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Abstract. We consider an elliptic Kolmogorov equation Au — Ku = f in a convex subset C of a separable Hilbert space X. The
Kolmogorov operator K is a realization of u +— %Tr[Dzu(x)] + (Ax — DU(x), Du(x)), A is a self-adjoint operator in X and
U:X — RU {+o00} is a convex function. We prove that for A > 0 and f € L%(C, v) the weak solution u belongs to the Sobolev
space W22(C, v), where v is the log-concave measure associated to the system. Moreover we prove maximal estimates on the
gradient of u, that allow to show that u satisfies the Neumann boundary condition in the sense of traces at the boundary of C. The
general results are applied to Kolmogorov equations of reaction—diffusion and Cahn—Hilliard stochastic PDEOs in convex sets of
suitable Hilbert spaces.

Résumé. Nous considérons une équation de Kolmogorov elliptique Au — Ku = f dans un sous-ensemble convexe C d’un espace
de Hilbert séparable X. L’ opérateur de Kolmogorov K est une réalisation de u % Tr[D2u x)]+(Ax — DU (x), Du(x)),ou A est
un opérateur auto-adjoint dans X et U : X — R U {+00} est une fonction convexe. Nous prouvons que pour A > Oet f € L2(C.v)la
solution faible u appartient a I’espace de Sobolev W22(C, v), ot v est la mesure log-concave associée au systeme. Nous prouvons
aussi des estimations maximales sur le gradient de u qui permettent de montrer que u satisfait des conditions au bord de Neumann
au sens des traces a la frontiere de C. Les résultats généraux sont appliqués aux équations de réaction—diffusion de Kolmogorov et
aI’équation de Cahn—Hilliard stochastique dans des ensembles convexes d’espaces de Hilbert appropriés.
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1. Introduction

Let X be an infinite dimensional separable Hilbert space, with norm | - || and scalar product (-, -). We study the
Neumann problem for the differential equation

Au—%Tr[Dzu]—(Ax—DU(x),Du):f, xeC. (1.1)

Here, A: D(A) C X — X is a linear self-adjoint operator, strictly negative and such that A~! is of trace class, U : X —
R U {400} is a convex function, and C is a convex closed subset of X. Moreover, A > 0 and f : X — R are given data.
Du and D?u represent the gradient and the Hessian of u and Tr[D?u] the trace of D’u.
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The Neumann problem for equation (1.1) can be considered as the Kolmogorov equation corresponding to the
stochastic variational inequality with reflection
dX(t,x) — AX(t,x)dt + Ne(X(2))dt > dW(2), (1.2)
X(0)=ux, )

where N is the normal cone to C and W (¢) is a X-valued cylindrical Wiener process. This is because, at least formally,
we have

u(x):/ e ME[f(X(t,x))]dr, xeX. (1.3)
0

In the case that X is finite dimensional a quite general theory of stochastic variational inequalities with maximal
monotone coefficients was developed by Cépa [9], who proved existence and uniqueness of a solution X (-, x) to (1.2)
and established its connection with the celebrated Skorokhod problem. The fact that the function u# given by formula
(1.3) fulfills the Neumann boundary condition on dC was proved in [3].

In infinite dimension the situation is more delicate. The first important result is in the seminal paper by Nualart and
Pardoux [19], who solved a reaction—diffusion problem with reflection in X = L%, 1),

dX(t,x) — AX (@, x)dt + f(X(t,x))dt + Nic (X (¢))dr > dW (2),
{X(O):x, 1.4

where f is decreasing and N is the normal cone to the set /C of nonnegative functions. Then, Zambotti [21] exhibited
an explicit (unique) invariant measure j, and proved the existence of a unique weak solution in L>(X, i) to (1.1), as
well as basic integration by parts formulae on L (note that the interior part of C is empty). Related results, applied
to some interface problem, were provided by Funaki and Olla [18]. A part of these results have been extended by
Debussche and Zambotti [15] to the reflection problem for a Cahn—Hilliard equation again on a suitable convex set of
nonnegative functions.

Later on the study of (1.4) and (1.1) was pursued, using Lagrangian flows by Ambrosio, Savaré and Zambotti in
[2], and using Dirichlet forms by Rockner, Zhu and Zhu in [20]. In these papers, among other results, existence and
uniqueness of a weak solution of (1.1) where established, but further regularity and existence of a vanishing normal
derivative on the boundary remained open problems.

For smooth convex sets and for the Ornstein—Uhlenbeck equation with U = 0, problem (1.1) was studied by Barbu,
Da Prato and Tubaro in [4,5], extending to the infinite dimensional setting a penalization argument already used in
the finite dimensional case (e.g., [12]) and referring to the Airault—Malliavin theory of infinite dimensional surface
measures [1]. They showed that the weak solution of (1.1) is in a Sobolev space W22(C, u), where p is the Gaussian
measure with mean 0 and covariance Q = —%A’], which is symmetrizing (and hence, invariant) for the Ornstein—
Uhlenbeck operator in the equation. They also addressed the Neumann boundary condition in the sense of traces at
the boundary of Sobolev functions. However their proof is not convincing, and a first goal of our paper is to provide a
complete proof of the Neumann condition. Our proof too uses penalization and provides maximal regularity estimates
for equation (1.1) as in [4,5], but the proof of existence and vanishing at the boundary of the normal derivative of the
solution u is completely different. Besides the regularity of the second derivative of u, we use in essential way another
maximal regularity result, namely that || (—A)'/?>Du| is in L? (a fact also proved but not exploited for the existence of
the normal derivative in [4,5]), as well as the recent study of traces of Sobolev functions on hypersurfaces by Celada
and Lunardi [8].

The second goal of our paper is to study problem (1.1) for a broad class of convex potentials U £ 0. The extension
of the regularity theory to this case is not straightforward. The relevant invariant measure is the log-concave measure
v(dx) := e_w("),u(dx), where p is still the Gaussian measure of mean 0 and covariance Q = —%A‘l.

Let us give more details about the contents of the paper and the encountered difficulties. Our domains C are sublevel
sets of suitable functions G.

In Section 2 the Sobolev spaces wlp(C,v), W2P(C,v) are defined, in such a way that the self-adjoint operator
K canonically associated to the quadratic form £(u, v) = % fc(Du, Dv)du in WI*Z(C, v), is a realization of the
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Kolmogorov operator u +— %Tr[Dzu] — (Ax + DU (x), Du) in L3(C, v). A function u € W2(C, v) is called weak
solution to the Neumann problem for (1.1) if

1
/ku(pdl):—/(Du,D(p)dv—i—/(pfdv, Vo e WH2(C,v).
c 2Jc c

It is not difficult to see that for every A > 0 and f € L*(C, v) the Neumann problem has a unique weak solution u,
which is just R(A, K) f.

However, for our treatment we need other Sobolev spaces ng (X, 1) and ng’p (C,v), indexed by 0 € R, that
satisfy Well’p(C, V) C Welz’p(C, p) for 0 < 65. Our spaces W7 (X, ) correspond to the index 6 = 0. The spaces

Wll/’g (X, n) and le /5 (X, n) coincide with the Sobolev spaces of the Malliavin calculus, which are used in the con-
struction of surface integrals and related integration by parts formulae in domains. For the validity of integration by

parts formulae in C = {x € X: G(x) <0} an important assumption is that G € le/g (X, n), for every p > 1. Replac-
ing the spaces le/’f (X, n) by Wg "P(X, u) would be rather restrictive, for instance we could not allow domains as

balls since the function G (x) = ||x||? that defines the unit ball does not belong to Wg’p(X, 0.

Further properties of the weak solution are studied in Section 3. In Section 3.1 we prove that u belongs to
WZ22(C, v), and that fc ||(—A)1/2Du||2dv < 00. The latter means that u € Wi’f/z(C, V). So, this is another Sobolev
space naturally related to our problem.

In the case C = X this regularity theorem was already shown in [13], and in fact for the proof we use some results
from [13]. Indeed, as in the finite dimensional case [12], we consider a family of penalized problems in the whole
space X, with o > 0,

Mlg — %Tr[Dzua] —(Ax — DUq(x), Dug)+ é(x — M¢(x), Dug) = f, (1.5)
where U, are suitable approximations of U and [T (x) is the projection of x on C. Setting v, (dx) := e 2Ua(x) u(dx)
and using the estimates of [13] for equations in the whole space, we show that the restrictions of u, to C are bounded
in W22(C, vy) by a constant independent of «, and that fC [(—A) 12Dug ||2 dvy is bounded by a constant independent
of . These estimates are the key ingredients to obtain the desired result, letting « — 0.

