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Abstract. Random walks and diffusions in symmetric random environment are known to exhibit metastable behavior: they tend
to stay for long times in wells of the environment. For the case that the environment is a one-dimensional two-sided standard
Brownian motion, we study the process of depths of the consecutive wells of increasing depth that the motion visits. When these
depths are looked in logarithmic scale, they form a stationary renewal cluster process. We give a description of the structure of this
process and derive from it the almost sure limit behavior and the fluctuations of the empirical density of the process.

Résumé. Il est bien connu que les marches aléatoires et les diffusions dans un environnement symétrique aléatoire ont un com-
portement métastable : elles tendent à rester longtemps dans les puits de l’environnement. Dans le cas où l’environnement est
un mouvement brownien linéaire, nous étudions le processus des profondeurs des puits consécutifs de profondeur croissante que
la dynamique visite. Quand ces profondeurs sont regardées à l’échelle logarithmique, elles forment un processus stationnaire de
renouvellement. Nous donnons une description de la structure de ce processus et nous en déduisons le comportement asymptotique
presque sûr et les fluctuations de sa densité empirique.
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1. Introduction and statement of the results

Consider (Xt )t≥0 Brownian motion with drift in R, starting from 0, with the drift at each point x ∈R being −f ′(x)/2
for a certain differentiable function f . That is, (Xt )t≥0 satisfies the SDE

dXt = dβt − 1

2
f ′(Xt )dt,

with β a standard Brownian motion. This is called diffusion in the environment f , and it has e−f (x) dx as an invariant
measure. In statistical mechanics terms, f gives the energy profile, and the above SDE defines the Langevin dynamics
for the corresponding measure e−f (x) dx. The diffusion likes to go downhill on the environment f , decreasing the
energy, and thus it tends to stay around local minima of f . If the set Mf of local minima of f is non-empty, the
diffusion exhibits metastable behavior, with metastable states being the points of Mf (see Bovier [2], Section 8).

Now, for each point x0 of local minimum, there are intervals [a, c] containing x0 with the property that f (x0) is the
minimum value of f in [a, c] and f (a), f (c) are the maximum values of f in the intervals [a, x0], [x0, c] respectively.
Let J (x0) := [ax0, cx0 ] be the maximal such interval. This is the “interval of influence” for x0. We call f |J (x0) the
well of x0, the number min{f (ax0) − f (x0), f (cx0) − f (x0)} the depth of the well, and x0 the bottom of the well. If
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the diffusion starts inside J (x0), typically it is trapped in that interval for a time that depends predominantly on the
depth of the well.

Also, for h > 0, we say that the local minimum x0 is a point of h-minimum for f if the depth of its well is at least
h, while a point x0 is called a point of h-maximum for f if it is a point of h-minimum for −f .

A case of particular interest is the one where the function f above is a “typical” two sided Wiener path with
f (0) = 0. Of course, an f picked from the Wiener measure is not differentiable, but there is a way to make sense of
the above SDE defining X through a time and space transformation. See Shi [10] for the construction.

From now on, we will denote the two sided Wiener path with B . Due to the nature of a typical Wiener path, once
the diffusion exits an interval J (x0), it is trapped in another well. We will define a process xB that records some local
minima of the path of B in the order that are visited by a typical diffusion path, but not all of them. Roughly, assuming
that the value of the process at some point is x0, its next value is going to be the unique local minumum x1 whose
interval of influence is the smallest one satisfying J (x1) � J (x0). The well B|J (x1) is the minimal one containing
strictly B|J (x0), it is the first well right after J (x0) that can trap the diffusion for considerably more time, and this
because it has greater depth.

The formal definition of the process xB goes as follows. With probability one, for all h > 0, there are z−1(h) < 0 <

z1(h) points of h-extremum (h-mimimum or h-maximum) for B closest to zero from the left and right respectively.
Exactly one of them is a point of h-minimum for B . This we denote by xB(h).

The process (xB(h))h>0 has piecewise constant paths, it is left continuous, and there are several results showing its
impact on the behavior of the diffusion. For example, Xt − xB(log t) converges in distribution as t → +∞ (Tanaka
[11]), i.e., xB gives a good prediction for the location Xt of the diffusion at large times. Note also that, by Brownian
scaling, for a > 0 the process xB satisfies(

xB(ah)
)
h>0

d= (
a2xB(h)

)
h>0. (1)

We would like to study the set of points where xB jumps, because this shows how frequently the diffusion discovers
the bottom of a well that is deeper than any well encountered by then. It turns out that it is more convenient to consider
this set in logarithmic scale, that is, the point process

ξ := {
t ∈R: xB has a jump at et

}
.

The purpose of this work is to describe the structure of ξ . A crucial observation is that the law of ξ is translation
invariant because of the scaling relation (1) for xB . Since B is continuous, the set ξ has no finite accumulation point.

For any set A define N(A) := |ξ ∩A|, the cardinality of ξ ∩A, i.e., N is the counting measure induced by ξ . When
A is an interval, we will write NA instead of N(A).

The following result (Theorem 2.4.13 in Zeitouni [12]) gives the probability that ξ does not hit an interval.

Theorem 1 (Dembo, Guionnet, Zeitouni). For t > 0,

P
(
N [0, t] = 0

) = 1

t2

(
5

3
− 2

3
e1−t

)
. (2)

This allows us to compute the mean density, EN(0,1], of the process, because for a simple stationary point process,
its mean density equals also its intensity limt→0+ t−1P(N(0, t] > 0) (Proposition 3.3 IV in Daley and Vere-Jones [5]).
Thus we get the following result, which has been predicted by physicists (relation (84) in Le Dousal et al. [6]) via
renormalization arguments.

Corollary 1 (Mean density). For every Borel set A ⊂R, EN(A) = 4
3λ(A), where λ is Lebesgue measure. Moreover,

lim
t→∞

N [0, t]
t

= 4

3
a.s. (3)

In Section 5, we give an alternative proof of this corollary which avoids the use of Theorem 1.
Combining this with well known localization results for the diffusion, we infer that the diffusion jumps to a deeper

well extremely rarely, at times that progress roughly as exp(exp(3n/4)). We also remark that for the process ξ̂ :=
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{t : xB changes sign at et }, which is a subset of ξ , it was shown in Cheliotis [3] that it has mean density 1/3. On
average, one in every four consecutive jumps is a sign change.

