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Abstract. We consider a model for random walks on random environments (RWRE) with a random subset of Zd as the vertices,
and uniform transition probabilities on 2d points (the closest in each of the coordinate directions). We prove that the velocity of
such random walks is almost surely zero, give partial characterization of transience and recurrence in the different dimensions
and prove a Central Limit Theorem (CLT) for such random walks, under a condition on the distance between coordinate nearest
neighbors.

Résumé. Nous considérons un modèle de marches aléatoires en milieu aléatoire ayant pour sommets un sous-ensemble aléatoire de
Z

d et une probabilité de transition uniforme sur 2d points (les plus proches voisins dans chacune des directions des coordonnées).
Nous prouvons que la vitesse de ce type de marches est presque sûrement zéro, donnons une caractérisation partielle de transience et
récurrence dans les différentes dimensions et prouvons un théorème central limite (CLT) pour de telles marches sous une condition
concernant la distance entre plus proches voisins.
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1. Introduction

1.1. Background

Random walks on random environments is the object of intensive mathematical research for more than 3 decades.
It deals with models from condensed matter physics, physical chemistry, and many other fields of research. The
common subject of all models is the investigation of particles movement in inhomogeneous media. It turns out that
the randomness of the media (i.e., the environment) is responsible for some unexpected results, especially in large
scale behavior. In the general case, the random walk takes place in a countable graph (V ,E), but the most investigated
models deals with the graph of the d-dimensional integer lattice, i.e., Zd . For some of the results on those models see
[7,14,21] and [26]. The definition of RWRE involves two steps: First the environment is randomly chosen according
to some given distribution, then the random walk, which takes place on this fixed environment, is a Markov chain
with transition probabilities that depend on the environment. We note that the environment is kept fixed and does not
evolve during the random walk, and that the random walk, given the environment, is not necessarily reversible. The
questions on RWRE come in two major flavors: Quenched, in which the walk is distributed according to a given typical
environment, and annealed, in which the distribution of the walk is taken according to an average on the environments.

1Research was partially supported by ERC StG grant 239990.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/13-AIHP593
mailto:berger@math.huji.ac.il
mailto:ron.rosenthal@math.ethz.ch


728 N. Berger and R. Rosenthal

There are two main differences between the quenched and the annealed laws: First the quenched is Markovian, while
the annealed distribution is usually not. Second, in most models there is some additional assumption of translation
invariance of the environments, which implies that the annealed law is translation invariance, while the quenched law
is not.

In contrast to most of the models for RWRE on Z
d , this work deals with non-nearest neighbor random walks.

In our case this is most expressed in the estimation of E[|Xn|]. Unlike nearest neighbor models we don’t have an
a priori estimation on the distance made in one step. Nonetheless using an ergodic theorem by Nevo and Stein we
managed to bound the above and therefore to show that the estimation E[|Xn|] ≤ c(ω)

√
n still holds. The subject of

non nearest neighbor random walks has not been systematically studied. For results on long range percolation see [2].
For literature on the subject in the one dimensional case see [6,8] and [10]. For some results on bounded non-nearest
neighbors see [15]. For some results that are valid in that general case see [25]. For recurrence and transience criteria
CLT and more for random walks on random point processes, with transition probabilities between every two points
decaying in their distance, see [9] and the references therein. Our model also has the property that the random walk is
reversible. For some of the results on this topic see [4,5,18] and [23].

1.2. The model

We start by defining the random environment of the model which will be a random subset of Zd , the d-dimensional
lattice of integers (we also refer to such random environment as a random point process). Denote Ω = {0,1}Zd

and
let B be the Borel σ -algebra (with respect to the product topology) on Ω . For every x ∈ Z

d let θx :Ω → Ω be
the shift along the vector x, i.e., for every y ∈ Z

d and every ω ∈ Ω we have θx(ω)(y) = ω(x + y). In addition let
E = E(d) = {±ei}di=1, where ei is a unit vector along the ith principal axes.

Throughout this paper we assume that Q is a probability measure on Ω satisfying the following:

Assumption 1.1.

1. Q is stationary and ergodic with respect to each of the translations {θei
}di=1.

2. Q(P(ω) =∅) < 1, where P(ω) = {x ∈ Z
d :ω(x) = 1}.

Let Ω0 = {ω ∈ Ω: ω(0) = 1}. It follows from Assumption 1.1 that Q(Ω0) > 0 and therefore we can define a new
probability measure P on Ω0 as the conditional probability of Q on Ω0, i.e.:

P(B) = Q(B|Ω0) = Q(B ∩ Ω0)

Q(Ω0)
, ∀B ∈ B. (1.1)

We denote by EQ and EP the expectation with respect to Q and P respectively.

Claim 1.2. For Q almost every ω ∈ Ω , every v ∈ Z
d and every vector e ∈ E there are infinitely many k ∈ N such that

v + ke ∈P(ω).

Proof. Denote Ωv = {ω ∈ Ω: v ∈ P(ω)} and notice that 1Ωv ∈ L1(Ω,B,Q). Since θe is measure preserving and
ergodic with respect to Q, by Birkhoff’s Ergodic Theorem

lim
n→∞

1

n

n−1∑
k=0

θk
e 1Ωv = EQ[1Ωv ] = Q(Ωv) = Q(Ω0) > 0, Q a.s.

Consequently, there exist Q almost surely infinitely many integers such that θk
e 1Ωv = 1, and therefore infinitely many

k ∈ N such that v + ke ∈ P(ω). �

The following function measures the distance of “coordinate nearest neighbors” from the origin in an environment:



Random walks on discrete point processes 729

Fig. 1. An example for coordinate nearest neighbors.

Definition 1.3. For every e ∈ E we define fe : Ω → N
+ by

fe(ω) = min
{
k > 0: θk

e (ω)(0) = ω(ke) = 1
}
. (1.2)

Note that fe and f−e have the same distribution with respect to Q.

For every v ∈ Z
d define Nv(ω) to be the set of the 2d “coordinate nearest neighbors” in ω of v, one for each

direction (see Fig. 1). More precisely Nv(ω) = ⋃
e∈E {v + fe(θv(ω))e}. By Claim 1.2 fe(θv(ω)) is Q almost surely

well defined and therefore Nv(ω) is Q almost surely a set of 2d points in Z
d .

We now turn to define the random walk on environments. Fix some ω ∈ Ω0 such that |Nv(ω)| = 2d for every
v ∈ P(ω). The random walk on the environment ω is defined on the probability space ((Zd)N,G,Pω), where G is the
σ -algebra generated by cylinder functions, as the Markov chain taking values in P(ω) with initial condition

Pω(X0 = 0) = 1, (1.3)

and transition probability

Pω(Xn+1 = u|Xn = v) =
{

0, u /∈ Nv(ω),
1

2d
, u ∈ Nv(ω). (1.4)

The distribution of the random walk according to this measure is called the quenched law of the random walk, and
the corresponding expectation is denoted by Eω.

Finally, since for each G ∈ G, the map ω 	→ Pω(G) is B measurable, we may define the probability measure
P = P ⊗ Pω on (Ω0 × (Zd)N,B× G) by

P(B × G) =
∫

B

Pω(G)P (dω), ∀B ∈B,∀G ∈ G.

The marginal of P on (Zd)N, denoted by P, is called the annealed law of the random walk and its expectation is
denoted by E.

In the proof of the high dimensional Central Limit Theorem we will assume in addition to Assumption 1.1 the
following:

Assumption 1.4.

3. There exists ε0 > 0 such that EP [f 2+ε0
e ] < ∞ for every coordinate direction e ∈ E .
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1.3. Examples

Before turning to state and prove theorems regarding the model we give a few examples for distributions of points in
Z

2 which satisfy the above conditions.

Example 1.5 (Bernoulli percolation). The first obvious example for point process which satisfies the above conditions
is the Bernoulli vertex percolation. Fix some 0 < p < 1 and declare every point v ∈ Z

d to be in the environment
independently with probability p.

Example 1.6 (Infinite component of supercritical percolation). Fix some d ≥ 2 and denote by pc(Z
d) the critical

value for Bernoulli edge percolation on Z
d . For every pc(Z

d) < p ≤ 1 there exists with probability one a unique
infinite component in Z

d , which we denote by C∞ = C∞(ω). We can now define the environment by P(ω) = C∞(ω),
i.e., the points in the environment are exactly the points of the unique infinite cluster of the percolation process.

Example 1.7. We denote by {rn}n∈N and {pn}n∈N two sequences of positive numbers, the first satisfies limn→∞ rn =
∞ and the second satisfies limn→∞ pn = 0 and pn < 1 for every n ∈ N. We define the environment by the following
procedure: For every v ∈ Z

d and nN delete the ball of radius rn centered at v with probability pn. If the sequence pn

converge fast enough to zero and the sequence rn converge slow enough to infinity, this procedure yields a random
point process that satisfy the model assumptions.

Example 1.8 (Random interlacement). Fix some d ≥ 3. In [24] Sznitman introduced the model of random interlace-
ment in Z

d . Informally this is the union of traces of simple random walks in Z
d . The random interlacement in Z

d is a
distribution on points in Z

d which satisfies the above conditions (see [24], Theorem 2.1).

1.4. Main results

Our main goal is to study the behavior of random walks in this model. The results are summarized in the following
theorems:

(1) Law of Large Numbers. For P almost every ω ∈ Ω0, the limiting velocity of the random walk exists and equals
zero. More precisely:

Theorem 1.9. Let (Ω,B,Q) be a d-dimensional discrete point process satisfying Assumption 1.1, then

P

({
lim

n→∞
Xn

n
= 0

})
= 1.

(2) Recurrence transience classification. We give a partial classification of recurrence-transience for random walks
on discrete point processes. The precise statements are:

Proposition 1.10. Any one dimensional random walk on a discrete point process satisfying Assumption 1.1 is P

almost surely recurrent.

Theorem 1.11. Let (Ω,B,Q) be a two dimensional discrete point process satisfying Assumption 1.1 and assume
there exists a constant C > 0 such that

∞∑
k=N

k · P(fei
= k) ≤ C

N
, ∀i ∈ {1,2},∀N ∈N, (1.5)

which in particular holds whenever fei
has a second moment for i ∈ {1,2}. Then the random walk is P almost surely

recurrent.

