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Abstract. We obtain scaling limits for Markov branching trees whose size is specified by the number of nodes whose out-degree
lies in a given set. This extends recent results of Haas and Miermont in (Ann. Probab. 40 (2012) 2589–2666), which considered
the case when the size of a tree is either its number of leaves or its number of vertices. We use our result to prove that the
scaling limit of finite variance Galton–Watson trees conditioned on the number of nodes whose out-degree lies in a given set is the
Brownian continuum random tree. The key to applying our result for Markov branching trees to conditioned Galton–Watson trees is
a generalization of the classical Otter–Dwass formula. This is obtained by showing that the number of vertices in a Galton–Watson
tree whose out-degree lies in a given set is distributed like the number of vertices in a Galton–Watson tree with a related offspring
distribution.

Résumé. Nous obtenons des limites d’échelle pour des arbres branchants markoviens dont la taille est égale au nombre de noeuds
dont le degré sortant appartient à un ensemble fixé. Ceci étend des résultats récents de Haas et Miermont dans (Ann. Probab. 40
(2012) 2589–2666), qui ont considéré le cas où la taille d’un arbre est le nombre de ses feuilles ou le nombre des sommets. Nous
utilisons nos résultats pour prouver que la limite d’échelle d’arbres de Galton–Watson conditionnés par le nombre de noeuds dont
le degré sortant appartient à un ensemble donné est l’arbre brownien continu. La clé pour appliquer notre résultat pour les arbres
branchants markoviens à des arbres de Galton–Watson conditionnés est une généralisation de la formule classique de Otter–Dwass.
Ceci est obtenu en montrant que le nombre de sommets d’un arbre de Galton–Watson dont le degré sortant appartient à un ensemble
donné est distribué comme le nombre de sommets dans un arbre de Galton–Watson avec une loi de reproduction appropriée.
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1. Introduction

Recently there has been considerable interest in the literature in studying the asymptotic properties of random trees.
One of the first results that obtained rescaled convergence of trees themselves (as opposed to convergence of some
statistics of the trees) was a result of Aldous in [2], which proved that critical Galton–Watson trees with finite vari-
ance offspring distribution conditioned on their number of vertices converge to the Brownian continuum random tree
when properly rescaled. Subsequent work on scaling limits of random trees proceeded largely in two directions, one
focusing on conditioned Galton–Watson trees and other trees with nice encodings by continuous functions (see [8]
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for an overview) and another that focused on Markov branching trees. While Galton–Watson trees conditioned on
their number of vertices are Markov branching trees, the work on general Markov branching trees typically includes
consistency hypotheses that are not satisfied by conditioned Galton–Watson trees (see, e.g., [6]). More recently, tech-
niques for handling Markov branching trees that don’t necessarily satisfy consistency relations and whose size is their
number of leaves (or vertices) were developed in [5]. We will generalize this approach to Markov branching trees
whose size is their number of vertices whose out-degree falls in a given set. Our result for Markov branching trees,
which requires a bit of setup to state rigorously, is Theorem 5.

As a consequence of Theorem 5 we obtain a new theorem for scaling limits of Galton–Watson trees. The techniques
employed in the literature on Galton–Watson trees conditioned on their total number of vertices generally rely heavily
on the precise form of the conditioning and cannot easily be modified. By using the framework of Markov branching
trees instead, we are able to modify the conditioning to condition on the number of vertices with out-degree in a given
set. In particular, we prove the following theorem, the notation for which will be fully defined later.

Theorem 1. Let T be a critical Galton–Watson tree with offspring distribution ξ such that 0 < σ 2 = Var(ξ) < ∞ and
fix A ⊆ {0,1,2, . . .}. Suppose that for sufficiently large n the probability that T has exactly n vertices with out-degree
in A is positive, and for such n let T A

n be T conditioned to have exactly n vertices with out-degree in A, considered
as a rooted unordered tree with edge lengths 1 and the uniform probability distribution μ∂AT A

n
on its vertices with

out-degree in A. Then

1√
n
T A

n

d→ 2

σ
√

ξ(A)
T1/2,ν2,

where the convergence is with respect to the rooted Gromov–Hausdorff–Prokhorov topology and T1/2,ν2 is the Brow-
nian continuum random tree.

In the case A = Z
+ = {0,1,2, . . .} we recover the classical result about the scaling limit of a Galton–Watson tree

conditioned on its number of vertices first obtained in [2]. For other choices of A the result appears to be new. We note,
however, that subsequent to the appearance of a draft of this article on the arXiv [12], Kortchemski obtained similar
results by different techniques in [7] and that local (rather than scaling) limits have been obtained in [1]. The condition
that for sufficiently large n the probability that T has exactly n vertices with out-degree in A is positive is purely
technical and could be dispensed with at the cost of chasing periodicity considerations through our computations. In
addition to generalizing the results of [5], the key to proving this theorem is a generalization of the classical Otter–
Dwass formula, which we prove in Section 3.1. The Otter–Dwass formula (see [11]) has been an essential tool in
several proofs that the Brownian continuum random tree is the scaling limit of Galton–Watson trees conditioned on
their number of vertices, including the original proof in [2] as well as newer proofs in [9] and [5]. While we follow the
approach in [5], our generalization of the Otter–Dwass formula should allow for proofs along the lines of [2] and [9]
as well. Furthermore, with our results here, it should be straightforward to prove the analogous theorem in the infinite
variance case using the approach in [5].

This paper is organized as follows. Section 2 introduces our basic notation, as well as the Markov branching trees
and continuum trees that will arise for us as scaling limits. It concludes with our generalization of the scaling limits
in [5]. Section 3 is devoted to our study of Galton–Watson trees. We begin by proving our generalization of the Otter–
Dwass formula and we then use this to analyze the asymptotics of the partition at the root of a Galton–Watson tree.
Bringing this all together, we finish with the proof of Theorem 1.

2. Models of trees

2.1. Basic notation

Fix a countably infinite set S; we will consider the vertex sets of all graphs discussed to be subsets of S. A rooted
ordered tree is a finite acyclic graph t with a distinguished vertex called the root and such that, if v is a vertex of t ,
the set of vertices in t that are both adjacent to v and further from the root than v with respect to the graph metric is
linearly ordered. Let T S be the set of all rooted ordered trees whose vertex set is a subset of S. For t, s ∈ T S , define
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t ∼ s if and only if there is a root and order preserving isomorphism from t to s and let T = T S/ ∼ be the set of
rooted ordered trees considered up to root and order preserving isomorphism. By a similar construction, we let T u be
the set of rooted unordered trees considered up to root preserving isomorphism. If t is in T or T u and v ∈ t is a vertex,
the out-degree of v is the number of vertices in t that are both adjacent to v and further from the root than v with
respect to the graph metric. The out-degree of v will simply be denoted by deg(v), since we will only ever discuss
out-degrees. Fix a set A ⊆ Z

+ and for t in T or T u define #At to be the number of vertices in t whose out-degree is
in A. Furthermore, we define TA,n and T u

A,n by

TA,n = {t ∈ T : #At = n} and T u
A,n = {

t ∈ T u: #At = n
}
.

2.2. Markov branching trees

In this section we extend the notion of Markov branching trees developed in [5], where Markov branching trees were
constructed separately in the cases A = {0} and A = Z

+. Here we give a construction for general A. Define P̄−1 =∅

and for n ≥ 0, let P̄n be the set of partitions of n; that is

P̄n =
{

(λ1, . . . , λp) ∈
∞⋃

k=0

{0,1,2, . . .}k: λ1 ≥ λ2 ≥ · · · ≥ λp and
p∑

k=1

λk = n

}
.

Remark 1. This definition differs slightly from the standard definition of partitions because we allow blocks of a
partition to be 0.

For λ ∈ P̄n, let p(λ) be the length of λ and mj(λ) the number of blocks in λ equal to j . If λ = (λ1, . . . , λp) ∈ P̄n

and k ≥ 0 we denote by (λ,0k) the partition

(
λ1, . . . , λp,

k 0’s︷ ︸︸ ︷
0, . . . ,0

)
.

By convention, include ∅= (00) in P̄0 and take p(∅) = 0. Define P̄A
0 = P̄0 and for n ≥ 1, define P̄A

n by

P̄A
n = {

λ ∈ P̄n: p(λ) /∈ A
}∪ {

λ ∈ P̄n−1: p(λ) ∈ A
}
.

