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Abstract. Approximate Bayesian Computation (ABC for short) is a family of computational techniques which offer an almost
automated solution in situations where evaluation of the posterior likelihood is computationally prohibitive, or whenever suitable
likelihoods are not available. In the present paper, we analyze the procedure from the point of view of k-nearest neighbor theory
and explore the statistical properties of its outputs. We discuss in particular some asymptotic features of the genuine conditional
density estimate associated with ABC, which is an interesting hybrid between a k-nearest neighbor and a kernel method.

Résumé. Le terme anglais « Approximate Bayesian Computation » (ABC en abrégé) désigne une famille de techniques bayésiennes
ayant pour objet la simulation selon une loi de probabilité lorsque la vraisemblance a posteriori n’est pas disponible ou s’avère
impossible à évaluer numériquement. Dans le présent article, nous envisageons cette procédure du point de vue de la théorie des
k-plus proches voisins, en nous attachant plus particulièrement à examiner les propriétés statistiques des sorties de l’algorithme.
Cela nous conduit à analyser le comportement asymptotique d’un estimateur de la densité conditionnelle naturellement associé à
ABC, utilisé en pratique et possédant à la fois les caractéristiques d’un estimateur des k-plus proches voisins et celles d’une méthode
à noyau.

MSC: 62C10; 62F15; 62G20

Keywords: Approximate Bayesian Computation; Nonparametric estimation; Conditional density estimation; Nearest neighbor methods;
Mathematical statistics

1. Introduction

Let Y be a generic random observation which may, for example, take the form of a sample of independent and
identically distributed (i.i.d.) random variables. More generally, it may also be the first observations of a time series
or a more complex random object, such as a DNA sequence. We denote by �(y|θ) the distribution (likelihood) of
Y, where θ ∈ R

p is an unknown parameter that we wish to estimate. In the Bayesian paradigm, the parameter itself
is seen as a random variable Θ , and the likelihood �(y|θ) becomes the conditional distribution of Y given Θ = θ .
The distribution π(θ) of Θ is called the prior distribution, while the distribution π(θ |y) of Θ given Y = y is termed
posterior.

When taking a Bayesian perspective, inference about the parameter Θ typically proceeds via calculation or simu-
lation of the posterior distribution π(θ |y). A variety of methods exist for inference in this context, such as rejection
algorithms ([42]), Markov Chain Monte Carlo (MCMC) methods (e.g., the Metropolis–Hastings algorithm [24,35]),
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and Importance Sampling ([42]). For a comprehensive introduction to the domain, the reader is referred to the mono-
graphs by Robert and Casella [43] and Marin and Robert [32]. However, in some contexts, computation of the posterior
is problematic, either because the size of the data makes the calculation computationally intractable, or because cal-
culation is impossible when using realistic models for how the data arises. Thus, despite their power and flexibility,
MCMC procedures and their variants may prove irrelevant in a growing number of contemporary applications involv-
ing very large dimensions or complicated models. This computational burden typically arises in fields such as ecology,
population genetics and image analysis, just to name a few.

This difficulty has motivated a drive to more approximate approaches, in particular the field of Approximate
Bayesian Computation (ABC for short). In a nutshell, ABC is a family of computational techniques which offer an
almost automated solution in situations where evaluation of the likelihood is computationally prohibitive, or when-
ever suitable likelihoods are not available. The approach was originally mentioned, but not analyzed, by Rubin [47].
It was further developed in population genetics by Fu and Li [18], Tavaré et al. [51], Pritchard et al. [41], Beaumont et
al. [4], who gave the name of Approximate Bayesian Computation to a family of likelihood-free inference methods.
Since its original developments, the ABC paradigm has successfully been applied to various scientific areas, ranging
from archaeological science and ecology to epidemiology, stereology and protein network analysis. There are too
many references to be included here, but the recent survey by Marin et al. [34] offers both a historical and technical
review of the domain.

Before we go into more details on ABC, some more notation is required. We assume to be given a statistic S,
taking values in R

m. It is a function of the original observation Y, with a dimension m typically much smaller than
the dimension of Y. The statistic S is supposed to admit a conditional density f (s|θ) with respect to the Lebesgue
measure on R

m. Note that, strictly speaking, we should write S(Y) instead of S. However, since there is no ambiguity,
we continue to use the latter notation. As such, the statistic S should be understood as a low-dimensional summary
of Y. It can be, for example, a sufficient statistic for the parameter Θ , but not necessarily. Assuming that Θ is
absolutely continuous with respect to the Lebesgue measure on R

p , the conditional distribution of Θ given S = s has
a density g(θ |s) which, according to Bayes’ rule, takes the form

g(θ |s) = f (s|θ)π(θ)

f̄ (s)
, where f̄ (s) =

∫
Rp

f (s|θ)π(θ)dθ

is the marginal density of S. Finally, we denote by y0 the observed realization of Y (i.e., the data set), and let s0
(= s(y0)) be the corresponding realization of S. Throughout the document, both y0 and s0 should be considered as
fixed quantities.

In its most common form, the generic ABC algorithm is framed in Algorithm 1.
The basic idea behind this formulation is that using a representative enough summary statistic S coupled with a

small enough tolerance level ε should produce a good approximation of the posterior distribution. A moment’s thought
reveals that Algorithm 1 has the flavor of a nonparametric kernel conditional density estimation procedure, for which
ε plays the role of a bandwidth. This is, for example, the point of view that prevails in the analysis of Blum [6], who
explores the asymptotic bias and variance of kernel-type estimates of the posterior density g(·|s0) evaluated over the
code outputs.

However, as made transparent by Marin et al. [34], Algorithm 1, despite its widespread diffusion, does not exactly
match what people do in practice. A more accurate formulation is Algorithm 2.

Algorithm 1 and Algorithm 2 are dual, in the sense that the number of accepted points is fixed in the second and
random in the first, while their range is random in the second and fixed in the first. In practice, the parameter N is

Algorithm 1 Pseudo-code 1 of a generic ABC algorithm.
Require: A positive integer N and a tolerance level ε.

for i = 1 to N do
Generate θ i from the prior π(θ).
Generate yi from the likelihood �(·|θ i ).

end for
return The θ i ’s such that ‖s(yi ) − s0‖ ≤ ε.
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Algorithm 2 Pseudo-code 2 of a generic ABC algorithm.
Require: A positive integer N and an integer kN between 1 and N .

for i = 1 to N do
Generate θ i from the prior π(θ).
Generate yi from the likelihood �(·|θ i ).

end for
return The θ i ’s such that s(yi ) is among the kN -nearest neighbors of s0.

Fig. 1. Illustration of ABC in dimension m = p = 1 (d(kN ) = ‖S(kN ) − s0‖).

chosen to be very large (typically of the order of 106), while kN is most commonly expressed as a percentile. Thus,
for example, the choice N = 106 and a percentile kN/N = 0.1% allow to retain 1000 simulated θ i ’s.

From a nonparametric perspective, Algorithm 2 falls within the broad family of nearest neighbor-type procedures
([9,17,30]). Such procedures have the favor of practitioners, because they are fast, easy to compute and flexible. For
implementation, they require only a measure of distance in the sample space, hence their popularity as a starting-point
for refinement, improvement and adaptation to new settings (see, e.g., [13], Chapter 19). In any case, it is our belief
that ABC should be analyzed in this context, and this is the point of view that is taken in the present article.

In order to better understand the rationale behind Algorithm 2, denote by (Θ1,Y1), . . . , (ΘN,YN) an i.i.d.
sample, with common joint distribution �(y|θ)π(θ). This sample is naturally associated with the i.i.d. sequence
(Θ1,S1), . . . , (ΘN,SN), where each pair has density f (s|θ)π(θ). Finally, let S(1), . . . ,S(kN ) be the kN -nearest neigh-
bors of s0 among S1, . . . ,SN , and let Θ(1), . . . ,Θ (kN ) be the corresponding Θ i ’s (see Fig. 1 for an illustration in
dimension m = p = 1).

With this notation, we see that the generic ABC Algorithm 2 proceeds in two steps:

1. First, simulate (realizations of) an N -sample (Θ1,Y1), . . . , (ΘN,YN).
2. Seconds, return (realizations of) the variables Θ(1), . . . ,Θ (kN ).

