# Annales scientifiques de l'É.N.S.

### JULIAN PETRESCO

## Sur le théorème de Kuroš dans les produits libres

Annales scientifiques de l'É.N.S. 3<sup>e</sup> série, tome 75, nº 2 (1958), p. 107-123 <a href="http://www.numdam.org/item?id=ASENS">http://www.numdam.org/item?id=ASENS</a> 1958 3 75 2 107 0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1958, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www.elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

#### **SUR**

# LE THÉORÈME DE KUROŠ DANS LES PRODUITS LIBRES

PAR M. JULIAN PETRESCO.

Cet article représente la première partie d'un travail se proposant d'adapter aux produits libres, les procédés utilisés dans [6] pour les groupes libres.

On y trouvera une construction, fondée sur le théorème de Zorn, des décomposition libres d'un sous-groupe H appartenant à un produit libre  $\Pi^*A$ ; elle contient comme cas particulier la construction par double récurrence transfinie de Kuroš [4] et celle obtenue à partir d'un bon ordre « semi-alphabétique » par M. Hall [3].

H. W. Kuhn [2] et A. J. Weir [5] ont obtenu par ailleurs des constructions à partir de « transversales », où les considérations de « cancellation » sont remplacées presque entièrement par des considérations d'homomorphisme. Notre construction fait largement appel aux considérations de cancellation, mais d'une façon assez systématique; elle contient également comme cas particuliers les constructions à partir de transversales.

Les rapports entre la construction donnée ici et les différentes autres constructions, ainsi que les questions liées au théorème de Gruško, feront cependant l'objet d'un article ultérieur, ultilisant les mêmes procédés.

1. A-SEGMENTATION. — Considérons une famille d'ensembles  $\{A_{\alpha}\}$  et notons  $A = \bigcup A_{\alpha}$ . Si les éléments  $r_i$  d'une n-suite  $R = \{r_1, \ldots, r_n\}$  appartiennent à A nous disons que R est une A-suite; si les  $r_i$  appartiennent tous à un même ensemble  $A_{\alpha}$  nous disons que R est une  $A_{\alpha}$ -suite. Nous notons  $S(r_i r_j)$  le segment de R ayant  $r_i$  comme extrémité à gauche et  $r_j$  comme extrémité à droite, et  $\omega(R) = n$ .

Soit maintenant un ensemble  $\rho'$  de  $A_{\alpha}$ -sous-suites non vides de R, notées  $S' = \{s_0, \ldots, s_u\}, s_t \in R, s_t \in A_{\alpha}$ , et supposons que :

(1') tout élément de R appartient à une  $A_{\alpha}$ -sous-suite S' de  $\rho'$  et à une seule.

Nous disons que le segment  $S = S(s_0 s_u)$  de R, compris entre les extrémités  $s_0$  et  $s_u$  de S' est le segment supporté par S' et les éléments  $s_t$ ,  $o \leq t \leq u$ , de celui-ci, sont dits supports de S. L'ensemble  $\rho$  des segments supportés par les S' de  $\rho'$  constitue une A-segmentation de R.

La correspondance entre les  $S' \in \rho'$  et les  $S \in \rho$  est biunivoque, car à chaque S correspond une  $A_{\alpha}$ -sous-suite de supports S' unique; une extrémité de S est en effet support de S et d'après (1') appartient à une S' unique. Il s'ensuit que :

(1) tout élément de R est support d'un segment S de p et d'un seul.

Notons  $S_{\rho}(r_i)$  le segment de support  $r_i$ , unique, appartenant à  $\rho$ . Une A-segmentation  $\rho$  est dite *concordante* si, pour chaque  $S \in \rho$ :

$$(2) r_i \in S \Rightarrow S_{\rho}(r_i) \subseteq S.$$

Soit  $S^t = S(r_{i+1}r_{j-1})$  l'intervalle séparant deux supports consécutifs  $s_{t-1} = r_i$  et  $s_t = r_j$  de S; nous disons que les segments  $S^t$ ,  $1 \leq t \leq u$ , sont les inter-supports de S.

1.1. Pour qu'une A-segmentation  $\rho$  de R soit concordante, il faut et il suffit que, pour chaque  $S \in \rho$ :

$$(2^{t}) r_{i} \in S^{t} \Rightarrow S_{o}(r_{i}) \subseteq S^{t}.$$

 $(2^{t}) \Rightarrow (2)$ . Si  $r_i \in S$  est un support de S, d'après (1),  $S_{\rho}(r_i) = S$ ; dans le cas contraire, il existe t tel que  $r_i \in S^{t}$ , donc d'après  $(2^{t})$ ,  $S_{\rho}(r_i) \subseteq S^{t} \subset S$ .

 $(2) \Rightarrow (2^i)$ . D'après (2),  $r_i \in S^i$  entraîne  $S_{\rho}(r_i) \subseteq S$ ; d'autre part, quel que soit  $r_j \in S'$ ,  $r_j \in S_{\rho}(r_i)$  entraîne d'après (2),  $S = S_{\rho}(r_j) \subseteq S_{\rho}(r_i)$ . On a par conséquent  $S_{\rho}(r_i) = S$ , donc  $r_i \in S'$ , ce qui contredit  $r_i \in S^i$ . En définitive  $S_{\rho}(r_i) \cap S' = o$ , de sorte que  $S_{\rho}(r_i)$  est contenu dans un inter-support de S, plus précisément dans S', puisque  $r_i \in S'$ .

On conclut:  $si \ r_i \in S$ ,  $S_{\rho}(r_i)$  coincide avec S ou bien est contenu dans un intersupport de S.

1.2. Si  $\rho$  est une A-segmentation concordante et  $S_1$ ,  $S_2 \in \rho$ :

$$S_1 \cap S_2 = S_1, S_2, o.$$

Si  $S_1 \cap S_2 \neq 0$ , soit  $r_i \in S_1 \cap S_2$ ; d'après (1),  $S_1 = S_\rho(r_i)$  et d'après (2),  $S_1 \cap S_2 = S_1$ . Si  $S_1 \cap S_2 = 0$ , on a soit  $S_1 \cap S_2 = S_2$ , soit  $S_1 \cap S_2 = 0$ .

1.3. Si  $\rho$  est une A-segmentation concordante de R et  $\rho'_1 \subseteq \rho'$ , l'ensemble  $\rho_1$  des segments supportés par les  $A_{\alpha}$ -sous-suites  $S'_1$  de  $\rho'_1$  dans  $R_1 = \bigcup S'_1$  est une A-segmentation concordante de  $R_1$ .

 $R_4$  et  $\rho'_1$  satisfont à (1') et par conséquent  $\rho_4$  est une A-segmentation de  $R_4$ . Considérons d'autre part  $S_4 \in \rho_4$  supporté par  $S'_4 \in \rho'_4$  dans  $R_4$  et soit  $S \in \rho$  le segment supporté par  $S'_4$  dans  $R_5$ . Si  $r_i \in S_4 = S \cap R_4 \subseteq S_6$ , on a d'après (2),  $S_2(r_i) \subseteq S$ , et par conséquent

$$S_{\rho_1}(r_i) = S_{\rho}(r_i) \cap R_1 \subseteq S \cap R_1 = S_1$$

de sorte que R<sub>4</sub> et  $\rho_4$  satisont à (2).

Nous disons que  $\rho_1$  est la A-segmentation induite par  $\rho$  dans  $R_1$ .

Soit maintenant  $S \in \rho$  et notons :  $\sigma$  l'ensemble des segments de  $\rho$  dont un support appartient à S;  $\sigma'$  l'ensemble de ceux dont un support appartient à S';  $\sigma^*$  l'ensemble des segments de R - S de la forme  $S^* - S$ ,  $S^* \in \rho$ , où un support de  $S^*$  appartient à R - S.

1.4.  $\sigma$ ,  $\sigma'$  et  $\sigma'$  sont les A-segmentations concordantes induites par  $\rho$  dans S, S' et R - S, respectivement.

En appliquant 1.3, on voit que:

Si l'on prend  $\rho'_1 = \sigma'$ , on a d'après (1') et (2),  $R_1 = S$  et  $\rho_4 = \sigma$ .

Si l'on prend  $\rho'_1 = (\sigma^t)'$ , on a d'après (1') et (2'),  $R_1 = S^t$  et  $\rho_1 = \sigma^t$ .

 $\sigma_4$  étant l'ensemble des segments S\* de  $\rho$  dont un support appartient à R — S, si l'on prend  $\rho_1' = \sigma_1'$ , on a d'après (1') et (2),  $R_4 = R - S$  et  $\rho_4 = \sigma^*$ .

1.5. Pour que le segment  $S \in \rho$  soit minimal dans  $\rho$  il faut et il suffit que S = S'; un  $S \in \rho$  minimal est par conséquent un  $A_{\alpha}$ -segment.

Si S = S',  $r_i \in S$  entraı̂ne  $r_i \in S'$ , donc  $S_{\rho}(r_i) = S$ .

Réciproquement, pour tout  $r_i \in S$ , on a d'après (2),  $S_{\varrho}(r_i) \subseteq S$ , et si S est minimal,  $S_{\varrho}(r_i) = S$ , donc  $r_i \in S'$  et en définitive S = S'.