Let (nk) be an increasing sequence of non-negative integers and let (qnk
)k≥1 be a sequence such that for each k

such that:

(i) n1 = 1{0∈A}.
(ii) If nk ≥ 1 then qnk

is a probability measure on P̄A
nk

.
(iii) If n1 = 0, q0 is a probability measure on T u

A,0.

Remark 2. We emphasize that if n1 = 0 then q0 is a measure on trees that have no vertices with out-degree in A

while for all nk ≥ 1, qnk
is a measure on partitions. We do this so that we can present a unified construction of

Markov branching trees instead of having to consider the cases n1 = 1 and n1 = 0 separately. Since the assumptions
in Theorem 5 imply that the effects of trees that have no vertices with out-degree in A do not influence the scaling
limits, we do not need to assume any further structure on q0.

For convenience, for nk ≥ 1 we will often consider qnk
to be a measure on

⋃
j≥0 P̄j by extending it to be 0 off

of P̄A
nk

.
Our goal is to construct a sequence of laws (Pq

nk
)∞k=1 such that Pq

nk
is a law on T u

A,nk
and such that for nk ≥ 1 the

subtrees above the root are conditionally independent given their sizes and the degree of the root. To facilitate this, we
will assume that our sequences (qnk

)k≥1 satisfy the following compatibility condition.
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Condition 1.

(i) Either n1 or n2 is equal to 1.
(ii) For each k such that nk ≥ 1, qnk

is concentrated on partitions λ = (λ1, . . . , λp) such that qλi
is defined for all i.

(iii) For all n such that qn is defined,
∑∞

k=0 qn((n,0k)) < 1.

Remark 3. Note that these assumptions put non-trivial restrictions on the compatible sequences we consider. For
example, if n1 = 1, 1 /∈ A, and 2 ∈ A then q2 cannot exist. To see this, observe that, since n1 = 1, q0 is not defined.
By (ii), this implies that the only λ ∈ P̄A

2 that can have q2(λ) > 0 is λ = (2) because all other elements of P̄A
2 have

a block that is equal to 0. However, by (iii), we must have q2((2)) < 1, which contradicts that q2 is a probability
measure. In terms of the trees we are considering this is to be expected. For example, if 0,2 ∈ A, we must have n1 = 1
since every tree has a leaf. Moreover, if a tree has root degree 2 then it has at least 2 leaves and, as a result, cannot
possibly have exactly 2 vertices with out-degree in A.

If n1 = 0, we let Pq

0 = q0. For nk ≥ 1, define αnk
=∑

j≥0 qnk
((nk,0j )) and let G be geometrically distributed with

P(G = j) = (1 − αnk
)α

j
nk

.

If n1 = 1, Pq

1 is the law of a path with G edges from a root to a leaf (note if G = 0, this path is just the single root
vertex).

If k ≥ 2, construct a path with G edges from a from a root to a leaf. For each non-leaf vertex v on this path,
independently of everything else, construct a random variable V such that P(V = j) = qnk

((nk,0j ))/αnk
and a vector

(T1, . . . , TV ) of trees that, conditionally given V , are i.i.d. with common distribution Pq

0 . Then attach the root of
each tree Ti to v by an edge. For the leaf, choose a partition Λ according to qnk

(· · · |P̄A
nk

\⋃j≥0{(nk,0j )}) and let

(T 1
1 , . . . , T 1

p(Λ)) be a vector, independent of everything except Λ, such that conditionally given Λ the coordinates are

independent and T 1
i has distribution Pq

Λi
. Attach the roots of these trees to the leaf by an edge to obtain a tree T .

We define Pq
nk

to be the law of T .
To connect with [5], if (nk) = (1,2,3, . . .), the case A = {0} corresponds to the Pq

n defined in [5] and the case
A = Z

+ corresponds to the Qq
n defined in [5]. Other choices of A interpolate between these two extremes. A sequence

(Tnk
)k≥1 such that for each k, Tnk

has law Pq
nk

for some choice of A and q (independent of n) is called a Markov
branching family. For ease of notation, we will generally drop the subscript k and it will be implicit that we are only
considering n for which the quantities discussed are defined.

2.3. Trees as metric measure spaces

The trees under consideration can naturally be considered as metric spaces with the graph metric. That is, the distance
between two vertices is the number of edges on the path connecting them. Let (t, d) be a tree equipped with the graph
metric. For a > 0, we define at to be the metric space (t, ad), that is, the metric is scaled by a. This is equivalent
to saying the edges have length a rather than length 1 in the definition of the graph metric. More, generally we can
attach a positive length to each edge in t and use these in the definition of the graph metric. Moreover, the trees we
are dealing with are rooted so we consider (t, d) as a pointed metric space with the root as the distinguished point.
Moreover, we are concerned with the vertices whose out-degree is in A, so we attach a measure μ∂At , which is the
uniform probability measure on ∂At = {v ∈ t : deg(v) ∈ A}. If we have a random tree T , this gives rise to a random
pointed metric measure space (T , d, root,μ∂AT ). To make this last concept rigorous, we need to put a topology on
pointed metric measure spaces. This is hard to do in general, but note that the pointed metric measure spaces that
come from the trees we are discussing are compact.

Let Mw be the set of equivalence classes of compact pointed metric measure spaces (equivalence here being up
to isometries that preserve the distinguished point and the measure). It is worth pointing out that Mw actually is a set
in the sense of Zermelo–Fraenkel set theory with the axiom of choice, though this takes some work to show (more
precisely, there exists a set Mw of compact pointed metric measure spaces such that every compact pointed metric
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measure space is equivalent to exactly one element of Mw). We metrize Mw with the pointed Gromov–Hausdorff–
Prokhorov metric (see [5]). Fix (X,d,ρ,μ), (X′, d ′, ρ,μ′) ∈ Mw and define

dGHP
(
X,X′)= inf

(M,δ)
inf

φ:X→M

φ′:X′→M

[
δ
(
φ(ρ),φ′(ρ′))∨ δH

(
φ(X),φ′(X′))∨ δP

(
φ∗μ,φ′∗μ′)],

where the first infimum is over metric spaces (M, δ), the second infimum if over isometric embeddings φ and φ′ of X

and X′ into M , δH is the Hausdorff distance on compact subsets of M , and δP is the Prokhorov distance between the
pushforward φ∗μ of μ by φ and the pushforward φ′∗μ′ of μ′ by φ′. Again, the definition of this metric has potential
to run into set-theoretic difficulties, but they are not terribly difficult to resolve.

Proposition 1 (Proposition 1 in [5]). The space (Mw,dGHP) is a complete separable metric space.

We will not need many technical facts about Gromov–Hausdorff–Prokhorov convergence, but we will need the
following lemma that shows how the pointed Gromov–Hausdorff–Prokhorov metric can be controlled in some cases
by the pointed Hausdorff metric.

Lemma 1. Let (E,d) be a metric space and let U,V ⊆ E be compact subsets, each with a distinguished point.
Let μ = n−1∑n

i=1 δxi
and ν = n−1∑n

i=1 δyi
be probability measures whose supports are contained in U and V ,

respectively. Let f : {x1, . . . , xn} → {y1, . . . , yn} be a bijection. Then

dGHP
(
(U,μ), (V, ν)

)≤ dH(U,V ) + max
{
d
(
xi, f (xi)

)
,1 ≤ i ≤ n

}
,

where dH is the pointed Hausdorff metric on pointed subsets of E.

Proof. Let B be a measurable set and define Bε = {y ∈ E: d(y,B) < ε}. Suppose that ε > max{d(xi, f (xi)),

1 ≤ i ≤ n}. Observe that if xi ∈ B then f (xi) ∈ Bε . Since f is a bijection, we see that
∑n

i=1 1xi∈B ≤∑n
i=1 1yi∈Bε , so

μ(B) ≤ ν(Bε). The reverse inequality is shown similarly and the conclusion follows. �

An R-tree is a complete metric space (T , d) with the following properties:

• For v,w ∈ T , there exists a unique isometry φv,w : [0, d(v,w)] → T with φv,w(0) = v to φv,w(d(v,w)) = w.
• For every continuous injective function c : [0,1] → T such that c(0) = v and c(1) = w, we have c([0,1]) =

φv,w([0, d(v,w)]).
If (T , d) is a compact R-tree, every choice of root ρ ∈ T and probability measure μ on T yields an element

(T , d,ρ,μ) of Mw . With this choice of root also comes a height function ht(v) = d(v,ρ). The leaves of T can then
be defined as a point v ∈ T such that v is not in [[ρ,w[[ := φρ,w([0,ht(w))) for any w ∈ T . The set of leaves is
denoted L(T ).