Theorem 1.12. Fix d ≥ 3 and let (Ω,B,Q) be a d-dimensional discrete point process satisfying Assumption 1.1.
Then the random walk is P almost surely transient.
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(3) Central Limit Theorems. We prove that one-dimensional random walks on discrete point processes satisfy a
Central Limit Theorem. We also prove that in dimension d ≥ 2, under the additional Assumption 1.4, the random
walks on a discrete point process satisfy a Central Limit Theorem.

Theorem 1.13. Let (Ω,B,Q) be a one-dimensional discrete point process satisfying Assumption 1.1. Then EP [f1] <

∞ and for P almost every ω ∈ Ω0

lim
n→∞

Xn√
n

D= N
(
0,E2

P [f1]
)
, (1.6)

where N(0, a2) denotes the normal distribution with zero expectation and variance a2, and the limit is in distribution.

Remark 1.14. Note that for one-dimensional random walks on discrete point processes CLT holds even without the
assumption that the variance of f1 is finite. In particular the diffusion constant is given by the square of EP [f1].
Theorem 1.15. Fix d ≥ 2 and let (Ω,B,Q) be a d-dimensional discrete point process satisfying Assumptions 1.1
and 1.4, then for P almost every ω ∈ Ω0

lim
n→∞

Xn√
n

D= N(0,D), (1.7)

where N(0,D) is a d-dimensional normal distribution with zero expectation and covariance matrix D that depends
only on d and the distribution of P . As before the limit is in distribution.

Structure of the paper. Section 2 collects some facts about the Markov chain on environments and some ergodic
results related to it. It is based on previously known material. In Section 3 we deal with the proof of Law of Large
Numbers and in Section 4 with the one dimensional Central Limit Theorem. The recurrence transience classification
is discussed in Section 5. The novel parts of the high dimensional Central Limit Theorem proof (asymptotic behavior
of the random walk, construction of the corrector and sublinear bounds on the corrector) appear in Sections 6–8. The
actual proof of the high dimensional Central Limit Theorem is carried out in Section 9. Finally Section 10 contains
further discussion, some open questions and conjectures.

2. The induced shift and the environment seen from the random walk

The content of this section is a standard textbook material. The form in which it appears here is taken from Section 3
of [3]. Even though it had all been known before, [3] is the best existing source for our purpose.

Fix some e ∈ E . Since by Claim 1.2 fe is Q almost surely finite we can define the induced shift σe :Ω0 → Ω0 by

σe(ω) = θ
fe(ω)
e ω.

Theorem 2.1. For every e ∈ E , the induced shift σe :Ω0 → Ω0 is measure preserving and ergodic with respect to P .

The proof of Theorem 2.1 can be found in [3] (Theorem 3.2).
Our next goal is to prove that the Markov chain on environments (i.e., the Markov chain given by the environment

viewed from the particle) is ergodic. Let Ξ = ΩZ

0 and define B to be the product σ -algebra on Ξ . The space Ξ is a
space of two-sided sequences (. . . ,ω−1,ω0,ω1, . . .), the trajectories of the Markov chain on environments. Let μ be
the measure on (Ξ,B) such that for any B ∈ B2n+1 (coordinates between −n and n),

μ
(
(ω−n, . . . ,ωn) ∈ B

)=
∫

B

P (dω−n)Λ(ω−n,dω−n+1) · · ·Λ(ωn−1,dωn),

where Λ :Ω0 ×B→ [0,1] is the Markov kernel defined by

Λ(ω,A) = 1

2d

∑
x∈Zd

1{x∈N0(ω)}1{θxω∈A} = 1

2d

∑
e∈E

1{σe(ω)∈A}. (2.1)
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Note that the sum is finite since for Q almost every ω ∈ Ω there are exactly 2d elements in N0(ω). Because P is
preserved by Λ (see Theorem 2.1), the finite dimensional measures are consistent, and therefore by Kolmogorov’s
theorem μ exists and is unique. One can see from the definition of μ that {θXk

(ω)}k≥0 has the same law under P (the

annealed law) as (ω0,ω1, . . .) has under μ. Let T̃ :Ξ → Ξ be the shift defined by (T̃ ω)n = ωn+1. The definition of
T̃ implies that it is measure preserving. In fact the following also holds:

Proposition 2.2. T̃ is ergodic with respect to μ.

As before, a proof can be found in section 3 of [3] (Proposition 3.5).

Theorem 2.3. Let f ∈ L1(Ω0,B,P ). Then for P almost every ω ∈ Ω0

lim
n→∞

1

n

n−1∑
k=0

f ◦ θXk
(ω) = EP [f ], Pω almost surely.

Similarly, if f :Ω × Ω →R is measurable with E[f (ω, θX1ω)] < ∞, then

lim
n→∞

1

n

n−1∑
k=0

f (θXk
ω, θXk+1ω) = E

[
f (ω, θX1ω)

]
for P almost every ω and Pω almost every trajectory of (Xk)k≥0.

Proof. Recall that {θXk
(ω)}k≥0 has the same law under P as (ω0,ω1, . . .) has under μ. Hence, if g(. . . ,ω−1,ω0,

ω1, . . .) = f (ω0) then

lim
n→∞

1

n

n−1∑
k=0

f ◦ θXk

D= lim
n→∞

1

n

n−1∑
k=0

g ◦ T̃ k.

The latter limit exists by Birkhoff’s Ergodic Theorem (we have already seen that T̃ is ergodic) and equals Eμ[g] =
EP [f ] almost surely. The second part follows from the first. �

3. Law of Large Numbers

This section is devoted to the proof of Theorem 1.9, the Law of Large Numbers for random walks on discrete point
processes.

Proof of Theorem 1.9. Using linearity, it is enough to prove that

P

({
lim

n→∞
Xn · e

n
= 0

})
= 1, ∀e ∈ E .

Fix some e ∈ E and define

S(k) = max

{
n ≥ 0:

n−1∑
m=0

f
(
σm

e (ω)
)
< k

}
.

Because fe is positive, if EP [fe] = ∞, then

lim
n→∞

1

n

n−1∑
k=0

fe

(
σk

e (ω)
)= ∞, P a.s.



Random walks on discrete point processes 733

and therefore

lim
k→∞

S(k)

k
= 0, P a.s.

However, since S(k) =∑k−1
j=0 1Ω0(θ

j
e (ω)), by Birkhoff’s Ergodic Theorem and Assumption 1.1

lim
k→∞

S(k)

k
= lim

k→∞
1

k

k−1∑
j=0

1Ω0

(
θ

j
e (ω)

)= Q(Ω0) > 0, P a.s.

Thus EP [fe] < ∞. Applying Birkhoff Ergodic Theorem once more we get

lim
n→∞

1

n

n−1∑
k=0

fe

(
σk

e (ω)
)= EP [fe] < ∞, P a.s. (3.1)

The stationarity of P with respect to σe implies that P(f−e(ω) = k) = P(fe(σ
−1
e (ω)) = k) = P(fe(ω) = k), and

therefore

EP [fe] = EP [f−e]. (3.2)

Let ge :Ω × Ω → Z be defined by:

ge

(
ω,ω′)=

{
fe(ω), if ω′ = σe(ω),
−f−e(ω), if ω′ = σ−e(ω),
0, otherwise.

Observing that ge is measurable and recalling (3.2) we get that

EP

[
Eω

(
ge(ω, θX1ω)

)]= EP

[
1

2d
fe(ω) − 1

2d
f−e(ω)

]
= 0.

Thus for P almost every ω ∈ Ω0 and Pω almost every random walk {Xk}k≥0, we have by Theorem 2.3

lim
n→∞

Xn · e
n

= lim
n→∞

1

n

n∑
k=1

(Xk − Xk−1) · e

= lim
n→∞

1

n

n−1∑
k=0

ge(θXk
ω, θXk+1ω) = EP

[
Eω

(
ge(ω, θX1ω)

)]= 0.
�

4. One dimensional Central Limit Theorem

This section is devoted to the proof of Theorem 1.13 – Central Limit Theorem of one-dimensional random walks on
discrete point processes. The basic observation of the proof is the fact that random walk on discrete point processes
in one dimension is in fact a simple random walk on Z with stretched edges. Combining this with the fact that
EP [f1] < ∞ implies the result. We turn to make this into a more precise argument:

Proof of Theorem 1.13. Denote e = 1. Given an environment ω ∈ Ω0 and a random walk {Xk}k≥0, we define the
simple one-dimensional random walk {Yk}k≥0 associated with {Xk}k≥0 by:

Yk =
{∑k

j=1
Xj −Xj−1
|Xj −Xj−1| , k ≥ 1,

0, k = 0.
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Since {Yk}k≥0 is a simple one dimensional random walk on Z, it follows from the Central Limit Theorem that for P

almost every ω ∈ Ω0

lim
n→∞

1√
n

· Yn
D= N(0,1). (4.1)

Given an environment ω ∈ Ω0 and n ∈ Z let pn = pn(ω) be the nth point in P(ω) (with respect to 0). More precisely
denote

pn =

⎧⎪⎨⎪⎩
∑n−1

k=0 fe(σ
k
e ω), n > 0,

0, n = 0,∑−n
k=−1 fe(σ

k
e ω), n < 0.

(4.2)

For every a ∈ R\{0} and P almost every ω ∈ Ω0 we have

lim
n→∞

1√
n
p�a√

n� = a · lim
n→∞

1

a
√

n

�a√
n�∑

k=0

fe

(
σk

e ω
)= a ·EP [fe].

In fact the last argument also holds trivially for a = 0, i.e., for every a ∈R

lim
n→∞

1√
n
p�a√

n� = a ·EP [fe]. (4.3)

Using (4.1) and (4.3) we get that for P almost every ω ∈ Ω0 and every ε > 0

lim
n→∞Pω

(
pYn√

n
≤ a

)
≤ lim

n→∞Pω

(
pYn√

n
≤ a,

Yn√
n

>
a

EP [fe] + ε

)
+ Pω

(
Yn√
n

≤ a

EP [fe] + ε

)
≤ lim

n→∞Pω

(
1√
n
p�((a/EP [fe])+ε)

√
n� ≤ a

)
+ Pω

(
Yn√
n

≤ a

EP [fe] + ε

)
= 	

(
a

EP [fe] + ε

)
,

where 	 is the standard normal cumulative distribution function. A similar argument gives that

lim
n→∞Pω

(
pYn√

n
≤ a

)
≥ 	

(
a

EP [fe] − ε

)
for every ε > 0.