In the case that U belongs to a suitable Sobolev space, we can take as U, the Moreau—Yosida approximations of
U (note that (x — IT5(x))/e is the gradient of the Moreau—Yosida approximations of the characteristic function of
C) as in [12] and in [4,5]. However there are interesting examples, such as the Kolmogorov equations of stochastic
Cahn-Hilliard equations considered in Section 4.3, for which U has not sufficient Sobolev regularity, and we have to
make other approximations.

The Neumann boundary condition is discussed in Section 3.2. We assume that C = {x: G(x) < 0}, where G is a
fixed version of a nondegenerate Sobolev function, belonging to suitable W>? spaces. The theory of traces of Sobolev
functions with respect to Gaussian measures at level sets of G was recently addressed in [8]; here we extend parts of
it to the case of the weighted Gaussian measure v. The traces belong to weighted Lebesgue spaces with respect to the
Hausdorff—Gauss surface measure p of [17], naturally associated to the Gaussian measure . We are interested in the
level set G = 0, which is the boundary of C if G is continuous. The Neumann boundary condition is meant as

(Du,DG)=0 atG~1(0), (1.6)

in the sense of traces of Sobolev functions. Of course we need that (Du, DG) is a Sobolev function, and it is here that
the estimate [, [|(—A)'/>Du||*dv < oo is used.

The last section of the paper contains examples of admissible sets C, and two applications to Kolmogorov equa-
tions of stochastic PDE’s. The first one is a reaction—diffusion equation in X = L?(0, 1), with polynomially growing
nonlinearity x — F o x. It corresponds to the Nualart—Pardoux reflection problem, with a more regular closed convex
set replacing the set of nonnegative functions considered in [19]. The second one is the Cahn—Hilliard equation con-
sidered in [15]. Here the nonlinearity is x — 32/9£%(F o x). For such a nonlinearity be of gradient type, we choose a
Sobolev space of negative order as a reference space X. Again, the set of nonnegative functions is replaced by a more
regular convex set.
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As expected, the infinite dimensional case exhibits extra difficulties and different features with respect to the
finite dimensional case treated in [12]. For instance the condition fC I(—=A)'2Du|>dv < oo is satisfied by any
u € WL2(C, v) in finite dimension. Instead, in infinite dimension this extra estimate is significant, and it is crucially
used to prove that u satisfies the Neumann boundary condition. Moreover Sobolev functions have continuous versions
in finite dimension, so that there are not difficulties due to the possible discontinuities of G; in particular G~ (0) is
just the boundary of C. In infinite dimension we consider a fixed quasicontinuous (in the sense of Gaussian capacities,
see Section 3.2, [6], Section 5.9) version of G and everything goes through, paying the price of more technicalities to
deal with.

It would be interesting to generalize our results to less regular convex sets, as the ones considered in [19] and [15].
For the moment, the main obstacles are the regularity requirements of the trace theory from [8].

2. Notation and preliminaries

Let X be a separable Hilbert space endowed with a Gaussian measure u := N o of mean 0 and covariance operator
0, where Q € L(X) is self-adjoint, strictly positive, and with finite trace. We choose once and for all an orthonormal
basis {ex: k € N} of X such that Qex = Arex for k € N. We denote by P, the orthogonal projection on the linear span
ofey,...,e,.

For each k € NU {400} we denote by ]-'Clb‘(X) the set of the cylindrical functions ¢ (x) = ¢ (x1, ..., x,) for some
n e N, with ¢ € CF(R").

2.1. Sobolev spaces

2.1.1. Sobolev spaces with respect to |4
If a function ¢ : X — R is differentiable at x € X, we denote by D¢ (x) its gradient at x.

For 6 € R and p > 1 the Sobolev spaces ng "P(X, ) are the completions of ]-'C;(X ) in the Sobolev norms

o) p/2
|I¢|I’V’Vg,p(x’ﬂ) :=fx(lcol”+ ||Q9D<p||")du=/x(l<p|”+ (Z(kkaw)z) )du-

k=1

For 6 = 1/2 they coincide with the usual Sobolev spaces of the Malliavin Calculus, see e.g. [6], Chapter 5; for 6 =0
and p = 2 they are the spaces considered in [14]. Such completions are identified with subspaces of L? (X, ) since
the integration by parts formula

1
/DdeM:—/ Dklﬁfde-FA—/kawdu, 0, ¥ € FCH(X), 2.0
X X kJx

allows easily to show that the operators 0D Fi C,l (X)—~ LP(X, u; X) are closable in L? (X, ), and the domains of
their closures (still denoted by QY D) coincide with W91 P(X, ).

2.1.2. Sobolev spaces with respect to v
We shall assume that U : X — R U {400} is a convex function that can be approximated by a family of nice functions
U, . Precisely,

Hypothesis 2.1. U : X — R U{+4o00} is convex. There are functions Uy : X — R, a > 0, with the following properties.

(1) Each Uy is convex, differentiable at every x € X, and DUy is Lipschitz continuous;
(i) 3C eR: C < Uy(x) <U(x) foreverya >0, a.e. x € X;
(iii) there exists po > 2 such that limy_.o Uy = U in Wll/’go (X, w.

Since each U, is continuously differentiable and has Lipschitz continuous gradient, then U, € Wh4(X, ) for
every q. This can be easily proved arguing as in the case ¢ = 2 of [10], Proposition 10.11. Moreover, taking into
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account that both U and U, have a.e. values in [C, +00), where the function & — e~ is bounded and Lipschitz
continuous, we obtain easily that e~2Y~ converges to e 2V in Wll/’go (X, pn)asa— 0.

Note that the heaviest requirement in Hypothesis 2.1 is that DU, is Lipschitz continuous. The other ones are
satisfied by any convex U € Wll/,go (X, u), such that U(x) > C for a.e. x € X.

We describe here a (large enough) class of functions U that satisfy Hypothesis 2.1. Let U : X — R U {400} be con-
vex, bounded from below, and lower semicontinuous. For & > 0 we denote by U, the Moreau—Yosida approximations

of U, defined by
. e —yP?
Uy(x) :=inf U(y)—i—zi,yeX . 2.2)
o

Then, (i) is satisfied, and U, (x) converges monotonically to U (x) for each x as o« — 0, so that (ii) is satisfied too.
Moreover, denoting by DoU (x) the element with minimal norm in the subdifferential of U (x), at any x such that the
subdifferential of U (x) is not empty, | DU, (x)|| converges monotonically to || DoU (x)||. At such points we have

IDUy — DoU|1> < | DoU ||* — || DU, 1% (2.3)

See e.g. [7], Chapter 2.

Lemma 2.2. Let U: X — RU {+00} be convex, bounded from below, and lower semicontinuous. Assume in addition
that x — ||DoU (x)|| € LP' (X, w) for some p; > 1. Then U € Wol’po(X, W) for each py < p1, DU = DyU a.e., and
limy—o Uy =U in W(;’po (X, ); consequently U € Wel’pO(X, w) and limy_,0 Uy = U in Wel’po(X, w) for every 6 > 0.

Proof. Let us prove that U € LY(X, u) for pg < p;. For u-a.e. x € X and for each y € X we have U(y) — U (x) >
(DoU (x), y — x) by the convexity assumption, so that

C<UX)=UY) —(DoUx),y —x) UG + [ DoU @) | (Iyll + llx]l).

Fix any y such that U (y) < oo. Since x — ||x|| € L" (X, n) for every r, by the Holder inequality U € L?9(X, ) for
Po < p1-

Let us prove that U € Wg’po (X, n). Recall that U,, € W(;’p(X, w) for every o > 0, p > 1. By dominated conver-
gence Uy — U in LP(X, ), and | DUy — DoU|| — 0 in LPo(X, ), since C < Uy < U and | DUy, — DoU || <
IDoU]|. Then, U € Wé'pO(X, w) and DU = DyU a.e. O

If U satisfies the assumptions of Lemma 2.2 with p; > 2 then its Moreau—Yosida approximations satisfy Hypoth-
esis 2.1. However, there are important examples such that U ¢ W170(X, i) for any po > 1. We shall see one of such
examples in Section 4.3, where the Moreau—Yosida approximations will be replaced by other ad hoc approximations.