Definition 1. A continuum tree is an R-tree (T , d,ρ,μ) with a choice of root and probability measure such that μ is
non-atomic, μ(L(T )) = 1, and for every non-leaf vertex w, μ{v ∈ T : [[ρ,v]] ∩ [[ρ,w]] = [[ρ,w]]} > 0.

The last condition says that there is a positive mass of leaves above every non-leaf vertex. We will usually just
refer to a continuum tree T , leaving the metric, root, and measure as implicit. A continuum random tree (CRT) is an
(Mw,dGHP) valued random variable that is almost surely a continuum tree. The continuum random trees we will be
interested in are those associated with self-similar fragmentation processes.

2.4. Self-similar fragmentations

In this section, we recall the basic facts about self-similar fragmentations, see [3, Chapter 3] for details. For any set B ,
let PB be the set of countable partitions of B , that is, countable collections of disjoint sets whose union is B . For
n ∈ N := N ∪ {∞}, let Pn := P[n], where [n] = {1, . . . , n} and [∞] = N. Suppose that π = (π1,π2, . . .) ∈ Pn (here
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and throughout we index the blocks of π in increasing order of their least elements), and B ⊆N. Define the restriction
of π to B , denoted by π|B or π ∩ B , to be the partition of [n] ∩ B whose elements are the blocks πi ∩ B , i ≥ 1. We
equip Pn with the topology induced by the metric d(π,σ ) := (inf{i: π ∩ [i] �= σ ∩ [i]})−1.

Definition 2 (Definition 3.1 in [3]). Consider two blocks B ⊆ B ′ ⊆ N. Let π be a partition of B with #π = n non-
empty blocks (n = ∞ is allowed), and π(·) = {π(i), i ∈ [n]} be a sequence in PB ′ . For every integer i, we consider the
partition of the ith block πi of π induced by the ith term π(i) of the sequence π(·), that is,

π
(i)
|πi

= (
π

(i)
j ∩ πij ∈ N

)
.

As i varies in [n], the collection {π(i)
j ∩ πi : i, j ∈ N} forms a partition of B , which we denote by Frag(π,π(·)) and

call the fragmentation of π by π(·).

We will use the Frag function to define the transition kernels of our fragmentation processes. Define

S↓ =
{

(s1, s2, . . .): s1 ≥ s2 ≥ · · · ≥ 0,

∞∑
i=1

si ≤ 1

}

and

S1 =
{

(s1, s2, . . .) ∈ [0,1]N
∣∣∣ ∞∑

i=1

si ≤ 1

}
,

and endow both with the topology they inherit as subsets of [0,1]N with the product topology. Observe that S↓
and S1 are compact. For a partition π ∈ P∞, we define the asymptotic frequency |πi | of the ith block by |πi | =
limn→∞ n−1|πi ∩ [n]|, provided this limit exists. If all of the blocks of π have asymptotic frequencies, we define
|π | ∈ S1 by |π | = (|π1|, |π2|, . . .).

Definition 3 (Definition 3.3 in [3]). Let (Π(t), t ≥ 0) be an exchangeable, càdlàg P∞-valued process such that
Π(0) = 1N := (N,0, . . .) and such that

1. Π(t) almost surely possesses asymptotic frequencies |Π(t)| simultaneously for all t ≥ 0 and
2. if we denote by Bi(t) the block of Π(t) which contains i, then the process t �→ |Bi(t)| has right-continuous paths.

We call Π a self-similar fragmentation process with index α ∈ R if and only if, for every t, t ′ ≥ 0, the conditional
distribution of Π(t + t ′) given Ft is that of the law of Frag(π,π(·)), where π = Π(t) and π(·) = (π(i), i ∈ N) is a
family of independent random partitions such that for i ∈N, π(i) has the same distribution as Π(t ′|πi |α).

Suppose, for the moment, that Π is a self-similar fragmentation process with α = 0 (these are also called homoge-
neous fragmentations). In this case Π is a Feller process as is Π|[n] for every n. For π ∈ Pn \ {1[n]}, let

qπ = lim
t→0+

1

t
P
(
Π|[n](t) = π

)
.

For π ∈ Pn and n′ ∈ {n,n + 1, . . . ,∞}, define Pn′,π = {π ′ ∈ Pn′ : π ′|[n] = π}. One way to construct a homogeneous

fragmentation is by specifying these transition rates, which can be done using measures on S↓. The basic building
blocks are the so called paintbox partitions that correspond to elements of S↓ as follows. Let (U1,U2, . . .) be a
sequence of i.i.d. uniform (0,1) random variables and for s ∈ S↓, let ρs be the law of the partition defined by i and j

are in the same block if and only if there exists k such that for � ∈ {i, j}
k∑

m=1

sm ≤ U� <

k+1∑
m=1

sm.
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Theorem 2 (see Propositions 3.2 and 3.3 in [3]). Given a measure ν on S↓ such that ν({1}) = 0 and
∫
S↓(1 −

s1)ν(ds) < ∞, define a measure ρν on P∞ by

ρν(·) =
∫

s∈S↓
ρs(·)ν(ds).

Then there is a unique homogeneous fragmentation such that qπ = ρν(P∞,π ) for all π ∈⋃n(Pn \ {1[n]}).

If Π0(t) is a homogenous fragmentation corresponding to a measure ν as in the above theorem, we will call ν the
splitting measure Π0(t). If α < 0, we can construct an α-self-similar fragmentation from Π0 by a time change. Let
π(i, t) be the block of Π0 that contains i at time t and define

Ti(t) = inf

{
u ≥ 0:

∫ u

0

∣∣π(i, r)
∣∣−α dr > t

}
.

For t ≥ 0, let Π(t) be the partition such that i, j are in the same block of Π(t) if and only if they are in the same
block of Π0(Ti(t)). Then (Π(t), t ≥ 0) is a self-similar fragmentation. Moreover, for we call (α, ν) a fragmentation
pair and we call (Π(t), t ≥ 0) a fragmentation with characteristics (α, ν).

We will need trees associated to fragmentations with characteristics (α, ν), where α < 0 and ν(
∑

i si < 1) = 0;
henceforth, we let Π be such a self-similar fragmentation. The tree associated a fragmentation processes Π is a contin-
uum random tree that keeps track of when blocks split apart and the sizes of the resulting blocks. For a continuum tree
(T ,μ) and t ≥ 0, let T1(t), T2(t), . . . be the tree components of {v ∈ T : ht(v) > t}, ranked in decreasing order of μ-
mass. We call (T ,μ) self-similar with index α < 0 if for every t ≥ 0, conditionally on (μ(Ti(t)), i ≥ 1), (Ti(t), i ≥ 1),
equipped with the restriction of μ normalized to be a probability measure, has the same law as (μ(Ti(t))

−αT (i), i ≥ 1)

where the T (i)’s are independent copies of T .
The following summarizes the parts of Theorem 1 and Lemma 5 in [4] that we will need.

Theorem 3. Let Π be a (α, ν)-self-similar fragmentation with α < 0 and ν as above and let F := |Π |↓ be its ranked
sequence of asymptotic frequencies. There exists an α-self-similar CRT (T−α,ν,μ−α,ν) such that, writing F ′(t) for the
decreasing sequence of masses of the connected components of {v ∈ T−α,ν : ht(v) > t}, the process (F ′(t), t ≥ 0) has
the same law as F . Furthermore, T−α,ν is a.s. compact.

The choice of where to put negative signs in the notation in the above theorem is to conform with the notation
of [5].

Definition 4. The Brownian CRT is the −1/2-self-similar random tree with dislocation measure ν2 given by

∫
S↓

ν2(ds)f (s) =
∫ 1

1/2

√
2

πs3
1 (1 − s1)3

ds1f (s1,1 − s1,0,0, . . .).