Considérons maintenant les ensembles  $\{R_k\}$  et  $\{S_k\}$ ,  $1 \leq k \leq n$ , de sous-suites de R construites par récurrence comme suit :

- $(a') R_1 = R;$
- (a)  $R_k = R_{k-1} S'_{k-1}$ ;
- (b)  $S'_k$  est un  $A_{\alpha}$ -segment de  $R_k$ .

Soit d'autre part :

- (c)  $\rho = \{S_k\}$ , l'ensemble des segments  $S_k$  supportés dans R par les  $S'_k$ .
- 1.6.  $\varphi$  est une A-segmentation concordante de R et réciproquement, pour chaque A-segmentation concordante  $\varphi$  de R, on peut construire deux ensembles  $\{R_k\}$  et  $\{S_k\}$  de sous-suites de R, satisfaisant, avec  $\varphi$ , à (a), (b), (c).

On a  $R_1 \supset R_2 \supset ... \supset R_k \supset ...$ , de sorte que si  $r_i \in R$ , il existe k avec  $r_i \in R_k$  et  $r_i \notin R_{k+1}$ ; mais d'après (a),  $R_{k+1} = R_k - S'_k$ , donc  $r_i \in S'_k$ . Par ailleurs, si  $r_i \in S'_k$ 

et  $r_i \in S_h'$  à la fois, et si par exemple k < h ,on a d'après (a),  $r_i \notin R_k - S_k' = R_{k+1}$ , et d'après (b),  $r_i \in S_h' \subseteq R_h \subseteq R_{k+1}$ , ce qui est contradictoire. En définitive, on a (1').

Soit maintenant  $r_i \in S_h \subseteq R$ ; comme plus haut, il existe k avec  $r_i \in S_k' \subseteq R_k$ . Puisque d'après (b),  $S_h'$  est un segment de  $R_h$ ,  $R_{h+1} = R_h - S_h'$  ne contient plus d'éléments de  $S_h$ , d'où  $k \subseteq h$ ; pour la même raison  $R_{k+1} = R_k - S_k'$  ne contient plus d'éléments de  $S_k$ , de sorte qu'on a soit k = h, soit  $S_k \cap S_h' = o$ , auquel cas  $S_k$  est contenu dans un inter-support de  $S_h$ . Dans les deux cas,  $S_p(r_i) = S_k \subseteq S_h$  et par conséquent on a (2).

Supposons enfin la réciproque valable pour toute  $n^*$ -suite avec  $n^* < n$  et soit R une n-suite admettant la A-segmentation concordante  $\rho$ . Un segment S minimal de  $\rho$  est d'après 1.5 un  $A_{\alpha}$ -segment et R — S est une  $n^*$ -suite avec  $n^* < n$ . Considérons la A-segmentation concordante  $\sigma^*$  induite, d'après 1.4, par  $\rho$  dans R — S. D'après l'hypothèse on peut construire les ensembles  $\{R_2, \ldots, R_k\}$  et  $\{S'_2, \ldots, S'_k\}$  de sous-suites de R — S satisfaisant, avec  $\sigma^*$ , à (a), (b), (c). On déduit que les ensembles  $\{R, R_2, \ldots, R_k\}$  et  $\{S, S_2, \ldots, S_k\}$  de sous-suites de R, et la segmentation  $\rho$ , satisfont également à (a), (b), (c). La proposition est par ailleurs évidente pour n = 1.

2. A-IDENTITÉ. — Supposons maintenant que les  $A_{\alpha}$  soient des sous-groupes du groupe G et notons  $\overline{R} = r_1 r_2 \dots r_n$  le produit des éléments d'une A-suite R, dans l'ordre de R. Le segment S de R est dit *unitaire*, si

$$\overline{S}' = 1$$
,

et \( \varphi \) est une A-segmentation unitaire de R, si ses segments sont unitaires.

2.1. Si R admet une A-segmentation concordante et unitaire  $\rho$ ,

$$\bar{R} = I$$
.

Si la proposition est vraie pour toute  $n^*$ -suite avec  $n^* < n$ , considérons la n-suite R et soit S un segment minimal de  $\rho$ . On a d'après 1.5 et (3'),  $\overline{S} = \overline{S}' = 1$ . D'autre part R = S, qui est une  $n^*$ -suite avec  $n^* < n$ , admet d'après 1.4, une A-segmentation concordante  $\sigma^*$  induite par  $\rho$ , dont les segments  $S^* = S$  ont mêmes supports que les segments  $S^*$  de  $\rho$ ; il s'ensuit que  $\sigma^*$  est également unitaire, donc d'après l'hypothèse  $\overline{R-S} = 1$ . Si l'on pose  $S = S(r_i r_j)$ , on a par conséquent

$$\overline{\mathbf{R}} = r_1 \dots r_{i-1} \overline{\mathbf{S}} r_{j+1} \dots r_n = r_1 \dots r_{i-1} r_{j+1} \dots r_n = \overline{\mathbf{R} - \mathbf{S}} = \mathbf{I}.$$

Par ailleurs, 2.1 est évidente pour n = 1.

2.2 Pour qu'une A-segmentation concordante  $\varphi$  de R soit unitaire il faut et il suffit que, pour chaque  $S \in \varphi$ :

$$\overline{S} = I$$

et l'on a alors pour tout t,

$$\bar{\mathbf{S}}^t = \mathbf{I}$$
.

Si  $\rho$  est concordante et unitaire et  $S \in \rho$ , la A-segmentation concordante  $\sigma$  induite par  $\rho$  dans S, d'après 1.4, est composée des segments de  $\rho$  contenus dans S et par conséquent  $\sigma$  est également unitaire; d'après 2.1, on a  $\overline{S} = 1$ .

Réciproquement, soit  $\rho$  concordante,  $S = S(s_0 s_u) \in \rho$  et  $S' = S(r_{i+1} r_{j-1})$ ,  $r_i = s_{i-1}$ ,  $r_j = s_i$ , un inter-support de S; d'après  $(2^i)$ ,  $S_{\rho}(r_{i+1}) = S(r_{i+1} r_{i_1})$  où  $i+1 \leq i_1 \leq j-1$ . Si l'on considère plus généralement les segments définis par

$$S_{\rho}(r_{i_{k+1}}) = S(r_{i_{k+1}}r_{i_{k+1}})$$

(2') entraı̂ne  $i+1 \leq i_1 < i_2 < ... < i_k < ... \leq j-1$ , de sorte que pour un certain k,  $i_k = j-1$ . Si maintenant (3) est valable, on a

$$\bar{S}(r_{i_{k+1}}r_{i_{k+1}}) = I$$
,

ďoù

$$\overline{\mathbf{S}}^t = \overline{\mathbf{S}}(r_{i+1}r_{i_1}) \dots \overline{\mathbf{S}}(r_{i_{k-1}+1}r_{j-1}) = \mathbf{I},$$

et en définitive

$$\mathbf{I} = \overline{\mathbf{S}} = s_0 \overline{\mathbf{S}}^1 s_1 \dots \overline{\mathbf{S}}^t s_t \dots \overline{\mathbf{S}}^u s_u = s_0 s_1 \dots s_u = \overline{\mathbf{S}}^t.$$

Considérons maintenant une famille  $\{A_{\alpha}\}$  de sous-groupes  $A_{\alpha} \neq 1$  de G qui soient disjoints deux à deux. Une A-relation  $\overline{R} = 1$  est dite A-identité si la A-suite R admet une A-segmentation concordante et unitaire. D'après 2.1 et 1.4:

2.3. Si  $\overline{R} = 1$  est une A-identité,  $\rho$  une A-segmentation concordante et unitaire de R et si  $S \in \rho$ ,  $\overline{S} = 1$  ainsi que  $\overline{S}^t = 1$  et  $\overline{R - S} = 1$  sont également des A-identités.

Soit  $R = \{r_1, \ldots, r_n\}$  une A-suite avec  $r_i \neq 1$ . Puisque les A sont disjoints deux à deux, les  $A_{\alpha}$ -segments maximaux  $S_j$ ,  $1 \leq j \leq m$ , de R n'ont pas d'éléments communs et d'autre part chaque  $r_i$  de R appartient à un  $S_j$ ; il s'ensuit que ceux-ci forment une suite  $\{S_1, \ldots, S_m\}$  telle que  $\overline{R} = \overline{S}_1 \overline{S}_2 \ldots \overline{S}_m$ . Nous disons que  $R^1 = \{\overline{S}_1, \ldots, \overline{S}_m\}$  est la réduite de R; on a  $\overline{R} = \overline{R}^1$ .

R est dite par ailleurs A-suite réduite si tout  $A_{\alpha}$ -segment contient un seul élément.

Il est clair que si les éléments de R<sup>1</sup> sont différents de 1, R<sup>1</sup> est une A-suite réduite. Dans le cas contraire, on peut éliminer les  $\overline{S}_j$  égaux à 1 et considérer la réduite R<sup>2</sup> de la suite ainsi obtenue à partir de R<sup>1</sup>, qu'on appellera seconde réduite de R; on peut continuer de la sorte jusqu'à une  $v^{ième}$  réduite R dont les éléments — s'ils ne sont pas tous égaux à 1, auquel cas  $\overline{R} = \overline{R}^{\nu} = 1$  — sont nécessairement différents de 1, c'est-à-dire que  $R^{\nu}$  est une A-suite réduite avec  $R = \overline{R}^{\nu}$ .

