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Abstract. In a previous paper, the authors proved a conjecture of Lalley and Sellke that the empirical (time-averaged) distribution
function of the maximum of branching Brownian motion converges almost surely to a Gumbel distribution. The result is extended
here to the entire system of particles that are extremal, i.e. close to the maximum. Namely, it is proved that the distribution of
extremal particles under time-average converges to a Poisson cluster process.

Résumé. Dans un article précédent, les auteurs ont démontré une conjecture de Lalley et Sellke stipulant que la loi empirique
(en faisant la moyenne sur les temps) du maximum du mouvement brownien branchant converge presque sûrement vers une loi
de Gumbel. Ce résultat est généralisé ici au système de particules extrémales, c’est-à-dire celles se situant près du maximum.
Précisément, il est démontré que la loi conjointe empirique des positions des particules extrémales converge vers la loi d’un
processus poissonien de nuages.

MSC: 60J80; 60G70; 82B44

Keywords: Branching Brownian motion; Ergodicity; Extreme value theory; KPP equation and traveling waves

1. Introduction and main result

Let x(t) = (xv(t), v ∈ Σ(t)) be a standard branching Brownian motion (BBM) on R defined on a filtered space
(Ω,F ,P, {Ft }t∈R+). The set Σ(t) indexes the particles at time t and xv(t) is the position of the particle v at time t .
We recall the construction of the process: at time 0 we start with a single standard Brownian motion x1(t) that splits
after an exponential random time T of mean 1 into k particles with probability pk , where

∑∞
k=1 pk = 1,

∑∞
k=1 kpk = 2,

and
∑

k k(k − 1)pk < ∞. The positions of the k particles are independent Brownian motions starting at x1(T ). The
k particles branch independently and with the same law as the first Brownian particle. At time t > 0, there will be a
random number n(t) ≡ |Σ(t)| of particles located at x(t) = (xv(t), v ∈ Σ(t)). Note that E[n(t)] = et .
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A fundamental link between the maximum of BBM and partial differential equations was observed by McKean
[17]. If φ :R → R is such that 0 ≤ φ ≤ 1, then the function

u(t, x) ≡ 1 −E

[ ∏
v∈Σ(t)

φ
(
x + xv(t)

)]
(1.1)

solves the Kolmogorov–Petrovsky–Piscounov equation [KPP], also referred to as the Fisher–KPP equation [11],

ut = 1

2
uxx + (1 − u) −

∞∑
k=1

pk(1 − u)k, (1.2)

with initial condition u(0, x) = 1 − φ(x). For the case φ(x) = 1[0,∞)(x), 1 − u(t, x) = P(maxv∈Σ(t) xv(t) ≤ x) is the
distribution function of the maximum of BBM.

Results of Kolmogorov, Petrovsky, and Piscounov [14] and of Bramson [6] established the convergence of the
distribution under appropriate recentering. Namely, for the initial condition φ(x) = 1[0,∞)(x),

lim
t→∞u

(
t,m(t) + x

) = 1 − w(x) uniformly in x, (1.3)

with the recentering term

m(t) = √
2t − 3

2
√

2
log t, (1.4)

and ω(x) is the unique solution (up to translation) of a certain ODE. Convergence for other initial conditions was also
proved by Bramson in [7]; see Theorem 16 in the Appendix for a precise statement. A probabilistic interpretation of
w(x) of BBM was given by Lalley and Sellke [15]. They proved that the martingale t �→ ∑

v∈Σ(t) e−√
2(

√
2t−xv(t))

converges to 0 almost surely, whereas the derivative martingale

Z(t) ≡
∑

v∈Σ(t)

(√
2t − xv(t)

)
e−√

2(
√

2t−xv(t)) (1.5)

converges almost surely to a random variable Z > 0. Moreover,

w(x) = E
[
exp

(−CmaxZe−√
2x

)]
, (1.6)

for an explicitly known constant Cmax > 0 that depends on the specific choice of initial condition φ for the maximum.
In this paper we study properties of the so-called extremal process of BBM, i.e. the point process

Et,ω =
∑

v∈Σ(t)

δxv(t)−m(t). (1.7)

Our objective is to prove weak convergence of the random point measure Et,ω with respect to time-averaging for
P-almost all realizations ω.

Remark 1. The natural topology for point measures is that of vague convergence. Weak convergence of random
elements of this space is implied by the convergence of Laplace functionals,

E

[
exp

(
−

∫
f (y)μn(dy)

)]
(1.8)

for every f ∈ C+
c (R) i.e. the set of non-negative continuous functions with compact support, see e.g. [13].
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To this aim, for all f ∈ Cc(R)+, we analyze the convergence of the Laplace functional〈
exp

(
−

∫
f (y)Et,ω(dy)

)〉
T

≡ 1

T

∫ T

0
exp

(
−

∫
f (y)Et,ω(dy)

)
dt. (1.9)

The limit point process, denoted EZ(ω), is described precisely in (1.13) after the statement of the result. It is a Poisson
cluster process whose law depends on the realization ω through the value of the derivative martingale. We write E

for the expectation of this point process for a fixed Z(ω). The main result proves in effect an ergodic theorem for
the system of extremal particles of BBM. However, the system has more than one ergodic components since the limit
distribution of the particles do depend on the realization ω through Z(ω).