2.5. Convergence of Markov branching trees

We first recall some of the main results of [5]. Let A ⊆ Z
+ and let (qn) be a compatible sequence of probability

measures satisfying the conditions of Section 2.2. Define q̄n to be the push forward of qn to S↓ by λ �→ λ/
∑

i λi .

Theorem 4 (Theorems 1 and 2 in [5]). Suppose that A = {0} or A = Z
+. Further suppose that there is a fragmenta-

tion pair (−γ, ν) with 0 < γ < 1 and a function � : (0,∞) → (0,∞), slowly varying at ∞ (or γ = 1 and �(n) → 0)
such that, in the sense of weak convergence of finite measures on S↓, we have

nγ �(n)(1 − s1)q̄n(ds) → (1 − s1)ν(ds).
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Let Tn have law Pq
n and view Tn as a random element of Mw with the graph distance and the uniform probability

measure μ∂ATn on ∂ATn = {v ∈ Tn: degv ∈ A}. Then we have the convergence in distribution

1

nγ �(n)
Tn → Tγ,ν,

with respect to the rooted Gromov–Hausdorff–Prokhorov topology.

The case where A = {0} is a special case of Theorem 1 in [5] and the case A = Z
+ is Theorem 2 in the same paper.

The case A = Z
+ is proved by reduction to the A = {0} case. We extend this to the case of general A. Fix, for the

moment, a tree t . For a vertex v ∈ t , let tv be the subtree of t above v. We call the elements of {tv: v ∈ t} the fringe
subtrees of t and say that v is the root of tv . Furthermore, we partially order the fringe subtrees of t by inclusion.

Theorem 5. The conclusions of Theorem 4 are valid if the only assumption on A ⊆ Z
+ is that 0 ∈ A. If 0 /∈ A, the

conclusions of Theorem 4 remain valid if we further assume that Δn = o(nγ �(n)) in probability, where Δn is the
maximal diameter of all fringe subtrees of t of Tn such that #At = 0.

Remark 4. The condition that Δn = o(nγ �(n)) in probability expresses a relationship between the number of subtrees
that have no vertices with out-degree in A and the height of these trees. For example, it is always satisfied if there is
a uniform upper bound on the trees in the support of Pq

0 . In our application to Galton–Watson trees, this condition
is easily checked, but it may be of interest to investigate general conditions on Pq

0 and (qnk
)k≥1 that guarantee it is

satisfied.

We will prove Theorem 5 by reduction to Theorem 4. For a tree t , we define t◦ to be the tree obtained from t as
follows:

1. Attach a mark to each vertex in t whose out-degree is in A.
2. For each vertex v, delete the tree tv (which is the subtree of t above v) if it contains no marked vertices.
3. For each vertex v, if tv is a maximal among fringe subtrees containing exactly one marked vertex, replace tv by a

marked leaf.
4. Attach a leaf to each marked vertex that is not a leaf at the completion of Step 3.
5. Remove all the marks from the tree.

Suppose that (qnk
)k≥1 satisfies the hypotheses above. For notational convenience we extend qn to

⋃
k P̄A

k by setting
qn(λ) = 0 for λ /∈ P̄A

n . Define measures

q1
n(λ) =

∞∑
k=0

qn

(
(λ,0k)

)
1
(
p(λ) + k /∈ A

)
and q2

n(λ) =
∞∑

k=0

qn

(
(λ,0k)

)
1
(
p(λ) + k ∈ A

)
.

We can then define probability measures q◦
n on P̄{0}

n by q◦
1 (∅) = 1 and for n ≥ 2

q◦
n(λ) =

⎧⎨
⎩

q1
n(λ) if λp(λ) ≥ 2,

q1
n(λ) + q2

n

(
λ′) if λ = (λ′,1),

0 otherwise.

Lemma 2. If n ≥ 1 and Tn is distributed like Pq
n then T ◦

n is distributed like Pq◦
n .

Proof. We proceed by induction on n. For n = 1, it is clear from Step 3 in the construction of T ◦
1 that T ◦

1 is a tree with

a single vertex; Pq◦
n is concentrated on this tree since q◦

1 (∅) = 1. For n ≥ 2, we condition on the root partition. First

suppose that the root partition is not of the form (n,0k). In this case, in both T ◦
n and a tree with law Pq◦

n , given the
root partition the subtrees attached to the root are independent and have the appropriate distributions by the inductive
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hypothesis. When the root partition is of the form (n,0k) note that in both trees the lowest vertex whose out-degree is
not 1 is attached to the root by a path of geometric length and the parameters of the geometric variable are the same.
Moreover, in both T ◦

n and a tree distributed like Pq◦
n , the fringe subtree above the lowest vertex whose out-degree is

not 1 is distributed like the tree conditioned on the root vertex not being of the form (n,0k). Thus, by induction, we
need only check that the laws of the partitions at the root agree. This, however, is immediate from the construction
of q◦

n . �

Lemma 3. If

nγ �(n)(1 − s1)q̄n(ds) → (1 − s1)ν(ds),

then

nγ �(n)(1 − s1)q̄
◦
n(ds) → (1 − s1)ν(ds).

Proof. Let f :S↓ → R be Lipschitz continuous (with respect to the uniform norm) with both the uniform norm and
Lipschitz constant bounded by K . For λ = (λ1, . . . , λr ,0k) with λr ≥ 1, define r(λ) = r and ι(λ) = (λ1, . . . , λr ,1,0k).
Observe that for λ ∈ P̄n,

∣∣∣∣f
(

ι(λ)

n + 1

)
− f

(
λ

n

)∣∣∣∣≤ K

r(λ)∑
i=1

λi

n(n + 1)
+ K

n + 1
= 2K

n + 1
.

Letting g(s) = (1 − s1)f (s), we have

∣∣q̄◦
n(g) − q̄n(g)

∣∣ ≤ ∑
λ∈P̄A

n ∩P̄n−1

qn(λ)

∣∣∣∣
(

1 − λ1

n

)
f

(
ι(λ)

n

)
−
(

1 − λ1

n − 1

)
f

(
λ

n − 1

)∣∣∣∣
≤

∑
λ∈P̄A

n ∩P̄n−1

qn(λ)

(
Kλ1

n(n − 1)
+ 2K

n

)

≤ 3K

n
.

Multiplying by nγ �(n), we see that this upper bound goes to 0 and the result follows. �

Proof of Theorem 5. Let T 1
n be the tree obtained from Tn by removing all of the maximal fringe subtrees containing

no vertices with out-degree in A. By hypothesis, we have

dGHP

(
1

nγ �(n)
T 1

n ,
1

nγ �(n)
Tn

)
≤ 1

nγ �(n)
Δn → 0

in probability. Note that leaves in T 1
n correspond to the unique vertices with out-degree in A in the fringe subtrees

of Tn that are maximal among fringe subtrees with exactly one vertex with out-degree in A. By construction, these
vertices are attached to the rest of Tn by independent spines of geometric length with parameter 1 −∑

j≥0 q1((1,0j )).

Let T 2
n be the tree obtained from T 1

n by replacing these spines by a single vertex and moving the mass from the tip of
this spine to the single vertex. Since the maximum length of the spines altered in the creation of T 2

n is O(log(n)) in
probability, we have

dGHP

(
1

nγ �(n)
T 1

n ,
1

nγ �(n)
T 2

n

)
→ 0



521

in probability. Here we have applied Lemma 1 to obtain the Prokhorov part of this convergence with f being the map
that takes a vertex at the top of a spine to the single vertex replacing the spine. Finally, observe that T ◦

n differs from
T 2

n only by the attachment of some additional leaves with a corresponding adjustment of the mass measure. Thus

dGHP

(
1

nγ �(n)
T 2

n ,
1

nγ �(n)
T ◦

n

)
→ 0

in probability. Since (nγ �(n))−1T ◦
n → Tγ,ν by Lemma 3 and Theorem 4, (nγ �(n))−1Tn → Tγ,ν as well. �

3. Galton–Watson trees

Let ξ = (ξi)i≥0 be a probability distribution with mean less than or equal to 1, and assume that ξ1 < 1. A Galton–
Watson tree with offspring distribution ξ is a random element T of T with law

GWξ (t) = P(T = t) =
∏
v∈t

ξdeg(v).