The description of ξ given in the coming subsection has the following implication.

Theorem 2 (Fluctuations). As t → ∞, the following convergence in distribution holds:

1√
t

(
N [0, t] − 4

3
t

)
⇒ N

(
0, σ 2), (4)

with σ 2 = 28
27 − 4

9

∫ ∞
0 e−t (1 + t)−1 dt ≈ 0.771994.

1.1. The structure of the process ξ

ξ is a renewal cluster process in R. That is, it consists of:

(i) a skeleton, call it ψ , of points that serve as “centers” of clusters,

together with

(ii) the cluster points.

The centers form a stationary renewal process in R. Then each cluster is distributed in a certain way relative to its
center (to be exact, relative to the skeleton). The center of each cluster is considered an element of the cluster.

First, we describe separately the centers process and the law of a cluster with a given center. Then, in the theorem
below, we state how these are put together to give ξ .

The law of the centers. Let ψ be a stationary renewal process in R with interarrival distribution that of the sum
W1 + W2 of two independent random variables with W1 ∼ Exponential(1), W2 ∼ Exponential(2). ψ is the centers
process.

The law of a cluster. We describe the law of a cluster with center at 0.

List the points of a Poisson point process in [0,∞) with rate 1 as (tk)k≥2 in increasing order, and let t1 = 0. Out of
the points

t1, t2, . . .

we will keep only the first N , where N is defined as follows. Take a sequence (Yi)i≥1 of i.i.d. random variables,
independent of (tk)k≥2, each with distribution Exponential(1). Define recursively a sequence (zk)k≥1 as follows:

z1 := 1,

zk+1 := zk + Yketk for k ≥ 1,

and let

N := max{i ≥ 1: tk ≤ log zk},
T := {t1, t2, . . . , tN }.

N is at least 1 and finite with probability 1 as we will see in Theorem 4. A cluster with center at 0 has the law of T
(see Figure 1).

Let also

F := log zN+1.

Independent of (tk)k≥1, (Yi)i≥1 take another random variable Z ∼ Exponential(2), and let

R := F + Z.
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Fig. 1. A typical cluster with center at t1 = 0. Points appear at an interval with length distribution exp(1). This cluster has 3 points, marked with
black dots. The next cluster right to it will have its center at R. The interval between F and R has length distribution exp(2), and is not allowed to
have points.

Note that T ⊂ [0,F ). We will see in Section 2.2 that F ∼ Exponential(1), while, by construction, R − F ∼
Exponential(2).

The role of F and R is the following. Given that x is a point in the process of the centers, the cluster at x has law
x + T , while the next cluster to the right of it has center at x + R, and thus distributed as x + R + T ′, with T ′ an
independent copy of T .

And we are now ready to give the formal description of ξ . For each x ∈ ψ let x+ := inf{y ∈ ψ : y > x}, the nearest
right neighbor of x in ψ .

Theorem 3. ξ has the same law as⋃
x∈ψ

{
x + Tx

(
x+ − x

)}
,

where {Tx(x
+ − x): x ∈ ψ} are independent, and Tx(x

+ − x) is distributed as T given that R = x+ − x.

Finally, we look closer into the law of a cluster. The random variables N ,F are positively correlated, and the
following result captures their joint distribution. For its statement, we will use the confluent hypergeometric function
of the second kind, which is usually denoted by Ψ . This has three arguments, and its value at a point (x, y, z) is
denoted by Ψ (x,y; z).

Theorem 4. The moment generating function of (N ,F ) equals

E
(
eλN+μF

) = eλ Ψ (1 − eλ,1 + μ;1)

Ψ (−eλ,μ;1)
(5)

for all (λ,μ) ∈ R2 where the generating function is finite. This set of (λ,μ) is open, convex, and contains (0,0). In
particular, E(N ) = 2.

The main ingredient in the proof of the above results is a new way to follow the evolution of xB , using excursion
theory. This point of view has also been useful in the study of large deviations for the family of paths {εxB(·): ε > 0}
as ε → 0 (see Cheliotis and Virag [4]). Two other ways of studying xB have been exhibited in Zeitouni [12] and Le
Dousal et al. [6].

Theorems 2, 3, and 4 are proven in Sections 4, 2, and 3 respectively. An alternative proof of Corollary 1 is given in
Section 5.

2. Description of the process ξ . Proof of Theorem 3

In this section, we study how the process xB evolves, and justify the description of the structure of the process ξ given
in Section 1.1, thus proving Theorem 3.

We will use elements of excursion theory, for which we refer the reader to Bertoin [1], Chapter IV. For ease in
exposition, when working with the excursions of a real valued process (Yt )t≥0 away from 0, by the term “actual
domain” of an excursion ε we will mean the interval [c, d] in the domain of Y where the excursion happens and not
[0, d − c] or [0,∞), which are the two common conventions for the domain of ε in the literature (Bertoin [1] adopts
the first). Also we will abuse notation (notice the conflict with (7) below) and denote by ε, the height of ε, that is, the
supremum of ε in its domain.
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For any process (Yt )t∈I defined in an interval I containing 0, we define the processes Y ,Y of the running infimum
and supremum of Y respectivelly as

Y t := inf{Ys : s between 0 and t}, (6)

Y t := sup{Ys : s between 0 and t} (7)

for all t ∈ I . This notation will be used throughout the paper.
Now let (Bs)s∈R be a two sided standard Brownian motion. For 	 > 0, we define

H−
	 := sup{s < 0: Bs = 	},

H+
	 := inf{s > 0: Bs = 	}, (8)

Θ	 := −min
{
Bs : s ∈ [

H−
	 ,H+

	

]}
.