We denote by v the log-concave measure

v(dx) =e 2™, (dx), (2.4)

since e 2V is bounded, v(X) < +oo.
By Lemma 2.2, we may apply the integration by parts formula (2.1) with yre
Wll/’fo (X, w) for ¥ € FCL(X). We get, for ¢, ¥ € FCL(X) and h €N,

~2U replacing v, that belongs to

1
/Dhgmﬂdv—i—/ Dhl//godv=—2/ DhUgoi/fdv—l——/xh(plpdv. 2.5
X X X A Jx

Once again, the Sobolev spaces associated to the measure v are introduced in a standard way with the help of the
integration by parts formula (2.5). We recall that £,(X) is the space of the Hilbert—Schmidt operators, that is the
bounded linear operators L : X +— X such that ||L||2£2(X) = Zh’k(Leh, ex)? < oo.
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For p > 1 we set as usual p’ := p/(p — 1). In the paper [13] we proved that for all ¢ > py, the operators

D:FCL(X)—~ LY(X,v; X), O*12D . FCl(X) > LI(X, v; X),
(D, D*): FCH(X) = LI(X,v; X) x LI(X, v; L2(X))

are closable. Their closures were still denoted by D, Ql/ 2D, Q_l/ 2D, and by (D, D2), respectively. The Sobolev
spaces wha(x,v), WI]/’g(X, V), Wl’lqﬂ(X, v), were defined as the domains of D, Q1/2D, Q_I/ZD in LY(X, v),
respectively. The space W24 (X, v) was defined as the domain of (D, D?) in L4(X, v).

The Sobolev spaces on general subsets C C X may be defined in several ways. The most convenient for our

purposes relies on the following lemma, which allows to extend the above definitions to the case of a subset C C X,
C#X.

Lemma 2.3. Let G be fixed version of an element of ) Wll/’g(X, w), and assume that C = G~ ((—o0, 0])
has positive measure. Then for every 6 € R and q > p(, the operators D:]-'Cg (X) = L9(C,v; X), u = Duy,
0°D: ng (X) > L1(C,v; X), u— QY Du are closable. Their closures are still denoted by D, Q° D, respectively.

Similarly, the operator (D, D?) fC,%(X) = L9(C,v; X) x LI(C,v; L2(X)), u = (Duc, D2u|c) is closable. The
closure is still denoted by (D, D?).

p>1

Proof. Let u; € FC}(X) be such that ux — 0 and Duy — & (respectively, Q'/>Duy — &, 072Dy — @) in
L9(C,v; X) as k — 0o. We claim that fc(cb, ei)¥ydv =0 for each ¢ € L7 (C,v) and i € N. Since the restrictions

to C of the elements of C;(X) are dense in Lq/(C, V) (as a consequence of the density of Cg(X) in Lq/(X, V)) it is
sufficient to prove that

/(CD, e)ydv=0, v eClX). (2.6)
C

To this aim, for every ¥ € C é (X) we approach its restriction to C by restrictions to C of elements of Wll/’g,(X , L)
that vanish outside C. This is to reduce integrals over C to integrals over X, avoiding surface integrals in the next
integration by parts. We fix a function 6 € C2°(R) such that 6(r) =0 for r > —1, 6(r) = 1 for r < —2, and we set

6,(r) :=06(nr), Y (x) :=1//(x)0n(G(x)), neN,xeX.

By dominated convergence the sequence (v, ¢) goes to ¢ in L4 (C,v) as n — oo. Then,

/(@, eiyYdv= lim | (D,e; ), dv.
C

n—oQ C

Moreover each v, vanishes in G~!([—1/n, +00)), and Q'/2Dv, = Q'/>Dy6, 0 G + V6, 0 GQ'/> DG, so that ,
belongs to Wll/’g (X, p) for every r > 1. It follows that for each k € N, uy,, belongs to Wll/’g(X , ) forevery r > 1.
Taking into account that e 2V e W& POX, ) C Wll/’fo(X , W), the integration by parts formula (2.1) gives

1
/Di(uktlfn)dV=/ Di(ugyrn)e Y du=2/uk1//nDiUdv+—/xl-uk¢n dv,
C X C A Je
so that

1
/wnDiukdv:—/ukD,-wndv+2/ukt/aniUdu—i——/xiukt/fndv 2.7
c c C AiJe

and letting k — oo the right-hand side converges to 0, and the left-hand side converges to ){9 fc Y (D, e;)du (it is
here that we need ¢ > p;)). Then, fc Y (P, €;) du = 0 for each n and (2.6) holds.
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The proof of the second part of the statement is similar. In this case we have a sequence uy € ]-'C,f(X ) such that
ur — 0 and Duy — @ in L1(C,v; X), D*>u; — Q in LY(C,v: L2(X)) as k — oo. By the first part of the proof,
® = 0. Moreover, formula (2.7) applied to D juy instead of uy gives

1
/é‘ﬁnDijudeZ_/CDijDi‘ﬁndV‘Fz/CDj“kWnDiUdV+xv/(;xiDjukwndVa
i

where the left-hand side converges to fC Y (Qe;, e;)du and the right-hand side converges to 0. Then, fC Y (Qei,
e;)du = 0 for each n, so that for every ¥ € C; (X) we have

/ ¥(Qei.e;) dyu = lim / Yl Qe ey du =0,
C n—oo C
which implies that @ = 0. O

The Sobolev spaces Wel P, v) and WEP(C, v) for p=> p(’) are defined as the domains of the closures of the above
operators. For p =2 they are Hilbert spaces with the scalar products

(u, v)Wg'.Z(c,v) = /C(uv +(0’ Du, QGDU)X) dv,

o 2 2
(. vdw22c ) = V)12, +/C<D u, Do) dv-

Of course, Wl’f}z(C, V) C Wé’p(C, V) C Wll/’g (C,v) for every p > pé.

Note that if G| = G, a.e., the symmetric difference of the sets C; = Gfl((—oo, 0]) and C; = Gfl((—oo, 0]) is
negligible, and the above defined Sobolev spaces on C; and C; coincide.

It is not our aim here to develop a complete theory of Sobolev spaces. We just mention some properties that will
be used in the sequel.

Proposition 2.4. Let p > p,, and let 0 € R. Then:

@) WQ]’P(C, v) is reflexive;,
(ii) if a bounded sequence of elements of Wel’p(C, v) converges a.e. in C to a function f, then f € ng’p(C, v);
(i) if f € Wi’lz/z(C, V), g € Wé’z(C, V), then (Q~'Y2Df, 0Y/?2Dg) = (Df, Dg) (as an element of L' (C, v)).

Proof. The proof of statement (i) is similar to the standard proof in finite dimension. The mapping u — Tu =
(u, QY Du) is an isometry from Wel’p(C, v) to the product space E := L”(C,v) x L?(C, v; X), which implies that
the range of T is closed in E. Now, L?(C,v) and L?(C, v; X) are reflexive (e.g. [16], Chapter IV) so that E is
reflexive, and T(We1 "P(C, v)) is reflexive too. Being isometric to a reflexive space, ng "P(C, v) is reflexive.

Concerning (ii), the proof of the analogous statement for Gaussian measures given in [6], Lemma 5.4.4, works as
well in our case.

Statement (iii) is proved approaching f by a sequence of ]-'Cé(X) functions in Wi’lz/z(X, V) (and hence, in
Wol’z(X, v)) and approaching g by a sequence of ]—'C}; (X) functions in WOI’Z(X, v) (and hence, in Wll/’g(X, v)). Since
the equality (Q~'/?>Df,, QDg,) = (Df,, Dgy) is true for the approximating functions, the claim follows letting
n— oo. |

In the rest of the paper to simplify notation we shall drop the subindex 0, namely we shall set W7 (C, v) :=
Lp
W, 7 (C,v).
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2.2. Elliptic problems in the whole space, with regular U

Here we report some results from [13] that will be used in the sequel. They concern weak solutions to
Au—Ku = f, (2.8)

where Ku = % Tr[D%u] — (Ax 4+ DU (x), Du), in the case that U : X — R is a differentiable convex function bounded
from below, with Lipschitz continuous gradient.
Given L >0, f € L%(X,v), a weak solution to (2.8) is a function u € W1-2(X, v) such that

1
A/ u<pdv+—/(Du,D<p)dv=/ fodv, Voe WX, v). (2.9)
X 2 Jx X

Existence and uniqueness of a weak solution u to (2.8) is an easy consequence of the Lax—Milgram lemma. Taking u
as a test function and using the Holder inequality in the right-hand side we obtain

2 1 2 1 2
A wdv+= | 1DulPdv<= [ fdv. (2.10)
X 2 Jx rx

We denote by K:D(K) C L%*(X,v) > L*(X,v) the operator associated to the quadratic form (u, @) —
fX(Du, Dg)dvin Wh2(X, v). So, the domain D(K) consists of all u € W!2(X, v) such that there exists v € L2(X, v)
satisfying

1
—/(Du,Dgo)dv:—/ vodv
2 Jx X

forall p € wbh2(X,v), or equivalently for all ¢ € ]-"Cé (X). In this case, v = Ku. The weak solution u to (2.8) belongs
to D(K) and itis just (A — K)~' f.