Nous disons d'autre part, comme dans [6], que la suite R d'éléments de G est irréductible, si  $\overline{S} \neq 1$  pour tout segment  $S \subset \mathbb{R}$ .

Soit enfin  $E_{\alpha}$  un système de générateurs de  $A_{\alpha}$  vérifiant :  $x \in E_{\alpha} \Rightarrow x^{-1} \in E_{\alpha}$ , et notons  $E = \bigcup E_{\alpha}$ ; E est évidemment un système de générateurs de [A].

Considérons les propositions :

- $(L_{\alpha})$   $\{A_{\alpha}\}$  est telle que les seules A-relations sont les A-identités.
- $(L_{\beta})\{A_{\alpha}\}$  est telle que chaque élément  $1 \neq x \in [A]$  admet une représentation unique comme A-produit réduit.
- $(L_{\gamma})\{A_{\alpha}\}$  est telle qu'il n'existe pas de E-relation irréductible en dehors des  $E_{\alpha}$ -relations.
  - 2.4. On a les équivalences :  $(L_{\alpha}) \Leftrightarrow (L_{\beta}) \Leftrightarrow (L_{\gamma})$ .

 $(L_{\alpha}) \Rightarrow (L_{\gamma})$ . Si  $1 \neq x = \overline{R} \in [A]$ , où R est une A-suite, les réduites de R procurent une représentation réduite de x.

Si maintenant  $(L_{\alpha})$  est valable, une A-suite réduite R est irréductible; s'il existe en effet  $S \subset R$  avec  $\overline{S} = 1$ , celle-ci est une A-identité, et d'après 1.5 et (3), un segment minimal  $S^*$  de la A-segmentation concordante et unitaire  $\rho$  qu'admet S est un A-segment avec  $\overline{S}^* = 1$  et contient par conséquent plus d'un élément.

Supposons enfin que  $\mathbf{1} \neq x = \prod a_i = \prod b_j$  avec  $\prod a_i$  et  $\prod b_j$  réduits, donc irréductibles; d'après  $(\mathbf{L_z})$ 

$$\overline{\mathbf{R}} = \prod b_{m-j+1}^{-1} \prod a_i = \mathbf{I}$$

est une A-identité et R admet une A-segmentation concordante et unitaire  $\rho$ . Si  $S \in \rho$ , on a  $\overline{S}' = 1$  pour tout inter-support, de sorte que S' se réduit nécessairement à ses deux extrémités dont l'une est dans  $\{b_{m-j+1}^{-1}\}$  et l'autre dans  $\{a_i\}$ , d'où m = n,  $S = S(b_i^{-1}a_i)$ ,  $S' = \{b_i^{-1}, a_i\}$  et en définitive  $a_i = b_i$ .

 $(L_{\beta}) \Rightarrow (L_{\gamma})$ . Considérons une E-relation irréductible  $\overline{R} = 1$  qui ne soit pas  $E_x$ -relation; la réduite  $\{\overline{S}_1, \ldots, \overline{S}_m\}$ ,  $m \geq 2$ , de R est telle que  $\overline{S}_j \neq 1$ ; c'est donc une A-suite réduite avec  $\overline{R} = \overline{S}_1 \overline{S}_2 \ldots \overline{S}_m = 1$  et ceci contredit  $(L_{\beta})$ .

 $(L_{\gamma}) \Rightarrow (L_{\alpha})$ , Supposons  $(L_{\gamma})$  valable pour un certain système de générateurs  $E = \bigcup E_{\alpha}$ . Si  $\bar{R} = 1$  est une A-relation, nous disons que : R contient un  $A_{\alpha}$ -segment S avec  $\bar{S} = 1$ .

La proposition est évidente s'il existe  $r_i \in \mathbb{R}$  àvec  $r_i = 1$  ou si  $\overline{\mathbb{R}} = 1$  est une  $A_{\alpha}$ -relation. Dans le cas contraire, soit  $\{\overline{S}_1, \ldots, \overline{S}_m\}$  la réduite de  $\mathbb{R}$ ; si pour un certain j,  $\overline{S}_j = 1$ , la proposition est également démontrée.

Enfin, le cas  $\bar{S}_j \neq I$  pour tout j est contradictoire. Posons en effet  $\bar{S}_j \in A_{\alpha}$  et

soit  $\overline{S}_j = \prod_k^{n_j} e_{jk}$  une représentation irréductible de  $\overline{S}_j$  avec les éléments de  $E_{\alpha_j}$ . La relation

$$\overline{R}_{E} = \prod \prod_{k} e_{jk} = 1$$

n'est pas une  $E_{\alpha}$ -relation, donc d'après  $(L_{\gamma})$ , l'ensemble des  $S \subset R_{E}$  avec  $\overline{S} \neq 1$  n'est pas vide et un segment minimal  $S^{*}$  avec  $\overline{S}^{*} = 1$  est nécessairement un  $E_{\alpha}$ -segment. Dans ces conditions, le fait que  $\{\overline{S}_{1}, \ldots, \overline{S}_{m}\}$  soit une suite réduite entraîne  $S^{*} \subseteq \{e_{j_{1}}, \ldots, e_{j_{n_{j}}}\}$  pour un certain j, circonstance exclue par  $\overline{S}_{j} \neq 1$  et l'irréductibilité de  $\prod e_{j_{k}}$ .

Considérons maintenant la A-relation  $\overline{R} = 1$  et supposons qu'on ait construit comme dans 1.6, les ensembles  $\{R_1, \ldots, R_k\}$  et  $\{S'_1, \ldots, S'_k\}$  de sous-suites de R satisfaisant à (a) et (b), et que de plus

$$\overline{R}_1 = \ldots = \overline{R}_k = \overline{S}'_1 = \ldots = \overline{S}'_k = 1.$$

Prenons  $R_{k+1} = R_k - S_k'$ ; on a d'après (4),  $\overline{R}_{k+1} = \overline{R}_k - \overline{S}_k' = 1$ , et par conséquent, en appliquant la remarque démontrée plus haut, on peut choisir dans  $R_{k+1}$  un  $A_z$ -segment  $S_{k+1}'$  avec  $\overline{S}_{k+1}' = 1$ . On déduit que (4) est valable pour tout k. Mais alors la A-segmentation  $\rho = \{S_k\}$ , définie comme dans (c), concordante d'après 1.6, est également telle que  $\overline{S}_k' = 1$ , c'est-à-dire unitaire.

Si  $(L_{\beta})$  est valable on dit que  $\{A_{\alpha}\}$  est un système libre de sous-groupes de G, ou encore que [A] est le produit libre des sous-groupes  $A_{\alpha}$  et l'on écrit  $[A] = \Pi^{*}A_{\alpha}$ .

L'intérêt des équivalences 2.4 est de permettre le remplacement de  $(L_{\beta})$  dans la définition ci-dessus, soit par  $(L_{\alpha})$ , soit par  $(L_{\gamma})$ , qui seront seules utilisées par la suite.

Si  $x = \overline{R}$  est la représentation réduite de  $I \neq x \in \Pi^* A_{\alpha}$ , on appelle longueur  $\lambda(x)$  de x le nombre  $\omega(R)$ ; on pose  $\lambda(I) = 0$  et l'on a  $\lambda(x) = \lambda(x^{-1})$ .

Si  $\lambda(x) = 2m + 1$ , l'élément  $r_{m+1}$  de R est dit centre c(x), la suite  $\{r_m^{-1}, \ldots, r_1^{-1}\}$  moitié gauche  $M_{-1}(x)$  et la suite  $\{r_{m+2}, \ldots, r_{2m+1}\}$  moitié droite  $M_1(x)$  de x; la représentation réduite de x s'écrit avec ces notations,

$$x = \overline{\mathbf{M}}_{-1}^{-1}(x) \cdot c(x) \cdot \overline{\mathbf{M}}_{1}(x)$$
.

Si  $\lambda(x) = 2m$ ,  $r_m$  est dit centre à gauche  $c_{-1}(x)$  et  $r_{m+1}$  centre à droite  $c_{1}(x)$  de x.

Nous notons enfin A(x) le sous-groupe  $A_{\alpha}$  avec  $c(x) \in A_{\alpha}$ .

3. Enchainabilité. — Considérons un produit libre  $\Pi^* A_{\alpha}$  et deux éléments xAnn. Ec. Norm., (3), LXXV. — Fasc. 2.

et y de  $\Pi^* A_{\alpha}$ , de même longueur impaire  $\lambda = 2m + 1$  et tels que

$$A(x) = A(y) = A_{\alpha}$$
.

x et y sont dits contigus si pour certains  $\varepsilon$ ,  $\varepsilon' = \pm 1$ :

(5) 
$$\mathbf{M}_{\varepsilon}(x) = \mathbf{M}_{-\varepsilon'}(y),$$

et l'on écrit dans ce cas  $x \sim y$ .  $x \sim x^{\pm 1}$ ;  $x \sim y \Rightarrow x^{\pm 1} \sim y^{\pm 1}$ ,  $y^{\pm 1} \sim x^{\pm 1}$ . z vérifiant  $\lambda(z) = \lambda$  et  $A(z) = A_x$  est dit *intermédiaire* entre x et y si pour certains  $\varepsilon$ ,  $\varepsilon_4$ ,  $\varepsilon' = \pm 1$ :

(6) 
$$\mathbf{M}_{\varepsilon}(x) = \mathbf{M}_{-\varepsilon_1}(z), \quad \mathbf{M}_{\varepsilon_1}(z) = \mathbf{M}_{-\varepsilon'}(y).$$

Si z est intermédiaire entre x et y il en est de même pour  $z^{-1}$ ; si  $x \sim y$ ,  $x^{\pm 1}$  ainsi que  $y^{\pm 1}$  sont intermédiaires entre x et y; si z est intermédiaire entre x et y, on a  $x \sim z$  et  $z \sim y$ , mais la réciproque n'est pas valable.