Following the path B|[H−
	 ,H+

	 ] as 	 increases reveals the consecutive values of (xB(h))h>0 in the same order that the
diffusion typically discovers them. Adopting this view, leads us to consider the processes {e+

t : t ≥ 0} and {e−
t : t ≥ 0}

of excursions away from 0 of (Bs − Bs)s≥0 and (Bs − Bs)s≤0 respectivelly. Both processes are parametrized by
the inverse of the local time processes (Bs)s≥0 and (Bs)s≤0 respectivelly, and of course they are independent and
identically distributed.

The continuity of B implies that Θ is piecewise constant, left continuous, and the set of points where it jumps, call
it L, has 0 as only accumulation point.

Pick 	 ∈ L. With probability 1, exactly one of (Bs − Bs)s≥0, (Bs − Bs)s≤0 has at the value 	 of its local time a
nontrivial excursion, call it ε, and moreover that excursion makes the graph of B go deeper than −Θ	. In Figure 2,
the excursion comes from (Bs − Bs)s≥0. Let

h(	) := 	 + Θ	,

call h̃(	) the height of ε, and 	+ := min{x ∈ L: x > 	}. xB jumps at the “time” h(	), and its value just after h(	) is
contained in the “actual domain” of the excursion ε. The excursion may contain more than one value of xB (e.g., in
Figure 2 it contains two, marked with a dot). After we take into account the jumps that happen in moving through
these values, we wait until Θ jumps again at 	+ because of a new excursion that goes deeper.

2.1. The underlying renewal

We will now examine the distribution of the points {h(	): 	 ∈ L}. Fix 	 ∈ L. For simplicity, we will denote
h(	), h̃(	), h(	+) by h, h̃, h+ respectively.

Fig. 2. Following the evolution of xB . The dots mark three consecutive values of xB . Θ jumps at the values 	, 	+ .
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Fig. 3. Some of the random variables defined in the proof of Lemma 1.

Lemma 1.

(i) The random variables h̃/h,h+/h̃ are independent of each other and of B|[H−
	 ,H+

	 ], and have density x−21x≥1

and 2x−31x≥1 respectivelly.

(ii) logh+ − log h̃, log h̃ − logh

have exponential distribution with means 1/2 and 1 respectively.

Proof. (i) Pick δ > 0 arbitrary. First, we prove the claim for 	 being the smallest element of L ∩ [δ,∞). Let (see
Figure 3)

τ+ := inf
{
s ≥ H+

δ : Bs = −Θδ

}
,

M+ := Bτ+ ,

ρ+ := inf
{
s > τ+: Bs = M+}

,

J+ := M+ + Θδ,

and similarly on the negative semiaxis,

τ− := sup
{
s ≤ H−

δ : Bs = −Θδ

}
,

M− := Bτ− ,

ρ− := sup
{
s < τ−: Bs = M−}

,

J− := M− + Θδ.

Then 	 = M− ∧ M+ and

h̃

h
=

{
(M+ − Bρ+)/J+ if M− ≥ M+,
(M− − Bρ−)/J− if M− < M+.

(9)

For x ≥ 1, we compute

P
(

M+ − Bρ+

J+ ≥ x

∣∣∣J+
)

= P
(
Brownian Motion starting from −Θδ hits M+ − xJ+ before M+|J+)

= M+ + Θδ

xJ+ = 1

x
.
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Since τ+ is a stopping time, {Bτ++s − Bτ+ : s ≥ 0} is independent of B|[τ−, τ+]. Thus, given J+, (M+ − Bρ+)/J+
is independent of B|[τ−, τ+], and the previous computation shows that it is independent of J+ as well and has density
x−21x≥1. Thus, (M+ − Bρ+)/J+ is independent of B|[τ−, τ+]. Similarly (M− − Bρ−)/J− has the same density,
x−21x≥1, and is independent of B|[τ−, τ+]. Since the event M− ≥ M+ is in the σ -algebra generated by B|[τ−, τ+],
these observations combined with (9) imply the claim of the lemma for h̃/h.

We turn now to h+/h̃. Let

τ̂+ := inf
{
s ≥ H+

	+: Bs = −Θ	+
}
,

M̂+ := Bτ̂+ ,

τ̂− := sup
{
s ≤ H−

	+: Bs = −Θ	+
}
,

M̂− := Bτ̂− .

Here Θ	+ denotes the limit of Θ at 	 from the right, and the same remark applies to H−
	+,H+

	+. Then 	+ = M̂− ∧
M̂+, h̃ = 	 + Θ	+, h+ = 	+ + Θ	+. So that for x ≥ 1,

P
(
h+ > xh̃|̃h) = P(Brownian starting from 	 hits xh̃ − Θ	+ before − Θ	+|̃h)2 =

(
	 + Θ	+

xh̃

)2

= 1

x2
.

The strong Markov property implies that, given h̃, h+ is independent of B|[H−
	+,H+

	+], and the above computation
shows that h+/h̃ is indepdendent of B|[H−

	+,H+
	+]. Note that h̃/h is determined by B|[H−

	+,H+
	+]. Thus the claim

about h+/h̃ is proved.
Having proved the result for 	 := min{L ∩ [δ,∞)}, we can prove it similarly for 	+ by repeating the above pro-

cedure with the role of δ played now by 	+. Doing the appropriate induction, we get the result for all elements of
L∩ [δ,∞). But δ was arbitrary, so the claim is true for all 	 ∈ L.

(ii) It is an immediate consequence of part (i). �

Lemma 1 shows that {̃h(	)/h(	),h+(	)/h̃(	): 	 ∈ L} are all independent because for given 	 ∈ L, the ones with
index strictly less than 	 are functions of B|[H−

	 ,H+
	 ], while h̃(	)/h(	),h+(	)/h̃(	) are independent of that path and

of each other. Also their distribution is known. Thus{
logh

(
	+) − logh(	): 	 ∈ L

}
are i.i.d. each with law the same as W1 + W2, with W1 ∼ Exponential(1), W2 ∼ Exponential(2) independent. Let

ψ := {
logh(	): 	 ∈ L

}
.