This simple observation opens the way to a mathematical analysis of ABC via techniques based on nearest neighbors.
In fact, despite a growing number of practical applications, theoretical results guaranteeing the validity of the approach
are still lacking (see [6,16,54], for results in this direction). Our present contribution is twofold:

(i) We offer in Section 2 an explicit result regarding the distribution of the algorithm outputs (Θ (1),S(1)), . . . ,

(Θ (kN ),S(kN )). Let Bm(s0, δ) denote the closed ball in R
m centered at s0 with nonnegative radius δ, i.e.,

Bm(s0, δ) = {s ∈ R
m: ‖s − s0‖ ≤ δ}. In a nutshell, Proposition 2.1 reveals that, conditionally on the distance

d(kN+1) = ‖S(kN+1) − s0‖, the simulated data set may be regarded as kN i.i.d. realizations of the joint density of
(Θ,S) restricted to the cylinder Rp ×Bm(s0, d(kN+1)). This result is important since it gives a precise description
of the output distribution of ABC Algorithm 2.
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(ii) For a fixed s0 ∈R
m, the estimate practitioners use most to infer the posterior density g(·|s0) at some point θ0 ∈R

p

is

ĝN,s0(θ0) = 1

kNh
p
N

kN∑
j=1

K

(
θ0 − Θ(j)

hN

)
, (1.1)

where {hN } is a sequence of positive real numbers (bandwidth) and K is a nonnegative Borel measurable function
(kernel) on R

p . The idea is simple: In order to estimate the posterior, just look at the kN -nearest neighbors of s0
and smooth the corresponding Θj ’s around θ0. It should be noted that (1.1) is a smart hybrid between a k-
nearest neighbor and a kernel density estimation procedure. It is different from the Rosenblatt-type ([45]) kernel
conditional density estimates proposed in [4] and further explored by Blum [6]. In Section 3 and Section 4, we
establish some consistency properties of this genuine estimate and discuss its rates of convergence.

For the sake of clarity, proofs are postponed to Section 5 and Section 6. An Appendix at the end of the paper offers
some new results on convolution and approximation of the identity.

To conclude this introduction, we would like to make a few comments on the topics that will not be addressed in the
present document. An important part of the performance of the ABC approach, especially for high-dimensional data
sets, relies upon a good choice of the summary statistic S. In many practical applications, this statistic is picked by
an expert in the field, without any particular guarantee of success. A systematic approach to choosing such a statistic,
based upon a sound theoretical framework, is currently under active investigation in the Bayesian community. This
important issue will not be pursued further here. As a good starting point, the interested reader is referred to [28], who
develop a sequential scheme for scoring statistics according to whether their inclusion in the analysis will substantially
improve the quality of inference. Similarly, we will not address issues regarding how to enhance efficiency of ABC

and its variants, as for example with the sequential techniques of Sisson et al. [48] and Beaumont et al. [3]. Nor won’t
we explore the important question of ABC model choice, for which theoretical arguments are still missing ([33,44]).

2. Distribution of ABC outputs

We continue to use the notation of Section 1 and recall in particular that (Θ1,S1), . . . , (ΘN,SN) are i.i.d. Rp ×R
m-

valued random variables, with common probability density f (θ , s) = f (s|θ)π(θ). Both R
p (the space of Θ i ’s) and

R
m (the space of Si ’s) are equipped with the Euclidean norm ‖ · ‖. In this section, attention is focused on analyzing

the distribution of the algorithm outputs (Θ(1),S(1)), . . . , (Θ (kN ),S(kN )).
In what follows, we keep s0 fixed and denote by di the (random) distance between s0 and Si . (To be rigorous,

we should write di(s0), but since no confusion can arise we write it simply di .) Similarly, we let d(i) be the distance
between s0 and its ith nearest neighbor among S1, . . . ,SN , that is

d(i) = ‖S(i) − s0‖.
(If distance ties occur, a tie-breaking strategy must be defined. For example, if ‖Si − s0‖ = ‖Sj − s0‖, Si may be
declared “closer” if i < j , i.e., the tie-breaking is done by indices. Note however that ties occur with probability 0 since
all random variables are absolutely continuous.) It is assumed throughout the paper that N ≥ 2 and 1 ≤ kN ≤ N − 1.

Rearranging the kN (ordered) statistics (Θ (1),S(1)), . . . , (Θ (kN ),S(kN )) in the original order of their outcome, one
obtains the kN (nonordered) random variables (Θ�

1,S�
1), . . . , (Θ

�
kN

,S�
kN

). Our first result is concerned with the condi-
tional distributions

L
{(

Θ�
1,S�

1

)
, . . . ,

(
Θ�

kN
,S�

kN

)|d(kN+1)

}

and

L
{
(Θ (1),S(1)), . . . , (Θ (kN ),S(kN ))|d(kN+1)

}
.

Recall that the collection of all s0 ∈R
m with

∫
Bm(s0,δ)

f̄ (s)ds > 0 for all δ > 0 is called the support of f̄ .
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Proposition 2.1 (Distribution of ABC outputs). Assume that s0 belongs to the support of f̄ . Let (Θ̃1, S̃1), . . . ,

(Θ̃kN
, S̃kN

) be i.i.d. random variables, with common probability density (conditional on d(kN+1))

1[‖s−s0‖≤d(kN +1)]f (θ , s)∫
Rp

∫
Bm(s0,d(kN +1))

f (θ , s)dθ ds
. (2.1)

Then

L
{(

Θ�
1,S�

1

)
, . . . ,

(
Θ�

kN
,S�

kN

)|d(kN+1)

} = L
{
(Θ̃1, S̃1), . . . , (Θ̃kN

, S̃kN
)
}
.

Moreover

L
{
(Θ (1),S(1)), . . . , (Θ (kN ),S(kN ))|d(kN+1)

} = L
{
(Θ̃ (1), S̃(1)), . . . , (Θ̃ (kN ), S̃(kN ))

}
.

Note, since s0 belongs by assumption to the support of f̄ , that the normalizing constant in the denominator of (2.1)
is positive. This theorem may be regarded as an extension of a result of Kaufmann and Reiss [29], who provide explicit
representations of the conditional distribution of an empirical point process given some order statistics. However, the
present Bayesian setting is not covered by the conclusions of Kaufmann and Reiss [29], and our proof actually relies
on simpler arguments.

The main message of Proposition 2.1 is that, conditionally on d(kN+1), one can consider the kN -tuple (Θ (1),S(1)),

. . . , (Θ (kN ),S(kN )) as an ordered sample drawn according to the probability density (2.1). Alternatively, the (un-
ordered) simulated values may be treated like i.i.d. realizations of variables with common density proportional to
1[‖s−s0‖≤d(kN +1)]f (θ , s). Conditionally on d(kN+1), the accepted θ j ’s are nothing but i.i.d. realizations of the probabil-
ity density

∫
Bm(s0,d(kN +1))

f (θ , s)ds∫
Rp

∫
Bm(s0,d(kN +1))

f (θ , s)dθ ds
.

Although this conclusion is intuitively clear, its proof requires a careful mathematical analysis.
As will be made transparent in the next section, Proposition 2.1 plays a key role in the mathematical analysis of the

natural conditional density estimate associated with ABC methodology. In fact, investigating ABC in terms of nearest
neighbors has other important consequences. Suppose, for example, that we are interested in estimating some finite
conditional expectation E[ϕ(Θ)|S = s0], where the random variable ϕ(Θ) is bounded. This includes in particular the
important setting where ϕ is polynomial and one wishes to estimate the conditional moments of Θ . Then, provided
kN/ log logN → ∞ and kN/N → 0 as N → ∞, it can be shown that for almost all s0 (with respect to the distribution
of S), with probability 1,

1

kN

kN∑
j=1

ϕ(Θ(j)) → E
[
ϕ(Θ)|S = s0

]
. (2.2)

Proof of such a result uses the full power of the vast and rich nearest neighbor estimation theory. To be more precise,
let us make a quick detour through this theory and consider an i.i.d. sample (X1,Z1), . . . , (XN,ZN) taking values in
R

m ×R, where the output variables Zi ’s are bounded. Assume, to keep things simple, that the Xi ’s have a probability
density and that our goal is to assess the regression function r(x) = E[Z|X = x], x ∈ R

m. In this context, the k-nearest
neighbor regression function estimate of r ([9,46,50]) takes the form

r̂N (x) = 1

kN

kN∑
j=1

Z(j), x ∈R
m,

where Z(j) is the Z-observation corresponding to X(j), the j th-closest point to x among X1, . . . ,XN . Denoting by
μ the distribution of X1, it is proved in Theorem 3 of [11] that provided kN/ log logN → ∞ and kN/N → 0, for
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μ-almost all x,

r̂N (x) → r(x) with probability 1 as N → ∞.