Soit maintenant H un sous-groupe de  $\Pi^*A$  et supposons de plus que x et y appartiennent à H.

x et y sont dits *enchaînables* (dans H) par la suite  $\{z_1, \ldots, z_{\nu}\}$  d'éléments de H, si  $x \sim z_1, z_1 \sim z_2, \ldots, z_{\nu} \sim y$ , autrement dit, d'après (5), si pour certains  $\varepsilon, \varepsilon_1, \ldots, \varepsilon_{\nu}, \varepsilon_1', \ldots, \varepsilon_{\nu}', \varepsilon' = \pm 1$ :

$$(7) \qquad \mathbf{M}_{\varepsilon}(x) = \mathbf{M}_{-\varepsilon'_{1}}(z_{1}), \qquad \mathbf{M}_{\varepsilon_{1}}(z_{1}) = \mathbf{M}_{-\varepsilon'_{2}}(z_{2}), \qquad \ldots, \qquad \mathbf{M}_{\varepsilon_{\nu}}(z_{\nu}) = \mathbf{M}_{-\varepsilon'}(y),$$

et l'on écrit dans ce cas  $x \Delta y$ .  $x \Delta y$  est une relation d'équivalence;  $x \Delta x^{-1}$ ;  $x \sim y \Rightarrow x \Delta y$ .

3.1. Si x et y sont enchaînables par  $\{z_1, \ldots, z_v\}$ , on peut déterminer quels que soient  $\varepsilon_0, \varepsilon_0' = \pm 1$ , certains  $\eta, \eta_1, \ldots, \eta_v, \eta'$  égaux à -1, o ou 1, tels que

$$(7') x^{\eta} z_1^{\eta_1} \dots z_{\flat}^{\eta_{\flat}} y^{\eta'} = \overline{\mathbf{M}}_{-\varepsilon_0}^{-1}(x) \cdot a \cdot \overline{\mathbf{M}}_{\varepsilon'_0}(y), a \in \mathbf{A}_{\alpha}.$$

Si l'on convient de poser  $\overline{M}_0(x) = \overline{M}_0(z_\mu) = \overline{M}_0(y) = 1$ ,  $1 \le \mu \le \nu$ , on a

$$\begin{split} x^{\eta}z_1^{\eta_1}\dots z_{\gamma}^{\eta_{\gamma}}y^{\eta'} &= \overline{\mathbf{M}}_{-\eta_1}^{-1}(x).c^{\eta}(x).\overline{\mathbf{M}}_{\eta}(x).\overline{\mathbf{M}}_{-\eta_1}^{-1}(z_1).c^{\eta_1}(z_1).\overline{\mathbf{M}}_{\eta_1}(z_1)\\ \dots \overline{\mathbf{M}}_{-\eta_{\gamma}}^{-1}(z_{\gamma}).c^{\eta_{\gamma}}(z_{\gamma}).\overline{\mathbf{M}}_{\eta_{\gamma}}(z_{\gamma}).\overline{\mathbf{M}}_{-\eta'}^{-1}(y).c^{\eta'}(y).\overline{\mathbf{M}}_{\eta'}(y), \end{split}$$

de sorte que si l'on prend

$$\eta = \left\{ \begin{array}{ll} o & \text{si } \varepsilon_0 \neq \varepsilon \\ \varepsilon_0 = \varepsilon & \text{si } \varepsilon_0 = \varepsilon \end{array} \right., \qquad \eta_\mu = \left\{ \begin{array}{ll} o & \text{si } \varepsilon_\mu' \neq \varepsilon_\mu \\ \varepsilon_\mu' = \varepsilon_\mu & \text{si } \varepsilon_\mu' = \varepsilon_\mu \end{array} \right., \qquad \eta' = \left\{ \begin{array}{ll} o & \text{si } \varepsilon_0' \neq \varepsilon \\ \varepsilon_0' = \varepsilon' & \text{si } \varepsilon_0' = \varepsilon'' \end{array} \right.,$$

(7) entraîne (7').

3.2. Pour que x et y soient enchaînables, il faut et il suffit qu'un  $z \in H$  soit intermédiaire entre x et y.

La condition est évidemment suffisante.

Réciproquement, supposons  $z_1, \ldots, z_v \in \mathbb{H}, x \sim z_1, \ldots, z_v \sim y$ ; d'après 3.1,

il existe  $z \in H$  avec

$$z = x^{\eta} z_1^{\eta_1} \dots z_{\nu}^{\eta_{\nu}} y^{\eta'} = \overline{\mathbf{M}}_{-\varepsilon_0}^{-1}(x) \cdot a \cdot \overline{\mathbf{M}}_{\varepsilon_0'}(y), \qquad a \in \mathbf{A}_{\alpha}.$$

Si  $a \neq 1$ , d'après (7), z est intermédiaire entre x et y.

Si a = 1, on a

$$z = \overline{\mathbf{M}}_{-\varepsilon_0}^{-1}(x) \cdot \overline{\mathbf{M}}_{\varepsilon_0'}(y) = \left[\overline{\mathbf{M}}_{-1}^{-1}(x) \cdot c(x) \cdot \overline{\mathbf{M}}_{1}(x)\right]^{\varepsilon_0} \left[\overline{\mathbf{M}}_{\varepsilon_0}^{-1}(x) \cdot c^{-\varepsilon_0}(x) \cdot \overline{\mathbf{M}}_{\varepsilon_0'}(y)\right] = x^{\varepsilon_0} z',$$

où  $z' \in H$  et

$$z' = \overline{\mathbf{M}}_{\varepsilon_{\mathbf{0}}}^{-1}(x) \cdot c^{-\varepsilon_{\mathbf{0}}}(x) \cdot \overline{\mathbf{M}}_{\varepsilon_{\mathbf{0}}'}(y), \qquad \mathbf{1} \neq c^{-\varepsilon_{\mathbf{0}}}(x) \in \mathbf{A}_{\alpha},$$

c'est-à-dire que z'est intermédiaire entre x et y.

 $x \in \Pi^* A_{\alpha}$ , de longueur impaire  $\lambda = 2m + 1$ , est dit élément symétrique (1) de moitié M(x), si  $M_{-1}(x) = M_1(x) = M(x)$ , autrement dit si x est conjugué à un élément d'un  $A_{\alpha}$ .

x et y, symétriques, sont dits *semblables* si M(x) = M(y) et l'on écrit  $x \simeq y$ ; pour x et y non symétriques nous posons  $x \simeq y \Leftrightarrow x = y^{\pm 1}$ ; la relation  $\simeq$  est une relation d'équivalence.

Une suite  $R = \{r_1, \ldots, r_n\}$  d'éléments de  $\Pi^* A_{\alpha}$  est dite *x-simple* si la classe des  $r_i$  semblables à x se réduit à un seul élément de R; R est x-simple à gauche ou à droite si  $r_1 \simeq x$ , où  $r_n \simeq x$ , respectivement.

Un sous-groupe B de H de la forme

$$B = H \cap \overline{M}^{-1} A_{\alpha} \overline{M},$$

où M est la représentation réduite d'un élément de  $\Pi^*A$  est dit sous-groupe symétrique de H, de centre  $c(B) = \overline{M}B\overline{M}^{-1} \subseteq A(B) = A_{\alpha}$  et de moitié M(B) = M; B est conjugué à un sous-groupe d'un  $A_{\alpha}$ .

Les éléments  $x \neq 1$  d'un sous-groupe symétrique B sont des éléments symétriques avec A(x) = A(B) et M(x) = M(B), que nous appelons éléments principaux de B; si B est un sous-groupe cyclique engendré par un non symétrique, les éléments principaux de B sont ses deux générateurs.

Appelons sous-groupe premier de H, un sous-groupe qui est soit symétrique, soit cyclique engendré par un non symétrique.

A chaque symétrique x de H on associe le sous-groupe symétrique  $B(x) = H \cap \overline{M}^{-1}(x) \cdot A(x) \cdot \overline{M}(x)$  le contenant, unique; à chaque non symétrique x on associe le sous-groupe premier cyclique B(x) engendré par x; la classe des éléments semblables à x coı̈ncide avec l'ensemble  $B^*(x)$  des éléments principaux de B(x).

Deux sous-groupes premiers B1 et B2 sont dits enchaînables si leurs éléments

<sup>(1) «</sup> Transformation » dans la terminologie de Kuroš [4].

principaux sont enchaînables; il s'agit évidemment d'une relation d'équivalence dans l'ensemble des sous-groupes premiers.

3.3. Deux sous-groupes symétriques enchaînables  $B_1$  et  $B_2$  sont conjugués dans H et leurs centres  $c(B_1)$  et  $c(B_2)$  sont conjugués dans  $A(B_1) = A(B_2) = A_{\alpha}$ .