For a given a > 0, scaling invariance of Brownian motion implies that {h(	): 	 ∈ L} d= {ah(	): 	 ∈ L}. Combining
these observations, we have that ψ is a stationary renewal process with interarrival times distributed as W1 + W2
mentioned above.

xB jumps at each point of h(L), thus ψ ⊂ ξ . In fact, the inclusion is strict, and the points in ξ \ ψ are the subject
of the next subsection.

2.2. Jumps inside an excursion. Distribution of the clusters

Now we examine the behavior of xB in each interval [h(	),h(	+)], where 	 ∈ L. Again, we abbreviate h(	),h(	+)

to h,h+. Assume that the jump at 	 is caused by an excursion, ε, of (Bs − Bs)s≥0. This excursion is simply (BH+
	

−
BH+

	 +s : 0 ≤ s ≤ H+
	+ − H+

	 ) and contains all the information on the jumps of xB in [h,h+).

Claim. Given h, the excursion ε has law n(·|ε ≥ h).
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Recall the excursion processes {e+
t : t ≥ 0} and {e−

t : t ≥ 0} introduced just after relation (8). They are independent
and identically distributed, and we call n their characteristic measure. We prove the claim for 	 := inf(L ∩ [δ,∞)),
where δ > 0 is arbitrary. An argument similar with the one used in the proof of Lemma 1 gives the result for any
	 ∈ L.

With probability 1, L does not contain δ. Let

r− = inf
{
t ≥ δ: e−

t > t + Θδ

}
,

r+ = inf
{
t ≥ δ: e+

t > t + Θδ

}
.

Then 	 = r− ∧ r+, and

ε =
{

e+
r+ if r− ≥ r+,

e−
r− if r− < r+.

(10)

The process t �→ (t, e+
t ) is a Poisson point process with characteristic measure λ × n (λ is Lebesgue measure),

and r+ is the first entrance time of this process in the set A := {(s, ε): s ≥ δ, ε > s + Θδ}. The law of the pair
(r+, e+

r+) is that of λ × n(·|(s, ε) ∈ A), and given that r+ + Θδ = h, the law of e+
r+ is independent of r+ and equals

n(·|ε > h), which is the same as n(·|ε ≥ h). The analogous assertion holds for the pair (r−, e−
r−), which is independent

of (r+, e+
r+). These observations together with (10) imply the claim.

We pause for a moment to define for any excursion ε0 of B − B and a > 0, a positive integer N (ε0, a).
Assume that ε0 has domain [0, ζ ] and height h̃ := ε0 > 0. We consider the path γ = −ε0, see Figure 4. To the

process (γs − γ
s
)s∈[0,ζ ] corresponds the process (εr )r∈[0,̃h] of its excursions away from zero. This is parametrized by

the inverse of the local time process defined by the absolute value of the running minimum (i.e., −γ
s
). Since ε0 is

continuous defined on a compact interval, the subset of excursions with height ≥ a constitutes a finite, possibly empty,
set (εri )1≤i≤K , with (ri) increasing. We define recursively a finite sequence j as follows (see Figure 4).

j0 := 0,

j1 := min{i ≤ K: εri > a} if the set is nonempty,

jk+1 := min{i ≤ K: εri > εrjk
} if the set is nonempty and k ≥ 1.

If any of the sets involved in the definition is empty, the corresponding jk is not defined, and the recursive definition
stops. Let

N (ε0, a) :=
{

max{k: jk is defined} + 1 if ε0 ≥ a,
0 if ε0 < a.

Fig. 4. The graph of −ε0. For this path, only j0, j1, j2 are defined, thus N (ε0, a) = 3. The three points on the x-axis mark the values of xB after
xB(a) that are contained in the “actual domain” of the excursion.



Metastable states in Brownian energy landscape 925

Recalling the definition of xB , we can say informally that N (ε0, a) counts the number of jumps caused in xB by ε0
with starting benchmark a.

Thus N (ε,h) counts the jumps of xB in [h,h+), and note that N (ε,h) ≥ 1 because of the jump at h, while in the
interval [̃h,h+) there are no jumps. The excursions εrjk

in the definition of N (ε,h) give rise to the jumps in (h, h̃).
And in fact, if we let ν := N (ε,h), the jumps happen exactly at the points

εrj1
< · · · < εrjν−1

,

assuming that ν > 1. Otherwise, there are no jumps in (h, h̃).
We will determine the law of these points given the value of h.
Let a = h. The law of −ε is described as follows (see Revuz and Yor [9], Chapter XII, Theorem 4.1). It starts from

zero as the negative of a three dimensional Bessel process until it hits −a. After that, it continues as Brownian motion
until hitting 0. Thus, let η0 := a, y0 = −a, and take W a Brownian motion starting from y0. Then let

τ0 := min{s > 0: Ws − Ws = η0},
y1 := Wτ0

,

σ1 := min{s > τ0: Ws = y1},
η1 := Wσ1 − y1.

By well known property of Brownian motion, it holds η1 > η0. Repeat the above, with the role of η0, y0 played by
η1, y1, and define τ1, y2, σ2, η2. Continue recursively. Then ν is the largest integer i for which ηi−1 ≤ |yi−1|, while

εrj1
= η1, εrj2

= η2, . . . , εrjν−1
= ην−1,

and −yν = h̃, which is the height of the excursion.
We remark that given yk and ηk , the random variables yk+1, ηk+1 are independent of W |[0, σk] because by the

strong Markov property, W(k)
s := Wσk+s −yk is a standard Brownian motion independent of W |[0, σk], and yk+1, ηk+1

are functions of the path W(k) and of yk, ηk . The dependence on yk, ηk is removed if we consider

yk − yk+1

ηk

=: αk,
ηk+1 − ηk

ηk

=: βk.

Claim. The random variables αk,βk are independent of W |[0, σk], independent of each other, and have densities
e−x1x>0, (1 + x)−21x>0 respectively.