Theorem 2 (Ergodic theorem for the extremal process). There exists a set Ω0 ⊂ Ω of P-probability one on which
Et,ω converges weakly under time-average to a Poisson cluster process EZ(ω), where Z(ω) is the limit of the derivative
martingale. That is, for ω ∈ Ω0,

lim
T →∞

〈
exp

(
−

∫
f (y)Et,ω(dy)

)〉
T

= E

[
exp

(
−

∫
f (y)EZ(ω)(dy)

)]
∀f ∈ C+

c (R). (1.10)

The main result has to be compared with the convergence in space-average of the extremal process Et,ω . From
this perspective, one considers the law of Et,ω under P when averaging over the realizations ω instead of under 〈·〉T
for ω fixed. The weak convergence of the extremal process under space-average has been studied by several authors:
Brunet and Derrida [8,9], Aïdekon, Berestycki, Brunet, and Shi [1], and the present authors in [3,4]. The reader is also
referred to the excellent review by Gouéré [12]. A description of the extremal process in the limit has been proved
independently in [4] and [1]. In [4], the existence of the following process needed for the description of the limit is
proved.

Theorem 3 ([4]). Under the law P conditioned on the event {maxv∈Σ(t) xv(t) − √
2t > 0}, the point process

E t ≡
∑

v∈Σ(t)

δ
xv(t)−√

2t
(1.11)

converges weakly as t → ∞ to a well-defined point process E .

If we write E = ∑
k∈N δyk

, then the process of the gaps given by

D ≡
∑
k∈N

δyk−maxk yk
, (1.12)

also exists. This process is referred to as the cluster process.
Now, let EZ be the Poisson cluster process constructed as follows (see [18] for general results on Poisson cluster

process): for Z > 0 fixed, let (pi, i ∈N) be a Poisson random measure with intensity CmaxZ
√

2e−√
2x dx where Cmax

is the constant appearing in (1.6). Let D(i) = (Δ
(i)
j , j ∈ N) be i.i.d. copies of the cluster point process D defined in

(1.12). Then, for a given Z > 0, take,

EZ =
∑

i,j∈N
δ
pi+Δ

(i)
j

. (1.13)

The convergence when t → ∞ under P of the random measure Et,ω was proved in [4] and in [1]. The difference
with Theorem 2 is that the dependence on Z(ω) is averaged.

Theorem 4 ([4]). The random measure Et,· converges weakly under P and as t → ∞ to a mixture of Poisson cluster
processes. More precisely, for every f ∈ C+

c (R),

lim
t↑∞E

[
exp

(
−

∫
f (y)Et,ω(dy)

)]
= E

[
E

[
exp

(
−

∫
f (y)EZ(dy)

)]]
. (1.14)
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(In the right side of (1.14), the expectation E is over the point process EZ defined in (1.13) for Z fixed, whereas the
expectation E is over the random variable Z.)

Remark 5. In the statements of Theorems 2 and 4, we have explicitly written the dependence on Z to highlight the
connection with Birkhoff’s ergodic theorem where the limit is measurable with respect to the tail σ -field. Here, the
analogue of this σ -field is given by the early times of the system. This analogy is made precise in the analysis of
Lalley and Sellke on which Proposition 10 below is based. The dependence on Z(ω) in the limit can be eliminated by
considering the recentered extremal process E t,ω ≡ ∑

v∈Σ(t) δxv(t)−m(t)+(1/
√

2) logZ(t)
. Theorem 4 then becomes

lim
t↑∞E

[
exp

(
−

∫
f (y)E t,ω(dy)

)]
= E

[
exp

(
−

∫
f (y)E(dy)

)]

and similarly for Theorem 2 under time-average. Here E is the process (1.13) with Z = 1.

The proof of Theorem 2 goes along the line of the proof of the convergence of the law of the maximum under
time-average to a Gumbel distribution proved in [5] and first conjectured in [15].

Theorem 6 ([5]). The random variable maxv∈Σ(t) xv(t)−m(t) converges weakly under 〈·〉T to a Gumbel distribution
for P-almost all ω. Precisely, for P-almost all ω,

lim
T ↑∞〈1{maxv∈Σ(t) xv(t)−m(t)≤x}〉T = exp

(−CmaxZ(ω)e−√
2x

)
, for all x ∈ R. (1.15)

Theorem 2 extends this result. In particular, a precise result on the branching times of extremal particles at different
time scales is needed, cf. Theorem 7. This result is of independent interest.