Soient  $x \in B_1$  et  $y \in B_2$  deux éléments principaux donc enchaînables; d'après 3.2, il existe  $z \in H$  intermédiaire entre x et y et puisque ceux-ci sont symétriques,

$$z = \overline{\mathrm{M}}^{-1}(x) \cdot a \cdot \overline{\mathrm{M}}(y), \qquad 1 \neq a \in \Lambda_{\alpha}.$$

Si maintenant  $\xi \simeq x$ :

$$z^{-1}\xi z = \overline{\mathbf{M}}^{-1}(y) \cdot a^{-1} \cdot c(\xi) \cdot a \cdot \overline{\mathbf{M}}(y) \in \mathbf{B}_2, \qquad 1 \neq a^{-1} \cdot c(\xi) \cdot a \in c(\mathbf{B}_2) \subseteq \mathbf{A}_{\alpha}.$$

ďoù

$$z^{-1}B_1z \subseteq B_2$$
,  $a^{-1}.c(B_1).a \subseteq c(B_2)$ ;

de manière analogue

$$zB_2z^{-1}\subseteq B_1$$
,  $a.c(B_2).a^{-1}\subseteq c(B_1)$ ,

donc

$$B_2 \stackrel{.}{\subseteq} z^{-1} B_1 z, \qquad c(B_2) \stackrel{.}{\subseteq} a^{-1} . c(B_1) . a.$$

Un ensemble X d'éléments de H est dit *enchaîné* si quel que soit le couple x, y d'éléments enchaînables de X,  $z \in [X]$  pour un certain z intermédiaire entre x et y; en particulier, X est enchaîné si x et y sont enchaînables par une suite  $\{z_1, \ldots, z_v\}$  d'éléments de X.

X est dit bien enchaîné si quel que soit le couple x, y d'éléments enchaînables de X,  $z \in [X]$  pour tout z intermédiaire entre x et y.

Une famille  $\{B_{\beta}\}$  de sous-groupes premiers de H est dite *enchaînée* ou *bien* enchaînée si l'ensemble B des éléments principaux des sous-groupes  $B_{\beta}$  est enchaîné ou bien enchaîné, respectivement.

3.4. Pour qu'un ensemble enchaîné X soit bien enchaîné, il faut et il suffit que, quelle que soit la classe d'enchaînabilité  $\Delta(v)$  dans X,

$$B = H \cap \overline{M}_{\varepsilon}^{-1}(v_0).A(v_0).\overline{M}_{\varepsilon}(v_0) \subseteq [X]$$

pour un certain  $v_0 \in \Delta(v)$  et un certain  $\varepsilon = \pm 1$ .

La condition est nécessaire car les éléments principaux de B sont intermédiaires entre  $v_0$  et  $v_0$ .

Réciproquement soit  $z = \overline{\mathrm{M}}_{-z_0}^{-1}(x).a.\overline{\mathrm{M}}_{z_0}(y)$  intermédiaire entre  $x, y \in \Delta(v)$ . Si X est enchaîné, il existe  $z_1 \in [\mathrm{X}]$  intermédiaire entre x et  $v_0$  et  $z_2 \in [\mathrm{X}]$  intermédiaire entre  $v_0$  et y, donc d'après (7')

$$x^{\underline{\gamma}_1}z_1^{\underline{\gamma}_1}v_0^{\underline{\gamma}_0} = \overline{\mathrm{M}}_{-\varepsilon_0}^{-1}(x).a_1.\overline{\mathrm{M}}_{\varepsilon}(v_0), \qquad v_0^{\underline{\gamma}_0}z_2^{\underline{\gamma}_2}y^{\underline{\gamma}_1'} = \overline{\mathrm{M}}_{\varepsilon}^{-1}(v_0).a_2.\overline{\mathrm{M}}_{\varepsilon_0'}(y).$$

où  $a_1, a_2 \in A(v_0)$ . Soit maintenant  $a' \in A(v_0)$  tel que  $a_1 a' = a$ ; on a

$$\begin{split} \overline{\mathbf{M}}_{\boldsymbol{\varepsilon}^{-1}}^{-1}(\boldsymbol{v}_{0})..a'.\overline{\mathbf{M}}_{\boldsymbol{\varepsilon}_{0}'}(\boldsymbol{y}) &= \overline{\mathbf{M}}_{\boldsymbol{\varepsilon}^{-1}}^{-1}(\boldsymbol{v}_{0})..a'.\overline{\mathbf{M}}_{\boldsymbol{\varepsilon}}(\boldsymbol{v}_{0}).\overline{\mathbf{M}}_{\boldsymbol{\varepsilon}^{-1}}^{-1}(\boldsymbol{v}_{0})..a_{2}.\overline{\mathbf{M}}_{\boldsymbol{\varepsilon}_{0}'}(\boldsymbol{y}) \\ &= b\boldsymbol{v}_{0}^{n_{0}}\boldsymbol{\delta}\boldsymbol{z}_{2}^{n_{2}}\boldsymbol{y}^{n_{1}'}, \qquad \boldsymbol{b} \in \mathbf{B} \subseteq [\mathbf{X}], \end{split}$$

de sorte que

$$\begin{split} z &= \overline{\mathbf{M}}_{-\varepsilon_0}^{-1}(x).a.\overline{\mathbf{M}}_{\varepsilon_0'}(y) = \overline{\mathbf{M}}_{-\varepsilon_0}^{-1}(x).a_1.\overline{\mathbf{M}}_{\varepsilon}(v_0).\overline{\mathbf{M}}_{\varepsilon}^{-1}(v_0).a'.\overline{\mathbf{M}}_{\varepsilon_0'}(y) \\ &= x^{r_1} z_1^{r_1} v_0^{r_0} b v_0^{r_0'} z_2^{r_2} y^{r_1'} \in [\mathbf{X}]. \end{split}$$

4. Relations irréductibles. — Considérons une relation irréductible  $\overline{R} = r_1 r_2 ... r_n$  avec  $r_i \in \Pi^* A_z$  et supposons d'une part que  $\omega(R) \succeq 3$ , d'autre part que les  $r_i$  ne sont pas tous symétriques semblables; soit  $r_i = \prod_j a_{ij}$ , la représentation réduite de  $r_i$  et notons

$$l(\mathbf{R}) = \max \{ \lambda(r_i) \}, \qquad \overline{\mathbf{R}}_{\Lambda} = \prod_i \prod_i a_{ij}.$$

Si de plus  $R_{\lambda}$  admet une A-segmentation concordante et unitaire  $\rho$ , appelons couverture centrale  $C_{\rho}(r_i)$  le segment minimum appartenant à  $\rho \cup R_{\lambda}$  et contenant les centres de  $r_i$  (dont l'existence est assurée par 1.2).

4.1. Si l(R) = 2m, il existe pour tout  $r_{\nu} \in R$  vérifiant  $\lambda(r_{\nu}) = l(R)$ , un segment S de R,  $r_{\nu}$ -simple, avec  $\lambda(\overline{S}) < \lambda(r_{\nu})$ .

D'après  $(L_{\alpha})$ ,  $\overline{R}_{A} = 1$  est une A-identité; soit  $\rho$  la A-segmentation concordante et unitaire qu'admet  $R_{A}$ .

Considérons l'ensemble  $\rho^*$  des couvertures centrales  $C_{\rho}(r_i)$  correspondant aux  $r_i$  semblables à  $r_{\nu}$  et soit  $C = C_{\rho}(r_{\mu})$ ,  $r_{\mu} \simeq r_{\nu}$ , un segment minimal de  $\rho^*$ .

(A) Un inter-support  $C^i$  de C contient des centres de tout au plus un seul  $r_i$  semblable à  $r_{\gamma}$ ; il en est de même pour  $R_{\lambda}$  si  $C = R_{\lambda}$ .

Supposons en effet i < k,

$$r_i \simeq r_k \simeq r_{\nu}, \quad a_{i,m+k} = c_i(r_i) \in \mathbb{C}^t, \quad a_{km} = c_{-1}(r_k) \in \mathbb{C}^t,$$

et notons  $S^* = S(a_{i,m+1} a_{km})$ ; l'hypothèse que C est minimal dans  $\rho^*$  entraîne

$$a \in S^* \Rightarrow S_o(a) \subseteq S^*$$

qui reste valable si  $C = R_A$ ,  $a_{i,m+1} = c_4(r_i) \in R_A$ ,  $a_{km} = c_{-1}(r_k) \in R_A$ .

L'ensemble des  $S_{\rho}(a)$  avec  $a \in S^*$  constitue donc une A-segmentation de  $S^*$  concordante et, de même que  $\rho$ , unitaire; d'après 2.1, on a par conséquent  $\overline{S}^* = 1$ .

Si 
$$r_i = r_k$$
,

$$\bar{S}(r_i r_{k-1}) = a_{i1} \dots a_{im} \cdot \bar{S}^* \cdot a_{km}^{-1} \dots a_{k_1}^{-1} = 1,$$

et si 
$$r_i = r_k^{-1}$$
,

$$\bar{S}(r_i r_k) = a_{i1} \dots a_{im} \cdot \bar{S}^* \cdot a_{k,m+1} \dots a_{k,2m} = 1, \quad \bar{S}(r_{i+1} r_{k-1}) = r_i^{-1} \cdot \bar{S}(r_i r_k) \cdot r_k^{-1} = 1,$$

ce qui contredit dans les deux cas l'hypothèse : R irréductible et  $\omega(R) \geq 3$ .