Indeed, consider the excursion process, for the excursions away from zero, of the reflected from the past minimum
process W(k) − W(k) parametrized by the inverse of the local time process Ls := |W(k)

s |. yk − yk+1 is the value of
the local time when the first excursion with height at least ηk appears, while ηk+1 is the height of the excursion. Now
Proposition 2 from Chapter 0 of Bertoin [1] gives that, conditional on ηk , yk − yk+1 is an exponential random variable
with parameter n(ε ≥ ηk) = 1/ηk , and the excursion is independent of yk −yk+1 and has law n(·|ε ≥ ηk). The equality
n(ε ≥ ηk) = 1/ηk is true by Exercise 2.10(1), Chapter XII of Revuz and Yor [9], which also implies that ηk+1 has
density ηkx

−21x≥ηk
. So that the conditional law of (αk,βk) given ηk does not depend on ηk or yk and it is a product

measure. Thus αk,βk do not depend on ηk or yk , are independent of each other, and have the required density. The
proof of the claim is concluded by also taking into account the discussion preceding it.

The above imply that {(αk,βk): k ≥ 0} are i.i.d.
Then the random variables

ν,

( |yk−1|
a

, log
ηk−1

a

)
1≤k≤ν

, log
|yν |
a

(11)

are related in exactly the same way as

N , (zk, tk)1≤k≤N , F, (12)
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defined in Section 1.1. In particular, they don’t depend on a. For example

log
ηk+1

a
− log

ηk

a
= log

ηk+1

ηk

= log(1 + βk)

has exponential distribution with mean 1. The correspondence between (11), (12) proves that F has exponential
distribution with mean 1 because log(|yν |/a) = log(̃h/h), whose distribution was determined in Lemma 1. Thus

ξ ∩ [
logh(	), logh

(
	+))|	 ∈ L d= logh(	) + T |	 ∈ L.

Taking into account the structure of the process ψ := {logh(	): 	 ∈ L} given at the end of Section 2.1, we get
Theorem 3.

3. Jumps inside an excursion. Proof of Theorem 4

For λ,μ ∈R, let

K(λ,μ) := E
(
eλN+μF

)
(13)

the moment generating function of (N ,F ). The aim of this section is to compute K explicitly for all λ,μ for which
it is finite. First we compute it for negative λ,μ, and then we use analytic extension.

3.1. The Laplace transform

Recall that we denote by Ψ the confluent hypergeometric function of the second kind.

Proposition 1. It holds

E
(
e−λN−μF

) = e−λ Ψ (1 − e−λ,1 − μ;1)

Ψ (−e−λ,−μ;1)
(14)

for all λ,μ ≥ 0.

Proof. Because of the correspondence between (11) and (12), the pair (N ,F ) has the same distribution as
(N (ε,1), log ε) where ε is an excursion with law n(·|ε ≥ 1). In the following, we use the notation set in Section 2.2,
with h = 1, and in particular the random variables {yk, ηk,αk,βk: k ≥ 0}. Let

(sk, xk) =
( |yk|

ηk

, |yk|
)

and φk = (1 + βk)
−1 (15)

for k ≥ 0. Then, (s0, x0) = (1,1),

sk+1 = xk + αkηk

ηk(1 + βk)
= (sk + αk)φk, (16)

xk+1 = xk

(
1 + αk

sk

)
, (17)

for all k ≥ 0, while by the claim in Section 2.2, {αk,φk: k ≥ 0} are independent, with αk exponential with mean 1 and
φk uniform in [0,1]. Also

N (ε,1) = min{i > 1: si < 1}, (18)

ε = xN (ε,1). (19)
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Fix λ,μ ≥ 0. For given (s, x) ∈ [1,∞) × (0,∞), consider the Markov process (sk, xk)k≥0 that has (s0, x0) = (s, x)

and evolves as in (16), (17), and define

M = M(s, x) := min{i > 1: si < 1},
(20)

f (s, x) := Es0=s,x0=x

(
e−λM−μ logxM 1M<∞

) = Es0=s,x0=x

(
e−λMx

−μ
M 1M<∞

)
.

We will show that M < ∞ with probability 1, so that K(−λ,−μ) = f (1,1). Thus the plan is to show that f is regular
enough, derive a differential equation involving it, and solve the equation to get in particular the value f (1,1).

Using standard arguments, we can see that f is measurable. Also, it is nonnegative and bounded by δ−μ in each
set of the form [1,∞) × [δ,∞), with δ > 0, because λ,μ,M ≥ 0, and by (17), (xk)k≥0 is increasing.

Brownian scaling gives that

f (s, x) = x−μf (s,1). (21)

For (s, x) ∈ [1,∞) × (0,∞), define

H(s, x) :=
∫ s

1
f (t, x)dt + x−μ. (22)

Claim. It holds

s ∂s,sH(s, x) + x ∂s,xH(s, x) − s ∂sH(s, x) + e−λH(s, x) = 0 (23)

in the interior of{
(s, x): s ≥ 1, x > 0

}
,

and H(1, x) = x−μ for x > 0.

Proof. The equation is derived through first step analysis. Call k(dt,dy|s, x) the transition law of the chain
(sn, xn)n≥1. Then using (16), (17) we have that

f (s, x) = e−λ

(
E

(
x

−μ
1 1s1<1

) +
∫

As,x

f (t, y)k(dt,dy|s, x)

)
, (24)

with

As,x :=
{
(t, y): 1 ≤ t ≤ s

x
y, y ≥ x

}
.

For fixed s, x, the measure k(dt,dy|s, x) is supported on

Bs,x :=
{
(t, y): 0 < t ≤ s

x
y, y ≥ x

}
and is derived from a density, which we now determine. The distribution function of the measure at a (t, y) ∈ Bs,x is

F(t, y) := P
(

(s + r)φ ≤ t, x

(
1 + r

s

)
≤ y

)
= P

(
r ≤

(
y

x
− 1

)
s,φ ≤ t

s + r

)

=
∫ (y/x−1)s

0
e−z

(
t

s + z
∧ 1

)
dz =

{
t
∫ (y/x−1)s

0
e−z

z+s
dz 0 < t ≤ s,∫ t−s

0 e−z dz + t
∫ (y/x−1)s

t−s
e−z

z+s
dz s < t ≤ y

x
s.