The fact that ξ has mean less than or equal to 1 implies that the right-hand side defines an honest probability distribu-
tion of T .

3.1. Otter–Dwass type formulae

In this section we develop a transformation of rooted ordered trees that takes Galton–Watson trees to Galton–Watson
trees. This transformation is motivated by the observation that the number of leaves in a Galton–Watson tree is dis-
tributed like the progeny of a Galton–Watson tree with a related offspring distribution. This simple observation was
first made in [10]. Let ξ = (ξi)i≥0 be a probability distribution with mean less than or equal to 1, and assume that
ξ1 < 1. Let T be a Galton–Watson tree with offspring distribution ξ and let

C(z) =
∞∑
i=1

P(#{0}T = i)zi

be the probability generating function of the number of leaves of T . Furthermore, let

φ(z) =
∞∑
i=0

ξi+1z
i .

Decomposing by the root degree, we see that C(z) satisfies the functional equation

C(z) = ξ0z + C(z)φ
(
C(z)

)
.

Solving for C(z) yields

C(z) = z

(
ξ0

1 − φ(C(z))

)
. (1)

Define

θ(z) = ξ0

1 − φ(z)
. (2)

Observe that θ has non-negative coefficients, [z0]θ(z) = ξ0/(1 − ξ1) and θ(1) = 1. Thus the coefficients of θ are a
probability distribution, call it ζ = (ζi)i≥0.
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Proposition 2. Let T be a Galton–Watson tree with offspring distribution ξ and let T ′ be a Galton–Watson tree with
offspring distribution ζ where ξ and ζ are related as above. Then for all k ≥ 1, P(#{0}T = k) = P(#Z+T ′ = k). Also,
T ′ is critical (subcritical) if and only if T is critical (subcritical).

Proof. Let C̃(z) be the probability generating function of #Z+T ′. A similar computation as the one above for C(z)

shows that C̃(z) satisfies the functional equation C̃(z) = zθ(C̃(z)), which is the same functional equation we showed
C(z) solves in Eq. (1). The Lagrange inversion formula thus implies that C(z) and C̃(z) have the same coefficients,
that is, that P(#{0}T = k) = P(#Z+T ′ = k) for all k. From Eq. (2), we see that θ ′(z) = ξ0φ

′(z)(1 − φ(z))2. Let α

be the mean of ξ . A short computation shows that φ′(1) = α − 1 + ξ0. Since φ(1) = 1 − ξ0, we see that the mean
of ζ is

θ ′(1) = ξ0(α − 1 + ξ0)

ξ2
0

= α − 1 + ξ0

ξ0
,

and the criticality (subcriticality) claim follows. The same approach can also be used to obtain higher moments of ζ .
�

Corollary 1. Let Fn be an ordered forest of n independent Galton–Watson trees all with offspring distribution ξ .
Let ζ be related to ξ as in Proposition 2. Let (Xi)i≥1 be an i.i.d. sequence of ζ distributed random variables and let
Sk =∑k

i=1(Xi − 1). Let #{0}Fn denote the number of leaves in Fn. Then for 1 ≤ k ≤ n

P(#{0}Fk = n) = k

n
P(Sn = −k).

Proof. This follows immediately from Proposition 2 and the Otter–Dwass formula (see [11]). �

This relationship between T and T ′ can also be proved in a more probabilistic fashion. Indeed, by taking such an
approach we can get a more general result that includes the results in [10] as a special case. The idea is a lifeline
construction. We follow the depth-first walk around the tree and when we encounter a vertex whose degree is in A we
label any unlabeled edges on the path from this vertex to the root with the label of this vertex. This labeled path can
be considered the lifeline of the vertex. A new tree is constructed by letting the root be first vertex encountered whose
degree is in A and attaching vertices whose degree is in A to the earliest vertex whose lifeline touches its own. We
will now go through this construction formally.

Suppose that t ∈ TA,n for some n ≥ 1 and label the vertices of t whose out-degrees are in A by the order they
appear in the depth first walk of t . We will now color a subset of the edges of t . For each edge e ∈ t , let te be the
component of t \ e that does not contain the root. Color e with the smallest number that is the label of a vertex in te ,
leaving e uncolored if te contains no labeled vertices. Note that for any 1 ≤ k ≤ n the subtree spanned by the vertices
with labels {1, . . . , k} and the root is colored by {1, . . . , k} and an edge is colored by an element in {1, . . . , k} if and
only if it is in this subtree. Furthermore, the path from the vertex with label k to any edge colored k contains only
edges colored k. See Fig. 1 for an example of such a coloring when A = {0}. Call two edges of t adjacent if they share
a common vertex.

Lemma 4. If t is colored as above and 2 ≤ j ≤ n, then there is exactly one edge colored j that is adjacent to an edge
with a smaller color.

Proof. The essential property of the labeling is that labels are non-increasing along the path from a labeled vertex to
the root. First we show existence. Consider the path from vertex with label j to the root. Let e be the last edge this
path that is not contained in the subtree spanned by vertices {1, . . . , j − 1}. By construction this edge is colored j and
is adjacent to an edge colored by an element of {1, . . . , j − 1}.

To see uniqueness, note that all of labeled edges in the subtree above e have color at least j and all of the edges
colored j are in the subtree above e. Thus e is the only edge colored e that is adjacent to an edge with a smaller
color. �



523

Fig. 1. A colored tree and its image under ∨ when A = {0}.

With t labeled as above we define a rooted plane tree with n vertices, called the life-line tree and denoted ť , as
follows. The vertex set of ť is {1,2, . . . , n}, 1 is the root. Furthermore, if i < j , i is adjacent to j if i is the smallest
number such that there exist adjacent edges e1, e2 in t with e1 colored i and e2 colored j . Finally, the children of a
vertex are ordered by the appearance of the corresponding vertices with out-degree in A in the depth-first search of t .
See Fig. 1 for an example of this map when A = {0}.

Lemma 5. The life-line tree is a connected acyclic graph.

Proof. Suppose that ť has at least two components. Let j be the smallest vertex not in the same component as 1. By
Lemma 4, there exists 1 ≤ i < j and adjacent edges e1, e2 in t labeled i and j , respectively. Thus i is adjacent to j ,
a contradiction.

Suppose that ť contains a cycle. Let j be the largest vertex in this cycle. Then j is adjacent to two smaller vertices,
contradicting our definition of ť . �

Using this construction we can prove the following theorem.

Theorem 6. Fix A ⊆ Z+ and let T ′ be a critical or subcritical Galton–Watson tree with non-degenerate offspring
distribution ξ and let T be T ′ conditioned to have at least one vertex with out-degree in A. Let (Xi)i≥1 be i.i.d.
random variables with distribution ξ . Let N(X) = inf{k: Xk ∈ A} and τ−1(X) = inf{k:

∑k
i=1(Xi − 1) = −1}. Let X̃

be distributed like

(
1 +

N(X)∑
i=1

(Xi − 1)

)
given

(
N(X) ≤ τ−1(X)

)
.

Finally, introduce the random variable Y such that, conditionally given X̃ = k, Y is binomially distributed with pa-
rameters k and p = P(N(X) ≤ τ−1(X)). Then Ť is distributed like a Galton–Watson tree whose offspring distribution
is the law of Y . Moreover, if T ′ is critical then so is Ť (i.e., EY = 1) and if additionally 0 < Var(ξ) = σ 2 < ∞ then
Var(Y ) = P(N(X) ≤ τ−1(X))2σ 2/ξ(A). We let ξ̌ be the law of Y .

The claims about the mean and variance of Y in this theorem are very important for our purposes as they are what
allow us to derive the constants in Theorem 1. As such, we separate out the computation of these constants into its
own lemma.
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Lemma 6. Let be Y as defined in Theorem 6. If ξ has mean 1 then EY = 1. If additionally 0 < Var(ξ) = σ 2 < ∞
then Var(Y ) = P(N(X) ≤ τ−1(X))2σ 2/ξ(A).

Proof. Let p = P(N(X) ≤ τ−1(X)). By conditioning on the value of X̃, we see that

EY = EY =
∞∑

k=1

kpP(X̃ = k) = pEX̃

and

EY 2 =
∞∑

k=1

(
kp(1 − p) + k2p2)

P(X̃ = k) = p(1 − p)EX̃ + p2
EX̃2.