D'après (A), si  $C = R_A$ , R est  $r_v$ -simple et par ailleurs  $\lambda(\bar{R}) = o < \lambda(r_v)$ , de sorte qu'on peut prendre S = R.

Si  $C \neq R_A$ , considérons parmi les inter-supports de  $C = C_{\rho}(r_{\mu})$ , l'inter-support C', unique, contenant des centres de  $r_{\mu}$  et posons  $C' = S(a_{i,j+1}a_{kh})$ . On a d'après  $(3^i)$ ,  $\overline{C}' = 1$ ; d'autre part  $a_{ij}$  et  $a_{k,h+1}$  sont des supports de C appartenant à un même  $A_{\alpha}$ , de sorte que  $a_{ij}a_{k,h+1} = a \in A_{\alpha}$ .

Quatre cas sont à distinguer :

1°  $c_4(r_i) \notin \mathbb{C}^t$  et  $c_{-4}(r_k) \notin \mathbb{C}^t$ . — Dans ce cas  $r_{\mu} \in S(r_{i+4}r_{k-4})$  et d'après (A),  $S(r_{i+4}r_{k-4})$  est  $r_{\nu}$ -simple. D'autre part

$$2[\lambda(r_i)-j] < \lambda(r_i) \leq \lambda(r_v), \qquad 2h < \lambda(r_k) \leq \lambda(r_v),$$

donc 
$$\lambda(r_i) - j + h < \lambda(r_v)$$
, et

$$\bar{\mathbf{S}}(r_{i+1}r_{k-1}) = a_{i,\lambda(r_i)}^{-1} \dots a_{i,j+1}^{-1} \cdot \bar{\mathbf{C}}^t \cdot a_{kh}^{-1} \dots a_{k1}^{-1} = a_{i,\lambda(r_i)}^{-1} \dots a_{i,j+1}^{-1} \cdot a_{kh}^{-1} \dots a_{k1}^{-1},$$

de sorte que

$$\lambda \left[ \overline{S}(r_{i+1}r_{k-1}) \right] \leq \lambda(r_i) - j + h < \lambda(r_v).$$

On peut prendre  $S = S(r_{i+1}r_{k-1})$ .

2°  $c_1(r_i) \in \mathbb{C}^t$  et  $c_{-1}(r_k) \notin \mathbb{C}^t$ . — On a  $r_{\mu} \in S(r_i r_{k-1})$  qui est  $r_{\nu}$ -simple. D'autre part

$$2j \leq \lambda(r_i) \leq \lambda(r_v), \quad 2h < \lambda(r_v),$$

donc  $j+h < \lambda(r_v)$ , et

$$\overline{S}(r_i r_{k-1}) = a_{i1} \dots a_{ij} a_{kh}^{-1} \dots a_{k1}^{-1},$$

de sorte que

$$\lambda \left[ \overline{S}(r_i r_{k-1}) \right] \leq j + h < \lambda(r_v).$$

On peut prendre  $S = S(r_i r_{k-1})$ .

3°  $c_1(r_i) \notin \mathbb{C}^t$  et  $c_{-1}(r_k) \in \mathbb{C}^t$ . — Ce cas est analogue à 2° et l'on peut prendre  $S = S(r_{i+1}r_k)$ .

 $4^{\circ} c_1(r_i) \in \mathbb{C}^{t}$  et  $c_{-1}(r_k) \in \mathbb{C}^{t}$ . — On a  $r_{\mu} \in S(r_i r_k)$  qui est  $r_{\nu}$ -simple. D'autre part

$$2j \leq \lambda(r_{\nu}), \qquad 2[\lambda(r_k) - h] \leq \lambda(r_k) \leq \lambda(r_{\nu}),$$

donc 
$$j + \lambda(r_k) - h \leq \lambda(r_v)$$
, et

$$\overline{S}(r_i r_k) = a_{i1} \dots a_{ij} a_{k,h+1} \dots a_{k,\lambda(r_k)} = a_{i1} \dots a_{i,j-1} \dots a_{k,h+2} \dots a_{k,\lambda(r_k)},$$

de sorte que

$$\lambda \left[ \overline{S}(r_i r_k) \right] \leq j + \lambda(r_k) - h - 1 < \lambda(r_v).$$

On peut prendre  $S = S(r_i r_k)$ .

4.2. Si l(R) = 2m + 1, il existe pour tout  $r_v \in R$  vérifiant  $\lambda(r_v) = l(R)$ , et tout  $\varepsilon = \pm 1$ , soit un segment  $S_{-1}$  de R,  $r_v$ -simple à gauche, soit un segment  $S_4$  de R,  $r_v$ -simple à droite, avec

$$\overline{S}_{-\eta} = [\overline{M}_{-\eta}^{-1}(r_i).a.\overline{M}]^{\eta}, \quad a \in A(r_v), \quad \lambda(\overline{M}) \leq m, \quad \eta = \pm 1,$$

où l'on a l'une des quatre conditions :

- $(\alpha) a = 1;$
- $(\beta) \lambda(\overline{\mathbf{M}}) < m;$
- $(\gamma)$   $\mathbf{M}_{-\eta}(r_i) = \mathbf{M}_{-\varepsilon}(r_{\nu}), \mathbf{M} = \mathbf{M}_{\eta}(r_k), r_k \simeq r_{\nu};$
- ( $\delta$ ) si  $r_{\nu}$  est non symétrique,  $M_{-\eta}(r_i) = M = M_{-\varepsilon}(r_{\nu})$ .

Considérons comme dans 4.1,  $\overline{R}_{A} = 1$ , la A-segmentation concordante et unitaire  $\rho$  qu'admet  $R_{A}$ , l'ensemble  $\rho^{\star}$  des couvertures centrales d'éléments semblables à  $r_{\nu}$  et soit  $C = C_{\rho}(r_{\mu})$ ,  $r_{\mu} \simeq r_{\nu}$ , un segment minimal de  $\rho^{\star}$ .

On a  $c(r_{\mu}) \in \mathbb{C}$ , donc d'après (2),  $S_{\rho}[c(r_{\mu})] \subseteq \mathbb{C}$ , et puisque  $\mathbb{C}$  est minimum dans  $\rho \cup \mathbb{R}_{\Lambda}$  à contenir  $c(r_{\mu})$ ,  $S_{\rho}[c(r_{\mu})] = \mathbb{C}$ ;  $\mathbb{C} \in \rho$ , et  $c(r_{\mu})$  est un support de  $\mathbb{C}$ .

(A) Un inter-support  $C^t$  de C ne contient pas des centres d'éléments  $r_i$  semblables à  $r_i$ .

En effet,  $c(r_i) \in C^t$  entraîne d'après  $(2^t)$ ,

$$C_{\rho}(r_i) \subseteq S_{\rho}[c(r_i)] \subseteq C^t \subset C,$$

ce qui contredit l'hypothèse que C est minimal dans  $\rho^*$ ;  $c(r_i)$  est un support de C.

Posons  $C = S(a_{i,j+1}a_{kh})$ ; on a d'après (3),  $\overline{C} = I$ .

Cherchons maintenant parmi les inter-supports de C, un inter-support  $C^i$  contenant une moitié  $M_{\eta}(r_i)$  avec  $M_{\eta}(r_i) = M_{\varepsilon}(r_{\nu})$ ,  $r_i \simeq r_{\nu}$ .

Si un tel  $C^i$  n'existe pas,  $r_{\nu}$  est non symétrique et par ailleurs, en tenant compte également de (A), on conclut que  $c(r_{\mu})$  est une extrémité de C; soit par exemple  $\mu = i, j = m, \ a_{i,m+1} = c_0 = c(r_i)$ . D'autre part  $r_{\nu} \not\simeq r_{\nu}$  pour  $i < \nu < k$  et si  $r_k \simeq r_{\nu}$  on a  $h \leq m+1$ . Dans ce dernier cas on peut même supposer  $h \leq m$ , car h = m+1 est contradictoire; en effet si  $r_i = r_k$ ,  $C^i$  ou  $C^i$  est dans les conditions requises pour  $C^i$  et si  $r_i = r_k^{-1}$ :

$$\overline{S}(r_i r_k) = a_{i1} \dots a_{im} \cdot \overline{C} \cdot a_{k,m+2} \dots a_{k,2m+1} = 1, \quad \overline{S}(r_{i+1} r_{k-1}) = 1.$$

Il reste à étudier le cas :

1° Soit  $r_k \not\simeq r_{\nu}$ , soit  $r_k \simeq r_{\nu}$  et  $h \leq m$ . — Si  $c_{-1}(r_k) \not\in \mathbb{C}$ ,  $S(r_i r_{k-1})$  est  $r_{\nu}$ -simple

à gauche et  $h \leq m$ , d'où

$$\overline{S}(r_i r_{k-1}) = a_{i1}) \dots a_{im} a_{kh}^{-1} \dots a_{k1}^{-1} = \overline{M}_{-1}(r_i) \cdot \overline{M}, \quad \lambda(\overline{M}) \leq h \leq m;$$

on peut prendre  $S_{-1} = S(r_i r_{k-1})$  car celui-ci vérifie  $(\alpha)$ .