This result can be transposed without further effort to our ABC setting via the correspondence ϕ(Θ) ↔ Z and S ↔
X, thereby establishing validity of (2.2). The decisive step towards that conclusion is accomplished by making a
connection between ABC and nearest neighbor methodology. We leave it to the reader to draw his own conclusions as
to further possible utilizations of this correspondence.

3. Mean square error consistency

As in Section 2, we keep the conditioning vector s0 fixed and consider the i.i.d. sample (Θ1,S1), . . . , (ΘN,SN),
where each pair is distributed according to the probability density f (θ , s) = f (s|θ)π(θ) on R

p ×R
m. Based on this

sample, our new objective is to estimate the posterior density g(θ0|s0), θ0 ∈ R
p . This estimation step is an important

ingredient of the Bayesian analysis, whether this may be for visualization purposes or more involved mathematical
achievements.

As exposed in the Introduction, the natural ABC-companion estimate of g(θ0|s0) takes the form

ĝN (θ0) = 1

kNh
p
N

kN∑
j=1

K

(
θ0 − Θ(j)

hN

)
, θ0 ∈ R

p, (3.1)

where {hN } is a sequence of positive real numbers (bandwidth) and K is a nonnegative Borel measurable function
(kernel) on R

p . (To reduce the notational burden, we dropped the dependency of the estimate upon s0, keeping in mind
that s0 is held fixed.) Kernel estimates were originally studied in density estimation by Rosenblatt [45] and Parzen [40],
and were latter introduced in regression estimation by Nadaraya [38,39] and Watson [52]. The origins of k-nearest
neighbor density estimation go back to Fix and Hodges [17] and Loftsgaarden and Quesenberry [30]. Kernel estimates
have been extended to the conditional density setting by Rosenblatt [45], who proceeds by separately inferring the
bivariate density f (θ , s) of (Θ,S) and the marginal density of S. Rosenblatt’s estimate reads

g̃N (θ0) =
∑N

i=1 L((s0 − Si )/δN)K((θ0 − Θ i )/hN)

h
p
N

∑N
i=1 L((s0 − Si )/δN)

,

where L is a kernel in R
m, and δN is the corresponding bandwidth. ABC-compatible estimates of this type have been

discussed in [4] and further explored by Blum [6] (additional references for the conditional density estimation problem
are [15,19,25], and the survey of Hansen [22]).

The conditional density estimate we are interested in is different, in the sense that it has both the flavor of a k-
nearest neighbor approach (it retains only the kN -nearest neighbors of s0 among S1, . . . ,SN ) and a kernel method
(it smoothes the corresponding Θj ’s). Obviously, the main advantage of (3.1) over its kernel-type competitors is its
simplicity (it does not involve evaluation of a ratio, with a denominator that can be small), which makes it easy to
implement.

A related procedure to density estimation has been originally proposed by Breiman et al. [7], who suggested
varying the kernel bandwidth with respect to the sample points. Various extensions and modifications of Breiman
et al. [7] estimate have been later proposed in the literature. The rationale behind the approach is to combine the
desirable smoothness properties of kernel estimates with the data-adaptive character of nearest neighbor procedures.
Particularly influential papers in the study of variable kernel estimates were those of Abramson [1] and Hall and
Marron [20], who showed how variable bandwidths with positive kernels can nevertheless induce convergence rates
usually attainable with fixed bandwidths and fourth order kernels. For a complete and comprehensive description of
variable kernel estimates and their properties, we refer the reader to [27].

Our goal in this section is to investigate some consistency properties of the ABC-companion estimate (3.1). Point-
wise mean square error consistency is proved in Theorem 3.3 and mean integrated square error consistency is estab-
lished in Theorem 3.4. We stress that this part of the document is concerned with minimal conditions of convergence.
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We did indeed try to reduce as much as possible the assumptions on the various unknown probability densities by
resorting to real analysis arguments.

The following assumptions on the kernel will be needed throughout the paper:

Assumption [K1]. The kernel K is nonnegative and belongs to L1(Rp), with
∫
Rp K(θ)dθ = 1. Moreover, the function

sup‖y‖≥‖θ‖ |K(y)|, θ ∈R
p , is in L1(Rp).

Assumption set [K1] is in no way restrictive and is satisfied by all standard kernels such as, for example, the naive
kernel

K(θ) = 1

Vp

1Bp(0,1)(θ),

where Vp is the volume of the closed unit ball Bp(0,1) in R
p , or the Gaussian kernel

K(θ) = 1

(2π)p/2
exp

(−‖θ‖2/2
)
.

We recall for further references that, in the p-dimensional Euclidean space,

Vp = πp/2

�(1 + p/2)
, (3.2)

where �(·) is the gamma function. Everywhere in the document, we denote by λp (respectively, λm) the Lebesgue
measure on R

p (respectively, Rm) and set, for any positive h,

Kh(θ) = 1

hp
K(θ/h), θ ∈ R

p.

We note once and for all that, under Assumption [K1],
∫
Rp Kh(θ)dθ = 1.

The first crucial result from real analysis that is needed here is the so-called Lebesgue’s differentiation theorem
(see, e.g., Theorem 7.16 in [53]), which asserts that if ϕ is a locally integrable function in R

n, then

1

Vnδn

∫
Bn(x0,δ)

∣∣ϕ(x) − ϕ(x0)
∣∣dx → 0 as δ → 0

for λn-almost all x0 ∈ R
n. A point x0 at which this statement is valid is called a Lebesgue point of ϕ. In the proofs,

we shall in fact need some convolution-type variations around the Lebesgue’s theorem regarding the prior density π .
These important results are gathered in the next theorem, whose proof can be found in Theorem 1, p. 5 and Theorem 2,
pp. 62–63 of [49].

Theorem 3.1. Let K be a kernel satisfying Assumption [K1], and let the function π� be defined on R
p by

θ0 	→ π�(θ0) = sup
h>0

[∫
Rp

Kh(θ0 − θ)π(θ)dθ

]
.

(i) For λp-almost all θ0 ∈ R
p , one has

∫
Rp

Kh(θ0 − θ)π(θ)dθ → π(θ0) as h → 0.

(ii) The quantity π�(θ0) is finite for λp-almost all θ0 ∈R
p .

(iii) For any q > 1, the function π� is in Lq(Rp) whenever π is in Lq(Rp).
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When K is chosen to be the naive kernel, the function π� of Theorem 3.1 is called the Hardy–Littlewood maximal
function of π . It should be understood as a gauge of the size of the averages of π around θ0.

We shall also need an equivalent of Theorem 3.1 for the joint density f , which this time is defined on R
p × R

m.
Things turn out to be slightly more complicated in this case if one is willing pairs of points (θ0, s0) to be approached
as (h, δ) → (0,0) by general product kernels over R

p × R
m. These kernels take the form Kh(·) ⊗ Lδ(·), without

any restriction on the joint behavior of h and δ (in particular, we do not impose that h = δ). The so-called Jessen–
Marcinkiewicz–Zygmund theorem ([26], see also [55], Chapter 17, pp. 305–309) answers the question for naive
kernels, at the price of a slight integrability assumption on f . On the other hand, the literature offers surprisingly
little help for general kernels, with the exception of arguments presented in [12]. This is astonishing since this real
analysis issue is at the basis of pointwise convergence properties of multivariate kernel estimates and indeed most
density estimates. To fill the gap, we begin with the following theorem, which is tailored to our ABC context (that
is, when the second kernel L is restricted to be the naive one). A more general result (that is, for both K and L

general kernels) together with interesting new results on convolution and approximation of the identity are given in
the Appendix section, at the end of the paper (Theorem 3.2 is thus a consequence of Theorem A.1). In the sequel,
notation u+ means max(u,0).