(25)
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In the interior of Bs,x , ∂tF (t, y) exists and is continuous in t , and ∂y,tF (t, y) exists and is continuous in y. Also, the
integral of ∂y,tF (t, y) in Bs,x is 1. Thus, the measure k(dt,dy|s, x) has density

∂2F

∂y ∂t
(t, y)1(t,y)∈Bs,x = 1

y
e−(y/x−1)s1(t,y)∈Bs,x .

Let g(y) = y−μ. Then (24) becomes

f (s, x) = e−λ

(∫ ∞

x

g(y)

y
e−(y/x−1)s dy +

∫ ∞

x

∫ s/xy

1

1

y
e−(y/x−1)sf (t, y)dt dy

)
. (26)

This, combined with the measurability and boundedness of f in sets of the form [1,∞) × [δ,∞), with δ > 0, shows
that f is continuous in [1,∞)× (0,∞) and differentiable in the interior of the same set. We write the last equation as

eλ−sf (s, x) =
∫ ∞

x

g(y)

y
e−y/xs dy +

∫ ∞

x

∫ (s/x)y

1

1

y
e−(y/x)sf (t, y)dt dy

=
∫ ∞

s

e−w

w
g

(
x

s
w

)
dw +

∫ ∞

s

e−w

w

∫ w

1
f

(
t,

x

s
w

)
dt dw.

Putting x = hs we get

eλ−sf (s, hs) =
∫ ∞

s

e−w

w
g(hw)dw +

∫ ∞

s

e−w

w

∫ w

1
f (t, hw)dt dw,

and differentiating with respect to s,

eλ−s
(−f (s,hs) + ∂sf (s, hs) + h∂xf (s, sh)

) = −e−s

s
g(hs) − 1

s
e−s

∫ s

1
f (t, hs)dt.

Here ∂s, ∂x denote differentiation with respect to the first and second argument respectively. Putting back h = x/s,
this gives

eλ

(
−f (s, x) + ∂sf (s, x) + x

s
∂xf (s, x)

)
+ 1

s
g(x) + 1

s

∫ s

1
f (t, x)dt = 0,

which in terms of H(s, x) is written as

s
(−∂sH(s, x) + ∂ssH(s, x)

) + x ∂sxH(s, x) + e−λH(s, x) = 0.

This is (23). �

Determination of f .
For s ≥ 1 define G(s) := H(s,1). Relation (21) gives H(s, x) = x−μG(s), so that (23) is equivalent to

sG′′(s) + (−μ − s)G′(s) + e−λG(s) = 0, (27)

while the condition H(1, x) = x−μ translates to G(1) = 1.
Let a := −e−λ. For μ /∈ N = {0,1, . . .}, the general solution of (27) is (see (9.10.11) of Lebedev [8])

C1Φ(a,−μ; s) + C2Ψ (a,−μ; s)

with Φ,Ψ the confluent hypergeometric functions of the first and second kind respectively.
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Restrict first to the case μ > 0,μ /∈ N, λ > 0. Then as s → ∞, |Φ(a,−μ; s)| goes to infinity faster than any
polynomial (see relation (9.12.8) of Lebedev [8]), while Ψ (a,−μ; s)/s → 0 because of (32), (39), and noting that
a ∈ (−1,0). Since |G(s)| ≤ s, we get C1 = 0. Then G(1) = 1 gives that

G(s) = Ψ (a,−μ; s)
Ψ (a,−μ;1)

. (28)

Note that the denominator is not zero because by (32) it equals Ψ (a + μ + 1,2 + μ;1), which, because of (36), is
positive.

Then

f (s, x) = x−μf (s,1) = ∂sH(s, x) = x−μG′(s) = x−μ (−a)Ψ (a + 1,1 − μ; s)
Ψ (a,−μ;1)

(29)

because of (35), that is

Es0=s,x0=x

(
e−λMx

−μ
M 1M<∞

) = e−λ Ψ (1 − e−λ,1 − μ; s)
Ψ (−e−λ,−μ;1)

. (30)

The quantity in the expectation, for μ ∈ [0,1], λ ≥ 0, is bounded by max{1, x−1} because by (17), (xk)k≥0 is increas-
ing, and thus when sending λ,μ → 0+ in the last equality, we can invoke the bounded convergence theorem to get
Ps0=s,x0=x(M < ∞) = 1. We used (37), (38) for the evaluation of the right hand side of the equality.

Now using the continuity of both sides of (30) in μ, we infer its validity for μ ∈ N too. And similarly for μ ≥ 0
and λ = 0. In particular,

E
(
e−λN−μF

) = f (1,1) = e−λ Ψ (1 − e−λ,1 − μ;1)

Ψ (−e−λ,−μ;1)
(31)

for all λ,μ ≥ 0. �

3.2. Analytic extension

Our objective in this subsection is to extend equality (14) to all values of λ,μ for which the left hand side is finite.
Before proceeding, we collect some facts concerning the function Ψ which we will use in the rest of the paper. For
their proof, we refer the reader to Lebedev [8].

Ψ (·, ·; ·) is defined in C × C × (C \ (−∞,0]) and is analytic in all its arguments (Section 9.10 of Lebedev [8]).
Differentiation with respect to the first, second, and third argument will be denoted by ∂x, ∂y, ∂z respectively. In its
domain, Ψ satisfies

Ψ (a, b; z) = z1−bΨ (a − b + 1,2 − b; z), (32)

Ψ (a − 1, b; z) + (b − 2a − z)Ψ (a, b; z) + a(a − b + 1)Ψ (a + 1, b; z) = 0, (33)

Ψ (a − 1, b; z) − zΨ (a, b + 1; z) = (a − b)Ψ (a, b; z), (34)

∂zΨ (a, b; z) = −aΨ (a + 1, b + 1; z), (35)

while for a, z with positive real part, it holds

Ψ (a, b; z) = Γ (a)−1
∫ +∞

0
e−zt ta−1(1 + t)−a+b−1 dt. (36)