2. Outline of the proof

To prove Theorem 2, one has to find Ω0 of probability one on which〈
exp

(
−

∫
f (y)Et,ω(dy)

)〉
T

(2.1)

converges simultaneously for all f ∈ C+
c (R). As explained in Section 3.1, the convergence on countable set of func-

tions in C+
c (R) is in fact sufficient. Thus one only needs to prove almost sure convergence for a given function f .

Moreover, due to the fact that the recentered maximum of BBM is stochastically bounded, one can introduce a cutoff
on large values of y.

Take ε > 0 and RT such that RT � T . For a given f ∈ C+
c (R), consider the decomposition〈

exp

(
−

∫
f (y)Et,ω(dy)

)〉
T

= 1

T

∫ εT

0
exp

(
−

∫
f (y)Et,ω(dy)

)
dt (2.2)

+ 1

T

∫ T

εT

E

[
exp

(
−

∫
f (y)Et,ω(dy)

)∣∣∣FRT

]
dt (2.3)

+ 1

T

∫ T

εT

Yt (ω)dt, (2.4)

where

Yt (ω) ≡ exp

(
−

∫
f (y)Et,ω(dy)

)
−E

[
exp

(
−

∫
f (y)Et,ω(dy)

)∣∣∣FRT

]
. (2.5)

The term (2.2) can be made arbitrarily small uniformly in T by taking ε small. The term (2.3) is shown to converge
almost surely to the right side of (1.10) in Section 3.2. The treatment is based on the convergence result of Lalley and
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Sellke [15] and is a generalization of Theorem 2 in [5]. The condition t ∈ [εT ,T ] is needed there, because one needs
RT � t . The term (2.4) is shown to converge to 0 almost surely in Section 3.4. This is similar in spirit to the law of
large numbers proved in [5]. However, the proof is simplified here by the explicit use of a new theorem of independent
interest about the common ancestor of extremal particles at two different times. Precisely, for a fixed compact interval
I , denote by ΣI (t) the particles at time t that are in the set I + m(t),

ΣI (t) ≡ {
v ∈ Σ(t): xv(t) − m(t) ∈ I

}
. (2.6)

Take t > 0 and t ′ > 0 such that t ′ > t . Let v ∈ ΣI (t) and v′ ∈ ΣI (t
′). Define the branching time between v and v′ as

for v ∈ ΣI (t) and v′ ∈ ΣI

(
t ′
)
, Q

(
v, v′) = sup

{
s ≤ t : xv(s) = xv′(s)

}
. (2.7)

Note that if v′ is a descendant of v then Q(v,v′) = t .

Theorem 7. Let I be a compact interval of R. There exist C > 0 and κ > 0 such that for all r > 0

sup
t>3r

t ′>t+r

P
(∃v ∈ ΣI (t), v

′ ∈ ΣI

(
t ′
)
: Q

(
v, v′) ∈ [r, t]) ≤ Ce−rκ

. (2.8)

This is a generalization of Theorem 2.1 in [2]. The technique of proof is similar and is based on the localization of
the paths of extremal particles. The theorem means that with large probability and for two (sufficiently distant) times,
the extremal particles come from different ancestors at time r . Hence, they are conditionally independent given Fr .
This gives enough independence between the variable Ys to derive the desired convergence of (2.4) using standard
arguments.

3. Proofs

3.1. Approximation in C+
c (R)

We first state a lemma that shows that our task is reduced to prove almost sure convergence for a given function f

with an additional cutoff.

Lemma 8. Theorem 2 holds if, for any given f ∈ C+
c (R), and for any δ ∈R,

lim
T →∞

〈
exp

(
−

∫
fδ(y)Et,ω(dy)

)〉
T

= E

[
exp

(
−

∫
fδ(y)EZ(ω)(dy)

)]
P-a.s., (3.1)

where fδ is defined by exp(−fδ(y)) = exp(−f (y))1(−∞,δ](y).

Proof. The Stone–Weierstrass theorem implies the existence of a countable set of dense functions in C+
c (R) under

the uniform topology. This reduces the proof to almost sure convergence for a given f ∈ C+
c (R). There is also no loss

of generalities in introducing the cutoff 1(−∞,δ](y) since the support of Eω,t is stochastically bounded from above (by
Theorem 6). �

3.2. A convergence result of Lalley and Sellke

For a given f ∈ C+
c (R) and δ ∈R, define

uf,δ(t, x) = 1 −E

[ ∏
v∈Σ(t)

exp
(−fδ

(−x + xv(t)
))]