Observing that Xn = pYn and recalling that ε > 0 was arbitrary we get

lim
n→∞Pω

(
Xn√

n
≤ a

)
= 	

(
a

EP [fe]
)

, (4.4)

as required. �

5. Transience and recurrence

Before continuing to deal with the Central Limit Theorem in higher dimensions, we turn to a discussion on transience-
recurrence of random walks on discrete point processes.
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5.1. One-dimensional case

Here we wish to prove the recursive behavior of the one-dimensional random walk on discrete point processes (Propo-
sition 1.10). This follows from the same coupling introduced in order to prove the CLT.

Proof of Proposition 1.10. Using the notation from the previous section, since Yn is a one-dimensional simple ran-
dom walk, it is recurrent P almost surely. Therefore we have #{n: Yn = 0} = ∞ P almost surely, but since Xn = pYn

and p0 = 0 this implies #{n: Xn = 0} = ∞, P almost surely. Thus the random walk is recurrent. �

5.2. Two-dimensional case

In this section we deal with the two-dimensional case. The proof is based on the correspondence of random walks to
electrical networks. Recall that an electrical network is given by a triple G = (V ,E, c), where (V ,E) is an unoriented
graph and c :E → (0,∞) is a conductance field. We start by recalling the Nash–Williams criterion for recurrence of
random walks:

Theorem 5.1 (Nash–Williams criterion). A set of edges Π is called a cutset for an infinite network G = (V ,E, c)

if there exists some vertex a ∈ V such that every infinite simple path from a to infinity must include an edge in Π . If
{Πn} is a sequence of pairwise disjoint finite cutsets in a locally finite infinite graph G, each of which separates a ∈ V

from infinity and
∑

n(
∑

e∈Πn
c(e))−1 = ∞, then the random walk induced by the conductances c is recurrent.

For a proof of the Nash–Williams criterion and some background on the subject see [12] and [17]. The following
definition will be used in the proof:

Definition 5.2. Let (Ω̃, B̃, P̃ ) be a probability space. We say that a random variable X : Ω̃ → [0,∞) has a Cauchy
tail if there exists a positive constant C such that P̃ (X ≥ n) ≤ C

n
for every n ∈N.

Note that if Ẽ[X] < ∞, then X has a Cauchy tail.
In order to prove Theorem 1.11 we will need the following lemmas taken from [2].

Lemma 5.3 ([2], Lemma 4.1). Let {fi}∞i=1 be identically distributed (not necessarily independent) positive random

variables, on a probability space (Ω̃, B̃, P̃ ), that have a Cauchy tail. Then, for every ε > 0, there exist K > 0 and
N ∈N such that for every n > N

P̃

(
1

n

n∑
i=1

fi > K logn

)
< ε.

Lemma 5.4 ([2], Lemma 4.2). Let An be a sequence of events such that P̃ (An) > 1 − ε for all sufficiently large n,
and let {an}∞n=1 be a sequence such that

∑∞
n=1 an = ∞. Then

∑∞
n=1 an1An = ∞ with probability of at least 1 − ε.

We also need the following definition:

Definition 5.5. Assume G = (V ,E) is a graph such that V ⊂ Z
2 and E is a set of edges, each of them is parallel to

some axis, but may connect non-nearest neighbors in Z
2. For an edge e ∈ E we denote by e+, e− ∈ V the end points

of e ∈ E. In order for this to be well defined we assume that if (e+ − e−) · ei �= 0 then (e+ − e−) · ei > 0. Note that by
the assumption on the edges in e the value of e+ − e− is non-zero in exactly one coordinate.

Proof of Theorem 1.11. The idea of the proof is to construct for every ω ∈ Ω an electrical network which satisfy
the Nash–Williams criterion and induce the same law on the random walk as the law of the random walk on ω, P -
a.s. Since P is a marginal of Q it is enough to construct a network which satisfy the criterion for Q almost every
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Fig. 2. Construction of the network in two dimensions.

ω ∈ Ω . For every ω ∈ Ω , we define the corresponding network with conductances G(ω) = (V (ω),E(ω), c(ω)) via
the following three steps (see Fig. 2 for an illustration):

Step 1. Define G1(ω) = (V1(ω),E1(ω), c1(ω)) to be the network induced from ω with all conductances equal to 1.
More precisely we define

V1(ω) =P(ω),

E1(ω) = {{x, y} ∈ V1 × V1: y ∈ {
x ± fe1(ω)e1, x ± fe2(ω)e2

}}
,

c1(ω)(e) = 1, ∀e ∈ E1.

Note that the continuous time random walk induced by the network G1(ω) (cf. [12,17]) is indeed the random walk
introduced in (1.4) when 0 ∈ P(ω).

Step 2. Define G2(ω) to be the network generated from G1(ω) by “cutting” every edge of length k into k edges
of length 1, giving conductance k to each part. A small technical problem with “cutting” the edges is that vertical
and horizontal edges may cross each other in a point that doesn’t belong to P(ω). In order to avoid this we give the
following formal definition which is a bit cumbersome:

V2(ω) = V 1
2 (ω) � V 2

2 (ω) ⊂ Z
2 × {0,1},

E2(ω) = E1
2(ω) � E2

2(ω),

where

V i
2 (ω) = {

(x, i): ∃e ∈ E1(ω),∃0 ≤ k ≤ |e+ − e−|1such that (e+ − e−) · ei �= 0, x = e− + kei

}
and

Ei(ω) =
{{

(v, i), (w, i)
}
:

∃e ∈ E1(ω),∃0 ≤ k < |e+ − e−|1 such that
(e+ − e−) · ei �= 0, v = e− + kei,w = e− + (k + 1)ei

}
.
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We also define the conductance c′(ω)(e) of an edge e ∈ E′(ω) to be k, given that the length (i.e., |e+ − e−|1) of the
original edge it was part of was k.

Step 3. Define G(ω) to be the graph obtained from G2(ω) by identifying two vertices if they are of the form (v,1)

and (v,2) for some v ∈ P(ω). Note that by a standard analysis of conductances, see, e.g., [12], it is clear that the
random walk on the new network is transient if and only if the original random walk is transient. Thus we turn to
prove the recurrence of the random walk on the new graph. This is done using the Nash–Williams criterion. Let Πn be
the set of edges exiting the box [−n,n]2 ×{1,2} in the graph G(ω). The sets Πn define a sequence of pairwise disjoint
cutsets in the network G(ω), i.e., a set of edges that any infinite simple path starting at the origin must cross. Next we
wish to estimate the conductances in the network G. Fix some e ∈ E such that (e+ − e−) · ei �= 0 and note that the
distribution of c(e) is the same for all edges in direction ei . For ω ∈ Ω we denote by lenei

(ω) the length of the interval
containing the origin in direction ei , where in the case that the origin belongs to the point process we define lenei

(ω) to
be the length of the interval starting at the origin in direction ei . More precisely we define lenei

(ω) = fei
(ω)+gei

(ω),
where gei

(ω) = min{n ≤ 0: ω(nei) = 1}. In addition for n ∈ N we define ln(ω) = l
ei
n (ω) to be the length of the first

nth intervals starting at the origin in direction ei , i.e., ln(ω) = gei
(ω) +∑n−1

j=0 fei
(σ

j
ei

− 1(ω)). Using the definition of
lenei

we have the following estimate

Q
(
c(e) = k

)= Q
(
the original edge that contained e in G1(ω) is of length k

)
= Q

(
lenei

(ω) = k
)
.

By Birkhoff’s Ergodic Theorem the last term Q almost surely equals

lim
n→∞

1

n

n−1∑
j=0

1{lenei
(θj ω)=k}.

Since ln tends to infinity Q almost surely and gei
(ω) is finite Q almost surely this implies

Q
(
c(e) = k

)= lim
n→∞

1

ln(ω)

ln(ω)∑
j=0

1{lenei
(θj ω)=k} = lim

n→∞
n

ln(ω)
· 1

n

ln(ω)−gei
(ω)∑

j=−gei
(ω)

1{lenei
(θj ω)=k},

which after rearrangement can be written as

lim
n→∞

n

ln
· 1

n

n−1∑
j=0

k · 1{fei
(σ

j
ei

(ω))=k}.

Recalling that by Birkhoff’s Ergodic Theorem (applied to the induced shift) we also have P almost surely

lim
n→∞

ln

n
= EP [fei

], lim
n→∞

1

n

n−1∑
j=0

1{fei
(σ

j
ei

(ω))=k} = P(fei
= k),

we get

Q
(
c(e) = k

)= k · P(fei
= k)

EP [fei
] . (5.1)

From (5.1) and the assumption of Theorem 1.11, i.e., (1.5), it follows that c(e) has a Cauchy tail. Note that Πn

contains 4n + 2 edges at each level, i.e., in each of the sets {Ei(ω)}i=1,2, all of them with the same distribution (by
(1.5) with a Cauchy tail), though they may be dependent. By Lemma 5.3, for every ε > 0 there exist K > 0 and N ∈N

such that for every n > N , we have

Q

(∑
e∈Πn

c(e) ≤ K(8n + 4) log(8n + 4)

)
> 1 − ε. (5.2)
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Define An to be the event in Eq. (5.2), and an = (K(8n + 4) log(8n + 4))−1. Notice that CΠn

def= ∑
e∈Πn

c(e)

satisfies
∑∞

n=1 CΠn
−1 ≥ ∑∞

n=N 1An · an. In addition the definition of {an} implies that
∑∞

n=N an = ∞. Combining
the last two facts together with (5.2) and Lemma 5.4 gives Q(

∑∞
n=1 CΠn

−1 = ∞) ≥ 1 − ε. Since ε is arbitrary, we
get that

∑∞
n=1 CΠn

−1 = ∞, Q a.s. and therefore in particular P a.s. Thus by the Nash–Williams criterion, the random
walk is P almost surely recurrent. �

5.3. Higher dimensions (d ≥ 3)

Here we prove the transience of random walks on discrete point processes in dimension 3 or higher. The idea of
the proof is to bound the heat kernel so that the Green function of the random walk will be finite. This is done
by first proving an appropriate discrete isoperimetric inequality for finite subsets of Zd , and then using well known
connections between isoperimetric inequalities to heat kernel bounds (see [19]) to bound the heat kernel. In order to
state the isoperimetric inequality we need the following definition:

Definition 5.6. Let x = (x1, x2, . . . , xd) be a point in Z
d . For 1 ≤ j ≤ d denote by Πj :Zd → Z

d−1 the projection on
all but the j th coordinate, namely

Πj(x) = Πj
(
(x1, x2, . . . , xd)

)= (x1, x2, . . . , xj−1, xj+1, . . . , xd).