Relations (32), (33), (34), (35), (36) are respectivelly (9.10.8), (9.10.17), (9.10.14), (9.10.12), (9.11.6) of Lebedev [8].
We will also need some special values of Ψ .
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Lemma 2. For a ∈ (0,∞), b ∈ C, z ∈C \ (−∞,0], it holds

Ψ (0, b; z) = 1, (37)

Ψ (−1, b; z) = z − b, (38)

lim
z→+∞ zaΨ (a, b; z) = 1, (39)

while

∂xΨ (0,1;1) = 0, (40)

∂xΨ (−1,0;1) = 1, (41)

∂xΨ (0,0;1) = −
∫ ∞

0
e−t (1 + t)−1 dt. (42)

Proof. For (37), note that by (35), Ψ (0, b; z) is a function of b alone, while it is easy to see that for z > 0,
lima→0+ Ψ (a, b; z) = 1 (use (36) and lima→0+ a Γ (a) = 1). Then (38) follows from (37) and (33) by setting a = 0.

Relation (39) follows from (36) by doing the change of variables y = zt in the integral and applying the dominated
convergence theorem.

Regarding (40), note that Ψ (0,1;1) = 1, and for x > 0,

Ψ (x,1;1) − 1

x
= 1

xΓ (x)

∫ ∞

0
e−t tx−1{(1 + t)−x − 1

}
dt.

For x → 0+, the denominator goes to 1, while the numerator goes to zero by the dominated convergence theorem.
Finally, (41) follows from (34), (37) and (40), while (42) is proven in the same way as (40) taking into account that

Ψ (0,0;1) = 1. �

Define

Ξ(λ,μ) := eλ Ψ (1 − eλ,1 + μ;1)

Ψ (−eλ,μ;1)
(43)

for all λ,μ ∈ C that this makes sense, that is, everywhere except possibly at values where the denominator is 0.
Proposition 1 shows that Ξ(λ,μ) = E(eλN+μF ) =: K(λ,μ) for λ,μ ≤ 0. We show below that this holds throughout

DK := {
(λ,μ) ∈R2: K(λ,μ) < ∞}

.

The following two lemmas show, among other things, that DK contains a neighborhood of (0,0).

Lemma 3. The number

z0 := sup
{
z > 0: E

(
zN

)
< ∞} ∈ (1,2),

and E(zN0 ) = ∞.

Mathematica gives the approximate value z0 ≈ 1.57391.

Proof of Lemma 3. By Proposition 1, we have

E
(
zN

) = z
Ψ (1 − z,1;1)

Ψ (−z,0;1)
(44)

for all z with z ∈ [0,1]. Call W(z) the right hand side of (44). The left hand side is a power series in z with positive
coefficients ak := P(N = k) for all k ≥ 0. The right hand side is a meromorphic function on the plane. It is finite at 0,
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so that it has a power series development centered at zero. Since the coefficients are positive, the radius of convergence
coincides with the smallest pole of W on (0,∞). We will show that this occurs at a point z0 ∈ (1,2).

The denominator in (44) is a continuous function of z and equals Ψ (1 − z,2,1), which is positive in [0,1] and has
value −1 at z = 2 (use (32), (36), (38) correspondingly for the last three claims). Thus, it has a smallest root in (1,2),
call it z0. On the other hand, the numerator is positive in [0,2). To see that, let y = 2 − z, and note that, since y > 0,
(33) and the integral representation (36) give

Ψ (y − 1,1,1) = y
(
2Ψ (y,1,1) − yΨ (y + 1,1,1)

) = yΓ (y)−1
∫ +∞

0
e−t ty−1(1 + t)−y−1(t + 2)dt > 0.

Thus, the power series for W(z) centered at 0 has radius of convergence z0. As we already noted, the expectation on
the left hand side of (44) is a power series of z. It follows that it too has radius of convergence z0, thus the two sides
of (44) are finite and equal for all z ∈ C with |z| < z0. The fact that z0 is a pole of W gives that E(zN0 ) = ∞ and
concludes the proof of the lemma. �

Next, we list some properties of the set DK .

Lemma 4.

1. DK is convex.
2. (x, y) ∈ DK implies that (−∞, x] × (−∞, y] ∈ DK .
3. (λ,0) ∈ DK exactly when λ < λ0 := log z0 > 0.
4. (0,μ) ∈ DK exactly when μ < 1.
5. The intersection of DK with the second and fourth quadrant is under the line that passes through (λ0,0), (0,1).
6. The interior of the triangle with vertices (0,0), (0,1), (λ0,0) is inside DK .

Proof. 1 follows from Hölder’s inequality, 2 is true because N and F take positive values, 3 is shown in Lemma 3,
4 follows from the fact that F ∼ Exponential(1), and finaly 5 and 6 follow from 1, 2, 3, 4. �

And now we are ready to state the main result of this subsection, which completes the proof of Theorem 4.

Lemma 5.

1. K(λ,μ) = Ξ(λ,μ) for every (λ,μ) ∈ DK .
2. K(λ,μ) = ∞ for every (λ,μ) ∈ ∂DK . In particular, DK is open.
3. E(N ) = 2.

Proof. 1 and 2. Fix μ ≤ 0. Since E(eλN+μF ) is finite for λ ∈ [0, λ0), it follows that the power series in λ

E
(
eλN+μF

) =
∞∑

k=0

1

k!E
(
eμFN k

)
λk

has radius of convergence at least λ0. Also

λ �→ eλ Ψ (1 − eλ,1 + μ;1)

Ψ (−eλ,μ;1)
,

is analytic near zero because the value of the denominator at 0 is 1 − μ �= 0 (recall (38)), and Ψ is entire in its first
argument. Since it agrees with the previous power series in a line segment, they agree on the ball of convergence of the
series. In particular, its development around zero has positive coefficients and consequently its radius of convergence,
λ̂(μ), coincides with its smallest singularity in [0,∞) if such exists, otherwise it is infinite. Since the numerator
is entire in λ, the only possibility for a singularity is at a zero of the denominator. Thus K(λ,μ) < ∞ exactly for
λ < λ̂(μ) and for all such λ it holds K(λ,μ) = Ξ(λ,μ). Because of Property 5 of the previous lemma, it follows that
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λ(μ) < ∞. Property 1 gives that μ �→ λ̂(μ) is concave in (−∞,0], thus continuous in (−∞,0), and Properties 1, 2,
3 give that it is also left continuous at zero with value λ̂(0) = λ0.