. (3.2)
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Note that uf,δ(0, x) is 0 for x large enough because of the indicator function. Convergence of uf,δ(t, x + m(t)) as
t → ∞ has been established by Bramson [7], see Theorem 16 in the Appendix for a complete statement. Using the
representation of Lalley and Sellke and arguments of Chauvin and Rouault, one can show that (see Lemma 4.9 in [4]),

lim
t→∞uf,δ

(
t, x + m(t)

) = E
[
exp

(−C(f, δ)Z(ω)e−√
2x

)]
, (3.3)

where

Cr(f, δ) =
√

2

π

∫ ∞

0
uf,δ(r, y + √

2r)yey
√

2 dy (3.4)

and C(f, δ) ≡ limr→∞ Cr(f, δ). Moreover, it was established in [4] (see proof of Theorem 3.6 in [4]) that if D is the
cluster process with expectation E introduced in (1.12), then

C(f, δ) =
∫ (

1 − E

[
exp

(
−

∫
fδ(y + z)D(dz)

)])√
2e−√

2y dy. (3.5)

The proof of this in [4] is written for f without the cutoff but it extends in a straightforward way. Note from (3.3) and
Theorem 4 that exp(−C(f, δ)Z) is the Laplace functional of the process EZ for the test function f with the cutoff.

The proof of the next lemma is similar to that of Lemma 4 in [5]. We present it for completeness. It is based on
an estimate of Bramson, see Proposition 8.3 and its proof in [7], that were adapted to the extremal process setting in
Proposition 4.3 of [4].

Lemma 9. Consider t ≥ 0 and X(t) ≥ 0 such that limt↑∞ X(t) = +∞ and X(t) = o(
√

t). Then, for any fixed r and
t large enough such that t ≥ 8r and X(t) ≥ 8r − 3

2
√

2
log(t),

γ (r)−1Cr(f, δ)X(t)e−√
2X(t)

(
1 + o(1)

) ≤ uf,δ

(
t,X(t) + m(t)

) ≤ γ (r)Cr(f, δ)X(t)e−√
2X(t), (3.6)

where o(1) is a term that tends to 0 as t → ∞ for r fixed.

Proof. Define

ψ(r, t, x + √
2t) ≡ e−√

2x

√
t − r

∫ ∞

0

dy′
√

2π
· uf,δ

(
r, y′ + √

2r
) · ey′√2

×
{

1 − exp

(
−2y′ x + (3/(2

√
2)) log t

t − r

)}
exp

(
− (y′ − x)2

2(t − r)

)
. (3.7)

Note that∫ ∞

0
ye

√
2yuf,δ(0, y)dy < ∞. (3.8)

Proposition 4.3 in [4] implies that for r large enough, t ≥ 8r , and x ≥ 8r − 3
2
√

2
log t ,

γ (r)−1ψ(r, t, x + √
2t) ≤ uf,δ(t, x + √

2t) ≤ γ (r)ψ(r, t, x + √
2t) (3.9)

for some γ (r) ↓ 1 as r → ∞. As
√

2t = m(t) + 3
2
√

2
log(t), by taking x = X(t) − 3

2
√

2
log t , and X = X(t)

γ (r)−1ψ
(
r, t,X + m(t)

) ≤ uf,δ

(
t,X + m(t)

) ≤ γ (r)ψ
(
r, t,X + m(t)

)
. (3.10)

It remains to estimate ψ(r, t,X + m(t)). By Taylor expansion, since y′ is positive and so is X, t large enough,

2y′X
t − r

− 2y′2X2

(t − r)2
≤ 1 − e−2y′X/(t−r) ≤ 2y′X

t − r
(3.11)
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and

1 − (y′ − X + (3/(2
√

2)) log t)2

2(t − r)
≤ e−(y′−X+(3/(2

√
2)) log t)2/(2(t−r)) ≤ 1. (3.12)

The upper bound (3.6) follows from plugging the upper bounds of (3.11) and (3.12) into (3.7). As for the lower
bound, note that the lower order terms of the lower bounds (3.11) and (3.12) are all of order o(1), when t → ∞ for r

fixed. To complete the proof, one has to prove that for r fixed,√
2

π

∫ ∞

0

(
y′)ney′√2uf,δ

(
r, y′ + √

2r
)

dy′ < ∞, for n = 0,1,2,3. (3.13)

The integrability is shown by bounding uf,δ above by the solution of the linearized KPP equation. This is done exactly
as in Proposition 4.4, equation (4.17), in [4] following the argument of [10]. We refer the reader to these papers for
the details. �

Proposition 10. Fix ε > 0. Let RT = o(
√

T ) with limT →∞ RT = +∞. Then for any t ∈ [εT ,T ],

lim
T ↑∞E

[
exp

(
−

∫
fδ(y)Et,ω(dy)

)∣∣∣FRT

]
= exp

(−C(f, δ)Z(ω)
)

P-a.s. (3.14)

Remark 11. The right side of (3.14) equals the right side of (1.10) in Theorem 2. The connection is through (3.5).