Lemma 5.7. There exists C = C(d) > 0 such that for every finite subset A of Zd

max
1≤j≤d

{∣∣Πj(A)
∣∣}≥ C · |A|(d−1)/d , (5.3)

where | · | denotes the cardinality of the set.

Before turning to the proof we fix some notations.

Definition 5.8.

• Denote by Qd the quadrant of points in Z
d all of whose entries are positive.

• For a point x ∈ Qd define its energy by E(x) =∑d
j=1 xj .

• For a finite set A ⊂Qd denote E(A) =∑
x∈A E(x).

• Given a finite set A ⊂ Qd , 1 ≤ j ≤ d and some point y = (y1, y2, . . . , yd−1) ∈ Qd−1 we define the y-fiber of A in
direction j

Aj,y
def= {

xj : (y1, y2, . . . , yj−1, xj , yj , . . . , yd−1) ∈ A
}
.

Proof of Lemma 5.7. Assume |A| = n. Using translations, we can assume without loss of generality that A ⊂ Qd .
Next, for 1 ≤ j ≤ d we define Sj : 2Q

d → 2Q
d

the “squeezing operator in direction j .” The definition of Sj is a bit
complicated, however the idea is to mimic the operation of pushing the points inside each of the fibers of A in direction
j as close to the hyperplane xj = 0 as possible without any of them leaving the quadrant Qd . An illustration of Sj

operation is illustrated in Fig. 3. More formally Sj is defined by

Sj (A) =
⋃

y=(y1,...,yd−1)∈Qd−1

{
(y1, y2, . . . , yj−1,m,yj , . . . , yd−1)

}|Aj,y |
m=1 .

The operator Sj satisfies the following properties:

1. The size of each fiber of Sj (A) in direction j is the same as the corresponding one for A.
2. The size of Sj (A) is the same as the size of A.
3. |Πi(Sj (A))| ≤ |Πi(A)| for every 1 ≤ i, j ≤ d .
4. E(Sj (A)) ≤ E(A), and equality holds if and only if Sj (A) = A.
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Fig. 3. The operator Sj (A).

Indeed,

1. This follows directly from the definition of Sj . Given y = (y1, . . . , yd−1) ∈Qd−1

∣∣Sj (A)j,y
∣∣= ∣∣{(y1, y2, . . . , yj−1,m,yj , . . . , yd−1)

}|Aj,y |
m=1

∣∣= |Aj,y |.

2. Since the fibers in direction j of a set form a partition we get

∣∣Sj (A)
∣∣= ∑

y∈Qd−1

∣∣Qj (A)j,y
∣∣= ∑

y∈Qd−1

|Aj,y | = |A|.

3. For i = j note that y = (y1, . . . , yd−1) ∈ Πj(A) if and only if there exists some m ∈N such that (y1, . . . , yj−1,m,

yj , . . . , yd−1) ∈ A. This however is equivalent to the fact that (y1, . . . , yj−1,1, yj , . . . , yd−1) ∈ Sj (A) which again
is true if and only if y = (y1, . . . , yd−1) ∈ Πj(Sj (A)). Thus Πj(A) = Πj(Sj (A)). Turning to the case i �= j , the
proof follows from the fact that we can reduce the problem into two dimensions. Without loss of generality assume
that i = 1 and j = 2, then∣∣Πi

(
Sj (A)

)∣∣= ∣∣Π1(S2(A)
)∣∣

=
∑

(y2,...,yd )∈Qd−1

1{∃m≥1 s.t. (m,y2,...,yd )∈S2(A)}

=
∑

(y3,...,yd )∈Qd−2

∑
y2∈Q

1{∃m≥1 s.t. (m,y2,y3,...,yd )∈S2(A)}

=
∑

(y3,...,yd )∈Qd−2

max
y2∈Q

{∣∣S2(A)2,(y2,...,yd )

∣∣}
=

∑
(y3,...,yd )∈Qd−2

max
y2∈Q

{|A2,(y2,...,yd )|
}

≤
∑

(y3,...,yd )∈Qd−2

∑
y2∈Q

1{∃m≥1 s.t. (m,y2,y3,...,yd )∈A}

= ∣∣Π1(A)
∣∣= ∣∣Πi(A)

∣∣,
where the third equality follows from the definition of S2 (see Fig. 3).



740 N. Berger and R. Rosenthal

4. As before this follows from the fact that we can reduce the problem into two dimensions. By the definition of
energy (and some abuse of notation)

E
(
Sj (A)

) =
∑

y∈Qd−1

y=(y1,...,yd−1)

∑
x∈Sj (A)j,y

E
(
(y1, . . . , yj−1, x, yj , . . . , yd−1)

)

=
∑

y∈Qd−1

∑
x∈Sj (A)j,y

(
E(y) + x

)
=

∑
y∈Qd−1

(∣∣Sj (A)j,y
∣∣E(y) + E

(
Sj (A)j,y

))
≤

∑
y∈Qd−1

(|Aj,y |E(y) + E(Aj,y)
)

= E(A),

where the inequality follows from the fact that any fiber of Sj (A) in direction j has the minimal energy when
compared to any other fiber in the quadrant Qd in direction j with the same number of point as Sj (A). In particular
this holds when comparing fibers of Sj (A) and A in direction j . Note that equality holds if and only if all the fibers
of A in direction j are exactly the ones of Sj (A) which implies A = Sj (A).

Let {am} be the periodic sequence 1,2, . . . , d,1,2, . . . , d,1,2, . . . , d, . . . and define the sequence of sets {Am} by
the recursion formula A0 = A and Am+1 = Sam(Am) for m ≥ 0. Property (4) of the operators Sj implies that E(Am)

is a decreasing sequence of positive integers. Consequently, up to finite number of elements the sequence E(Am) is
constant. Recalling once more property (4) of Sj we get that up to finite number of sets Am is constant. Denote the
constant set of the sequence by Ã. The definition of the sequence Am and property (3) of Sj (A) implies that

1. Sj (Ã) = Ã for every 1 ≤ j ≤ d .
2. |Πj(Ã)| ≤ |Πj(A)| for every 1 ≤ j ≤ d .
3. |Ã| = |A|.
The first property implies that the size of the boundary of Ã is exactly 2

∑d
i=1 |Πi(Ã)| (see Fig. 3). Using the fact

that the boundary of every set of size n in Z
d is at least C0 · n(d−1)/d for some positive constant C0 = C0(d) (see

[11]), we get that there exists a positive constant C = C(d) and at least one i0 ∈ {1,2, . . . , d} such that |Πi0(Ã)| ≥
C · |Ã|(d−1)/d = C · |A|(d−1)/d . Thus by recalling property (2) of Ã, the statement holds. �

We now turn to define the isoperimetric profile of a graph. Let {p(x, y)}x,y∈V be symmetric transition probabilities
for an irreducible Markov chain on a countable state space V. We think about this Markov chain as a random walk on a
weighted graph G = (V ,E,C), with {x, y} ∈ E if and only if p(x, y) > 0. For every {x, y} ∈ E define the conductance
of (x, y) by C(x, y) = p(x, y). For S ⊂ V , the “boundary size” of S is measured by |∂S| =∑

s∈S

∑
s′∈Sc p(s, s′). We

define 	S , the conductance of S, by 	S := |∂S|
|S| . Finally, define the isoperimetric profile of the graph G, with vertices

V and conductances induced from the transition probabilities by:

	(u) = inf
{
	S : S ⊂ V, |S| ≤ u

}
. (5.4)

Theorem 5.9 ([19], Theorem 2). Let G = (V ,E) be a graph with countably many vertices and bounded degree.
Assume there exists 0 < γ ≤ 1

2 such that p(x, x) ≥ γ for every x ∈ V . If

n ≥ 1 + (1 − γ )2

γ 2

∫ 4/ε

4

4 du

u	2(u)
, (5.5)

then ∣∣pn(x, y)
∣∣≤ ε, (5.6)



Random walks on discrete point processes 741

where pn(x, y) is the probability for the Markov chain starting at x to hit y after n steps.

Combining Lemma 5.7 and Theorem 5.9 we get the following bound on the heat kernel:

Proposition 5.10. Let pn
ω(x, y) be the probability that the random walk in the environment ω moves from x to y in n

steps. Then there exists a positive constant K depending only on d , such that for every n ∈N and every x, y ∈ P(ω)

pn
ω(x, y) ≤ K

nd/2
, P a.s. (5.7)

Proof. We separate the discussion to the case of even times (i.e., when n is even) and odd ones starting with the first.
Restricting the Markov chain only to those times, since p2

ω(x, x) = 1
2d

, we can apply Theorem 5.9 with γ = 1
2d

. In
order to get a good estimate on the heat kernel, i.e., pn

ω(x, y), we need to show an appropriate lower bound on 	(u).
By Lemma 5.7 there exists a positive constant C = C(d) with the following property: For P almost every ω ∈ Ω0 and
every A ⊂ P(ω) of size n at least one of the projections {Πi(A)}di=1 satisfies Πi(A) ≥ C · n(d−1)/d . Assume without
loss of generality that this holds for i = 1. Denote by Ã the “upper” boundary of A in the first direction, i.e.,

Ã = {
(x1, x2, . . . , xd): (x2, . . . , xd) ∈ Π1(A), x1 = max{a: (a, x2, x3, . . . , xd) ∈ A}}.