Theorem 3.2. Let K be a kernel satisfying Assumption [K1], and let the function f � be defined on R
p ×R

m by

(θ0, s0) 	→ f �(θ0, s0) = sup
h>0,δ>0

[
1

Vmδm

∫
Rp

∫
Bm(s0,δ)

Kh(θ0 − θ)f (θ , s)dθ ds
]
.

(i) If
∫
Rp

∫
Rm

f (θ , s) log+ f (θ , s)dθ ds < ∞ (3.3)

then, for λp ⊗ λm-almost all (θ0, s0) ∈ R
p ×R

m,

lim
(h,δ)→(0,0)

1

Vmδm

∫
Rp

∫
Bm(s0,δ)

Kh(θ0 − θ)f (θ , s)dθ ds = f (θ0, s0).

(ii) If condition (3.3) is satisfied, then f �(θ0, s0) is finite for λp ⊗ λm-almost all (θ0, s0) ∈R
p ×R

m.
(iii) For any q > 1, the function f � is in Lq(Rp ×R

m) whenever f is in Lq(Rp ×R
m).

A remarkable feature of Theorem 3.2(i) is that the result is true as soon as (h, δ) → (0,0), without any restriction
on these parameters. This comes however at the price of the mild integrability assumption (3.3), which is true, in
particular, if f is in any Lq(Rp ×R

m), q > 1.
Recall that we denote by f̄ the marginal density of f (θ , s) in s, that is

f̄ (s) =
∫
Rp

f (θ , s)dθ , s ∈ R
m.

We are now in a position to state the two main results of this section.

Theorem 3.3 (Pointwise mean square error consistency). Assume that the kernel K is bounded and satisfies As-
sumption [K1]. Assume, in addition, that the joint probability density f is such that

∫
Rp

∫
Rm

f (θ , s) log+ f (θ , s)dθ ds < ∞.

Then, for λp ⊗λm-almost all (θ0, s0) ∈ R
p ×R

m, with f̄ (s0) > 0, if kN → ∞, kN/N → 0, hN → 0 and kNh
p
N → ∞,

E
[
ĝN (θ0) − g(θ0|s0)

]2 → 0 as N → ∞.
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It is stressed that the integral assumption required on f is mild. It is for example satisfied whenever f is bounded
from above or whenever f belongs to Lq(Rp ×R

m) with q > 1. There are, however, situations where this assumption
is not satisfied. As an illustration, take p = m = 1 and let

T =
{
(θ , s) ∈ R×R: θ > 0, s > 0, θ + s ≤ 1

2

}
.

Clearly,

∫ ∫
T

1

(θ + s)2 log2(θ + s)
dθ ds < ∞.

Choose

f (θ , s) = C

(θ + s)2 log2(θ + s)
1[(θ ,s)∈T ],

where C is a normalizing constant ensuring that f is a probability density. Then

∫
Rp

∫
Rm

f (θ , s)dθ ds = 1

whereas
∫
Rp

∫
Rm

f (θ , s) log+ f (θ , s)dθ ds = ∞.

Theorem 3.4 below states that the estimate ĝN is also consistent with respect to the mean integrated square error
criterion.

Theorem 3.4 (Mean integrated square error consistency). Assume that the kernel K belongs to L2(Rp) and sat-
isfies Assumption [K1]. Assume, in addition, that the joint probability density f and the prior π are in L2(Rp ×R

m)

and L2(Rp), respectively. Then, for λm-almost all s0 ∈ R
m, with f̄ (s0) > 0, if kN → ∞, kN/N → 0, hN → 0 and

kNh
p
N → ∞,

E

[∫
Rp

[
ĝN (θ0) − g(θ0|s0)

]2 dθ0

]
→ 0 as N → ∞.

Here again, the regularity assumptions required on f and π are minimal. One could envisage an additional degree
of smoothing in the estimate (3.1) by observing that taking the kN nearest neighbors of s0 can be viewed as the uniform
kernel case of the more general quantity

N∑
i=1

L

(
s0 − Si

‖S(kN ) − s0‖
)

,

which allows unequal weights to be given to the Si ’s. The corresponding smoothed conditional density estimate is
defined by

g̃N (θ0) =
∑N

i=1 L((s0 − Si )/‖S(kN ) − s0‖)K((θ0 − Θ i )/hN)

h
p
N

∑N
i=1 L((s0 − Si )/‖S(kN ) − s0‖)

.

Thus, ĝN is the uniform kernel case of g̃N . The asymptotic properties of g̃N , which are beyond the scope of the present
article, will be explored elsewhere by the authors. A good starting point are the papers by Moore and Yackel [36,37]



New insights into Approximate Bayesian Computation 385

and Mack and Rosenblatt [31], who study various properties of similar kernel-type nearest neighbor procedures for
density estimation.

4. Rates of convergence

In this section, we go one step further in the analysis of the ABC-companion estimate ĝN by studying its mean
integrated square error rates of convergence. We follow the notation of Section 3 and try to keep the assumptions on
unknown mathematical objects as mild as possible. Introduce the multi-index notation

|β| = β1 + · · · + βn, β! = β1! · · ·βn!, xβ = x
β1
1 · · ·xβn

n

for β = (β1, . . . , βn) ∈ N
n and x ∈ R

n. If all the k-order derivatives of some function ϕ :Rn → R are continuous at
x0 ∈ R

n then, by Schwarz’s theorem, one can change the order of mixed derivatives at x0, so the notation

Dβϕ(x0) = ∂ |β|ϕ(x0)

∂x
β1
1 · · · ∂x

βn
n

, |β| ≤ k

for the higher-order partial derivatives is justified in this situation.
In the sequel, we shall need the following sets of assumptions. Recall that the collection of all s0 ∈ R

m with∫
Bm(s0,δ)

f̄ (s)ds > 0 for all δ > 0 is called the support of f̄ .

Assumption [A1]. The marginal probability density f̄ has compact support with diameter L > 0 and is three times
continuously differentiable.

Assumption [A2]. The joint probability density f is in L2(Rp ×R
m). Moreover, for fixed s0, the functions

θ0 	→ ∂2f (θ0, s0)

∂θi1 ∂θi2

, 1 ≤ i1, i2 ≤ p

and

θ0 	→ ∂2f (θ0, s0)

∂s2
j

, 1 ≤ j ≤ m

are defined and belong to L2(Rp).

Assumption [A3]. The joint probability density f is three times continuously differentiable on R
p ×R

m and, for any
multi-index β satisfying |β| = 3,

sup
s∈Rm

∫
Rp

[
Dβf (θ , s)

]2 dθ < ∞.

It is also necessary to put some mild additional restrictions on the kernel.

Assumption [K2]. The kernel K is symmetric and belongs to L2(Rp). Moreover, for any multi-index β satisfying
|β| ∈ {1,2,3},

∫
Rp

∣∣θβ
∣∣K(θ)dθ < ∞.
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We finally define

ξ0 = inf
0<δ≤L

1

δm

∫
Bm(s0,δ)

f̄ (s)ds,

and introduce the following quantities, which are related to the average distance between s0 and its kN th nearest
neighbor (see Proposition 6.1 and Proposition 6.2):

Dm(kN) = m

ξ
2/m

0 (m − 2)

(
kN + 1

N + 1

)2/m

− L2−m

ξ0(m/2 − 1)

kN + 1

N + 1
,

Δm(kN) = m

ξ
4/m

0 (m − 4)

(
kN + 1

N + 1

)4/m

− L4−m

ξ0(m/4 − 1)

kN + 1

N + 1
,

D(kN) = 1

ξ0

(
1 + log

(
ξ0L

2 N + 1

kN + 1

))
kN + 1

N + 1
,

Δ(kN) = 1

ξ0

(
1 + log

(
ξ0L

4 N + 1

kN + 1

))
kN + 1

N + 1
.

The next theorem makes precise the mean integrated square error rates of convergence of ĝN (·) towards g(·|s0).