Proof of Proposition 10. This is an application of Lemma 9 and the convergence of the derivative martingale. Enu-
merate the particles at time RT by i = 1, . . . , n(RT ), and write xi(t) for the position of the particular i. For a particle
v ∈ Σ(t) at time s, define iv to be the index of the ancestor of v at time RT , and x

(iv)
v (t,RT ) ≡ xv(t) − xiv (RT ). By

the Markov property of BBM, conditionally on FRT
, the processes (x

(i)
v (t,RT ), v such that iv = i), i = 1, . . . , n(RT )

are independent and distributed as the particles of a BBM at time t − RT . We have

exp

(
−

∫
fδ(y)Et,ω(dy)

)
=

n(RT )∏
i=1

exp

(
−

∑
v∈Σ(t)

iv=i

fδ

(−yi(RT ) + x(i)
v (t,RT ) − m(t − RT )

))
, (3.15)

where

yi(RT ) ≡ √
2RT − xi(RT ) + 3

2
√

2
log

(
t − RT

t

)
= √

2RT − xi(RT ) + o(1), (3.16)

and o(1) ↓ 0 as T ↑ ∞. Using the independence of the x(i)’s and the definition (3.2), the conditional expectation of
(3.15) given FRT

can be written as

exp

( ∑
j≤n(RT )

log
(
1 − uf,δ

(
t − RT ,yj (RT ) + m(t − RT )

)))
. (3.17)

Note that the convergence of the martingales defined in (1.5) implies that

lim
T ↑∞ min

j≤n(RT )
yj (RT ) = +∞. (3.18)

Since for 0 < u < 1/2, one has −u − u2 ≤ log(1 − u) ≤ −u, one can pick T large enough so that

E

[
exp

(
−

∫
fδ(y)Et,ω(dy)

)∣∣∣FRT

]
≤ exp

(
−

∑
j≤n(RT )

uf,δ

(
t − RT ,yj (RT ) + m(t − RT )

))
(3.19)
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and

E

[
exp

(
−

∫
fδ(y)Et,ω(dy)

)∣∣∣FRT

]
≥ exp

(
−

∑
j≤n(RT )

uf,δ

(
t − RT ,yj (RT ) + m(t − RT )

))

× exp

(
−

∑
j≤n(RT )

(
uf,δ

(
t − RT ,yj (RT ) + m(t − RT )

))2
)

. (3.20)

To finish the proof, it suffices to show that

lim
T →∞

∑
j≤n(RT )

uf,δ

(
t − RT ,yj (RT ) + m(t − RT )

) = C(f, δ)Z(ω), (3.21)

lim
T →∞

∑
j≤n(RT )

(
uf,δ

(
t − RT ,yj (RT ) + m(t − RT )

))2 = 0. (3.22)

We claim that yj (RT ) = o(
√

t), uniformly in j , so that Lemma 9 can be applied. Indeed, since

lim
T →∞

maxj≤n(RT ) xj (RT )

RT

= √
2, P-a.s.,

we have

yj (RT )

t1/2
→ 0 as T → ∞ P-a.s., uniformly in j ≤ n(RT ). (3.23)

Equation (3.21) follows by picking a fixed r in Lemma 9, taking first T → ∞, then r → ∞, and using the convergence
of the derivative martingale. Lemma 9 is also used to establish (3.22). By fixing r , the proof is reduced to show that∑

j≤n(RT ) yj (RT )2e−2
√

2yj (RT ) goes to zero. This is clear since this sum is bounded above by

max
j≤n(RT )

(
yj (RT )2e−√

2yj (RT )
) ×

∑
j≤n(RT )

e−√
2yj (RT ) (3.24)

and both terms tend to zero almost surely as T ↑ ∞. �

3.3. Proof of Theorem 7

Throughout the proof, C and κ denote generic constants that do not depend on t , t ′, and r and that are not necessarily
the same at different occurrences. We recall the result on the localization of the paths of extremal particles established
in [2]. Let t > 0 and γ > 0 and define

fγ,t (s) ≡
{

sγ 0 ≤ s ≤ t/2,
(t − s)γ t/2 ≤ s ≤ t ,

(3.25)
Fα,t (s) ≡ s

t
m(t) − fα,t (s), 0 ≤ s ≤ t.

Fix 0 < α < 1/2 < β < 1. By definition, Fβ,t (s) < Fα,t (s), Fβ,t (0) = Fα,t (0) = 0, and Fβ,t (t) = Fα,t (t) = m(t).
The following proposition gives strong bounds for the probability of finding particles that are close to the level of

the maximum at given times but whose paths are bounded by Fβ,t and Fα,t . This was stated as Proposition 6 in [5].