Theorem 2.5. Forevery A>0and f € L?*(X, v) the weak solution u to (2.8) belongs to W22(X,v) N Wl’lz/z(X, V),
and the estimate

x/ ||Du||2dv+l/ Tr[(Dzu)z]dv—i—/ |}Q’1/2Du||2dv§4/ fAdv @.11)
X 2 Jx X X

holds. Moreover, the weak solution is also a strong solution in the Friedrichs sense, that is: there is a sequence (un) of
]:CIE(X) Sfunctions (in fact, u, € ]-"Cg (X)) that converge to u in L>(X, v) and such that Au, — Ku, — f in L*(X,v).

Remark 2.6. Note that estimates (2.10) and (2.11) imply that the above mentioned sequence of cylindrical functions

(un) converge to u in W22(X,v) N Wl‘lz/z(X, v). Indeed, it is sufficient to set Au,, — Ku, = f,, and to use (2.10) and
(2.11) with u replaced by u — u,, and f replaced by f — f,.

3. The Neumann problem
Throughout this section U satisfies Hypothesis 2.1. Moreover, G : X — R satisfies the assumptions of Lemma 2.3

and C = G~!((—00, 0]) is a closed convex set with positive measure. Given any A > 0 and f € L?(C, v), a function
u € W2(C, v) is a weak solution to (1.1) if

1
Afugodv+5/<0u,pga>dv=/ fodv, VYeoe W2, v). (3.1
C C C

Since the restrictions to C of the functions in Fi C,} (X) are dense in WL-2(C, v), it is enough that the above equality is
satisfied for every ¢ € ]-"Cé (X).
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Existence and uniqueness of a weak solution is an easy consequence of the Lax—Milgram lemma. As in the case of
the whole space, taking ¢ = u in (3.1) we obtain

2 1 2 1 2
A urdv+ = | IDu?dv <~ | fdv. (3.2)
1 2 Je Ale

3.1. Regularity of weak solutions

Here we use the results of Section 2.2 to study Sobolev regularity of the weak solutions to (1.1). We approach the
problem in C by penalized problems in the whole space X, replacing U by

Vo (x) := Uy (x) + L dist(x, C), (3.3)
200

where o > 0 and U, are the approximations of U given by Hypothesis 2.1.
The corresponding Kolmogorov operator Ky, is defined on the smooth cylindrical functions by

1
Kou(x) = Lu(x) — (DUa (x), Du(x)) — —(x — I (x), Du(x)), xeX,
o
where ¢ (x) is the unique element of C with minimal distance from x. I1¢(x) is called “projection of x on C.”

Since the function x — DV, (x) = DUy (x) + é(x — IIz(x)) is Lipschitz continuous, the results of Section 2.2
may be applied. In particular, for every A > 0 and f € Cp(X) the problem

Mg — Ko = f (3.4)
has a unique weak solution uy € Wl’z(X , Vo), Where
Vg (dx) = exp(—ZVa (x))u(dx). 3.5)

By Theorem 2.5, u, € W>2(X, vy) C W22(X, v), and estimate (2.11) implies

,\/ | Dug || dvy + 1/ Tr[ (D)’ ] dvg
X 2 Jx

+[ |02 Dug ||* dv, + / (D?Uy Ditg, Dutg)dvy < 4/ £2 dvg. (3.6)
X X X
Taking into account that U, < U and that V,, > C for each «, from (2.10) and (3.6) we obtain
1 4 1 4 B
ity .y < (ﬁ +5+ 8) fx frdve < (ﬁ +o+ 8) [P
/||Q—”21Jua |*dv < 4ll £112e7%C,
C

so that the restrictions of u, to C are bounded in W22(C, v) and in Wilz /2((3 , V). A sequence (Ug, ) converges weakly
to a function u in W22(C, v) and in Wl’lz/z(C, V).

Proposition 3.1. Let f € Cp(X) and let o;, — 0 be such that (”an\c) converges weakly to a function u in W2, v)
and in Wl’lz/z(C, v). Then (uan‘c) converges strongly to u in W1'2(C, V), moreover u is the weak solution to (1.1) and

it satisfies

1
E/CTr[(Dzu)Z]dv+fc||Q_1/2Du||2dv§4||f||iz(c’v). (3.7)
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Proof. Since C is closed, dist(x, C) > 0 for every x € C. Therefore, by dominated convergence,

lim sup / e 2Var dy <e72C fim [ e 24O /an g, — g, (3.8)

n—00 =0 Jce

Letgp € ]—'C,}(X), n € N. Then

1
A/ Ug, @ dVg, —i——/ (Dug, , D) dvg, =/ fodyg,. 3.9)
X 2 Jx X

The right-hand side is splitted as the sum of an integral over C and an integral over C°. We have

lim [ foe 2V dy = / foe U du
C C

n—oo

by dominated convergence, and

foe Yo dp < || fllooll@lloo / e 2Ven dp

Cec

Cec

that vanishes as n — oo, by (3.8). So, the right-hand side of (3.9) goes to fc foe 2V du as n — oo.
The integrals in the left-hand side too are splitted as integrals over C and integrals over C¢. Concerning the integrals
over C, arguing as in [13], proof of Theorem 3.7, we obtain

i ! Wy gy — 1 Y
lim Allg, @ + 2 (Dug,, Do) |e ndyu = Aup + 5 (Du, Do) e du.
C

n—oo C

Concerning the integrals over C¢, by the Holder inequality we get

l _2Vot
) )\uan(p+2(Duan’D§0) € »dp

1 2 1/2 1/2
< (f ()\.Man(p + E(Duan’ Dgﬂ)) e_ZVUtn dl”“) </ e—ZVaﬂ dM)

| ) 12
< ||<p||cb1<x)<||xua,,||L2<X,Uan) + 5||||Dua,,||||Lz(X,Van)> ( /C e du> ,

where ||Aug, ”LZ(X,va,,) and || || Dug, || L2(X.v,,) AT€ bounded by a constant independent of n by (3.6), and fcc e 2V,
vanishes as n — oo by (3.8).

Putting everything together and letting n — oo in (3.9) we get

1
Afu¢dv+—/(Du,D¢>dV=fffpdv»
C 2 C C

that is, u is a weak solution to (1.1). Now, the argument of [13], Lemma 3.8, shows that Ug,c cOnverges to u in
w2, v).
It remains to prove that u satisfies (3.7). Since Ug, e cOnverges weakly to u in W22(C, v) and in Wllz 12 (C,v), then

n dp

! [0+ o R ouf)a

<timsup 5 [ (W[(0%0,) "]+ |0 Du ) av

n—00

< limsup%/C(Tr[(D2uan)2] + ||Q_1/2Dua,l ||2) dvg, < lirnsup4/X 2 dvg,.
n—

n—o00 oo
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Here we have used (2.11) in the last inequality, and U, < U in the last but one inequality.
We already know that the integral fX 12 dvg, goes to fC f2e=2V du, as n — oo. Then, (3.7) follows. ]

Corollary 3.2. For every > > 0 and f € L>(C, v) the weak solution u of (1.1) belongs to W>*(C, v) N Wl’lz/z(C, V)
and it satisfies (3.7).

Proof. Let (f,) be a sequence of functions in C,(X) that converge to the null extension of f to X in L2(X,v).
By estimate (3.2), the corresponding weak solutions to (1.1) with f replaced by f,¢c converge to u in w2, v),

and by estimate (3.7) they are a Cauchy sequence also in Ww22(C, v) and in Wl‘lz/z(C ,v), so that u € W22(C,v) N
Wl’]z/z(C, v) and it satisfies (3.7). O

3.2. The Neumann boundary condition

Here we show that the weak solution to problem (1.1) satisfies the Neumann condition (Du, DG) =0 at G 10), in
the sense of the traces of Sobolev functions. We need further assumptions on G.

Hypothesis 3.3. G: X — R is a C2, ,-quasicontinuous function for every p > 1, and:

. 2, .
@) G €Myt Wih (X ). 557 € Mpst LY (X1
(i) G €(poy WHP(X, 1)

Moreover, C := G~ ((—00, 0]) is a closed convex nonempty set with positive measure.

Let us recall that a function G is called Cz, ,-quasicontinuous if for each ¢ > 0 there is an open set A C X such
that C3 ,(A) < ¢ and G x\ 4 is continuous. Here C3 ,(A) denotes the usual Gaussian capacity of order (2, p), see [6],

Section 5.9. Every element of [ le /5 (X, ) has a version which is Cz, ,-quasicontinuous for every p > 1.

p>1

Assumption (i) coincides with the hypotheses of [8], where it was shown that the elements of Wll/’g (C, n) with
g > 1 have traces at G~!(0), as well as at the other level sets of G. Such traces belong to L' (G~1(0), p), where p is
the Hausdorff—-Gauss measure of Feyel and De la Pradelle [17].