This reduces the problem to computing the moments of X̃. Assume that ξ has mean 1, so that EXi = 1. By Wald’s
first equation we have

1 = E

[
1 +

N(X)∑
i=1

(Xi − 1)

]
= 1 +E

[
N(X)∑
i=1

(Xi − 1),N ≤ τ−1(X)

]
+E

[
N(X)∑
i=1

(Xi − 1),N(X) > τ−1(X)

]
.

Using the strong Markov property of (Xi)i≥1 at the stopping time τ−1 and Wald’s first equation again we see that

E

[
N(X)∑
i=1

(Xi − 1),N(X) > τ−1(X)

]
= P

(
N(X) > τ−1(X)

)(−1 +E

[
N(X)∑
i=1

(Xi − 1)

])
= −P

(
N(X) > τ−1(X)

)
.

Therefore EX̃ = P(N(X) ≤ τ−1(X))−1 = p−1 and consequently EY = pEX̃ = 1.
Now assume additionally that 0 < Var(ξ) < ∞. Wald’s second equation shows that

σ 2

ξ(A)
= E

([
N(X)∑
k=1

(Xk − 1)

]2)

= E

([
N(X)∑
k=1

(Xk − 1)

]2

,N(X) ≤ τ−1(X)

)
+E

([
N(X)∑
k=1

(Xk − 1)

]2

,N(X) > τ−1(X)

)
.

Using the same Markov property trick as in the previous computation, we see that

E

([
N(X)∑
k=1

(Xk − 1)

]2

,N(X) > τ−1(X)

)
= P

(
N(X) > τ−1(X)

)(
1 + σ 2

ξ(A)

)
.

Consequently

EX̃2 = 1

P(N(X) ≤ τ−1(X))
E

([
1 +

N(X)∑
k=1

(Xk − 1)

]2

,N(X) ≤ τ−1(X)

)

= 1 + 2p−1
E

[
N(X)∑
i=1

(Xi − 1),N(X) ≤ τ−1(X)

]
+ p−1

E

([
N(X)∑
k=1

(Xk − 1)

]2

,N(X) ≤ τ−1(X)

)

= 1 + 2p−1(1 − p) + p−1
[

σ 2

ξ(A)
− (1 − p)

(
1 + σ 2

ξ(A)

)]

= p−1 + σ 2

ξ(A)
.
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Fig. 2. The black nodes are the right spine of the vertex v.

Thus

Var(Y ) = EY 2 − 1 = (1 − p) + p2
(

p−1 + σ 2

ξ(A)

)
− 1 = p2 σ 2

ξ(A)
,

as desired. �

Our proof of Theorem 6 will proceed by induction. The first step is to analyze the degree of the root of Ť . To do
this, we need some notation. For a vertex v ∈ t define the spine of v to be the vertices in t that are children of v or
children one of v’s ancestors. The right spine of v, denoted rspine(v), is the subset of the spine of v consisting of
vertices that appear after v in the depth-first walk of t (see Fig. 2).

Lemma 7. The distribution of the degree of the root of Ť is ξ̌ .

Proof. Let (v1, . . . , vn) be the vertices of T in depth first order and let v be the first vertex along the depth first path
of T such that deg(v) ∈ A. The degree of the root of Ť is the number of vertices in rspine(v) that are the root of a
fringe subtree with at least one vertex whose out-degree is in A. Furthermore, it is clear from the definition of Galton–
Watson trees that the fringe subtrees of T rooted at the vertices in rspine(v) are conditionally independent given the

number of vertices in rspine(v). Hence, conditionally given # rspine(v), the degree of the root of Ť has distribution
Bin(# rspine(v),p), where p = P(N(X) ≤ τ−1(X)) as above. An easy combinatorial argument shows that if k is the
index of v in the depth first order of T , then

# rspine(v) = 1 +
k∑

i=1

(
deg(vi) − 1

)
.

It is now immediate that the degree of the root of Ť has distribution ξ̌ . �

Proof of Theorem 6. It follows from Lemma 7 that the probability that Ť has a single vertex equals P(Y = 0). We
will proceed by induction on the number of vertices of t to show that for all t

P(Ť = t) =
∏
v∈t

P
(
Y = deg(v)

)
.

Suppose the claim is true for all trees s with fewer than n vertices and let t be a tree with n vertices. Let r be the
degree of the root of t and let (t1, . . . , tr ) be the subtrees of t attached to the root.

Let us consider the set S = {s ∈ T : š = t}, so we are trying to find P(T ∈ S). Fix s ∈ S and let vs be the first vertex
along the depth first walk of s whose out-degree is in A. Let (w1, . . . ,wd) be the elements of rspine(v) listed by order
of appearance on the depth first walk of s. For 1 ≤ i ≤ d , let si be the subtree of s rooted at wi . Since š = t , there
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is a set J ⊆ {1, . . . , d} of size r such that si contains a vertex with out-degree in A if and only if i ∈ J . Let ρ be the
unique increasing bijection from {1, . . . , r} to J . Then, again since š = t , it follows from the recursive nature of the
construction of š that ti = šρ(i). It follows from these considerations that

P(T ∈ S) =
∞∑

d=r

∑
s∈S:# rspine(vs )=d

P(T = s) =
∞∑

d=r

P
(
rspine(vT ) = d

)(d

r

)
(1 − p)d−r

r∏
j=1

P
(
Ť ′ = tj

)
,

where we have continued to use p = P(N(X) ≤ τ−1(X)). Since ti has fewer vertices than t , it follows from the
induction hypothesis that

P
(
Ť ′ = ti

)= pP(Ť = ti ) = p
∏
v∈ti

P
(
Y = deg(v)

)
.

Thus

P(Ť = t) =
[

r∏
j=1

∏
v∈tj

P
(
Y = deg(v)

)] ∞∑
d=r

P
(
rspine(vT ) = d

)(d

r

)
(1 − p)d−rpr

=
[

r∏
j=1

∏
v∈tj

P
(
Y = deg(v)

)]
P(Y = r)

=
∏
v∈t

P
(
Y = deg(v)

)
,

which shows that Ť is a Galton–Watson tree with the appropriate offspring distribution. �

Note that T has n vertices with out-degree in A if and only if Ť has n vertices. This allows us to deduce the
following corollary.

Corollary 2. Let Fn be an ordered forest of n independent Galton–Watson trees with critical or subcritical offspring
distribution ξ . Let (Yi)i≥0 be i.i.d. with common distribution ξ̌ (see Theorem 6 for the definition of ξ̌ ) and let Si = (Y1 −
1) + · · · + (Yi − 1). Also, let FY

n an ordered forest of n independent Galton–Watson trees with offspring distribution
ξ̌ and let Zn be independent with distribution Bin(n,P(N ≤ τ−1)). Then

P(#AFn = k) =
n∑

j=0

j

k

(
n

j

)
P(N ≤ τ−1)

j
P(N > τ−1)

n−j
P(Sk = −j) = P

(
#FY

Zn
= k

)
.

We remark that when n = 1 a similar formula was obtained in [1] by different methods.

Proof of Corollary 2. The sum is obtained by decomposing P(#AFn = k) according to which j trees in the forest
have a positive number of vertices with out-degree in A. Conditionally given which trees these are, Otter–Dwass
formula to obtain the formula for the number of vertices in a forest of j independent Galton–Watson trees distributed
like Ť . One then sums over the possible sets of j trees. �

3.2. The partition at the root

Let ξ = (ξi)i≥0 be a probability distribution with mean 1 and variance 0 < σ 2
1 < ∞. Let T be a Galton–Watson tree

with offspring distribution ξ (denote the law of T by GWξ ). Let A ⊆ Z
+ and construct Ť as above. By Theorem 6, Ť is

a Galton–Watson tree with offspring distribution ξ̌ . Again by Theorem 6, ξ̌ has mean 1 and variance σ 2 = γ 2σ 2
1 /ξ(A),

where γ := P(#AT ≥ 1) (see Lemma 6 for computations of the moments of ξ̌ ). Assume that for sufficiently large n,
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P(#AT = n) > 0. Let T A
n be T conditioned to have exactly n vertices with out-degree in A (whenever this conditioning

makes sense).
For a t be rooted unordered tree with exactly n vertices with out-degree in A, let ΠA(t) be the partition of n or n−1

(depending on whether or not the degree of the root of t is in A) defined by the number of vertices with out-degree in
A in the subtrees of t attached to the root. We also adopt the convention ΠA(•) = ∅, that is, the partition at the root
of the tree with one vertex is the emptyset.