Proposition 12. Let I be a compact interval. There exist C > 0 and κ > 0 (depending on α,β and I ) such that for
all r > 0

sup
t≥3r

P
[∃v ∈ ΣI (t): xv(s) ≥ Fα,t (s) or xv(s) ≤ Fβ,t (s) for some s ∈ (r, t − r)

] ≤ Ce−rκ

. (3.26)
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We now prove Theorem 7. Fix α and β as in Proposition 12. Define the set of extremal particles in I at time t that
are localized in the interval (r1, t − r1)

Σ loc
I (t) = {

v ∈ Σ(t): xv(t) ∈ I + m(t),Fβ,t (s) ≤ xv(s) ≤ Fα,t (s) ∀s ∈ (r1, t − r1)
}
. (3.27)

The parameter r1 = r1(r) is chosen to be smaller than r (so that (r1, t − r1) ⊃ (r, t − r)). The precise choice will be
given below. By Proposition 12, to prove Theorem 7, it suffices to show

sup
t>3r

t ′>t+r

P
(∃v ∈ Σ loc

I (t), v′ ∈ Σ loc
I

(
t ′
)
: Q

(
v, v′) ∈ [r, t]) ≤ Ce−rκ

. (3.28)

By Markov’s inequality the probability is smaller than

E
[
#
{(

v, v′): v ∈ Σ loc
I (t), v′ ∈ Σ loc

I

(
t ′
)
: Q

(
v, v′) ∈ [r, t]}]. (3.29)

This expectation can be evaluated using Sawyer’s formula [19], see also [6]. Write x for a standard Brownian motion
on R, μs for the standard Gaussian measure of variance s. Let also Ξt1,t2 be the set of continuous path on [0,∞] that
satisfy Fβ,t (s) ≤ xv(s) ≤ Fα,t (s) ∀s ∈ (t1, t2). The formula gives

E
[
#
{(

v, v′): v ∈ Σ loc
I (t), v′ ∈ Σ loc

I

(
t ′
)
: Q

(
v, v′) ∈ [r, t]}]

= Ket

∫ t

r

et ′−s ds

∫
R

μs(dy)P
(
x ∈ Ξr1,t−r1 |x(s) = y

)
P
(
x ∈ Ξs,t ′−r1 |x(s) = y

)
, (3.30)

where K = ∑∞
k=1 k(k − 1)pk . The second probability is estimated exactly the same way as in [2] using Brownian

bridge estimates (from equation (4.5) to (4.14)). One needs to pick r1(r) < r/2 and r1(r) < r1−β . The result is

P
(
x ∈ Ξs,t ′−r1 |x(s) = y

) ≤ Cr1/2 e−(t ′−s)e(3/2)((t ′−s)/t ′) log t ′Fβ,t ′(s)e
−√

2Fα,t ′ (s)

(t ′ − s)3/2
. (3.31)

Since this bound is uniform in y, (3.30) is smaller than

Cet
P
(
x ∈ Ξr1,t−r1

)
r1/2

∫ t ′−r

r

e(3/2)((t ′−s)/t ′) log t ′Fβ,t ′(s)e
−√

2Fα,t ′ (s)

(t ′ − s)3/2
ds. (3.32)

Note that the integral is now on [r, t ′ − r] ⊃ [r, t]. The term et
P(x ∈ Ξr1,t−r1) is of order of r1 > r (cf. equation

(4.17) in [2]). It remains to estimate the integral. The domain of integration is split into [r, t ′/2], [t ′/2, t ′ − t ′ν], and
[t ′ − t ′ν, t ′ − r], for a fixed ν > 0. On the first interval, one has that (3.32) is smaller than

Cr3/2
∫ t ′/2

r

e(3/2)((t ′−s)/t ′) log t ′sβe−√
2sα

(t ′ − s)3/2
ds ≤ Cr3/2

∫ ∞

r

sβe−√
2sα

ds ≤ Cr3/2e−rα

. (3.33)

On the second interval, using the change of variable s → t ′ − s, one gets the upper bound

Cr3/2
∫ t ′/2

t ′ν
e(3/2)(s/t ′) log t ′sβe−√

2sα

s3/2
ds ≤ Cr3/2t ′3/4

∫ t ′/2

t ′ν
sβe−√

2sα

ds ≤ Cr3/2t ′7/4e−t ′να

. (3.34)

Note that for t ′ > t > 3r , κ can be chosen for the bound to be of the desired form. Finally on [t ′ − t ′ν, t ′ − r], the
upper bound is

Cr3/2
∫ t ′ν

r

e(3/2)(s/t ′) log t ′sβe−√
2sα

s3/2
ds ≤ Cr3/2

∫ ∞

r

sβe−√
2sα

ds ≤ Cr3/2e−rα

. (3.35)

The constants C and κ can be picked such that the bounds (3.33), (3.34), and (3.35) have the desired form. This
completes the proof of Theorem 7.
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3.4. The law of large numbers