Thus |Ã| = |Π1(A)| ≥ Cn(d−1)/d . By definition |∂A| equals 1
2d

times the number of edges e ∈ E with one end point
in A and the other in Ac . Since every element in Ã contributes at least one edge to the boundary we can conclude that
|∂A| ≥ 1

2d
|Ã|. Consequently there exists a positive constant c0 = c0(d) such that

	(u) ≥ c0

u1/d
. (5.8)

Fix some positive constant K̃ = K̃(d) > 1 satisfying 6d(2d−1)2·42/d

c2
0 ·K̃2/d

< 1. From the definition of K̃ and using (5.8), we

get for ε = K̃

nd/2

1 + (2d − 1)2
∫ 4/ε

4

4 du

u	2(u)
≤ 1 + (2d − 1)2

∫ 4/ε

4

4u(2/d)−1 du

c2
0

= 1 + 2d(2d − 1)2 · 42/d

c2
0

ε−2/d

= 1 + 2d(2d − 1)2 · 42/d

c2
0 · K̃2/d

n < 1 + 1

3
n.

The last term is smaller than n whenever n > 1. Thus2 Theorem 5.9 gives that for P almost every ω ∈ Ω0 for every
x, y ∈P(ω) and every n ≥ 1

p2n
ω (x, y) ≤ K̃

nd/2
≤ 2d/2K̃

(2n)d/2
,

which gives the result for even times with K = 2d/2K̃ .
Turning to odd times we get that for P almost every ω ∈ Ω0 every n ∈ N and every x, y ∈ P(ω)

p2n+1
ω (x, y) =

∑
z∈P(ω)

pω(x, z)p2n
ω (z, y) ≤

∑
z∈P(ω)

pω(x, z)
K

(2n)d/2
= K

(2n)d/2
≤ (3/2)dK

(2n + 1)d/2
,

2The fact that K̃ > 1 ensures that this also holds for n = 1.
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which completes the proof. �

Theorem 1.12 now follows immediately.

Proof of Theorem 1.12. Since our graph is connected, it is enough to show that
∑∞

n=0 pn
ω(0,0) is finite P almost

surely. This follows from Proposition 5.7 and the fact that d ≥ 3. �

6. Asymptotic behavior of the random walk

This section is devoted to understanding the asymptotic behavior of E[‖Xn‖]. This estimation is used in Section 9 to
prove the high dimensional Central Limit Theorem, and therefore throughout this section we also assume Assump-
tion 1.4. The proof closely follows [1] with one major change: In the current model, the distance made by the random
walk at each step is not bounded by 1 as in the percolation model. Nevertheless, using an ergodic theorem of Nevo
and Stein, see [20], we show that under Assumption 1.4, the same estimation for E[‖Xn‖] as in percolation holds.

Theorem 6.1. Assume Assumptions 1.1 and 1.4 hold. Then there exists a random variable c :Ω0 → [0,∞] which is
finite almost surely such that for P almost every ω ∈ Ω0

Eω

[‖Xn‖
]≤ c(ω)

√
n, ∀n ∈ N. (6.1)

We start with some definitions:

Definition 6.2. Fix ω ∈ Ω0. For n ∈ N we denote pn(x, y) = Pω(Xn = y|X0 = x) and introduce the following func-
tions, with the understanding that 0 · log(0) = 0:

• The averaged two step probability gn :P(ω) →R, is given by

gn(x) = 1

2

(
pn(0, x) + pn−1(0, x)

)
. (6.2)

• Averaged two step distance M :N →R
+ is defined by M(0) = 0 and

M(n) = 1

2
Eω

[‖Xn‖ + ‖Xn−1‖
]=

∑
y∈P(ω)

‖y‖gn(y), ∀n > 0. (6.3)

• Averaged entropy Q :N → R
+ is given by Q(0) = 0 and

Q(n) = −
∑

y∈P(ω)

gn(y) log
(
gn(y)

)
, ∀n > 0. (6.4)

The following proposition gives some inequalities which are satisfied by the functions gn,M and Q. Those will
play a crucial rule in the proof of Theorem 6.1.

Proposition 6.3. There exist positive constants c1, c2 depending only on d and random variables υ3, υ4 :Ω0 → R

which are P almost surely finite and positive such that for every n ∈N

Q(n) ≥ d

2
log (n − 1) − c1, (6.5)

M(n) ≥ c2 · eQ(n)/d , (6.6)∑
x∈P(ω)

∑
y∈P(ω)

1{y∈Nx(ω)}
(
gn(x) + gn(y)

)‖x − y‖2 < υ3 (6.7)
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and (
M(n + 1) − M(n)

)2 ≤ υ4
(
Q(n + 1) − Q(n)

)
. (6.8)

Remark 6.4. Note that we don’t have any estimation on the tail of c3(ω) nor c4(ω).

Proof of Proposition 6.3. For (6.5) first note that from the definition of Q(n)

Q(n) ≥ inf
y∈P(ω)

(− log
(
gn(y)

))= − sup
y∈P(ω)

(
log

(
gn(y)

))
.

Proposition 5.7 implies that gn(y) ≤ K

(n−1)d/2 for every y ∈ P(ω) and therefore

Q(n) ≥ − log

(
K

(n − 1)d/2

)
= d

2
log(n − 1) − log(K), (6.9)

which gives (6.5) with c1 = log(K).
Next we prove (6.6). For n ≥ 0 let Dn = B2n(0)\B2n−1(0), where Bn(0) = {x ∈ Z

d : |x| ≤ n}. In particular D0 =
{0}. Given that 0 ≤ a ≤ 2 we can write

∑
y∈P(ω)

e−a‖y‖ ≤ 1

2

∞∑
n=0

∑
y∈Dn

e−a·2n ≤
∞∑

n=0

e−a·2n · c2.1 · 2nd ≤ c2.2 · a−d, (6.10)

where c2.2 = c2.2(d) > 0 depends only on d . Indeed, the first inequality is obvious, the second inequality follows from
the fact that the set of points in P(ω) with distance greater than 2n−1 and less than 2n is bounded by the number of
points in Z

d with those properties, which is less than a constant times 2nd . The proof of the last inequality follows by
separating the series into two parts, up to some n0 = � 1

ea/(2d)−1 � and starting from n0, and then bounding the second
one by a geometric series. More formal proof of this inequality can be found in the detailed version of this paper on
the Arxiv, see [22].

Since for every u > 0 and λ ∈ R the inequality u(log(u) + λ) ≥ −e−1−λ holds, by taking λ = a‖y‖ + b with a ≤ 2
and u = gn(y) we get

−Q(n) + aM(n) + b =
∑

y∈P(ω)

gn(y)
(
log

(
gn(y)

)+ a‖y‖ + b
)

≥ −
∑

y∈P(ω)

e−1−a‖y‖−b = −e−1−b
∑

y∈P(ω)

e−a‖y‖. (6.11)

Note that we actually used the last inequality only for those y ∈ P(ω) such that gn(y) > 0, and for y ∈ P(ω) such
that gn(y) = 0 we used the fact that 0 ≥ −e−1−a‖y‖−b . Combining (6.11) and (6.10) gives

−Q(n) + aM(n) + b ≥ −e−1−bc2.2a
−d . (6.12)

Since for sufficiently large n we have

M(n) = 0 · gn(0) +
∑

y∈P(ω),y �=0

d(0, y)gn(y) ≥
∑

y∈P(ω),y �=0

gn(y) = 1 − gn(0) ≥ 1

2
,

we can choose a = 1
M(n)

and b = d · logM(n), which together with (6.12) gives

−Q(n) + 1 + d · logM(n) ≥ −e−1c2.2 = −c2.3.

Note that as before c2.3 is a positive constant that depends only on d . Rearranging the last inequality we get that there
exists a constant c2 = c2(d) > 0 such that M(n) ≥ c2 · eQ(n)/d .
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Turning to the prove (6.7) we first note that the sum in (6.7) can be rewritten as∑
x,y∈P(ω)

1{y∈Nx(ω)}
(
gn(x) + gn(y)

)‖x − y‖2 = 2
∑

x∈P(ω)

gn(x)
∑

y∈Nx(ω)

‖x − y‖2

= 2
∑
e∈E

∑
x∈P(ω)

gn(x)f 2
e

(
θxω

)
= 2

∑
e∈E

(
Eω

[
f 2

e ◦ θXn
]+ Eω

[
f 2

e ◦ θXn−1
])

. (6.13)

In order to show the sum is finite, we use a Theorem by Nevo and Stein proved in [20], however before we can state
it some additional definitions are needed:

Given a countable group Γ define �1(Γ ) = {μ ∈ Γ R:
∑

γ∈Γ |μ(γ )| < ∞}. Let (X,B,m) be a standard Lebesgue
probability space, and assume Γ acts on X by measurable automorphisms preserving the probability measure m. This
action induces a representation of Γ by isometries on the Lp(X) spaces, 1 ≤ p ≤ ∞, and this representation can
be extended to �1(Γ ) by (μf )(x) = ∑

γ∈Γ μ(γ )f (γ −1x). Let B1 = {A ∈ B: m(γA � A) = 0 ∀γ ∈ Γ } denote the
sub-σ -algebra of invariant sets, and denote by E1 the conditional expectation with respect to B1. We call a sequence
νn ∈ �1(Γ ) a pointwise ergodic sequence in Lp if, for any action of Γ on a Lebesgue space X which preserves a
probability measure and for every f ∈ Lp(X), νnf (x) → E1[f (x)] for m almost every x ∈ X, and in the norm of
Lp(X). If Γ is finitely generated, let S be a finite generating symmetric set, i.e., S = S−1 which doesn’t include
the identity element e. S induces a length function on Γ , given by |γ | = |γ |S = min{n: γ = s1s2 · · · sn, si ∈ S}, and
|e| = 0. We can therefore define the following sequences:

Definition 6.5.

(i) τn = (#Sn)
−1 ∑

w∈Sn
w, where Sn = {w: |w| = n}.