Si  $c_{-1}(r_k) \in \mathbb{C}$ , on a nécessairement  $r_k \not\simeq r_{\nu}$ , donc  $S(r_i r_k)$  est  $r_{\nu}$ -simple à gauche et  $\lambda(r_k) - h \leq m$ , d'où

$$\overline{\mathbf{S}}(r_i r_k) = a_{i1} \dots a_{im} a_{k,h+1} \dots a_{k,\lambda(r_k)} = \overline{\mathbf{M}}_{-1}^{-1}(r_i) \cdot \overline{\mathbf{M}}, \qquad \lambda(\overline{\mathbf{M}}) \leq \lambda(r_k) - h \leq m;$$

on peut prendre  $S_{-4} = S(r_i r_k)$  car celui-ci vérifie ( $\alpha$ ).

Si d'autre part il existe C' avec

$$\mathbf{M}_{\eta}(r_i) \subseteq \mathbf{C}^t$$
,  $\mathbf{M}_{\eta}(r_i) = \mathbf{M}_{\varepsilon}(r_{\nu})$ ,  $r_i \simeq r_{\nu}$ ,

supposons par exemple  $\eta = 1$ ; d'après (A), C' est nécessairement de la forme  $C' = S(a_{i,m+2}a_{kh})$ ; toujours d'après (A),  $r_i \not\simeq r$  pour i < i < k; d'après (3'),  $\overline{C'} = 1$ ; enfin

$$a_{i,m+1} a_{k,h+1} = c_{i-1} c_i = a \in A(r_{\nu}).$$

Trois cas sont à distinguer une fois choisi  $C^{t}$ :

2° Soit  $\lambda(r_k) < 2m+1$ , soit  $\lambda(r_k) = 2m+1$  et  $a_{k,h+1} \neq c(r_k)$ . — Si  $c_{-1}(r_k) \notin C'$ ,  $S(r_i r_{k-1})$  est  $r_v$ -simple à gauche et puisque  $a_{k,h+1} \neq c(r_k)$ , on a k < m, d'où

$$\overline{S}(r_{i}r_{k-1}) = a_{i1} \dots a_{i,m+1} \cdot \overline{C}^{i} \cdot a_{kh}^{-1} \dots a_{k1}^{-1} = \overline{M}_{-1}^{-1}(r_{i}) \cdot a_{i,m+1} \cdot \overline{M}, \qquad a_{i,m+1} \in A(r_{v}),$$

$$\lambda(\overline{M}) \leq h < m;$$

on peut prendre  $S_{-1} = S(r_i r_{k-1})$  car celui-ci vérifie ( $\beta$ ).

Si  $c_{-1}(r_k) \in \mathbb{C}^t$  d'après (A),  $r_k \not\simeq r_{\nu}$ , donc  $S(r_i r_k)$  est  $r_{\nu}$ -simple à gauche et  $\lambda(r_k) - h - 1 < m$ , d'où

$$\overline{S}(r_i r_k) = a_{i1} \dots a_{i,m+1} a_{k,k+1} \dots a_{k,\lambda(r_k)} = \overline{M}_{-1}^{-1}(r_i) \cdot a \cdot \overline{M}, \qquad a \in A(r_v),$$

$$\lambda(\overline{M}) \leq \lambda(r_k) - h - 1 < m;$$

on peut prendre  $S_{-1} = S(r_i r_k)$  car celui-ci vérifie ( $\beta$ ).

3°  $\lambda(r_k) = 2m + 1$ ,  $a_{k,h+1} = c(r_k)$ ,  $r_k \not\simeq r_v$ . — Dans ce cas,  $S(r_i r_k)$  est  $r_v$ -simple à gauche et h = m, d'où

$$\overline{S}(r_ir_k) = a_{i_1} \dots a_{i,m+1} \dots a_{k,m+1} \dots a_{\lambda,2m+1} = \overline{M}_{-1}^{-1}(r_i) \cdot a \cdot \overline{M}, \quad a \in A(r_v), \ M = M_1(r_k);$$

on peut prendre  $S_{-1} = S(r_i r_k)$  car celui-ci vérifie  $(\gamma)$ .

Si maintenant  $a_{k,h+1} = c(r_k)$ ,  $r_i \simeq r_k \simeq r_v$  et si  $r_v$  est symétrique,

$$\overline{S}(r_{i+1}r_{k-1}) = a_{i,2m+1}^{-1} \dots a_{i,m+2}^{-1} a_{km}^{-1} a_{k1}^{-1} = \overline{M}_{1}^{-1}(r_{i}) . \overline{M}_{-1}(r_{k}) = \overline{M}_{1}^{-1}(r_{v}) . \overline{M}(r_{v}) = i,$$

c'est-à-dire, étant donnée l'irréductibilité de R, k=i+1.

Ceci étant vrai pour tout inter-support C' compris entre des supports centres de symétriques semblables à  $r_v$ , il s'ensuit que si l'on ne réussit pas à choisir

un C' vérifiant 2° ou 3°, le segment  $S(r_{\sigma}r_{\sigma'})$  de R déterminé par  $C = S[c(r_{\sigma}), c(r_{\sigma'})]$ , ne contient que des  $r_i$  symétriques semblables à  $r_i$  et

$$\overline{S}(r_{\sigma}r_{\sigma'}) = \overline{M}_{-1}^{-1}(r_{\sigma}). \overline{C}. \overline{M}_{1}(r_{\sigma'}) = \overline{M}_{-1}(r_{\nu}). \overline{M}(r_{\nu}) = 1,$$

ce qui est en contradiction avec les hypothèses faites sur R.

Si par ailleurs, dans le cas de  $r_{\nu}$  non symétrique,  $a_{k,h+1} = c(r_k)$ ,  $r_i = r_k^{-1}$ , on a h = m, d'où

$$\overline{S}(r_i r_k) = a_{i1} \dots a_{i,m+1} a_{i,m+1} \dots a_{i,2m+1} = 1, \quad S(r_{i+1} r_{k-1}) = 1.$$

Il reste à étudier le cas :

 $4^{\circ}$   $r_{\vee}$  non symétrique,  $a_{k,h+1} = c(r_k)$ ,  $r_i = r_k \simeq r_{\vee}$ . — Dans ce cas  $S(r_i r_{k-1})$  est  $r_{\vee}$ -simple à gauche et h = m, d'où

$$S(r_{i}r_{k-1}) = a_{i_{1}} \dots a_{i_{n}m+1} a_{km}^{-1} \dots a_{k_{1}}^{-1} = \overline{\mathbf{M}}_{-1}^{-1}(r_{i}) \cdot a_{i_{n}m+1} \cdot \overline{\mathbf{M}}, \qquad a_{i_{n}m+1} \in \mathbf{A}(r_{\nu}),$$

$$\overline{\mathbf{M}} = \mathbf{M}_{-1}(r_{k}) = \mathbf{M}_{-1}(r_{i}) = \mathbf{M}_{-\varepsilon}(r_{\nu});$$

on peut prendre  $S_{-1} = S(r_i r_{k-1})$  car celui-ci vérifie ( $\delta$ ).

- 5. Théorème de Kuroš. Si  $X \subseteq \Pi^* A_{\alpha}$ , notons  $X(\lambda)$  l'ensemble des  $x \in X$  avec  $\lambda(x) \leq \lambda$  et soit H un sous-groupe de  $\Pi^* A_{\alpha}$ .
- $\{\beta_4\}, \{\beta_2\}, \ldots, \{\beta_{\lambda}\}, \ldots$  étant des ensembles d'indices, considérons les systèmes de sous-groupes premiers de H,

$$\{\,B_{\beta_1}^{\, i}\,\} \subseteq \{\,B_{\beta_2}^{\, i}\,\} \subseteq \ldots \subseteq \{\,B_{\beta_{\lambda}}^{\, i}\,\} \subseteq \ldots$$

définis par récurrence comme suit :

 $(a')\{B^{\iota}_{\beta_{\iota}}\}$  est un système libre bien enchaîné  $\emph{maximal}$  tel que

$$B^{\scriptscriptstyle \text{I}} \subseteq H(I)$$
.

(a)  $\{B_{eta_{\lambda}}^{\lambda}\}$  est un système libre bien enchaîné  $\emph{maximal}$  tel que

$$\{B_{\beta_{\lambda-1}}^{\lambda-1}\}\subseteq \{B_{\beta_{\lambda}}^{\lambda}\}, \quad B^{\lambda}\subseteq H(\lambda),$$

où, notation déjà utilisée,  $B^{\lambda}$  est l'ensemble des éléments principaux des sous-groupes  $B^{\lambda}_{\beta\lambda}$ . Il est évident que la propriété d'un système de sous-groupes d'être libre est une *propriété de caractère fini* et l'on voit d'autre part facilement que la propriété d'un système de sous-groupes premiers de H d'être bien enchaîné est une *propriété inductive*. L'existence des systèmes maximaux  $\{B^{\lambda}_{\beta\lambda}\}$  est donc assurée par le théorème de Zorn (avec la convention que le système vide de sous-groupes premiers est libre bien enchaîné). Notons :

(b)  $\{B_{\beta}\} = \bigcup \{B_{\beta_{\lambda}}^{\lambda}\}$ ; suivant les remarques ci-dessus  $\{B_{\beta}\}$  est également un système libre bien enchaîné de sous-groupes de H.