Now fix λ < λ0. E(eλN+μF ) is finite for small enough positive μ due to Property 6. With similar reasoning as
above, we show that there is a concave function λ �→ μ̂(λ) continuous on (−∞, λ0], μ̂(λ0) = 0, so that for λ ∈
(−∞, λ0] it holds K(λ,μ) < ∞ iff μ < μ̂(λ) and moreover K(λ,μ) = Ξ(λ,μ).

Thus

∂DK = {(
λ̂(μ),μ

)
: μ ≤ 0

} ∪ {(
λ, μ̂(λ)

)
: λ ≤ λ0

}
,

and on this set K takes the value ∞. This finishes the proof of the first two statements.
3. It follows from the first claim of the lemma, the formula for Ξ , and differentiation. �

4. Proof of Theorem 2

Let (Sk)k∈Z be the points of the renewal ψ in increasing order such that S−1 < 0 ≤ S0, and for k ∈ Z,

Xk := Sk − Sk−1,

Nk := N [Sk−1, Sk).

The random variables {(Xk,Nk): k ≥ 1} are i.i.d., each with distribution the same as (F + Z,N ), defined in Sec-
tion 1.1. Then E(X1) = 1 + (1/2) = 3/2, and E(N ) = 2 by Lemma 5. Let also for k ≥ 1,

Yk := Nk − aXk,

where a := E(N1)/E(X1) = 4/3. Then {Yk: k ≥ 1} are i.i.d. with mean value 0, and we will see below that they have
finite variance. By the central limit theorem,

N [0, Sk) − aSk√
k

= N [0, S0) +N1 + · · · +Nk − a(S0 + X1 + · · · + Xk)√
k

= Y1 + · · · + Yk + N [0, S1) − aS0√
k

⇒ N
(
0,Var(Y1)

)
for k → ∞.

For t > 0, let nt := max{k: Sk ≤ t}. Then, by the renewal theorem, we have limt→∞ nt/t = 1/μ with μ :=
E(X1) = 3/2, thus in the same way as in Exercise 3.4.6 in Durrett [7], we get

N [0, Snt ) − aSnt√
t

⇒ N
(
0,Var(Y1)/μ

)
. (45)

Now note that the families {Snt − t : t > 0}, {N [0, t] − N [0, Snt ): t > 0} are tight, because by stationarity, for every
t > 0,

0 ≤ t − Snt ≤ Snt+1 − Snt

d= S0 − S−1,

0 ≤ N [0, t] − N [0, Snt ) ≤ N [Snt , Snt+1)
d= N [S−1, S0).

Thus (45) and Slutsky’s theorem give

N [0, t] − at√
t

⇒ N
(
0,Var(Y1)/μ

)
. (46)
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It remains to compute Var(Y1). We have Y1
d=N −a(F +Z), and recall that F ∼ Exponential(1), Z ∼ Exponential(2)

is independent of (N ,F ), and the moment generating function of (N ,F ) is given in Theorem 4. Thus

Var(Y1) = Var(N ) + a2 Var(F + Z) − 2a Cov(N ,F )

= −E(N )2 + a2(Var(F ) + Var(Z)
) + 2aE(N )E(F ) + E

(
N 2) − 2aE(NF)

= 32

9
+ E

(
N 2) − 2aE(NF)

= 32

9
+ {

6 − ∂xxΨ (−1,0;1) + ∂xxΨ (0,1;1)
} − 8

3

{
3 + ∂xyΨ (−1,0;1) − ∂xyΨ (0,1;1)

}
= 14

9
+ 2

3
∂xΨ (0,0;1) = 14

9
− 2

3

∫ ∞

0
e−t (1 + t)−1 dt. (47)

For the fourth equality, we use the formula for the moment generating function of (N ,F ), given in Theorem 4 together
with (37), (38), (40) and (41).

The fifth equality is true because by (34),

Ψ (x − 1, y;1) − Ψ (x,y + 1;1) = (x − y)Ψ (x, y;1),

so that

∂xxΨ (−1,0;1) − ∂xxΨ (0,1;1) = ∂xx

{
(x − y)Ψ (x, y;1)

}|x=y=0 = 2 ∂xΨ (0,0;1),

∂xyΨ (−1,0;1) − ∂xyΨ (0,1;1) = ∂xy

{
(x − y)Ψ (x, y;1)

}|x=y=0

= −∂xΨ (0,0;1) + ∂yΨ (0,0;1) = −∂xΨ (0,0;1).

We used (37) in the last equality. The last equality in (47) follows from (42).

5. Proof of Corollary 1

First we prove (3). We use the notation of Section 4. For n ≥ 1,

N [0, Sn] = N [0, S0) + 1 +
n∑

k=1

Nk.

Thus,

lim
n→∞

N [0, Sn]
Sn

= lim
n→∞

N [0, Sn]/n

Sn/n
= E(N )

E(X1)
= 2

3
E(N ) a.s.

Since the process (N[0, Sn])n≥1 is increasing in n and limn→∞ Sn+1/Sn = 1, with interpolation we get that

lim
n→∞

N [0, t]
t

= 2

3
E(N ) a.s. (48)

The proof of (3) is completed by noting that E(N ) = 2 because of Theorem 4.
For a > 0, the stationarity of ξ and the ergodic theorem give that for n → ∞,

N [0, na)

n
= 1

n

n∑
k=1

N
[
(k − 1)a, ka

) → G (49)

a.s. and in L1, where G is a random variable. By (48), G = (4/3)a, and since EN [0, na) = nEN [0, a), the L1

convergence gives that EN [0, a) = (4/3)a. Now the stationarity of ξ together with standard arguments show that
EN(A) = (3/4)λ(A) for each Borel A ⊂R.
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