Lemma 8. (i) Considered as an unordered tree, the law of T A
n is equal to Pq

n where q0 is the law of T A
0 if 0 /∈ A and

for n ≥ 1 such that T A
n is defined, and λ = (λ1, . . . , λp) ∈ P̄A

n , we have

qn(λ) = P
(
ΠA

(
T A

n

)= λ
)= p!∏

j≥1 mj(λ)!ξ(p)

∏p

i=1 P(#AT = λi)

P(#AT = n)
.

(ii) Let X1,X2, . . . be i.i.d. distributed like #AT and τk = X1 + · · · + Xk . We have

P
(
p
(
ΠA

(
T A

n

))= p
)= ξ(p)

P(τp = n − 1(p ∈ A))

P(τ1 = n)
,

and P(ΠA(T A
n ) ∈ · | {p(ΠA(T A

n )) = p}) is the law of a non-increasing rearrangement of (X1, . . . ,Xp) conditionally
on X1 + · · · + Xp = n − 1(p ∈ A).

Proof. (i) Letting c∅(T A
n ) be the root degree of T A

n and a1, . . . , ap ∈ N with sum n − 1(p ∈ A) we have

P
(
c∅
(
T A

n

)= p,#A

[(
T A

n

)
i

]= ai,1 ≤ i ≤ p
)= ξ(p)

∏p

i=1 P(#AT = ai)

P(#AT = n)
. (3)

Part (i) now follows by considering the number of sequences (a1, . . . , ap) with the same decreasing rearrangement.
(ii) This follows from Eq. (3). �

To simplify notation, let qn be the law of ΠA(T A
n ) and let 1p = 1(p ∈ A). Let (Sr , r ≥ 0) be a random walk with

step distribution (ξ̌i+1, i ≥ −1). Furthermore, since γ = P(#AT ≥ 1). By Corollary 2, we have

qn

(
p(λ) = p

)= nξ(p)

(n − 1p)γP(Sn = −1)

p∑
j=0

(
p

j

)
γ j (1 − γ )p−j jP(Sn−1p

= −j), (4)

where ξ̂ (p) = pξ(p) is the size-biased distribution of ξ .
Define q̄n to be the pushfoward of qn onto S↓ by the map λ �→ λ/

∑
i λi .

For a sequence (x1, x2, . . .) of non-negative numbers such that
∑

i xi < ∞, let i∗ be a random variable with

P
(
i∗ = i

)= xi∑
j≥1 xj

.

The random variable x∗
1 = xi∗ is called a size-biased pick from (x1, x2, . . .). Given i∗, we remove the i∗th entry

from (x1, x2, . . .) and repeat the process. This yields a random re-ording (x∗
1 , x∗

2 , . . .) of (x1, x2, . . .) called the size-
biased order (if ever no positive terms remain, the rest of the size-biased elements are 0). Similarly for a random
sequence (X1,X2, . . .) we define the size-biased ordering by first conditioning on the value of the sequence. For any
non-negative measure μ on S↓, define the size-biased distribution μ∗ of μ by

μ∗(f ) =
∫
S↓

μ(ds)E
[
f
(
s∗)],

where s∗ is the size-biased reordering of s.
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Define the measure ν2 on S↓ by

∫
S↓

ν2(ds)f (s) =
∫ 1

1/2

√
2

πs3
1 (1 − s1)3

ds1f (s1,1 − s1,0,0, . . .).

Theorem 7. With the notation above,

lim
n→∞n1/2(1 − s1)q̄n(ds) = σ1

√
ξ(A)

2
(1 − s1)ν2(ds),

where the limit is taken in the sense of weak convergence of finite measures.

Proof. We follow the reductions in Section 5.1 of [5]. By Lemma 16 in [5] (which is a easy variation of Proposition 2.3
in [3]) it is sufficient to show that

lim
n→∞n1/2((1 − s1)q̄n(ds)

)∗ = σ1
√

ξ(A)

2

(
(1 − s1)ν2(ds)

)∗
.

Note that for any finite non-negative measure μ on S↓ and non-negative continuous function f :S1 → R we have

(
(1 − s1)μ(ds)

)∗
(f ) =

∫
S1

μ∗(dx)(1 − max x)f (x).

Consequently the theorem follows from the following proposition. �

Proposition 3. Let f : S1 →R be continuous and let g(x) = (1 − max x)f (x). Then

√
nq̄∗

n(g) → σ1
√

ξ(A)√
2π

∫ 1

0

dx

x1/2(1 − x)3/2
g(x,1 − x,0, . . .).

First note that, by linearity, we may assume that f ≥ 0 and ‖f ‖∞ ≤ 1. We begin the proof of this proposition with
several lemmas regarding the concentration of mass of q̄∗

n .

Lemma 9. For every ε > 0,
√

nqn(p(λ) > ε
√

n) → 0 as n → ∞.

Lemma 10. For g as in Proposition 3 we have

lim
η↓0

lim sup
n→∞

√
nq̄∗

n

(|g|1{x1>1−η}
)= 0 and lim

n→∞
√

nq̄∗
n(1{x1<n−7/8}) = 0.

Lemma 11. For every η > 0 we have

lim
n→∞

√
nq̄∗

n(1{x1+x2<1−η}) = 0.

Lemma 12. There exists a function βη = o(η) as η ↓ 0 such that

lim
η↓0

lim inf
n→∞

√
nq̄∗

n(g1{x1<1−η,x1+x2>1−βη}) = lim
η↓0

lim sup
n→∞

√
nq̄∗

n(g1{x1<1−η,x1+x2>1−βη})

= σ1
√

ξ(A)√
2π

∫ 1

0

g((x,1 − x,0, . . .))

x1/2(1 − x)3/2
dx.

These lemma’s are generalizations of the lemmas in Section 5.1 in [5] to our current setting and the proofs are
essentially the same. We refer the reader to [5] for the proofs of Lemmas 9, 10, and 11. We include the proof of
Lemma 12 because it makes clear how the factor of

√
ξ(A) appears in the scaling limit.



529

Proof. Fix η > 0 and suppose that η′ ∈ (0, η). Using Lemmas 9 and 10 we decompose according to the events
{p(λ) > ε

√
n} and {x: x1 ≤ n−7/8} to get

√
nq̄∗

n(g1{x1<1−η,x1+x2>1−η′})

= o(1) + √
n

∑
1≤p≤εn1/2

qn

(
p(λ) = p

)

×
∑

n1/8≤m1≤(1−η)(n−1p)

(1−η′)(n−1p)≤m1+m2≤n−1p

E
[
g
((

m1,m2,X
∗
3, . . . ,X∗

p,0, . . .
)
/(n − 1p)

)|τp = n − 1p,X∗
1 = m1,X

∗
2 = m2

]

× pm1

n − 1p

((p − 1)m2)/(n − 1p)

1 − m1/(n − 1p)
P(X1 = m1)P(X2 = m2)

P(τp−2 = n − m1 − m2 − 1p)

P(τp = n − 1p)
. (5)

Observe that, if 1 ≥ x1 + x2 ≥ 1 − η′ and x1 ≤ 1 − η, then x2/(1 − x1) ≥ 1 − η′/η and (1 − x1)/x2 ≥ 1.
Using the local central limit theorem and Eq. (4) we observe that n and small ε, we have

1 − η ≤ qn(p(λ) = p)

ξ̂(p)
≤ 1 + η,

And similarly for sufficiently large n and small ε, we have

1 − η

σ
√

2π
≤ (γp)−1n3/2

P(τp = n) ≤ 1 + η

σ
√

2π

for all 1 ≤ p ≤ εn1/2. We note in particular that τ1 = X1 =d X2. Furthermore, for n1/8 ≤ m1 ≤ (1 − η)n and m1 +
m2 ≥ (1 − η′)n we have m2 ≥ (η − η′)n so that m1 and m2 go to infinity as n does. Thus, for large n (how large now
depends on η′) we have

(1 − η)2

2πσ 2
≤ γ −2(m1m2)

3/2
P(X1 = m1)P(X2 = m2) ≤ (1 + η)2

2πσ 2
.