The condition G € ) p>1 le/g (X, ) allows to consider a reasonably large class of admissible domains C. As-
suming only G € ) p>1 W2P (X, ) would be much more restrictive, for instance balls would be excluded since
G (x) = ||x — xo||* does not belong to W> (X, u) for any p. The hypothesis 1/||Q'/>?DG| € L?(X, ) for every p
is classical (e.g., [1], [6], Section 6.10), it is a sort of infinite dimensional generalization of the condition VG # 0 at
G =0 in finite dimensions.

Assumption (ii) will be used in Proposition 3.11, for the Neumann condition (Du, DG) = 0 be meaningful. To
this aim one needs that DG exists (at least, near G~!(0)), and (i) is not sufficient.

The trace of any Sobolev function u € Wll/’f (C, ) at G~1(0) is denoted by u,G-1(0)- It coincides p-a.e. with
any C, p-quasicontinuous version of u, in particular if u has a continuous version, its trace coincides p-a.e. with the
restriction of u to G~1(0). The trace operator u > ug-1 ) is bounded from Wll/’g (X, u)to L9 (G~H0)), p), for every
q € [1, p). (Under further assumptions that are not needed here, it is bounded from Wll/’g (X, ) to LP(G~1(0)), p)).
The integration formula

/Dkuduzfﬁudwrf M‘Gfl(o)%dp (3.10)
1 C M G-1(0) 10'2DG]|

holds for every k e Nand u € Wll/’é’ (X, n) for some p > 1. For the proofs of these statements and for other properties
of traces we refer to [8].
Moreover, if u(x) > C for p-a.e. x, then UiG-10) = C, p-a.e. This is not immediate, since under Hypothesis 3.3,

the set G~ (0) is u-negligible. However, this can be seen approaching u in Wll/’g (C, n) by a sequence of continuous
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functions u,, € Wll/’f (C, n) such that u,(x) > C for every x € C (for instance, we may take u, (x) = max{v,(x), C},

where (v,) is any sequence of Lipschitz continuous functions approaching u in Wll/’g (C, w)). Since u,(x) > C for
every x € G~1(0), and Uy G-1(0) CONVEIES 10 U1 ) in LY(G~1(0), p), the statement follows.

We shall show that the elements of W7 (C, v) with p > po/(po — 1) have traces at the boundary that belong to
L'(G71(0),e %Y dp). The weight e 2V is meaningful in the surface integrals, as the next lemma shows.

Lemma 3.4. U(x) < oo for p-a.e. x € G1(0), and the trace of exp(—2U) coincides with exp(=2U g-1(g)) for p-a.e.
x € G71(0).

Proof. Since U € Wll/’fo (X, 1), its trace at G~ (0) belongs to L' (G~'(0), p) hence it cannot be equal to +oc in a set
-2U

IG=1(0)
that U, and e~ 2V« converge to U and to e 2V in whro(x, u) as @ — 0. Then, their traces at G0 converge to
U\g-1(p) and of (C_ZU)‘Gfl(O) in L'(G71(0), p). U, and e~ 2V« are continuous, their traces are just their restrictions

at G~1(0), p-a.e. It remains to show that e_ZUa\G“@ converges to e_ZUlc"@) in LY(G~10), p). To this aim we

remark that Ujg-1g, = C, p-a.e. Now, since § — e~ % is Lipschitz continuous in [C, +00) and both UyG-1(0) and

U\G-1(0) have values in [C, +00), then e 2Vaic10) converges to e Y610 in L! (G~1(0), p), along the converging

subsequence, and the statement follows. O

with positive measure. Let us show that e coincides with e 2YI6-10 for p-a.e. x € G71(0). We already know

As a first step we establish a formula similar to (3.10), that involves the measure v in C and the measure e 2Udp
in G~1(0).

Lemma 3.5. Letu € Wll/’g (C,v), with p > po/(po — 1). Then for every k € N we have

_ %\ oy DG oy
Dyue™2Y du:/(ZDkU—i-—)ue dpL+/ UyG-10)—H>——¢€ 167 Odp. (3.11)
/c c " o ¢ P102DG]

Proof. It is sufficient to apply formula (3.10) to the function ue™2Y, which belongs to Wll/’g(X, u) with r =
pop/(po + p), and to remark that the trace of the product ue™2Y is the product of the respective traces. O

Proposition 3.6. Let u € C;(X) and let p > po/(po — 1). Then for every q € [1, p(po — 1)/ po) there is Cy =
Co(G, qg) > 0, independent of u and U, such that

/ ulte e 0 dp < Collullf
G (0)

—2C(p—q)/ 172
Wll/,g(cyv)e PP (L4 [ @2 DU Lo p)- (3.12)

Proof. Applying (3.11) to the functions Ax|u|? Dy G, that belong to Wll/’; (X, n) for every s > 1, and summing over k,
we get

/(q|u|q*2u(Q‘/2Du, 0'2DG)+ (LoG —2(Q'*DU, Q'*DG))|u|")e?Y du
C

:/ lul?| Q"2 DG|e Y dp,
G0

where Ly is the Ornstein—Uhlenbeck operator of the Malliavin Calculus,

[e.e]

LoG(x) =Y (DG (x) — x; Dy G (x)).
k=1
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Here, for every s > 1 the series converges in L°(X, () and there is ¢y > 0 such that || LoG|lLs(x, ) < ¢sIIGl W28 (X.10)
1244

(e.g., [6], Section 5.8). Then, for every g > 1,
/ |u|‘iHQI/ZDG”e_ZU\G‘l(O) dp
G~10)
< [ (@ 1Q"2Du] | DG +1ul?(1LaGI +2] @' DU | ' DG]))e> d.

The latter integral is finite, since # and || 0Y2Du|| are bounded, ||Q'/2DG||, LoG € L*(C, n) C L*(C, v) for every

s,and |QY?DU| € LP(C, u) C LP°(C, v). Using the Holder inequality to estimate it in terms of ||u|| WP (Co® with
p > q, we get: 15

@ [awe e pul Q2D

C
<qluls .o 112" Dull o 1122 DG N Losir-ac.y:

(ii) /C|”|q|L0G|672U du < ”M”zp(c’v)”LOG”LP/(P*II)(CYv)y

i [ 1l 0"DU [ "DG ] e < Wl . [ QDU e, [1€72D6 |
with 1/s =1—(q/p+1/po). Then,

L T e LR [ (e 1 [ P AT

where C; > 0 depends only on ¢ and G.
Now we recall that [|Q/2DG||~! € L*(G(0), p) € L*(G~'(0), e *Vic-10 p) Vs > 1. Going back to (3.12),
for any u € Cg(X) and 1 <g <r < p(po — 1)/ po we may write fG*I(O) lul9e=2V dp = fG*l(O) ul?]|QV2DG||9/" x

10'2DG|| —a/re=2Vi6-10) dp, and using the Holder inequality, estimate (3.13) with r instead of g, we obtain (3.12). [J

Letv e Wll/’f (C,v) for some p > po/(po— 1). By Proposition 3.6, for every sequence (v,) C C g (X) such that v, ¢
converges to v in Wll/’g (C. ), v, 6-1(0) is a Cauchy sequence in L4(G~'(0), eV dp), foreach g € [1, p(po—1)/po).
This allows to define the traces at the boundary of the elements of Wll/g C,v).

Definition 3.7. Let v € Wll/’g (C,v) for some p > po/(po — 1). The trace of v at G~(0) is the unique element of
LY(G1(0). e—zU‘Gﬂ(o)p) 10 which vy, G-1(g) converges, for every sequence (v,) C C,l (X) such that v, c converges to
v in Wll/’g (C,v). It is denoted by v|g-1q)-

Corollary 3.8. The trace at G=1(0) of any v € Wll/’g(C, v) belongs to L‘/(G—I(O),e_ZUIG—'(t»p) for 1 <qg <
p(po — 1)/ po, and estimate (3.12) holds with u replaced by u g1, in the surface integral. Therefore, the map-

ping Wll/g (C,v) > L1(G~10),e 2V dp), v > V|G-1(0) is bounded. Since whr,v) c Wll/’g(C, V) with continuous

embedding, the same holds for functions in WP (C, v).
Let u be the weak solution « to (1.1). The main result of this section is the fact that (Du, DG) has trace at G~ (0),
and that such trace vanishes.

The first step is the following proposition.