5.1. On  $a H = \Pi^* B_{\beta}$ .

Il suffit d'établir  $H \subseteq [B]$ . Supposons  $H(\lambda - 1) \subseteq [B^{\lambda - 1}]$  et montrons que

(8) 
$$H(\lambda) \subseteq [B^{\lambda}].$$

Soit  $x \in H(\lambda)$ ; si  $\lambda(x) \leq \lambda - 1$ , on a  $x \in H(\lambda - 1) \subseteq [B^{\lambda-1}] \subseteq [B^{\lambda}]$ ; si  $\lambda(x) = \lambda$  et si  $x \in B_{\beta_{\lambda}}^{\lambda}$  pour un certain  $\beta_{\lambda}$ , on a  $x \in B_{\beta_{\lambda}}^{\lambda} \subseteq [B^{\lambda}]$ .

Considérons donc les éléments  $x \in H$  avec  $\lambda(x) = \lambda$  et  $x \notin B_{\beta_{\lambda}}^{\lambda}$  pour tout  $\beta_{\lambda}$ ; on a  $B(x) \cap B_{\beta_{\lambda}}^{\lambda} = 1$ .

Si  $\lambda = 2m$ ,  $B^{\lambda} \cup B^{\star}(x)$  est un ensemble bien enchaîné; d'après (a) il s'ensuit que  $\{B_{\beta_{\lambda}}^{\lambda}, B(x)\}$  n'est pas un système libre. Il existe donc, d'après  $(L_{\gamma})$ , une relation  $\overline{R} = 1$  irréductible entre les éléments de  $B^{\lambda} \cup B^{\star}(x)$  qui n'appartiennent pas tous à un même sous-groupe de  $\{B_{\beta_{\lambda}}^{\lambda}, B(x)\}$  on déduit que  $\omega(R) \geq 3$  et que les éléments de R ne sont pas tous symétriques semblables. Puisque  $\{B_{\beta_{\lambda}}^{\lambda}\}$  est un système libre, il existe  $r_{\nu} \in R$  avec  $r_{\nu} \sim x$  et d'autre part

$$\lambda(r_{\vee}) = \lambda(x) = \lambda = l(r).$$

On a par conséquent d'après 4.1, une égalité de la forme

$$x_{-n} \dots x_{-1} x^{\varepsilon_0} x_1 \dots x_m = \overline{S},$$

où S est x-simple donc  $x \not\simeq x_i \in B^{\lambda}$ , et  $\lambda(\bar{S}) \leq \lambda - 1$  donc

$$\bar{S} \in H(\lambda - 1) \subseteq [B^{\lambda-1}] \subseteq [B^{\lambda}],$$

de sorte que  $x \in [B^{\lambda}]$ .

Supposons maintenant  $\lambda = 2m + 1$ ; on montre successivement:

(A) Tout x avec  $\lambda(x) = \lambda$ , contigu à un élément de  $B^{\lambda}$ , appartient à  $[B^{\lambda}]$ .

Si x est contigu à  $y \in B^{\lambda}$ ,  $B^{\lambda} \cup B^{*}(x)$  est enchaîné et, dans celui-ci,  $\Delta(x) = \Delta(y)$ ; mais d'après 3.4,  $B^{\lambda} \cup B^{*}(x)$  est dans ces conditions bien enchaîné. On déduit comme plus haut l'existence de  $\overline{R} = 1$  irréductible et de  $r_{\nu} \in R$  avec  $r_{\nu} \simeq x$  et  $\lambda(r_{\nu}) = \lambda(x) = \lambda = l(R)$  de sorte que si  $\varepsilon$  est déterminé par  $M_{\varepsilon}(r_{\nu}) = M_{-\varepsilon'}(y)$ , on a d'après 4.2 une égalité de la forme

$$(x^{\varepsilon_0}x_1...x_m)^{\eta} = \overline{S}_{-\eta} = [\overline{M}_{-\eta}^{-1}(x^{\varepsilon_0}).a.\overline{M}]^{\eta}, \quad x \not\simeq x_i \in B^{\lambda},$$

où — éventualités  $(\alpha)$  et  $(\beta)$  —  $\lambda(\bar{S}_{-\eta}) \leq \lambda - 1$ , ou bien — éventualités  $(\gamma)$  et  $(\delta)$  —  $\bar{S}_{-\eta}$  est intermédiaire entre deux éléments de  $B^{\lambda}$ ; dans les deux cas  $S_{-\eta} \in [B^{\lambda}]$ , de sorte que  $x \in [B^{\lambda}]$ .

(B) Tout x avec  $\lambda(x) = \lambda$ , symétrique, appartient à  $[B^{\lambda}]$ .

Si le symétrique x est enchaînable à  $y \in B^{\lambda}$ , soit  $z = \overline{M}^{-1}(x) \cdot a \cdot \overline{M}_{\varepsilon}(y)$  l'intermédiaire entre x et y dont l'existence est assurée par  $3 \cdot 2$ ; on a

$$xzy^{\xi} = \overline{\mathbf{M}}^{-1}(x).c(x).a.c^{\varepsilon}(y).\overline{\mathbf{M}}_{\varepsilon}(y) = z',$$

où z est contigu à  $y \in B^{\lambda}$  et z' est soit tel que  $\lambda(z') \leq \lambda - 1$ , soit contigu à  $y \in B^{\lambda}$ . Si l'on tient compte de (A), on déduit z,  $z' \in [B^{\lambda}]$ , de sorte que  $x \in [B^{\lambda}]$ .

Si le symétrique x n'est enchaînable à aucun élément de  $B^{\lambda}$ ,  $B^{\lambda} \cup B^{\star}(x)$  est bien enchaîné et l'on déduit comme dans (A) l'existence d'une égalité de la forme

$$(\xi x_1 \dots x_m)^{\eta} = \overline{S}_{-\eta} = \left[ \overline{M}^{-1}(\xi) \cdot a \cdot \overline{M} \right]^{\eta}, \qquad \xi \simeq x \not\simeq x_i \in B^{\lambda},$$

où — éventualités ( $\alpha$ ) et ( $\beta$ ) —  $\lambda$ ( $\overline{S}_{-\eta}$ )  $\leq \lambda$  — 1, ou bien — éventualité ( $\gamma$ ) —  $\overline{S}_{-\eta}$  est contigu à un élément de  $B^{\lambda}$ ; mais alors

$$(x^{arxi_0}x_1\dots x_m)^{\eta} = (x\xi^{-1}\xi x_1\dots x_m)^{\eta} = \left[x.\xi^{-1}.\overline{\mathbf{M}}^{-1}(\xi).a.\overline{\mathbf{M}}\right]^{\eta} = \left[\overline{\mathbf{M}}^{-1}(\xi).c(x).c^{-1}(\xi).a.\overline{\mathbf{M}}\right]^{\eta} = \overline{\mathbf{S}}_{-\eta}^*,$$

où  $\bar{S}_{-\eta}^*$  est soit tel que  $\lambda(\bar{S}_{-\eta}^*) \leq \lambda - 1$ , soit contigu à un élément de  $B^{\lambda}$ ; on conclut en faisant intervenir (A) que  $\bar{S}_{-1}^* \in [B^{\lambda}]$  et en définitive  $x \in [B^{\lambda}]$ .

(C) Tout x avec  $\lambda(x) = \lambda$  appartient  $\hat{a} [B_{\lambda}]$ .

Supposons x non symétrique. Si l'on tient compte de (B),  $B^{\lambda} \cup B^{\star}(x)$  est d'après 3.4, bien enchaîné, et l'on déduit comme dans (A), l'existence d'une égalité de la forme

$$(x^{\varepsilon_0}x_1...x_m)^{\eta} = \overline{S}_{-\eta} = [\overline{M}_{-\eta}^{-1}(x^{\varepsilon_0}).a.\overline{M}], \quad x \not\simeq x_i \in B^{\lambda},$$

où — éventualités  $(\alpha)$  et  $(\beta)$  —  $\lambda(\bar{S}_{-\eta}) \leq \lambda$  — I, ou bien — éventualité  $(\gamma)$  —  $\bar{S}_{-\eta}$  est contigu à un élément de  $B^{\lambda}$ , ou encore — éventualité  $(\delta)$  —  $\bar{S}_{-\eta}$  est symétrique; on conclut en faisant intervenir (A) et (B) que  $\bar{S}_{-\eta} \in [B^{\lambda}]$  et en définitive  $x \in [B^{\lambda}]$ .

Avec la convention que tout x avec  $\lambda(x) = 1$  est symétrique, (8) est par ailleurs évidente pour  $\lambda = 1$ , de sorte qu'elle est valable pour tout  $\lambda$ ; on déduit en tenant compte de (b)

$$H = \bigcup H(\lambda) \subseteq \bigcup [B^{\lambda}] = [\bigcup B^{\lambda}] = [B].$$

#### BIBLIOGRAPHIE.

- [1] A. G. Kurosch, Die Untergruppen der freien Produkte von belibigen Gruppen (Math. Ann., t. 109, 1934, p. 647-660).
- [2] H. W. Kuhn, Subgroup theorems for groups presented by generators and relations (Ann. of Math., t. 56, 1952, p. 22-46).
- [3] M. Hall, Subgroups of free products (Pacific J. Math., t. 3, 1953, p. 115-120).
- [4] A. G. Kuroš, The theory of groups, II (Chelsea, New York, 1956).
- [5] A. J. Weir, The Reidemeister-Schreier and Kuro's subgroup theorems (Mathematika G. B., t. 3, 1956, p. 47-55).
- [6] J. Petresco, Sur les groupes libres (Bull. Sc. math., t. 80, 1956, p. 6-32).