In this section, we prove that the term (2.4) goes to zero as T goes to infinity:

Proposition 13. Let f ∈ Cc(R), RT = o(
√

T ) with limT →∞ RT = +∞, and ε > 0. Consider Yt (ω) defined in (2.5).
Then

lim
T ↑∞

1

T

∫ T

εT

Yt (ω)dt = 0, P-a.s. (3.36)

Proof. The proof is based on a Theorem of Lyons [16] that we cite from [5]:

Theorem 14 ([16], Theorem 8 in [5]). Consider a process {Ys}s∈R+ such that E[Ys] = 0 for all s. Assume furthermore
that the random variables are uniformly bounded, say sups |Ys | ≤ 2 almost surely. If

∞∑
T =1

1

T
E

[∣∣∣∣ 1

T

∫ T

0
Ys ds

∣∣∣∣
2]

< ∞, (3.37)

then

1

T

∫ T

0
Ys ds → 0, a.s. (3.38)

A straightforward decomposition gives

∞∑
T =1

1

T
E

[∣∣∣∣ 1

T

∫ T

εT

Ys ds

∣∣∣∣
2]

=
∞∑

T =1

1

T 3

∫ T

εT

∫ T

εT

E[YsYs′ ]ds ds′

=
∞∑

T =1

1

T 3

∫
s,s′∈[εT ,T ]
|s−s′|≤RT

E[YsYs′ ]ds ds′

+
∞∑

T =1

1

T 3

∫
s,s′∈[εT ,T ]
|s−s′|≥RT

E[YsYs′ ]ds ds′. (3.39)

Since 0 ≤ Ys ≤ 2 for any s, the first term is smaller than a constant times
∑∞

T =1
RT

T 2 , which is summable for RT =
o(

√
T ). Therefore, to prove Proposition 13 using Theorem 14, it remains to show that the second term is summable.

This is done in the following lemma. �

Lemma 15. Let Ys be as in (2.5). Then for RT = o(
√

T ) with limT →∞ RT = +∞,

E[YsYs′ ] ≤ Ce−Rκ
T for any s, s′ ∈ [εT ,T ]. (3.40)

Proof. For the given f ∈ Cc(R), take the compact interval I = suppf . Recall the definitions of ΣI (s) and Q(v,v′)
in (2.6) and (2.7). Consider the events

As,T ≡ {∃v ∈ ΣI (s): xv(RT ) ≥ Fα,s(RT ) or xv(RT ) ≤ Fβ,s(RT )
}
,

Bs,s′,T ≡ {∃v ∈ ΣI (s), v
′ ∈ ΣI

(
s′): Q

(
v, v′) ∈ [RT , s]} for s′ > s, (3.41)

Cs,s′,T ≡As,T ∪As′,T ∪Bs,s′,T .
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By Proposition 12 and Theorem 7, one has that for constants C > 0 and κ > 0

P(Cs,s′,T ) ≤ Ce−Rκ
T for any

∣∣s − s′∣∣ ≥ RT . (3.42)

Enumerate (in no particular order) the particles at time RT by i = 1, . . . , n(RT ) and write xi(t) for the position of the
particular i. Recall the notation introduced at the beginning of the proof of Proposition 10. Define

Φi(s) ≡ exp

(
−

∑
v∈ΣI (s):iv=i

fδ

(−yi(RT ) + x(i)
v (s,RT ) − m(s − RT )

))
. (3.43)

Note that Φi(s) is non-trivial (that is, not equal to one) if and only if the particle i has descendants in the interval
I + m(s) at time s (and similarly for the time s′). The crucial step is to notice that on Cc

s,s′,T (on Bc
s,s′,T in fact),

for any i = 1, . . . , n(RT ), no two extremal particles in I at time s and at time s′ have branching time in [RT , s]. In
particular, two such extremal particles must have two distinct ancestors at time RT . This implies that

∀i = 1, . . . , n(RT ), Φi(s) and Φi(s) cannot be simultaneously non-trivial on Cc
s,s′,T . (3.44)

Therefore, the following identity holds on Cc
s,s′,T

Φi(s)Φi

(
s′) = 1 − (

1 − Φi(s)
) − (

1 − Φi

(
s′)). (3.45)

Putting all this together, one gets∣∣∣∣∣E
[

n(RT )∏
i=1

Φi(s)Φi

(
s′)] −E

[
n(RT )∏
i=1

(
1 − (

1 − Φi(s)
) − (

1 − Φi

(
s′)))]∣∣∣∣∣ ≤ 2P(Cs,s′,T ). (3.46)

This has the right decay by (3.42). By the definition of uf,δ(t, x) in (3.2)

ui(s) ≡ E
[
1 − Φi

(
s′)|FRT

] = uf

(
s − RT ,yi(RT ) + m(s − RT )