Proposition 3.9. Let f € Cp(X) and let u, uy be the weak solutions to (1.1) and to (3.4), respectively. Then:
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(i) For every a > 0 and p < 2, (Duy, DG) € Wll/’f(X, V), and there is C), independent of f and a such that
1Dt DGy 1,y = CollF 2
(ii) The function {Du, DG) belongs to Wll’g(C, v), forevery p € [p(,2),and ||(Du, DG)|| 1., < Cpllfllz2(x v
/ W5 (Cv)
with the same constant C, as in (i).
(iii) There is a vanishing sequence () such that uy,c converge weakly to u in W22(C,v) and in Wilz /Z(C, V),
(Dug, , DG)|c converges weakly to (Du, DG)c in Wll/g C,v).

Proof. By Remark 2.6, there exists a sequence (uq,,) C ]-'C%(X) that converges to u, in WZ2(X,v,) N
Wi’f/z(X, Vg ), and such that f;, := Aug n — Ko, U, g0€Sto f in LZ(X, Vg) as n — 00. We set

Vy ;= (Duy, DG), Va.n := (Dug n, DG).

Then, vy, = ZZO: 1 Dt n DG € Wll/’g (X, vy) for every p > 1, since the series is in fact a finite sum (note that,
since DV, is Lipschitz continuous, then || DV, || € L? (X, v) for every «, and the Sobolev spaces with respect to vy
are well defined for every p > 1). By the Holder inequality, lim,,—, o0 Vo n = Ve in L? (X, vy). Possibly replacing vy,
by a subsequence, we may assume that (vy,,) converges to vy, Vy-a.c.

Now we prove that the sequence (vy,,) is bounded in Wll/’g (X, vy), for p < 2. For every k € N we have

| Dk (Dug,n, DG)| <

Z(ijua‘nDjG—i—DjuijG)'

jeN
1/2 1/2 1/2 172
s(Z(Dk,ua,n)z) (Z(D,-G)Z) +<ZA;1<D,-ua,n)2) (ZA,-(DMGf)
jeN jeN jeN jeN

so that
|@'2D((Dug,n, DG))|

< V2 maxil* (Te(D% ,)) *IDGI + | @2 Duen | (Tr(Q'2D2G 0 2)%) )

By our assumptions, | DG || and (Tr(Q'/2D?G @'/%)%)!/2 belong to L* (X, ) C L* (X, vg) forevery s. Since e 72V« <
e2C, their L* (X, vy)-norm is bounded by a constant independent of . Using the Holder inequality with s =2/(2 —
p), we obtain

/XHQI/ZD«Dua,n, DG))|” dve < cp(luanllwa2x.vy) + ||ua,n||Wl,|2/2(X,Ua))p,
where ¢, > 0 does not depend on « and n. By estimates (2.10) and (2.11),
2y + Mtcn byt oy <Rl Full iz -
where k; depends only on A. Therefore,
li£s£p|| (Dutg,n. DG)|| Wit < Crallf e,
where C), ; is independent of f, « and n. Applying now Proposition 2.4(ii), with X replacing C and v, replacing v,

yields statement (i).
Let now u, be any sequence of solutions to (3.4) such that the restrictions u,,|c converge weakly to u in W22(C,v)

and in Wl’lz/z(C, V). Since Wll/’f(X, vy) C Wll/‘g(X, v) for every p € [py,2), by (i) the sequence (Dug,, DG)|c is
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bounded in Wll/’f (C, v). More precisely, we have

|{Dus,. DG)c| wizew < |(Dug,. DG)c | W oy = CrallF 2,
so that

limsup||(Dug,, DG)‘CHWL,;(C »y SHmsup Cpall Fll2(x.0,) = Cpalfll 20,0 - (3.14)
n—o00 123 n—oo

Since Wll/’g (C, v) is reflexive by Proposition 2.4(i), a subsequence of (Duy,, DG)|c converges weakly in Wll/’f C,v)
1, .
to an element ¢ € Wl/g(C, v), that satisfies ||1ﬂ||W11/,g(C’U) < CpillfllL2(x.v)» by (3.14).
Let us identify ¥ with (Du, DG). Indeed, by the Holder inequality, the mapping v — (Dv, DG) is bounded from

wh2(C, v) to LP(C, v). Since Ugq,|c converges weakly to u in wh2(C, v), then (Dug, , DG)|c converges weakly to
(Du, DG) in LP(C,v). Then = (Du, DG) € LP(C, v). This proves statements (ii) and (iii). O

The reason why we need two steps in the proof of Proposition 3.9 is that, while the sequence of cylindrical functions
(uq,n) that approaches u,, is bounded both in W22(X,v) and in Wllz 12 (X, v), it seems not easy to find a sequence of
cylindrical functions that approaches u and that is bounded both in w22, v) and in Wl’lz/z C,v).

Note that in Proposition 3.9 there is an interplay between different types of Sobolev spaces. The functions uy, G
belong to W12(X, vy), while the scalar product (Duy, DG) is in Wll/’g (X, vy) for some p > 1, and in the proof we
use the fact that u, € Wllz /2(X , Vy) With norm independent of «.

As a consequence of Proposition 3.9(ii), the function (Du, DG) has trace at G~ (0), that belongs to L4 (G~ (0), p)
for every ¢ < 2. To show that such a trace vanishes we shall use the integration formula of the next lemma for the
approximating functions ug, .

Lemma 3.10. Fixx >0, f € L%(X, vy), and let ugy be the weak solution to (3.4). Then, for every ¢ € Cg (X) we have

_ 1 _ 1 (Dug, DG) _
K 2Wa g =__/ Duy, Do)e 2Ve g —f e e 2Wa gy, 3.15
/c aUqpe " 3 c( ug, Dp)e u+2 G-1(0>¢||Q1/2DG||6 Vo (3.15)

Proof. By Theorem 2.5 and Remark 2.6, there exists a sequence uy , € FC%(X) such that lim, oo Uy n = Uqg,
iy, 00 Kgtton = Kolte = Mtg — f, in L2(X, vg), and 1y, o0 thg n = it in Wy >(X, ve) N W}f/z(x, V). For

every ke N, oDyuy p € Cg (X). Replacing u by ¢ Dyuy,, in (3.11), with v replaced by v, and summing over k yields

B 1 _ 1 (Dug,n, DG) _
K 2Ua g =——/ Dug n, Dp)e Ve d +-/ e~ Le2Uap. 3.16
/C ala,n®PC W 3 C< Ugn, Dple 124 3 G—I(O)(p [02DG] € o ( )

The integrals over C converge to their respective limits by dominated convergence. Concerning the integral over
G~1(0), in the proof of Proposition 3.9 we have shown that the sequence ({Duy,,, DG)) is bounded in Wll/g (X, vg)

and converges to (Dugy, DG) in LP(X,v,). Since Wll/’g (X, vy) is reflexive, a subsequence converges weakly to
(Duy, DG). The linear functional

Dv, DG) _
vr—>/ w%e 2Wa gp
c-lo 1Q7-DG|
1

is bounded in WI]/’g (X, vy), hence it is an element of (Wl/’f (X, vg)). Letting n — oo along the weakly convergent
subsequence, yields

’

lim ¢7<D"°‘”“DG)e*2Uad = / ¢7<D”“’DG)ef2vad
=00 Jo-10)" 1Q2DG] 610 I10V2DG]

and (3.15) follows.
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Note that the approximation procedure is needed, because we do not know whether the series ), (Dykite/2 —
Xk Drug /M + DiU Druy) converges to Kyug in L! (C, vy), while replacing u, by uy , this is just a finite sum, and
(3.16) follows. U

Theorem 3.11. For A > 0 and f € L*(C,v), let u be the weak solution of (1.1). Then (Du, DG) =0 at G~'(0),
p-a.e.

Proof. To begin with, we consider data f € Cp(X). Using a subsequence of the approximating functions u, and
Lemma 3.10, we shall prove that

(DM,DG) —2U,,._1 . 1
/G—l(o)<p—||Q1/2DG||e 1670 dp =0, ¢eCy(X). 3.17)

Then, using Proposition 3.9 we will prove that (3.17) holds even if f € L?(C, ). From (3.17) the statement will
follow.
First step: if f € Cp(X), (3.17) holds. For every o > 0 let uy, be the weak solution to (3.4). Fix p € (p(/), 2),

and let () be any vanishing sequence such that (u4,|¢) converges weakly to u in Ww22(C, v) and in Wi’lz/z(C, V),
and (Dug,, DG)|c converges weakly to (Du, DG) in Wll/’g (C, v). Such sequence exists by Proposition 3.9. More-
over, possibly choosing a further subsequence, we may assume that exp(—2Ug, (x)) — exp(—=2U|g-1(g) (x)), p-a.e.
in G~1(0). Indeed, as we already remarked in the proof of Lemma 3.4, since exp(—2Uy, ) converges to exp(—2U) in
Wll/’fo (C, ), the trace of exp(—2U,, ) at G0 converges to the trace of exp(—2U) in LY(G10), 0).