Theorem 4.1. Let K be a kernel satisfying Assumptions [K1] and [K2]. Let s0 be a Lebesgue point of f̄ such that
f̄ (s0) > 0. Assume that Assumptions [A1]–[A3] are satisfied. Then, letting

φ1(θ0, s0) = 1

2

p∑
i1,i2=1

∂2f (θ0, s0)

∂θi1 ∂θi2

∫
Rp

θi1θi2K(θ)dθ ,

φ2(θ0, s0) = 1

2m + 4

m∑
j=1

∂2f (θ0, s0)

∂s2
j

,

φ3(s0) = 1

2m + 4

m∑
j=1

∂2f̄ (s0)

∂s2
j

,

and

Φ1(s0) = 1

f̄ 2(s0)

∫
Rp

φ2
1(θ0, s0)dθ0,

Φ2(s0) = 1

f̄ 4(s0)

∫
Rp

[
φ2(θ0, s0)f̄ (s0) − φ3(s0)f (θ0, s0)

]2 dθ0,

Φ3(s0) = 2

f̄ 3(s0)

∫
Rp

φ1(θ0, s0)
[
φ2(θ0, s0)f̄ (s0) − φ3(s0)f (θ0, s0)

]
dθ0,

one has:

1. For m = 2,

E

[∫
Rp

[
ĝN (θ0) − g(θ0|s0)

]2 dθ0

]

=
(

Φ1(s0)h
4
N + Φ2(s0)Δ2(kN) + Φ3(s0)h

2
ND(kN) +

∫
Rp K2(θ)dθ

kNh
p
N

)

× (
1 + o(1)

)
.
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2. For m = 4,

E

[∫
Rp

[
ĝN (θ0) − g(θ0|s0)

]2 dθ0

]

=
(

Φ1(s0)h
4
N + Φ2(s0)Δ(kN) + Φ3(s0)h

2
ND4(kN) +

∫
Rp K2(θ)dθ

kNh
p
N

)

× (
1 + o(1)

)
.

3. For m /∈ {2,4},

E

[∫
Rp

[
ĝN (θ0) − g(θ0|s0)

]2 dθ0

]

=
(

Φ1(s0)h
4
N + Φ2(s0)Δm(kN) + Φ3(s0)h

2
NDm(kN) +

∫
Rp K2(θ)dθ

kNh
p
N

)

× (
1 + o(1)

)
.

By balancing the terms in Theorem 4.1, we are led to the following useful corollary:

Corollary 4.1 (Rates of convergence). Under the conditions of Theorem 4.1, one has:

1. For m ∈ {1,2,3}, there exists a sequence {kN } with kN ∝ N(p+4)/(p+8) and a sequence {hN } with hN ∝ N−1/(p+8)

such that

E

[∫
Rp

[
ĝN (θ0) − g(θ0|s0)

]2 dθ0

]

=
(

L4−mΦ1(s0)

ξ0(1 − m/4)
+ Φ2(s0) +

∫
Rp

K2(θ)dθ

)
N−4/(p+8) + o

(
N−4/(p+8)

)
.

2. For m = 4, there exists a sequence {kN } with kN ∝ N(p+4)/(p+8) and a sequence {hN } with hN ∝ N−1/(p+8) such
that

E

[∫
Rp

[
ĝN (θ0) − g(θ0|s0)

]2 dθ0

]

= 4Φ1(s0)

ξ0(p + 8)
N−4/(p+8) logN + o

(
N−4/(p+8) logN

)
.

3. For m > 4, there exists a sequence {kN } with kN ∝ N(p+4)/(m+p+4) and a sequence {hN } with hN ∝ N−1/(m+p+4)

such that

E

[∫
Rp

[
ĝN (θ0) − g(θ0|s0)

]2 dθ0

]

=
(

mΦ1(s0)

ξ
4/m

0 (m − 4)
+ Φ2(s0) + mΦ3(s0)

ξ
2/m

0 (m − 2)
+

∫
Rp

K2(θ)dθ

)
N−4/(m+p+4) + o

(
N−4/(m+p+4)

)
.

Several remarks are in order:

1. From a practical perspective, the fundamental problem is that of the joint choice of kN and hN in the absence
of a priori information regarding the posterior g(·|s0). Various bandwidth selection rules for conditional density
estimates have been proposed in the literature (see, e.g., [2,14,21]). However most if not all of these procedures
pertain to kernel-type estimates and are difficult to adapt to our nearest-neighbor setting. Moreover, they are tailored
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to global statistical performance criteria, whereas the problem we are facing is local since s0 is held fixed. Devising
a good methodology to automatically select both parameters kN and hN in function of s0 necessitates a specific
analysis, which we believe is beyond the scope of the present paper.

2. Nevertheless, Corollary 4.1 provides a useful insight into the proportion of simulated values which should
be accepted by the algorithm. For example, for m > 4, a rough rule of thumb is obtained by taking kN ≈
N(p+4)/(m+p+4), so that a fraction of about kN/N ≈ N−m/(m+p+4) ABC-simulations should not be rejected.

5. Proofs

5.1. Proof of Proposition 2.1

Denote by (Θ̃1, S̃1), . . . , (Θ̃k, S̃k) i.i.d. random couples with common probability density

1

Cd(k+1)

1[‖s−s0‖≤d(k+1)]f (θ , s),

where the normalizing constant Cd(k+1)
is defined by

Cd(k+1)
=

∫
Rp

∫
Bm(s0,d(k+1))

f (θ , s)dθ ds.

Note, since s0 belongs by assumption to the support of f̄ , that the constant Cd(k+1)
is positive. To prove the first

statement of the theorem, it is enough to establish that, for any test functions Φ and ϕ, with Φ symmetric in its
arguments, one has

E
[
Φ

(
(Θ (1),S(1)), . . . , (Θ (k),S(k))

)
ϕ(d(k+1))

] = E
[
Φ

(
(Θ̃1, S̃1), . . . , (Θ̃k, S̃k)

)
ϕ(d(k+1))

]
.

This can be achieved by adapting the proof of Lemma A.1 in [8] to this context. Details are omitted.
To prove the second statement, it suffices to show that, for any test functions Φ and ϕ (with Φ not necessarily

symmetric), one has

E
[
Φ

(
(Θ (1),S(1)), . . . , (Θ (k),S(k))

)
ϕ(d(k+1))

] = E
[
Φ

(
(Θ̃ (1), S̃(1)), . . . , (Θ̃ (k), S̃(k))

)
ϕ(d(k+1))

]
.

The arguments of Cérou and Guyader [8] may be repeated mutatis mutandis by replacing the k-combinations of
{1, . . . ,N} by the k-permutations.

5.2. Proof of Theorem 3.3

The proof strongly relies on Proposition 2.1. It is assumed throughout that s0 is a Lebesgue point of f̄ (λm-almost
all points satisfy this requirement) such that f̄ (s0) > 0. We note that this forces s0 to belong to the support of f̄ , so
that the assumption of Proposition 2.1 is satisfied. The collection of valid s0 will vary during the proof, but only on
subsets of Lebesgue measure 0. Similarly, we fix θ0 ∈ R

p , up to subsets of Lebesgue measure 0 which will appear in
the proof.

First observe that, according to Proposition 2.1,

E
[
ĝN (θ0)|d(kN+1)

] = 1

Cd(kN +1)

∫
Rp

KhN
(θ0 − θ)

(∫
Bm(s0,d(kN +1))

f (θ , s)ds
)

dθ ,

where, for any δ > 0, Cδ = ∫
Bm(s0,δ)

f̄ (s)ds. Put differently, by Fubini’s theorem,

E
[
ĝN (θ0)|d(kN+1)

] = 1

Cd(kN +1)

∫
Rp

∫
Bm(s0,d(kN +1))

KhN
(θ0 − θ)f (θ , s)dθ ds. (5.1)
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The proof starts with the variance–bias decomposition

E
[
ĝN (θ0) − g(θ0)

]2 = E
[
E

[(
ĝN (θ0) −E

[
ĝN (θ0)|d(kN+1)

])2∣∣d(kN+1)

]]
+E

[
E

[
ĝN (θ0)|d(kN+1)

] − g(θ0)
]2

. (5.2)

Our goal is to show that, under our assumptions, both terms on the right-hand side of (5.2) tend to 0 as N → ∞. We
start with the analysis of the second one, by noting that

∣∣E[
ĝN (θ0)|d(kN+1)

] − g(θ0)
∣∣

=
∣∣∣∣ 1

Cd(kN +1)

∫
Rp

∫
Bm(s0,d(kN +1))