(ii) τ ′
n = 1

2 (τn + τn+1).
(iii) μn = 1

n+1

∑n
k=0 τk .

(iv) βn = (#Bn)
−1 ∑

w∈Bn
w, where Bn = {w: |w| ≤ n}.

We can now state the theorem:

Theorem 6.6 (Nevo and Stein [20]). Consider the free group Fr , r ≥ 2 and let S be a set of free generators and their
inverses. Then:

1. The sequence μn is a pointwise ergodic sequence in Lp , for all 1 ≤ p < ∞.
2. The sequence τ ′

n is a pointwise ergodic sequence in Lp , for 1 < p < ∞.
3. τ2n converges to an operator of conditional expectation with respect to an Fr -invariant sub-σ -algebra. β2n con-

verges to the operator E1 + r−1
r

E, where E is a projection disjoint from E1. Given f ∈ Lp(X), 1 < p < ∞, the
convergence is pointwise almost everywhere, and in the Lp norm.

Let F be the (free) group generated by the induced shifts, let {Yn} be a simple random walk on it and Sk = {v ∈ F :
|v| = k}. Then,

Eω

[
f 2

e ◦ θXn
]=

∑
v∈F

P (Yn = v)f 2
e ◦ θv

=
∞∑

k=0

P(Yn ∈ Sk)
1

|#Sk|
∑
v∈Sk

f 2
e ◦ θv

=
∞∑

k=0

P(Yn ∈ Sk)τk ◦ f 2
e ,
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and therefore

Eω

[
f 2

e ◦ θXn
]+ Eω

[
f 2

e ◦ θXn−1
] =

∞∑
k=0

P(Yn ∈ Sk)τk ◦ f 2
e + P(Yn−1 ∈ Sk)τk ◦ f 2

e

≤
∞∑

k=1

(
P(Yn ∈ Sk) + P(Yn−1 ∈ Sk−1)

)(
τk ◦ f 2

e + τk−1 ◦ f 2
e

)
+ P(Yn ∈ S0)f

2
e

=
∞∑

k=1

2
(
P(Yn ∈ Sk) + P(Yn−1 ∈ Sk−1)

)
τ ′
k−1 ◦ f 2

e + P(Yn ∈ S0)f
2
e .

By Assumption 1.4 there exists some 1 < p < ∞ such that f 2
e ∈ Lp(Ω0) for every coordinate direction e ∈ E . Using

Theorem 6.6 and the ergodicity of P it follows that supk{|τ ′
k ◦ f 2

e |} is bounded by some constant υ3.1(ω) which is
finite P almost surely, and therefore the sum in (6.13) is bounded by

2
∑
e∈E

(
Eω

[
f 2

e ◦ θXn
]+ Eω

[
f 2

e ◦ θXn−1
])≤ 4υ3(ω)

∞∑
k=1

(
P(Yn ∈ Sk) + P(Yn−1 ∈ Sk−1)

)
+ 2υ3(ω)P (Yn ∈ S0)

= 8υ3(ω).

Consequently, the original sequence is bounded by υ3(ω) = 8υ3.1(ω) P almost surely.
Finally we turn to prove (6.8). By the definition of M(n)

M(n + 1) − M(n) =
∑

y∈P(ω)

(
gn+1(y) − gn(y)

)‖y‖.

Using the discrete Gauss–Green formula, this sum can be written as

− 1

4d

∑
x,y∈P(ω)

1{y∈Nx(ω)}
(‖y‖ − ‖x‖)(gn(y) − gn(x)

)
. (6.14)

Indeed, three different sum rearrangements (recalling all sums are finite and that |Nx(ω)| = 2d < ∞ for every point
x ∈ P(ω)) give

∑
y∈P(ω)

(
gn+1(y) − gn(y)

)‖y‖ = − 1

4d

[
2d

∑
y∈P(ω)

‖y‖gn(y) + 2d
∑

x∈P(ω)

‖x‖gn(x)

− 2d
∑

y∈P(ω)

‖y‖gn+1(y) − 2d
∑

x∈P(ω)

‖x‖gn+1(x)

]

= − 1

4d

[ ∑
y∈P(ω)

‖y‖gn(y)
∑

x∈P(ω)

1y∈Nx(ω)

+
∑

x∈P(ω)

‖x‖gn(x)
∑

y∈P(ω)

1y∈Nx(ω)

−
∑

y∈P(ω)

‖y‖
∑

x∈P(ω)

1y∈Nx(ω)gn(x)
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−
∑

x∈P(ω)

‖x‖
∑

y∈P(ω)

1y∈Nx(ω)gn(y)

]

= − 1

4d

∑
x,y∈P(ω)

[
1y∈Nx(ω)‖y‖gn(y) − 1y∈Nx(ω)‖x‖gn(y)

− 1y∈Nx(ω)‖y‖gn(x) + 1y∈Nx(ω)‖x‖gn(x)
]

= − 1

4d

∑
x,y∈P(ω)

1{y∈Nx(ω)}
(‖y‖ − ‖x‖)(gn(y) − gn(x)

)
.

Using the last presentation for M(n + 1) − M(n) and the triangle inequality gives

∣∣M(n + 1) − M(n)
∣∣≤ 1

4d

∑
x,y∈P(ω)

1{y∈Nx(ω)}‖x − y‖∣∣gn(y) − gn(x)
∣∣.

Applying Cauchy–Schwartz inequality to the r.h.s. we get

∣∣M(n + 1) − M(n)
∣∣ ≤ 1

4d

( ∑
x,y∈P(ω)

1{y∈Nx(ω)}
(
gn(x) + gn(y)

)‖x − y‖2
)1/2

·
( ∑

x,y∈P(ω)

1{y∈Nx(ω)}
(gn(y) − gn(x))2

gn(y) + gn(x)

)1/2

.

The first sum in the r.h.s. is the same as (6.7) and therefore is bounded by some random variable υ3 = υ3(ω) which
is positive and finite P almost surely. Thus

∣∣M(n + 1) − M(n)
∣∣≤ υ3(ω)

( ∑
x,y∈P(ω)

1{y∈Nx(ω)}
(gn(y) − gn(x))2

gn(y) + gn(x)

)1/2

.

The fact that (u−v)2

u+v
≤ (u − v)(log(u) − log(v)) for every u,v > 0 yields

∣∣M(n + 1) − M(n)
∣∣≤ υ3(ω)

( ∑
x,y∈P(ω)

1{y∈Nx(ω)}
(
gn(y) − gn(x)

)(
log

(
gn(y)

)− log
(
gn(x)

)))1/2

which by applying the discrete Gauss–Green formula the other way around equals

√
4dυ3(ω)

(
−

∑
y∈P(ω)

(
log

(
gn(y)

)+ 1
)(

gn+1(y) − gn(y)
))1/2

.

Finally, since 1 − x + log(x) ≤ 0 for all x > 0, the last term is bounded by

√
4dυ3(ω)

(
−

∑
y∈P(ω)

(
gn+1(y) − gn(y)

)
log

(
gn(y)

)+ gn+1(y) log

(
gn+1(y)

gn(y)

))1/2

= υ4
(
Q(n + 1) − Q(n)

)1/2
,

where υ4 = (
√

4dυ3)
2. �



Random walks on discrete point processes 747

Proof of Theorem 6.1. Define R :N→ R by

R(n) = 1

d

(
Q(n) − d

2
log(n − 1) + c1

)
, (6.15)

for n > 1 and R(1) = 0. By (6.6) for sufficiently large n

M(n) ≥ c2 · eQ(n)/d = c2 · eR(n)+(c1/d)+(1/2) log(n−1) = c5.1eR(n)
√

n − 1 (6.16)

with c5.1 some positive constant depending only on d . On the other hand by Proposition 6.3

M(n) =
n∑

k=1

(
M(k) − M(k − 1)

)
≤ √

c4

n∑
k=1

(
Q(k) − Q(k − 1)

)1/2

≤ c5.2

n∑
k=3

(
Q(k) − Q(k − 1)

)1/2

= c5.2
√

d

n∑
k=3

(
R(k) − R(k − 1) + 1

2
log

(
k − 1

k − 2

))1/2

.

Denote c5.3 = c5.2
√

d . Since (a + b)1/2 ≤ b1/2 + a

(2b)1/2 the r.h.s. can be bounded by

c5.3

n∑
k=3

[
1√
2

log1/2
(

k − 1

k − 2

)
+ R(k) − R(k − 1)

log1/2((k − 1)/(k − 2))

]

= c5.3

n∑
k=3

1√
2

log1/2
(

k − 1

k − 2

)
+ c5.3

n∑
k=3

[
R(k)

log1/2(k/(k − 1))
− R(k − 1)

log1/2((k − 1)/(k − 2))

]

− c5.3

n∑
k=3

R(k)

[
1

log1/2(k/(k − 1))
− 1

log1/2((k − 1)/(k − 2))

]

≤ c5.3

n∑
k=3

1√
2

log1/2
(

k − 1

k − 2

)
+ c5.3

n∑
k=3

[
R(k)

log1/2(k/(k − 1))
− R(k − 1)

log1/2((k − 1)/(k − 2))

]

= c5.3

n∑
k=3

1√
2

log1/2
(

k − 1

k − 2

)
+ c5.3

R(n)

log1/2(n/(n − 1))
,

where for the inequality we used the fact that R(k) is positive (due to (6.5)). Since 1
2k−2 ≤ log( k−1

k−2 ) = log(1+ 1
k−2 ) <

1
k−2 this can be bounded by

c5.3√
2

n∑
k=3

1√
k − 2

+√
2dc3R(n)

√
n − 1 ≤ c5.4 · (1 + R(n)

)√
n − 2,

with c5.4 = c5.4(ω). Combining all of the above we get that

c5.1(d) · eR(n)
√

n − 1 ≤ M(n) ≤ c5.4(ω)
(
1 + R(n)

)√
n − 2,
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which implies that R(n) is a bounded function P almost surely. Thus one can find two random variables
c5.5, c5.6 :Ω0 → R, which are P almost surely finite and positive, such that

c5.5
√

n ≤ M(n) ≤ c5.6
√

n.