By Lemma 3.10, for every ¢ € C;(X) and n € N we have

1 1 (Duan, DG>|G’1(O) U
(uttey, — f)pe 2Ven dp = — = / (Dug,, Dp)e™Von dpu + ~ / e 2Van dp. (3.18)
/c * 2 )" 2 Jo-10) 1012DG|

Letting n — o0, the proof of Proposition 3.1 yields
lim / (Mtg, — [Ipe >Ven dp = / e — froe*Y dp,
. 1 —2U, 1 =2U
lim = [ (Dug,, Dp)e™“"*ndu = = | (Du, Dg)e du.

We split the surface integral in (3.18) as /1 ,, + I2,,, where

I67lo dp,

(Dug,, DG) -1y —2v,
I, = 2 e
G-1(0) 1Q=DG]

(Dug,,, DG) -1 _
. :/ o — |G=1(0) (efoan e 2U\G’1<°))dp.
G-1(0) 10'2DG]|

Since g exp(—2U|g-1(g)) € L7 (G~1(0), p) for every ¢ > 1, the mapping

Dv, DG) - B
UH/ o 12)\0 'O 210, g, (3.19)
G-1(0) 102DG]|

is in the dual space of Wll/’g (C,v). Since (Dug, , DG)|c converges weakly to (Du, DG) in Wll/’g(C, v), then

/ @Me_zu|04(o) dp.
C

lim I, =
b 1Q'2DG]

n—oo
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Choosing g € (1, p(po — 1)/ po) and using the Holder inequality with respect to the measure e ~2Ven p we get

1>, < el / M
= o) 11012DG|

llell (f |(D DG)|q Wy 4 )1/q( (1 — o Vo102V >q/ 4 >1/q’
< (4 u s e “Yon 0 / o—2Ua ) .
00 G~10) & G-1(0) ||Q1/2DG”

Now we use Proposition 3.6, with U replaced by Uy, . Estimate (3.12) yields

(1 — eizU\Gfl(0)+2Ua")e_2Uan dp

/G_.(O)RDuan, DG)ig-1(q|*e™%n dp

< Co||(Dua,. DG, e 2Can P=D/P (1 4 ||| @"* DU,

llig(c’van) |LPO(X,;,L))'

By Proposition 3.9(1), |[{Dug,, DG) |1, P(C.vay) is bounded by a constant independent of n. Moreover, Uy, (x) > C
for every x, so that e =2Cen (P=0)/P < e=2C(P=0)/P _and |||| Q12D Uy, ||| Lro(x. 1) is bounded by a constant independent
of n by Hypothesis 2.1.

On the other hand the integral fG,] (0)((1 — e 2Vig-10F2Ven )/10'2DG ||)‘1/e_2U°fn dp vanishes by dominated con-
vergence as n — 00, since e Vie1otan _, p-ae. in G~10), 1 — e 2U+2Uu ¢ [0, 1], e 2Ven < e72C, and
1/10Y?>DG| € L*(G~1(0), p) for every s. Therefore,

—2U,

lim I, =0.

n—oo

So, letting n — 00 in (3.18) we get

1
/ (i — frpe 2V du = —+ / (Du, Dg)e Y dyt
C 2 Je

I / (D, DChiG10) 201 g,
el (V)]

+ —
2 10'2DGl|
(D”’DG)K}—'(O) —2U, .,
“iewogy ¢
Second step: if f € L>(C,v), (3.17) holds. Approaching the null extension of f to the whole X by a sequence
of functions f, € C;(X ), the sequence of the solutions u, to (1.1) with datum f,, converge to u in wW22(C,v) N

Wl’f/z(C,v), by Corollary 3.2. By Proposition 3.9(ii), the sequence ({(Du,, DG)) converge to (Du,DG) in

and since u is a weak solution to (1.1), then fG*l(O) 10 o =0.

Wll/’g(C, v), for every p € [p;, 2).
(Dun,DG) -1, —2U
122DG|
WLP(C, v) to R, letting n — oo yields that u satisfies (3.17).
Third step: (Du, DG) -1 =0, p-a.e. Let x € X, r > 0, and let (¢,) be a sequence of nonnegative functions

For every n we have |, G-10) % 16='® dp = 0, and since the mapping (3.19) is continuous from

belonging to C g (X), that converge monotonically to 1 g, ). Then,

|(D1/t, DG)lG—I(O) | eiZU

0= lim % e
=0 JG-1(0) " ” QI/ZDG”
_ / [{Du, DG)\G*‘(0)|6—2U\G—1<0> dp,
Gionser QDG

and since dp is a Borel measure, [(Du, DG) g-1(g) |e_2U\G’1<0> =0, p-a.e. By Lemma 3.4, e 2Yi6-10 cannot vanish
on a set with positive surface measure. It follows that (Du, DG),-1¢, =0, p-a.e. O
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4. Applications
4.1. Admissible sets C

Admissible sets C are for instance halfplanes such as C = {x € X: (x,y) <c}, forany y € X and c € R, balls and
ellipsoids suchas C ={x € X: ),y akx,% < r?}, where (o) is any bounded sequence with positive values and r > 0.
In these cases, G (x) = r* — Y keN oakx,% is smooth and Hypothesis 3.3 is easily seen to hold. See [8]. Moreover, since
the interior part of C is not empty, 1 (C) > 0.

We could also take an unbounded sequence oy, still satisfying

0
> ik < +oo. 4.1)
k=1

Indeed, in this case we have also Z,fil agig < +00, so that G is C3 p-quasicontinuous function for every p > 1,
and Hypothesis 3.3(i) is satisfied by [8], Section 5.3. Moreover it is easy to see that C = G~ ! (—o0, 0] is convex and
closed. In this case G is not continuous, and the interior part of C is empty. However, 1(C) > 0 by e.g. [8], Lemma 5.8.

Another class of admissible domains, that may be seen as generalization of halfplanes, are the regions below
graphs of concave functions. For every k € N set X = span e; @ Yi, where Y; is the orthogonal complement of the
linear span of e;. The measure ; may be seen as the product measure of two Gaussian measures on span e, and on
Yy, precisely u o 1'1,:1 and uy :=pno (Il — IT)~ !, where [Ty is the orthogonal projection on the linear span of ¢y,
ITyx = (x, ex)er = xpex.

For every concave F: Yy — R, the set C = {x: x; < F((I — I1)x)} is convex. If in addition F € le/’g(Y, uwy) N
W(;’p(Y, uy) for every p > 1, then the function G(x) = xx — F((I — II;)x) satisfies Hypothesis 3.3. Indeed, it is

continuous, it belongs to le/’f(X, w) N Wol’p(X, w) forevery p > 1, and |Q'/?DG| > )L,i/z, sothat 1/]|QY?DG|| €
LP(X, ) forevery p > 1.

4.2. Kolmogorov equations of stochastic reaction—diffusion systems

We choose here X = L2((0, 1), d¢), and D(A) = W22((0, 1), d€) N WO“((O, 1), d€), Ax = x”. X is endowed with
the Gaussian measure p with mean 0 and covariance Q := —%A‘l. As orthonormal basis of X we choose {e;(£) :=

V2 sin(kné), k € N} that consists of eigenfunctions of Q with eigenvalues A =1/ (2k%n?).
The function U is defined by

| @) de, xeLP(O, 1),
v = {—Soo x g LP(0, 1), 4-2)

where ®:R — Risa C! convex lowerly bounded function, such that
|’ =Cc(1+111P7Y), teR, 4.3)

for some C > 0, p > 1. Note that (4.3) implies ®(¢) < C{(1 + |¢|?) for every ¢, so that U(x) < 400 for every
x€LP(,1).
In the paper [13] we proved that U satisfies the hypothesis of Lemma 2.2, with any p; > 1 and

DU (x) = ®'(x), p-ae. xeX.

Therefore, Hypothesis 2.1 is satisfied taking as U, the Moreau—Yosida approximations of U.

If G: X — R satisfies Hypothesis 3.3, the results of Corollary 3.2 and of Theorem 3.11 hold. Namely, the weak so-
lution u to (1.1) in C = G~ ((—o0, 0]) belongs to W22(C, v) "W, (C, v), it satisfies (3.7), and (Dut, DG);-1(g) =
0, p-a.e.
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In this setting, (1.1) is the Kolmogorov equation of the reaction—diffusion problem

dXx = (%%( — ®'(X))dt + Ne(X())dr > dW (), t>0,§€(0,1),
X, 0=X(@,1)=0, >0,
X0,x)=x, £€(0,1).