KhN
(θ0 − θ)f (θ , s)dθ ds − f (θ0, s0)

f̄ (s0)

∣∣∣∣,
where we used (5.1) and the definition of g(θ0). Equivalently,

∣∣E[
ĝN (θ0)|d(kN+1)

] − g(θ0)
∣∣

=
∣∣∣∣
Vmdm

(kN+1)

Cd(kN +1)

1

Vmdm
(kN+1)

∫
Rp

∫
Bm(s0,d(kN +1))

KhN
(θ0 − θ)f (θ , s)dθ ds − f (θ0, s0)

f̄ (s0)

∣∣∣∣.
For a fixed pair (θ0, s0) and all h, δ > 0, set

ψθ0,s0(h, δ) =
∣∣∣∣Vmδm

Cδ

1

Vmδm

∫
Rp

∫
Bm(s0,δ)

Kh(θ0 − θ)f (θ , s)dθ ds − f (θ0, s0)

f̄ (s0)

∣∣∣∣.
According to technical Lemma 6.1(i), the quantity Vmδm/Cδ tends to 1/f̄ (s0) as δ → 0. Therefore, by the first state-
ment of Theorem 3.2, we deduce that for λp ⊗λm-almost all pairs (θ0, s0) ∈R

p ×R
m, lim(h,δ)→(0,0) ψ

2
θ0,s0

(h, δ) = 0.
Next, introduce π� (respectively, f �), the maximal function defined in Theorem 3.1 (respectively, Theorem 3.2).

Take any δ0 > 0. On the one hand, by the very definition of f �,

sup
h>0,δ0≥δ>0

[
ψθ0,s0(h, δ)

] ≤ sup
0<δ≤δ0

[
Vmδm

Cδ

]
f �(θ0, s0) + f (θ0, s0)

f̄ (s0)
.

On the other hand, for δ > δ0,

ψθ0,s0(h, δ) ≤ 1

Cδ0

∫
Rp

Kh(θ0 − θ)π(θ)dθ + f (θ0, s0)

f̄ (s0)
,

so that

sup
h>0,δ>δ0

[
ψθ0,s0(h, δ)

] ≤ π�(θ0)

Cδ0

+ f (θ0, s0)

f̄ (s0)
.

Thus, putting all the pieces together, we infer that for λp ⊗ λm-almost all pairs (θ0, s0) ∈R
p ×R

m,

sup
h>0,δ>0

[
ψθ0,s0(h, δ)

] ≤ sup
0<δ≤δ0

[
Vmδm

Cδ

]
f �(θ0, s0) + π�(θ0)

Cδ0

+ 2f (θ0, s0)

f̄ (s0)
. (5.3)

In consequence, by Lemma 6.1(ii), Theorem 3.1(ii) and Theorem 3.2(ii), for such pairs (θ0, s0),

sup
h>0,δ>0

[
ψ2

θ0,s0
(h, δ)

]
< ∞. (5.4)

Now, since d(kN+1) → 0 with probability 1 whenever kN/N → 0 (see, e.g., Lemma 5.1 in [13]), we conclude by
Lebesgue’s dominated convergence theorem that the bias term in (5.2) tends to 0 as N → ∞.
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To finish the proof, it remains to show that the first term of (5.2) vanishes as N → ∞. This is easier. Just note that,
using again Proposition 2.1,

E
[(

ĝN (θ0) −E
[
ĝN (θ0)|d(kN+1)

])2∣∣d(kN+1)

]

= 1

kNh
2p
N

1

Cd(kN +1)

∫
Rp

K2
(

θ0 − θ

hN

)(∫
Bm(s0,d(kN +1))

f (θ , s)ds
)

dθ

− 1

kN

(
E

[
ĝN (θ0)|d(kN+1)

])2
. (5.5)

Hence, if K is bounded by, say, ‖K‖∞,

E
[(

ĝN (θ0) −E
[
ĝN (θ0)|d(kN+1)

])2∣∣d(kN+1)

]

≤ 1

kNh
2p
N

1

Cd(kN +1)

∫
Rp

K2
(

θ0 − θ

hN

)(∫
Bm(s0,d(kN +1))

f (θ , s)ds
)

dθ

≤ 1

kNh
p
N

‖K‖∞
Cd(kN +1)

∫
Rp

∫
Bm(s0,d(kN +1))

KhN
(θ0 − θ)f (θ , s)dθ ds.

Thus, using (5.4), we obtain

E
[(

ĝN (θ0) −E
[
ĝN (θ0)|d(kN+1)

])2∣∣d(kN+1)

] ≤ C

kNh
p
N

for some positive constant C depending on θ0, s0 and K , but independent of hN and kN . This shows that the variance
term goes to 0 as kNh

p
N → ∞ and concludes the proof of the theorem.

5.3. Proof of Theorem 3.4

We start as in the proof of Theorem 3.3 and write, using Fubini’s theorem,

E

[∫
Rp

[
ĝN (θ0) − g(θ0)

]2 dθ0

]

= E

[∫
Rp

E
[(

ĝN (θ0) −E
[
ĝN (θ0)|d(kN+1)

])2∣∣d(kN+1)

]
dθ0

]

+E

[∫
Rp

[
E

[
ĝN (θ0)|d(kN+1)

] − g(θ0)
]2 dθ0

]
. (5.6)

It has already been seen that

E
[(

ĝN (θ0) −E
[
ĝN (θ0)|d(kN+1)

])2∣∣d(kN+1)

]

≤ 1

kNh
2p
N

1

Cd(kN +1)

∫
Rp

∫
Bm(s0,d(kN +1))

K2
(

θ0 − θ

hN

)
f (θ , s)dθ ds.

Consequently, by definition of Cd(kN +1)
, we are led to

∫
Rp

E
[(

ĝN (θ0) −E
[
ĝN (θ0)|d(kN+1)

])2∣∣d(kN+1)

]
dθ0 ≤

∫
Rp K2(θ)dθ

kNh
p
N

.

This shows that the first term in (5.6) tends to 0 as kNh
p
N → ∞.
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Let us now turn to the analysis of the bias term. With the notation of the proof of Theorem 3.3, we may write

E

[∫
Rp

[
E

[
ĝN (θ0)|d(kN+1)

] − g(θ0)
]2 dθ0

]
= E

[∫
Rp

ψ2
θ0,s0

(hN , d(kN+1))dθ0

]
.

It is known from the proof of Theorem 3.3 that the limit of ψ2
θ0,s0

(h, δ) is 0 for λp ⊗ λm-almost all (θ0, s0) ∈ R
p ×

R
m, whenever (h, δ) → (0,0). Take any δ0 > 0. Denoting by f � (respectively, π�) the maximal function defined in

Theorem 3.2 (respectively, Theorem 3.1), we also know (inequality (5.3)) that

sup
h>0,δ>0

[
ψθ0,s0(h, δ)

] ≤ sup
0<δ≤δ0

[
Vmδm

Cδ

]
f �(θ0, s0) + π�(θ0)

Cδ0

+ 2f (θ0, s0)

f̄ (s0)
.

Thus, because (a + b + c)2 ≤ 3a2 + 3b2 + 3c2,

sup
h>0,δ>0

[
ψ2

θ0,s0
(h, δ)

] ≤ 3

(
sup

0<δ≤δ0

[
Vmδm

Cδ

]
f �(θ0, s0)

)2

+ 3

(
π�(θ0)

Cδ0

)2

+ 12

(
f (θ0, s0)

f̄ (s0)

)2

.

By Lemma 6.1(ii), the supremum on the right-hand side is bounded. Moreover, by assumption, f is in L2(Rp ×R
m).

Therefore the function θ0 	→ f (θ0, s0) is in L2(Rp) as well for λm-almost all s0 ∈R
m. Similarly, for λm-almost all s0,

by Theorem 3.2(iii), the function θ0 	→ f �(θ0, s0) is in L2(Rp). Finally, π� belongs to L2(Rp) by Theorem 3.1(iii).
Since d(kN+1) → 0 with probability 1 whenever kN/N → 0, the conclusion follows from Lebesgue’s dominated
convergence theorem.

5.4. Proof of Theorem 4.1

Throughout the proof, it is assumed that the Lebesgue point s0 is fixed and such that f̄ (s0) > 0. This forces s0 to
belong to the support of f̄ .

