = 0 since © takes its maximal value at z.
But ^ (0) = (w, [ ,̂ z]) = ([z, w], a;) by the invariance of the Killing form.
Thus ([z, w], x) = 0 for all ^ek. But [z, w]e[p, p j ^ k and the Killing
form is non-singular on k. Thus [z, w] = 0 which implies z^ a by (8.2.6).
But since z is conjugate to y this implies z == o- y for some o-€W, by Propo-
sition 2.4. This however contradicts (8.2.3). Thus we have proved

(8.2.7) r(0(y))Ca(y).

Now let c == F (0 (y)). We must show that o (y)Cc. To prove this,
the argument of section 4.5 reducing the problem to the case where fl
is a normal real form of gc also applies here. One needs only to remark
that if q* is the orthogonal complement of IT in p*, with respect to the
Killing form on j* using the notation of section 4.5, then q * C q (so
that the projection F* : p* -^ rt is the restriction of F to p*). But this
is clear since one easily shows that, using the Killing form, that
q* == [k*, rt]^[k, a] == q. Thus we may assume fl is a normal real form
of gc. Now clearly 2/esc since F y == y . Thus by Lemma 4.8 and
Remark 4.8 r t { y ) C c if it can be shown that one has { w , T ( p , ) w } C c
for any i y € c and any simple root p,. (The reduction to the simple root
case was a significant reduction in the group case. Here it is not neces-
sary. We do so now only for notational convenience).
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Let w € c and let g, be the real TDS defined as in the proof of Lemma 4.6.
Using the notation of the proof of Lemma 4.6 one has

(8.2.8) { w, T (p,) w } = jtw,:+ w^ - 1 ̂  t^ 1 ;,

where Wi and w1 are the components of w in a, and rt1 [see (4.6.9)].
But now w = r (u .y) for some y € K , writing y .y for Ad v (y). Now let
K/CGi be defined as in the proof of Lemma 4.6 and let the map

<7 : K,:—> a

be defined by putting a- (k) = F (ku.y), so that

(8.2.9) (7(K,)Cr.

Now if Wi = 0 then { w, T (^) w } reduces to the point w and one
trivially has { w, T (^-) w }Cr. Hence we may assume Wi ̂  0. But then
there exists unique continuous functions p : K,• -> R and ^ : K< -> rt1

such that
cr (/c) == p (/c) w, + '̂  (k).

We assert ^ is the constant function given by ^ (/c) == w1 for all /ceK^.
Since ^ (1) = iy1 to prove this it suffices to show that the inner product
(z, o- (/c)) is constant as a function of k for any fixed z€rt1. But

(z, ^ (/c)) = (^, r(^.y)) = (z, ^.y) = (/c-^.z, p.z/)

by the invariance of the Killing form. But k~i.z=z for any A-eK,
since [see (4.6.11)] [rt1, g,] = 0. Thus (z, cr (/c)) is constant as a function
on K, proving that a {k) == p (/c) w, + w1. But p (1) = 1. On the other
hand since there is an element T in the Weyl group W; of (rt/, g,) such
that T Wi•= — Wi there exists ki € K^ such that ki. Wi•== — w,. But Ad ki = 1
on rt1. Thus rt is stable under Ad ki and hence q is stable under Ad ki.
Hence

cr (ki) = r (ki v.y) ===/€<. r (v.y) == — Wi: + w1-.

Thus p (ki) = — 1. But then since K, is connected p ( K ^ ) take all
values in [- 1, 1]. Thus { w, T (^) w }Ca (K/) by (8.2.8). But then
[w, - ( ^ i ) w } C c by (8.2.9).

Q. E. D.

8.3. Now one can prove a K-conjugation theorem which is analogous
to the K-double coset result, Theorem 5.3. For any ^€r t let

(8.3.1) ^={y^ |y^j

where the order relation is defined by (7.1.1).
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THEOREM 8.3. — For any x^d one has

(8.3.2) p., =\^J Adk(x + q)
/,- e K

where () is the orthocomplement of a in p.
Proof. — Let & denote the right side of (8.3.2) and let y€&. Then

there exists /ceK such that y ^ A d k ( x - \ - ( \ ) . Thus /( '" '^ye^+fl or

T (k~i .y) = x. But then a ;€ t t (y) by Theorem 8.2 and hence y ̂  x
or y€p.r. Conversely assume 2/€p^. Thus ^€t l ( i / ) and hence there
exists /c€ K such that x == T (/c~1 .y) by Theorem 8.2. That is, J ^ ^ y ^ x -\- 1}
or y € Ad /c (rr 4- fl) ̂  ^-
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