Now, recall that f is uniformly continuous on S1. Furthermore, on the set {x ∈ S1: x1 + x2 > 3/4} we have max x =
x1 ∨ x2 and x �→ max x is thus uniformly continuous on this set. Therefore for η′ < (1/4) ∧ η2 sufficiently small we
have ∣∣g((m1,m2,m3, . . .)/n

)− g
(
(m1, n − m1,0, . . .)/n

)∣∣≤ η

for every (m1,m2, . . .) with sum n sufficiently large such that m1 + m2 ≥ (1 − η′)n. Take βη := η′.
Given the symmetry of the bounds we have just established it is easy to see that the proofs for the lim sup and

lim inf will be nearly identical, one using the upper bounds and the other the lower. We will only write down the proof
for the lim inf. For sufficiently large n we have that, up to addition of an o(1) term,

√
nq̄∗

n(g1{x1<1−η,x1+x2>1−η′}) is
bounded below by

(1 − η)3(1 − η′/η)

(1 + η)

∑
1≤p≤εn1/2

(p − 1)ξ̂ (p)
1

n − 1p

×
∑

n1/8≤m1≤(1−η)(n−1p)

(
g
(
(m1, n − m1 − 1p,0, . . .)/(n − 1p)

)− η
)

× 1

(m1/(n − 1p))1/2

1

(1 − m1/(n − 1p))3/2

1

σ
√

2π

×
∑

(1−η′)(n−1p)−m1≤m2≤n−m1−1p

P(τp−2 = n − m1 − m2 − 1p).
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Observe that this last sum is equal to
∑η′(n−1p)

m=0 P(τp−2 = m). By the local central limit theorem, this can be made
arbitrarily close to 1 independent of 1 ≤ p ≤ n1/2. Using the convergence of Riemann sums (again care must be taken
since the integral we get is improper), we have

lim inf
n→∞

√
nq̄∗

n(g1{x1<1−η,x1+x2>1−η′})

≥ (1 − η)3(1 − η′/η)

1 + η

∞∑
p=1

γ (p − 1)ξ̂ (p)

∫ 1−η

0

dx

σ
√

2πx1/2(1 − x)3/2

(
g(x,1 − x,0, . . .) − η

)
.

Letting η ↓ 0 coupled with observing that
∑∞

p=1(p − 1)ξ̂ (p) = σ 2
1 and recalling that σ 2 = γ 2σ 2

1 /ξ(A) completes the
proof. �

Proof of Proposition 3. Observe that∣∣q̄∗
n(g) − q̄∗

n(g1{x1<1−η,x1+x2>1−η′})
∣∣≤ q̄∗

n

(|g|1{x1≥1−η}
)+ q̄∗

n

(|g|1{x1+x2≤1−η′}
)
.

Fix ε > 0 and apply Lemmas 10 and 12 to find η,η′ such that

√
nq̄∗

n

(|g|1{x1≥1−η}
)
<

ε

2

and ∣∣∣∣√nq̄∗
n(g1{x1<1−η,x1+x2>1−βη}) − σ1

√
ξ(A)√
2π

∫ 1

0

g(x,1 − x,0,0, . . .)

x1/2(1 − x)3/2
dx

∣∣∣∣≤ ε

2

for large enough n. For this choice of η,η′ and large n we have∣∣∣∣√nq̄∗
n(g) − σ1

√
ξ(A)√
2π

∫ 1

0

g(x,1 − x,0,0, . . .)

x1/2(1 − x)3/2
dx

∣∣∣∣≤ ε + √
nq̄∗

n

(|g|1{x1+x2≤1−η′}
)
.

By Lemma 11 the upper bound goes to ε as n → ∞, and the result follows. �

As an immediate corollary of these results, we also identify the unnormalized limit of q̄n.

Corollary 3. q̄n
d→ δ(1,0,0,...).

Proof. Taking f ≡ 1 in Proposition 3 gives q̄n(1−s1) → 0. Since L1 convergence implies convergence in probability,
it follows that for all 0 < η < 1 we have q̄n(s1 ≥ η) → 1. �

Note that, as a consequence of Eq. (4), we have qn(p(λ) = p)) → ξ̂ (p). Thus, while the degree of the root vertex
may be large, only one of the trees attached to the root will have noticeable size.

3.3. Convergence of Galton–Watson trees

We are now prepared to prove Theorem 1, which, after all of our work above, is a rather straightforward. The hardest
work that remains is to show that Δn = o(nγ �(n)) in probability, where Δn is the maximal diameter of all fringe
subtrees of t of Tn such that #At = 0 when 0 /∈ A. This is accomplished by the next two lemmas.

Lemma 13. Let T A
n be a Galton–Watson tree conditioned to have exactly n vertices with out-degree in A. Then

#Z+T A
n

n
→ 1

ξ(A)

in probability.
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Proof. Let X = (Xn)n≥1 be an i.i.d. sequence with distribution ξ and let

τ−1(X) = inf

{
n:

n∑
k=1

(Xk − 1) = −1

}
.

Further define Nk(X) to be index of the kth occurrence in X of an element in A. Using the bijection between trees
and their depth first queues, we see that if T is a Galton–Watson tree with offspring distribution ξ then

P(#AT = n) = P
(
Nn(X) ≤ τ−1(X) < Nn+1(X)

)
and that #Z+T A

n is distributed like τ−1(X) conditioned on (Nn(X) ≤ τ−1(X) < Nn+1(X)). By Corollary 2 and the
local central limit theorem, we see that

P
(
Nn(X) ≤ τ−1(X) < Nn+1(X)

)= P(#AT = n) = P(N1(X) ≤ τ1(X))

n
P(Sn = −1) ∼ cn−3/2

for some c > 0, where Sn is as defined in Corollary 2. Furthermore, the large deviations concentration of Nn(X)

around 1/ξ(A) implies that for every ε > 0

P

(∣∣∣∣τ−1(X)

n
− 1

ξ(A)

∣∣∣∣> ε,Nn(X) ≤ τ−1(X) < Nn+1(X)

)

decays exponentially as n goes to infinity and the claim follows immediately. �

Lemma 14. Assume that 0 /∈ A and let T be a Galton–Watson tree with critical, finite variance offspring distribution
ξ and let T A

n be distributed like T conditioned to have exactly n vertices with out-degree in A. Under these conditions,
Δn = O(log(n)) in probability, where Δn is the maximal diameter of all fringe subtrees of t of Tn such that #At = 0.

Proof. Let v1, . . . , vd be the roots of the maximal fringe subtrees of T A
n that contain no vertices with out-degree in A,

indexed by order of appearance on the depth first walk of T A
n and let T1, . . . , Td be the fringe subtrees of T A

n rooted
at v1, . . . , vd , respectively. It follows from the elementary properties of Galton–Watson trees that, conditionally given
d , T1, . . . , Td are i.i.d. such that for t ∈ T u

A,0

P(T1 = t) = 1

P(#AT = 0)
P(T = t) =

∏
v∈t

P(#AT = 0)deg(v)−1ξdeg(v).

The last equality shows that T1 is distributed like a Galton–Watson tree with offspring distribution μ given by

μi = P(#AT = 0)i−1ξi1(i /∈ A).

Since ξ has mean 1 and 0 < P(#AT = 0) < 1 we see that μ has mean strictly less than 1. It follows that

P
(
height(T1) > k

)≤ βk,

where β is the mean of μ. In particular, the distribution of the height of T1 decays exponentially. By Lemma 13, there
is some C such that P(d ≤ Cn) → 1 as n → ∞. Observe that

P

(
max

1≤i≤d
height(Ti) > x,d ≤ Cn

)
≤ P

(
max

1≤i≤Cn
Zi > x

)
,

where (Zi, i ≥ 1) are i.i.d. distributed like height(T1). Since the distribution of height(T1) decays exponentially,
max1≤i≤Cn Zi grows logarithmically and the result follows. �

Proof of Theorem 1. Lemma 8 shows that T A
n has law Pq

n for a particular choice of (qn)n≥1. Theorem 7 and
Lemma 14 then show that the hypotheses of Theorem 5 are satisfied. �
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