As in the proofs of Theorem 3.3 and Theorem 3.4, we set, for any θ0 ∈R
p and all h, δ > 0,

ψθ0,s0(h, δ) =
∣∣∣∣Vmδm

Cδ

1

Vmδm

∫
Rp

∫
Bm(s0,δ)

Kh(θ0 − θ)f (θ , s)dθ ds − f (θ0, s0)

f̄ (s0)

∣∣∣∣,

where Cδ = ∫
Bm(s0,δ)

f̄ (s)ds. With this notation, it is readily seen from identities (5.5) and (5.6) that

E

[∫
Rp

[
ĝN (θ0) − g(θ0|s0)

]2 dθ0

]

= E

[∫
Rp

ψ2
θ0,s0

(hN , d(kN+1))dθ0

]
+

∫
Rp K2(θ)dθ

kNh
p
N

− 1

kN

E

[∫
Rp

(
E

[
ĝN (θ0)|d(kN+1)

])2 dθ0

]
.

Recall that

E
[
ĝN (θ0)|d(kN+1)

] = 1

Cd(kN +1)

∫
Rp

KhN
(θ0 − θ)

(∫
Bm(s0,d(kN +1))

f (θ , s)ds
)

dθ ,

and the same arguments as in the proof of Theorem 3.4 reveal that

sup
hN>0,L≥d(kN +1)>0

(
E

[
ĝN (θ0)|d(kN+1)

])2 ≤
(

sup
0<δ≤L

[
Vmδm

Cδ

]
f �(θ0, s0)

)2

.
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Since f is in L2(Rp ×R
m) by Assumption [A2], this ensures that for λm-almost all s0 ∈ R

m,

E

[∫
Rp

(
E

[
ĝN (θ0)|d(kN+1)

])2 dθ0

]
< ∞

and

1

kN

E

[∫
Rp

(
E

[
ĝN (θ0)|d(kN+1)

])2 dθ0

]
= O

(
1

kN

)
.

In particular,

1

kN

E

[∫
Rp

(
E

[
ĝN (θ0)|d(kN+1)

])2 dθ0

]
= o

(
1

kNh
p
N

)
.

The rest of the proof is devoted to the study of the rate of convergence to 0 of the quantity

E

[∫
Rp

ψ2
θ0,s0

(hN, d(kN+1))dθ0

]
.

By an elementary change of variables, using the symmetry of K ,

1

Vmδm

∫
Rp

∫
Bm(s0,δ)

Kh(θ0 − θ)f (θ , s)dθ ds = 1

Vm

∫
Rp

∫
Bm(0,1)

K(θ)f (θ0 + hθ , s0 + δs)dθ ds.

Next, by the multivariate Taylor’s theorem applied to f around (θ0, s0) (which is valid here by Assumption [A3]),

f (θ0 + hθ , s0 + δs) = f (θ0, s0) +
∑
|β|=1

Dβf (θ0, s0)(hθ , δs)β

+
∑
|β|=2

Dβf (θ0, s0)

β! (hθ , δs)β

+
∑
|β|=3

Rβ(θ0 + hθ , s0 + δs)(hθ , δs)β,

where each component of the remainder term takes the form

Rβ(θ0 + hθ , s0 + δs) = 3

β!
∫ 1

0
(1 − t)2Dβf (θ0 + thθ , s0 + tδs)dt.

In view of the symmetry of K and the ball Bm(0,1), it is clear that∫
Rp

∫
Bm(0,1)

K(θ)
∑
|β|=1

Dβf (θ0, s0)(hθ , δs)β dθ ds = 0.

Similarly, elementary calculations reveal that

1

Vm

∫
Rp

∫
Bm(0,1)

K(θ)
∑
|β|=2

Dβf (θ0, s0)

β! (hθ , δs)β dθ ds

= φ1(θ0, s0)h
2 + φ2(θ0, s0)δ

2

(where φ1 is defined in the statement of Theorem 4.1), and

φ2(θ0, s0) = 1

2Vm

m∑
j=1

∂2f (θ0, s0)

∂s2
j

∫
Bm(0,1)

s2
j ds.
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Using expression (3.2) of Vm, an elementary verification shows that

1

Vm

∫
Bm(0,1)

s2
j ds = 1

m + 2
and φ2(θ0, s0) = 1

2m + 4

m∑
j=1

∂2f (θ0, s0)

∂s2
j

.

Let us now define (h, δ) = (h, . . . , h, δ, . . . , δ) (where h is replicated p times and δ is replicated m times) and care
about the remainder term Rβ(θ0 + hθ , s0 + δs). For any multi-index β with |β| = 3, it holds

∫
Rp

∫
Bm(0,1)

K(θ)Rβ(θ0 + hθ , s0 + δs)(hθ , δs)β dθ ds = (h, δ)βAβ(θ0, h, δ),

where, by definition,

Aβ(θ0, h, δ) =
∫
Rp

∫
Bm(0,1)

K(θ)Rβ(θ0 + hθ , s0 + δs)(θ , s)β dθ ds.

[Note that Aβ(θ0, h, δ) depends in fact upon s0 as well, but since this dependency is not crucial, we leave it out in the
notation.] Finally,

1

Vmδm

∫
Rp

∫
Bm(s0,δ)

Kh(θ0 − θ)f (θ , s)dθ ds

= f (θ0, s0) + φ1(θ0, s0)h
2 + φ2(θ0, s0)δ

2 +
∑
|β|=3

(h, δ)βAβ(θ0, h, δ).

Considering now the function

τs0(δ) = Cδ

Vmδm
= 1

Vmδm

∫
Bm(s0,δ)

f̄ (s)ds = 1

Vm

∫
Bm(0,1)

f̄ (s0 + δs)ds,

and the asymptotic expansion of 1/τs0 around 0, a similar analysis shows that

Vmδm

Cδ

= 1

f̄ (s0)
− φ3(s0)

f̄ 2(s0)
δ2 + δ3ζ1(δ)

(where φ3 is defined in the statement of Theorem 4.1), and, with a slight abuse of notation, there exists t ∈ (0,1)

such that ζ1(δ) = H(tδ)/τ 4
s0

(tδ). In this last expression, the function H depends only on the successive derivatives
Dβf̄ (s0 + tδs) for 0 ≤ |β| ≤ 3 and is therefore bounded thanks to Assumption [A1]. Besides, by the very definition
of ξ0 and technical Lemma 6.3,

τs0(tδ) = 1

Vm(tδ)m

∫
Bm(s0,tδ)

f̄ (s)ds ≥ ξ0

Vm

> 0.

Thus, the function ζ1(δ) is such that sup0<δ≤L ζ1(δ) < ∞. Putting all the pieces together, we conclude that

ψθ0,s0(h, δ) = ∣∣φ4(θ0, s0)h
2 + φ5(θ0, s0)δ

2 + h2ζ2(θ0, h, δ) + δ2ζ3(θ0, h, δ)
∣∣,

where

φ4(θ0, s0) = φ1(θ0, s0)

f̄ (s0)
and φ5(θ0, s0) = φ2(θ0, s0)f̄ (s0) − φ3(s0)f (θ0, s0)

f̄ 2(s0)
.

Moreover, one can check, using Assumption [A2] and the second statement of Assumption [A3] together with tech-
nical Lemma 6.2, that for i = 2,3, ζi(θ0, h, δ) → 0 as (h, δ) → (0,0), and

sup
0<h<M,0<δ≤L

∫
Rp

ζ 2
i (θ0, h, δ)dθ0 < ∞
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for all positive M . As a consequence,

∫
Rp

ψ2
θ0,s0

(h, δ)dθ0 = Φ1(s0)h
4 + Φ2(s0)δ

4 + Φ3(s0)h
2δ2 + (

h2 + δ2)2
ζ4(h, δ)

(Φ1, Φ2 and Φ3 are defined in the statement of Theorem 4.1). Besides, for all positive M ,

sup
0<h<M,0<δ≤L

ζ4(h, δ) < ∞ and lim
(h,δ)→(0,0)

ζ4(h, δ) = 0. (5.7)

Finally,

E

[∫
Rp

[
ĝN (θ0) − g(θ0|s0)

]2 dθ0

]

= Φ1(s0)h
4
N + Φ2(s0)E

[
d4
(kN+1)

] + Φ3(s0)h
2
NE

[
d2
(kN+1)

] +
∫
Rp K2(θ)dθ

kNh
p
N

+E
[(

h2
N + d2

(kN+1)

)2
ζ4(hN, d(kN+1))

] + o

(
1

kNh
p
N

)
.