Recalling the definition of M(n), this yields the result. �

7. Corrector – Construction and harmonicity

In this section, we adapt the construction of the corrector presented in [3] to our model. The corrector, originated in a
paper by Kipnis and Varadhan (see [16]) gives a decomposition of random variables into a martingale and a part which
is o(

√
n). In our case, as in [3], this is used to construct a graph deformation (perturbation of the graph embedding in

R
d ) such that the resulting graph is harmonic, i.e., the location of each vertex is the averaged location of its neighbors

and such that the change in location of each point x ∈ Z
d is o(‖x‖2).

Since the proofs are very similar to the ones in [3] we only state most of the theorems. A more detailed version of
this section (including proofs) can be found in the Arxiv version [22].

We start with the following observation concerning the Markov chain “on environments.”

Lemma 7.1. For every bounded measurable function f :Ω0 → R and every x ∈ Z
2 we have

EP

[
(f ◦ θx)1{x∈N0(ω)}

]= EP [f 1{−x∈N0(ω)}]. (7.1)

As a consequence, P is reversible and, in particular, stationary w.r.t. the Markov kernel Λ defined in (2.1).

Proof. Multiplying (7.1) by P(Ω0) gives

EQ[f ◦ θx1Ω01{x∈N0(ω)}] = EQ[f 1Ω01{−x∈N0(ω)}]. (7.2)

The last equality holds since 1{x∈N0(ω)}1Ω0 = (1{−x∈N0(ω)}1Ω0) ◦ θx and therefore f ◦ θx1Ω01{x∈N0(ω)} =
(f 1Ω01{−x∈N0(ω)}) ◦ θx . Thus taking expectation w.r.t. Q and recalling it is shift invariant gives (7.2).

For a measurable function f :Ω → R define Λf :Ω0 →R by

(Λf )(ω) = 1

2d

∑
x∈Zd

(
1{x∈N0(ω)}f (θxω)

)
. (7.3)

Using (7.1) we deduce that for any bounded measurable functions f,g :Ω →R,

EP

[
f · (Λg)

]= 1

2d

∑
x∈Zd

EP

[
f · (g ◦ θx)1{x∈N0(ω)}

]
= 1

2d

∑
x∈Zd

EP [f ◦ θ−x1{−x∈N0(ω)} · g]

= 1

2d

∑
−x∈Zd

EP [f ◦ θx1{x∈N0(ω)} · g] = EP

[
(Λf ) · g], (7.4)

which is the definition of reversibility. Taking f = 1 and noticing that Λf = 1, we get that EP [Λg] = EP [g] for every
bounded measurable function g :Ω → R, i.e., P is stationary with respect to the Markov kernel Λ. �

7.1. The Kipnis–Varadhan construction

We can now adapt the construction of the corrector to the present situation. Let L2 = L2(Ω0,B,P ) be the space of
all Borel-measurable square integrable functions on Ω0. We use the notation L2 both for R-valued functions as well
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as for Rd -valued functions. We equip L2 with the inner product 〈f,g〉 = EP [fg], when for vector valued functions
on Ω we interpret “fg” as the scalar product of f and g. Let Λ be the operator defined by (7.3), and expand the
definition to vector valued functions by letting Λ act like a scalar, i.e., independently on each component. From (7.4)
we get that

〈f,Λg〉 = 〈Λf,g〉, (7.5)

and so Λ is self adjoint. In addition, for every f ∈ L2 we have∣∣〈f,Λf 〉∣∣≤ 1

2d

∑
x∈Zd

∣∣〈f,1{x∈N0(ω)}f ◦ θx〉
∣∣= 1

2d

∑
x∈Zd

∣∣〈f 1{x∈N0(ω)},1{x∈N0(ω)}f ◦ θx〉
∣∣

which by the Cauchy–Schwarz inequality can be bounded by

1

2d

∑
x∈Zd

〈f 1{x∈N0(ω)}, f 1{x∈N0(ω)}〉1/2 · 〈1{x∈N0(ω)}f ◦ θx,1{x∈N0(ω)}f ◦ θx〉1/2

= 1

2d

∑
x∈Zd

〈f,f 1{x∈N0(ω)}〉1/2 · 〈1,1{x∈N0(ω)}f 2 ◦ θx

〉1/2
,

and by (7.1) equals

1

2d

∑
x∈Zd

〈f,f 1{x∈N0(ω)}〉1/2 · 〈f,f 1{−x∈N0(ω)}〉1/2 ≤ 1

2d

∑
x∈Zd

〈f,f 1{x∈N0(ω)}〉 = 〈f,f 〉.

Thus ‖Λ‖L2 ≤ 1. In particular, Λ is self adjoint and sp(Λ) ⊆ [−1,1].
Let V :Ω0 →R

d be the local drift at the origin, i.e.,

V (ω) = 1

2d

∑
x∈Zd

x1{x∈N0(ω)}. (7.6)

If the second moment of fe exists for every e ∈ E , then

〈V,V 〉 =
∑
e∈E

〈V · e,V · e〉 = 1

2d
EP

[
(V · e)2]= 1

2d
EP

[
f 2

e + f 2−e

]
< ∞,

and therefore V ∈ L2. Thus for each ε > 0 we can define ψε :Ω0 → R
d as the solution in L2 of

(1 + ε − Λ)ψε = V. (7.7)

Remark 7.2. This is well defined since the spectrum of Λ, denoted by sp(Λ), is contained in the interval [−1,1], and
therefore sp(1 + ε + Λ) ⊂ [ε,2 + ε]. In particular since ε > 0 the operator 1 + ε − Λ has a bounded inverse.

The following theorem is the main result concerning the corrector:

Theorem 7.3. There is a function χ :Zd × Ω0 →R
d such that for every x ∈ Z

d ,

lim
ε↓0

1{x∈P(ω)}(ψε ◦ θx − ψε) = χ(x, ·), in L2. (7.8)

Moreover, the following properties hold:

• (Shift invariance) For P almost every ω ∈ Ω0

χ(x,ω) − χ(y,ω) = χ
(
x − y, θy(ω)

)
, (7.9)

for all x, y ∈P(ω).
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• (Harmonicity) For P almost every ω ∈ Ω0, the function

x 	→ χ(x,ω) + x, (7.10)

is harmonic with respect to the transition probability given in (1.4).
• (Square integrability) There exists a constant C < ∞ such that∥∥[χ(x + y, ·) − χ(x, ·)]1{x∈P(ω)}(1{y∈N0(ω)} ◦ θx)

∥∥
2 < C, (7.11)

for all x, y ∈ Z
d .

The proof of Theorem 7.3 follows the same lines as the one in [3] without any major changes, and therefore we
omit it. The following lemma summarizes few of the intermediate steps in the proof of Theorem 7.3 which will be
needed in order to prove the high dimensional CLT.

Lemma 7.4. Let ψε be defined as in (7.7), i.e., the solution of (1 + ε − Λ)ψε = V . Then

lim
ε↓0

ε‖ψε‖2
2 = 0. (7.12)

For every x ∈ Z
d define

G(ε)
x (ω) = 1Ω0(ω) · 1{x∈N0(ω)}(ω) · (ψε ◦ θx(ω) − ψε(ω)

)
. (7.13)

Then

lim
ε1,ε2↓0

∥∥G(ε1)
x ◦ θy − G(ε2)

x ◦ θy

∥∥
2 = 0, ∀x, y ∈ Z

d . (7.14)

The corrector is now defined by

χ(x,ω)
def=

n−1∑
k=0

Gxk,xk+1(ω), (7.15)

where (x0, x1, . . . , xn) is any “coordinate nearest neighbor” path in P(ω) from 0 to x and Gx,y(ω) = limε↓0 G
(ε)
x ◦

θy(ω) in the L2 sense.

Remark 7.5. The fact that all the limits in the above lemma exist and that the corrector is well defined are all part of
the proof of Theorem 7.3.

8. Essential sublinearity of the corrector

Fix e ∈ E and define the random sequence ne
k(ω) inductively by ne

1(ω) = fe(ω) and ne
k+1 = ne

k(σe(ω)), where σe is

the induced translation defined by σe = θ
fe(ω)
e . The numbers ne

k are well-defined and finite P almost surely. Let χ be
the corrector from Theorem 7.3. The first goal of this section is to prove the following theorem:

Theorem 8.1. For P almost all ω ∈ Ω0

lim
k→∞

χ(ne
k(ω)e,ω)

k
= 0. (8.1)

The proof of this theorem is based on the following properties of χ(ne
k(ω)e,ω):
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Proposition 8.2.

1. EP [|χ(ne
1(ω)e, ·)|] < ∞.

2. EP [χ(ne
1(ω)e, ·)] = 0.

Proof. Using the definition of the corrector (7.15), it follows that

χ
(
ne

1(ω)e,ω
)= G0,ne

1(ω)e(ω). (8.2)

By (7.14), and since G0,ne
1(ω)e(ω) is the ε ↓ 0 limit of G

(ε)

ne
1(ω)e

in L2, it follows that G0,ne
1(ω)e(ω) ∈ L2. Since P

is a probability measure, it is in particular a finite measure, and therefore for every 1 ≤ r < 2 it is also true that
G0,ne

1(ω)e(ω) ∈ Lr . Taking r = 1 gives

EP

[∣∣χ(ne
1(ω)e, ·)∣∣]= EP

[∣∣G0,ne
1(ω)e(ω)

∣∣]< ∞. (8.3)

For (2), observe that by Definition 7.13 and Theorem 2.1, for every ε > 0,

EP

[
G

(ε)

ne
1(ω)e

]= EP

[
1Ω01{ne

1(ω)e∈N0(ω)}
(
ψε ◦ θ

ne
1(ω)

e − ψε

)]
= EP

[
1Ω01{ne

1(ω)e∈N0(ω)}ψε ◦ θ
ne

1(ω)
e

]−EP [1Ω01{ne
1(ω)e∈N0(ω)}ψε]

= EP

[
(1Ω01{ne

1(ω)e∈N0(ω)}ψε) ◦ σe

]−EP [1Ω01{ne
1(ω)e∈N0(ω)}ψε] = 0.