4.3. Kolmogorov equations of Cahn—Hilliard type equations

Cahn-Hilliard type operators are characterized by a fourth order linear part and a nonlinearity of the type u +—
32/9&%(f o u). In the above section we have interpreted the nonlinearity x — @’ o x as the gradient of a suitable
function in the space X = L?(0, 1). For a nonlinearity of the type x > 8%/3&2(®’ o x) be a gradient, we have to
change reference space and replace L?(0, 1) by a Sobolev space with negative exponent. It is convenient to work with
functions with null average, setting

1
f=f x(£)dg, xeL*0,1),
0
Hi={xeH'O,D: =0},  lxll:= || 201

We take as X the dual space of H, endowed with the dual norm. We consider the spaces L” (0, 1) as subspaces of X,
identifying any x € L” (0, 1) with the element y fol x(&)y()d§ of X.

A realization of the negative second order derivative is a canonical isometry from H to X. More precisely, for every
x € H we define

1
Bx(y) = fo K@)y E) e, yeH,

so that for every x € H we have || Bx||x = sup,_o(x, )3/l = lIxll3- If x € H2(0, )N and x’(0) = x'(1) =0,
then Bx(y) = —(x”, y) L2(0,1) for every y € H. Therefore B may be seen as an extension to # of the negative second
order derivative with Neumann boundary condition. It follows that if y € X and g € L2(0, 1), then (B~ 'y, g) L2(0,1) =
(v, 8)x.

The functions e (§) = V2 cos(km&)/km, k € N, constitute an orthonormal basis of 7, and therefore, setting f; :=
Bey = k*n’ey, the set { fi: k € N} is an orthonormal basis of X. The operator A := —B?: D(B?) — X is a realization
of the negative fourth order derivative with null boundary condition for the first and third order derivatives in X, and
we have A™! fy = — fi /k*n*. Therefore Q := —A~!/2 is of trace class, and the Gaussian measure y in X with mean
0 and covariance Q is well defined.

As in Section 4.2, let ®:R — R be any regular convex lowerly bounded function, satisfying (4.3), and let U be
defined by (4.2). It is possible to see that U € Wll/’g (H, p) for every g > 1, while in general U ¢ WOI’Z(H , ). The
proof given in [13] in a slightly different context works also in the present situation. Also, rephrasing the proof of
Proposition 6.2 and Corollary 6.3 of [13] yields the following lemma,

Lemma 4.1. For every p > 1, u({x € L?(0,1): x =0}) = 1, and in addition fx ||x||%p(0’1)du < 400 for every
qg>1.

Let us check that Hypothesis 2.1 is satisfied. The approximating functions U, are constructed as in [11], namely
we consider the Moreau—Yosida approximations of &,

Dy (r) = inf{®(s) + (r —5)*/20: s e R}, reR,

and we define, for o > 0,

1
Uy (x) :/ ®o((I +aB) 'x(§))ds, xeX.
0
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Lemma 4.2. Let ® € C%(R) be a convex and lowerly bounded function satisfying
D" < K(1+11177%), teR, (4.4)
for some K > 0, p > 2. Then the functions Uy satisfy Hypothesis 2.1.

Proof. We see immediately that each U, is convex, lowerly bounded by C := inf ®, and of class C%. Moreover for
every x, y € X we have

1
DUq(x)(y) = /O @, (I +aB)'x@)I +aB) 'y(E)de

1
_ / (BU +aB) '@, (( +aB)'x))(6)B~ (&) d&
0

=(BU +aB) '@, (I +aB) 'x),y),
so that
DUq(x) = B(I +aB) '@, ((I +aB) 'x). 4.5)

Since @/, : R — R is Lipschitz continuous, so is DU, : X + X, and Hypothesis 2.1(i) is satisfied.
An argument taken from [11] shows that U, (x) < U (x) for almost every x € X. Indeed, for x € L%(0, 1),

1
(I +aB) 'x() = / K(E, 5)x(s) ds,
0

where k(&, s) > 0 for each (£, s) € (0, 1)2, and fol k(&¢,s)ds =1 for every &. Then,

o (I +aB) ') < (U +aB)'x()) < U +aB) (@) (),

where the last inequality follows from the Jensen inequality. Then, Hypothesis 2.1(ii) is satisfied.
Now, let us prove that U, (x) converges to U (x) as @ — 0, for a.e. x € X. Note that (4.4) implies

0 || =Ci(t+eP7h, (i) |®@®]=<Co(1+1t1”), teR, (4.6)
for some C1, Cop > 0. Moreover, (4.6)(ii) implies that ® o x € L0, 1), for every x € L?(0, 1). Moreover, let us recall
that limy—.o(/ +aB)~'x =x in L?(0, 1), and ||(I + aB)~ x| Lr0.1) < |x]lLr(0.1) for every x € LP(0, 1) with zero
average.

Let x € L?(0,1) have zero average. Then, we split ®,(( + aB) 1x(£)) — D(x(&)) = ful€) + go(&), with
fa (&) 1= Do ((I +aB)'x(§)) — Py (x(£)), gu(§) 1= Py (x(§)) — P (x(£)), and using (4.6)(i) we get

1
|fa®| = ‘/0 [0 (0 (I +aB)"'x(&) + (1 —0)x(&)]do ((I +aB) ' x(€) — x(&))

<Ci(1+2r72|u +aB)_1x(§)|p_l + |x(g)|”‘1)|(1 +aB)'x(E) - x(©®)]
so that f,, € L'(0, 1). Using the Holder inequality, we get
I fallzion < Cil (T +aB) ™ 'x = x| L1,
+ Clzpiz(” ( +°‘B)71x||1£;(10,1) + ||x||ﬁ§<lo,1)) | +aB)'x _x”LP(O,l)

<Ci|d+aB)'x _x“Ll(O,]) +C27! ||x||i/7(lo,1>H(1 +aB)'x _xHLp(o,l)'
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Therefore, || fallz1(0,1) Vanishes as « — 0. Moreover, [ga|l1(o,1) Vanishes too as « — 0, by monotone convergence.

This implies that U, (x) converges to U (x) as @ — 0, for all x € L?(0, 1) with null average.
Now we claim that U, converges to U as o« — 0, in LY (X, ), for every g > 1. We have

/ V (I +aB)™x(@) - 0(x(®)) d

<2t [ (@ua+amx v gy

q
p(dx)

+ 127 el Lo [+ aBY e =] ) ()

+2¢7! fx ( fo 1(<I>(x<5))—<1>,>l(x(a3>))dé)qu(dx).

The first integral vanishes as « — 0, by Lemma 4.1 and dominated convergence. The second integral vanishes by
monotone convergence, and the claim follows.

Similar arguments yield that Q'/2DU,(x) = B~'DU,(x)/~/2 converges to ®'(x)/+/2 pointwise a.e. and in
L9(X, w), for every q > 1. Indeed, by (4.5) we have B~!'DU,(x) = (I + aB)~1(®, (I + aB)~'x) for every
x € X. Arguing as before, with ®/, replacing ®,, we see that @, ((1 + aB)~1(x)) converges to ®'(x) in L'(0,1)
as a — 0, for every x € LP~1(0, 1). (Note that now g, does not converge to 0 by monotone convergence but
by dominated convergence, recalling that @}, o x converges to @ o x pointwise, and |}, (x(§)) — ®'(x(§))| <
|®'(x(£))] < C1(1 + |x(£)|P71).) Recalling that the part of (I + «B)~" in L'(0, 1) is a contraction in L'(0, 1)
we obtain that (I + o;B)_l(CD/ (¢4 + aB)~x) converges to ®'(x) in L1(0, 1). Moreover, the last estimate yields
1B~ DUl 10,1y < C1CL+ X152
that ||B~'DU,(x)| < g(x) for some g € ﬂq>1 L9(X, ) and for every x € LP~1(0, 1), hence for p-ae. x € X.
By dominated convergence, 0'2pu, converges to dD’(-)/\/E in LY(X, u; X), for every ¢ > 1. This shows that
Ue W1 2 2(X, i), and ends the proof. O

). Since LI(O, 1) is continuously embedded in X, Lemma 4.1 implies

So, we can consider Kolmogorov operators of the Cahn—Hilliard equation with reflection

dX =

dgz dSQ + @ (X))dr + Ne(X())dt 5 dW (1), t>0,&€(0,1),
N X(g)dg 0, >0,
X=X =%r.H=Xe =0, >0,
dg d§3 dg d§3
X(0,) =x,

provided @ satisfies the assumptions of Lemma 4.2. If in addition G : X — R satisfies Hypothesis 3.3, Corollary 3.2

and Theorem 3.11 yield that the weak solution u to (1.1) in C = G~ ((—o0, 0]) belongs to W22(C, v) N W 1/Z(C, V),
it satisfies (3.7), and (Du, DG) -1, =0, p-a.e.
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