)
, (3.47)

and by the conditional independence property of BBM,

E

[
n(RT )∏
i=1

(
1 − (

1 − Φi(s)
) − (

1 − Φi

(
s′)))] = E

[
n(RT )∏
i=1

(
1 − ui(s) − ui

(
s′))]. (3.48)

It remains to compare the right side of (3.48) with the contribution to the correlation coming out from the second term
of (2.5):

E

[
n(RT )∏
i=1

E
[
Φi(s)|FRT

] n(RT )∏
i=1

E
[
Φi

(
s′)|FRT

]] = E

[
n(RT )∏
i=1

(
1 − ui(s)

)(
1 − ui

(
s′))]. (3.49)

Again,

0 ≤ E

[
n(RT )∏
i=1

(
1 − ui(s)

)(
1 − ui

(
s′));Cs,s′,T

]
−E

[
n(RT )∏
i=1

(
1 − ui(s) − ui

(
s′));Cs,s′,T

]

≤ 2P(Cs,s′,T ), (3.50)

so that by (3.42), it suffices to bound the difference of the two terms on Cc
s,s′,T . By the definition of this event in

(3.41), the only i’s whose contribution to the product is not one are those for which Fα,s(RT ) < xi(RT ) < Fβ,s(RT )

and Fα,s′(RT ) < xi(RT ) < Fβ,s′(RT ). Define

Δ ≡ {
i = 1, . . . , n(RT ): Fα,s(RT ) < xi(RT ) < Fβ,s(RT ) and Fα,s′(RT ) < xi(RT ) < Fβ,s′(RT )

}
. (3.51)
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By the definition of the functions F in (3.25), the above condition reduces to Rα
T + o(1) ≤ yi(RT ) ≤ R

β
T + o(1) where

o(1) converges to 0 as T → ∞ uniformly for s ∈ [εT ,T ]. We are left to bound

E

[∏
i∈Δ

(
1 − ui(s)

)(
1 − ui

(
s′)) −

∏
i∈Δ

(
1 − ui(s) − ui

(
s′));Cc

s,s′,T

]
. (3.52)

Since both terms are smaller than one, we can use the Lipschitz property |ez − ez′ | ≤ |z − z′| for z, z′ ≤ 0 to bound the
above by

E

[∑
i∈Δ

log
(
1 − ui(s) − ui

(
s′) + ui(s)ui

(
s′)) − log

(
1 − ui(s) − ui

(
s′))]. (3.53)

By Lemma 9, for a fixed r ,

ui(s) = uf

(
s − RT ,yi(RT ) + m(s − RT )

) ≤ γ (r)Cr(f, δ)yi(RT )e−√
2yi (RT ). (3.54)

In particular, by the restrictions on yi(RT ) for i ∈ Δ, it is possible to choose T large enough such that ui(s) ≤ 1/4
and ui(s

′) ≤ 1/4 for every i ∈ Δ. Since for 0 < b < 1 and a > 1/2, log(a + b) − loga ≤ 2b, (3.53) is bounded by

2E

[∑
i∈Δ

ui(s)ui

(
s′)] ≤ CE

[∑
i∈Δ

yi(RT )2e−2
√

2yi (RT )

]
, (3.55)

for some constant C > 0. The variables (xi(RT ), i ≤ n(RT )) are Gaussian. We take advantage of the linearity and that
E[n(RT )] = eRT to get the upper bound

CeRT

∫ R
β
T +o(1)

Rα
T +o(1)

y2e−2
√

2y e−(
√

2RT −y)2/(2RT ) dy√
2πRT

≤ CR
2β
T e−√

2Rα
T . (3.56)

This concludes the proof of the lemma. �

Appendix: Convergence of the KPP equation

Bramson settled the question of the convergence of the solutions of the KPP equation for generic initial conditions
in [7]. The recentering is a function of the initial conditions. We combine here two of the convergence theorems of [7]
as well as the condition on u(0, x) to get the specific form (1.4) for the recentering.

Theorem 16 (Theorem A, Theorem B, and Example 2 in [7]). Let u be a solution of the F–KPP equation (1.2)
with 0 ≤ u(0, x) ≤ 1. Then

u
(
t, x + m(t)

) → 1 − w(x), uniformly in x as t → ∞, (A.1)

where w is the unique solution (up to translation) of

1

2
w′′ + √

2w′ +
∞∑

k=1

pkw
k − w = 0, (A.2)

if and only if

1. for some h > 0, lim supt→∞ 1
t

log
∫ t (1+h)

t
u(0, y)dy ≤ −√

2;

2. and for some ν > 0, M > 0, N > 0,
∫ x+N

x
u(0, y)dy > ν for all x ≤ −M .
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Moreover, if limx→∞ ebxu(0, x) = 0 for some b >
√

2, then one may choose

m(t) = √
2t − 3

2
√

2
log t. (A.3)
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