Thus by the definition of χ and the fact that it is in L1

EP

[
χ
(
ne

1(ω)e, ·)]= EP [G0,ne
1(ω)e] = lim

ε↓0
EP

[
G

(ε)

ne
1(ω)e

]= 0. �

Proof of Theorem 8.1. Define g :Ω → R
d by g(ω) = χ(ne

1(ω)e,ω), and let σe be the induced shift in direction e.
Then

χ
(
ne

k(ω)e,ω
)=

k−1∑
i=0

g ◦ σ i
e (ω). (8.4)

By Proposition 8.2 we have that g ∈ L1 and EP [g] = 0. Since Theorem 2.1 ensures σe is P preserving and ergodic,
the claim follows from Birkhoff’s Ergodic Theorem. �

Next we turn to discuss general sublinearity of the corrector. The following theorem states a weaker notion of
sublinearity satisfied by the corrector. This notion though weaker than the one obtained for points along coordinate
direction is enough in order to prove high dimensional CLT.

Theorem 8.3. For every ε > 0 and P almost every ω ∈ Ω0

lim sup
n→∞

1

(2n + 1)d

∑
x∈P(ω),|x|≤n

1{|χ(x,ω)|≥εn} ≤ ε. (8.5)

The proof of Theorem 8.3 follows the same lines as the one in [3] (Theorem 5.4) without major changes, and
therefore we omit it from this version.

9. High dimensional Central Limit Theorem

Here we finally prove the high dimensional CLT, starting with the following lemma:
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Lemma 9.1. Fix ω ∈ Ω0 and let x 	→ χ(x,ω) be the corrector as defined in Theorem 7.3. Given a path of a random
walk {Xn}∞n=0 on P(ω) with transition probabilities (1.4) let

M(ω)
n = Xn + χ(Xn,ω), ∀n ≥ 0. (9.1)

Then {M(ω)
n }n≥0 is an L2-martingale w.r.t. the filtration {σ(X0,X1, . . . ,Xn)}n≥0. Moreover, conditioned on Xk0 = x,

the increments {M(ω)
k+k0

− M
(ω)
k0

}k≥0 have the same law as {M(θxω)
k }k≥0.

Proof. Since Xn is bounded, χ(Xn,ω) is bounded and so M
(ω)
n is square integrable with respect to Pω. By Theo-

rem 7.3 the map x 	→ x + χ(x,ω) is harmonic with respect to the transition probabilities in (1.4), and therefore

Eω

[
M

(ω)
n+1|σ(Xn)

]= M(ω)
n , ∀n ≥ 0,Pω a.s. (9.2)

By the definition of M
(ω)
n it is σ({Xk}nk=1)-measurable, and therefore {M(ω)

n } is a martingale. The stated relation

between the laws of {M(ω)
k+k0

− M
(ω)
k0

}k≥0 and {M(θxω)
k }k≥0 is implied by the shift invariance proved in Theorem 7.3

and the fact that {M(ω)
n }n≥0 is a simple random walk on the deformed graph. �

Theorem 9.2 (CLT of the modified random walk). Fix d ≥ 2 and assume P satisfies Assumptions 1.1 and 1.4. For
ω ∈ Ω0 let {Xn}n≥0 be a random walk with transition probabilities (1.4) and {M(ω)

n }n≥0 as in (9.1). Then for P almost
every ω ∈ Ω0 we have

lim
n→∞

M
(ω)
n√
n

D= N(0,D), (9.3)

where the convergence is in distribution and N(0,D) is a d-dimensional multivariate normal distribution with co-
variance matrix D which depends on d and the distribution P , given by Di,j = E[cov(M

(ω)
1 · ei,M

(ω)
1 · ej )].

Proof. Let

V (ω)
n (ε) = 1

n

n−1∑
k=0

Eω

[
D

(ω)
k 1{mini,j |(D(ω)

k )i,j |≥ε
√

n}|X0,X1, . . . ,Xk

]
,

where D
(ω)
k is the covariance matrix for M

(ω)
k+1 − M

(ω)
k . By the Lindeberg–Feller Central Limit Theorem (see, e.g.,

[13], Theorem 4.5), it is enough to show that

1. limn→∞ V
(ω)
n (0) = D in Pω probability.

2. limn→∞ V
(ω)
n (ε) = 0 in Pω probability for every ε > 0.

Both conditions are implied from Theorem 2.3. Indeed, one can write V
(ω)
n (0) as

V (ω)
n (0) = 1

n

n−1∑
k=0

h0 ◦ θXk
(ω),

where

hK(ω) = Eω

[
D

(ω)
1 1{mini,j |(D(ω)

1 )i,j |≥K}
]
.

Therefore by Theorem 2.3 we have for P almost every ω ∈ Ω0

lim
n→∞V (ω)

n (0) = E
[
h0(ω)

]= D.
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Turning to the second limit, for every K ∈ R and ε > 0 it holds that ε
√

n > K for sufficiently large n, and therefore
fε

√
N ≤ fK . Consequently, by the Dominated Convergence Theorem

lim sup
n→∞

V (ω)
n (ε) ≤ E

[
D

(ω)
1 1{mini,j |(D(ω)

1 )i,j |≥K}
] −→

K→∞ 0, P a.s.,

where in order to apply the Dominated Convergence Theorem, we used the fact that M
(ω)
1 ∈ L2. �

Finally we turn to prove the high dimensional Central Limit Theorem

Proof of Theorem 1.15. Due to Theorem 9.2 it is enough to prove that for P almost every ω ∈ Ω0

lim
n→∞

χ(Xn,ω)√
n

−→0, Pω-in probability. (9.4)

This will follow once we show that for some random variable C = C(ω) which is P almost surely finite and positive

lim sup
n→∞

Pω

(∣∣χ(Xn,ω)
∣∣> ε

√
n
)
< Cε1/d , ∀ε > 0,P a.s. (9.5)

Separating the event in (9.5) we can bound its probability by

Pω

(∣∣χ(Xn,ω)
∣∣> ε

√
n
)≤ Pω

(
‖Xn‖ >

√
n

ε1/d

)
+ Pω

(
χ(Xn,ω) > ε

√
n,‖Xn‖ ≤

√
n

ε1/d

)
.

Thus it is enough to deal with each term on the r.h.s. separately. For the first term note that by Theorem 6.1 and the
Markov inequality, there exists a random variable c = c(ω), which is P almost surely finite and positive, so that

Pω

[
‖Xn‖ >

1

ε1/d

√
n

]
≤ ε1/d Eω[‖Xn‖]√

n
≤ cε1/d , P a.s. (9.6)

Moving to deal with the second term, by Proposition 5.7 we can write

Pω

(
χ(Xn,ω) > ε

√
n,‖Xn‖ ≤

√
n

ε1/d

)
=

∑
x∈P(ω)

P n
ω(0, x)1{|χ(x,ω)|>ε

√
n,x∈[−√

n/ε1/d ,
√

n/ε1/d ]}

≤ K

nd/2

∑
x∈P(ω)

|x|≤√
n/ε1/d

1{χ(x,ω)>ε
√

n}

= K

(
2

ε1/d
+ 1√

n

)d 1

(2
√

n/ε1/d + 1)d

∑
x∈P(ω)

|x|≤√
n/ε1/d

1{χ(x,ω)>ε1+1/d
√

n/ε},

which by Theorem 8.3 yields that

lim sup
n→∞

Pω

(
χ(Xn,ω) > ε

√
n,‖Xn‖ ≤

√
n

ε1/d

)
≤ 2dKε1/d

as required. �

10. Some conjectures and questions

While we have full classification of transience-recurrence of random walks on discrete point processes in dimensions
d = 1 and d ≥ 3, we only have a partial classification in dimension 2. We therefore give the following two conjectures:
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Conjecture 10.1. There are transient two dimensional random walks on discrete point processes.

Conjecture 10.2. The condition given in Theorem 1.11, for recurrence of two-dimensional random walk on discrete
point process, i.e., the existence of a constant C > 0 such that

∞∑
k=N

k · P(fei
= k)

E(fei
)

≤ C

N
, i ∈ {1,2},N ∈N (10.1)

is not necessary.

In Theorem 1.15 we gave conditions for the random walk on discrete point processes to satisfy a Central Limit
Theorem. However, we didn’t give any example for a random walk without a Central Limit Theorem. We therefore
give the following conjecture:

Conjecture 10.3. There are random walks on discrete point processes in high dimensions that don’t satisfy a Central
Limit Theorem.

In the proof of Theorem 1.15 we used the additional assumption that there exists ε0 > 0 such that EP [f 2+ε0
e ] < ∞

for every e ∈ E . The assumption that the second moments are finite, is fundamental in our CLT proof in order to build
the corrector, and seems to be necessary for the CLT to hold. On the other hand, existence of such ε0 > 0 though
needed in our proof, was used only in order to bound (6.7). We therefore give the following conjecture:

Conjecture 10.4. Theorem 1.15 is true even with the weaker assumption that only the second moments are finite.

Even if the theorem is true with the weaker assumption that only the second moment of the distances between
points is finite, we can still ask the following question:

Question 10.5. Can one find examples for random walks on discrete point processes that satisfy a Central Limit
Theorem in high dimensions but don’t have all of their second moments finite?

We also have the following conjecture about the Central Limit Theorem:

Conjecture 10.6. Theorem 1.15 can be strengthened as follows: Let (Ω,B,Q) be a d-dimensional discrete point
process satisfying Assumptions 1.1 and 1.4. Then for P almost every ω ∈ Ω0 the random walk satisfies an invariance
principle (i.e., converges to Brownian motion under appropriate scaling).

Our model describes non nearest neighbors random walk on random subset of Zd with uniform transition proba-
bilities. We suggest the following generalization of the model:

Question 10.7. Fix α ∈ R. We look on the same model for the environments with transition probabilities as follows:
for ω ∈ Ω0

Pω(Xn+1 = u|Xn = v) =
{0, u /∈ Nv(ω),

1
Z(v)

‖u − v‖α, u ∈ Nv(ω), (10.2)

where Z(v) is normalization constant (the case α = 0 is the uniform distribution case). Which of the theorems proved
in this paper can be generalized to the extended model?
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