The conclusion is then an immediate consequence of (5.7) and Assumption [A1], together with Proposition 6.1 and
Proposition 6.2, which respectively provide upper bounds on E[d2

(kN+1)] and E[d4
(kN+1)] depending on the dimen-

sion m.

6. Some technical results

Lemma 6.1. Let s0 ∈ R
m be a Lebesgue point of f̄ such that f̄ (s0) > 0. For any δ > 0, let Cδ = ∫

Bm(s0,δ)
f̄ (s)ds.

One has

(i) limδ→0 Vmδm/Cδ = 1/f̄ (s0),
(ii) for any δ0 > 0, sup0<δ≤δ0

Vmδm/Cδ < ∞.

Proof. The first statement is an immediate consequence of Lebesgue’s differentiation theorem ([53], Theorem 7.2).
Take now δ0 > 0. Since f̄ (s0) > 0, it is routine to verify that the mapping δ 	→ Vmδm

Cδ
is positive and continuous on

(0, δ0]. Thus, by (i), we deduce that sup0<δ≤δ0
Vmδm/Cδ < ∞. �

Lemma 6.2. Assume that the joint probability density f is three times continuously differentiable on R
p ×R

m, and
let β be a multi-index satisfying |β| = 3. Assume that sups∈Rm

∫
Rp [Dβf (θ , s)]2 dθ < ∞, and, for h, δ > 0, consider

the parameterized mapping θ0 	→ Aβ(θ0, h, δ), where

Aβ(θ0, h, δ) =
∫
Rp

∫
Bm(0,1)

K(θ)Rβ(θ0 + hθ , s0 + δs)(θ , s)β dθ ds,

with

Rβ(θ0 + hθ , s0 + δs) =
∫ 1

0
(1 − t)Dβf (θ0 + thθ , s0 + tδs)dt.

Then

sup
h,δ>0

∫
Rp

A2
β(θ0, h, δ)dθ0 < ∞.
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Proof. The proof relies on an application of the generalized Minkowski’s inequality (see, e.g., Theorem 202 in [23]).
Indeed,

(∫
Rp

A2
β(θ0, h, δ)dθ0

)1/2

≤
∫
Rp

∫
Bm(0,1)

∫ 1

0
Σ

1/2
β (θ , s, t)(1 − t)K(θ)

∣∣(θ , s)β
∣∣dθ ds dt,

where

Σβ(θ , s, t) =
∫
Rp

[
Dβf (θ0 + thθ , s0 + tδs)

]2 dθ0.

Letting C2 = sups∈Rm

∫
Rp [Dβf (θ , s)]2 dθ < ∞, we obtain

(∫
Rp

A2
β(θ0, h, δ)dθ0

)1/2

≤ C

∫
Rp

∫
Bm(0,1)

∫ 1

0
(1 − t)K(θ)

∣∣(θ , s)β
∣∣dθ ds dt.

This upper bound is finite thanks to Assumption [K2], and independent of h and δ. �

Lemma 6.3. Let s0 be a Lebesgue point of f̄ such that f̄ (s0) > 0. Then, for all positive L,

0 < inf
0<δ≤L

1

δm

∫
Bm(s0,δ)

f̄ (s)ds < ∞.

Proof. By exploiting the fact that s0 is a Lebesgue point of f̄ satisfying f̄ (s0) > 0, we deduce that for some positive
δ0 < L,

0 < inf
0<δ≤δ0

1

δm

∫
Bm(s0,δ)

f̄ (s)ds < ∞.

Moreover,

1

Lm

∫
Bm(s0,δ0)

f̄ (s)ds ≤ inf
δ0<δ≤L

1

δm

∫
Bm(s0,δ)

f̄ (s)ds ≤ 1

δm
0

.

The quantity on the left-hand side is positive since s0 belongs to the support of f̄ . This concludes the proof. �

Proposition 6.1. Assume that the support of f̄ is compact with diameter L > 0. Let s0 be a Lebesgue point of f̄ such
that f̄ (s0) > 0. Set

ξ0 = inf
0<δ≤L

1

δm

∫
Bm(s0,δ)

f̄ (s)ds.

Whenever kN+1
N+1 ≤ ξ0L

m, one has:

1. For m = 2,

E
[
d2
(kN+1)

] ≤ 1

ξ0

(
1 + log

(
ξ0L

2 N + 1

kN + 1

))
kN + 1

N + 1
.

2. For m 
= 2,

E
[
d2
(kN+1)

] ≤ m

ξ
2/m

0 (m − 2)

(
kN + 1

N + 1

)2/m

− L2−m

ξ0(m/2 − 1)

kN + 1

N + 1
.
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Proof. First note, according to Lemma 6.3, that 0 < ξ0 < ∞. Next, observe that

E
[
d2
(kN+1)

] =
∫ L2

0
P{d(kN+1) >

√
δ}dδ.

For some fixed a ∈ (0,L2), we use the decomposition

∫ L2

0
P{d(kN+1) >

√
δ}dδ

=
∫ a

0
P{d(kN+1) >

√
δ}dδ +

∫ L2

a

P{d(kN+1) >
√

δ}dδ

≤ a +
∫ L2

a

P{d(kN+1) >
√

δ}dδ.

Introduce p0(
√

δ) = ∫
Bm(s0,

√
δ)

f̄ (s)ds, which is positive since s0 is in the support of f̄ . Using a binomial argument,
we see that

P{d(kN+1) >
√

δ} =
kN∑
j=0

(
N

j

)[
p0(

√
δ)

]j [1 − p0(
√

δ)
]N−j

= 1

p0(
√

δ)

kN∑
j=0

(
N

j

)[
p0(

√
δ)

]j+1[1 − p0(
√

δ)
]N−j

.

By applying Lemma 3.1 in [5], we obtain

P{d(kN+1) >
√

δ} ≤ kN + 1

N + 1
× 1

p0(
√

δ)
.

Consequently,

E
[
d2
(kN+1)

] ≤ a + 1

ξ0

kN + 1

N + 1

∫ L2

a

δ−m/2 dδ.

The conclusion is easily obtained by optimizing the right-hand side with respect to the parameter a. �

Proposition 6.2. Assume that the support of f̄ is compact with diameter L > 0. Let s0 be a Lebesgue point of f̄ such
that f̄ (s0) > 0. Set

ξ0 = inf
0<δ≤L

1

δm

∫
Bm(s0,δ)

f̄ (s)ds.

Whenever kN+1
N+1 ≤ ξ0L

m, one has:

1. For m = 4,

E
[
d4
(kN+1)

] ≤ 1

ξ0

(
1 + log

(
ξ0L

4 N + 1

kN + 1

))
kN + 1

N + 1
.

2. For m 
= 4,

E
[
d4
(kN+1)

] ≤ m

ξ
4/m

0 (m − 4)

(
kN + 1

N + 1

)4/m

− L4−m

ξ0(m/4 − 1)

kN + 1

N + 1
.



New insights into Approximate Bayesian Computation 397

Proof. Proof is similar to the one of Proposition 6.1, and is therefore omitted. �

Appendix: Complements on singular integrals

Recall that the convolution ([53], Chapter 6), of two measurable functions f and g in R
n is defined by

(f � g)(x) =
∫
Rn

f (y)g(x − y)dy, x ∈ R
n,

provided the integral exists. This appendix is devoted to the study of some properties of convolution when R
n =

R
n1 ×R

n2 and g is of the form

ϕε1,ε2(x) = 1

ε
n1
1 ε

n2
2

ϕ1

(
x1

ε1

)
ϕ2

(
x2

ε2

)
, x = (x1,x2) ∈R

n1 ×R
n2 .

More precisely, the question of interest is to analyze the effect of letting ε1 and ε2 go independently to 0 in the
expression (f � ϕε1,ε2)(x). We prove in particular (Theorem A.1) that (f � ϕε1,ε2)(x) → f (x) for λn-almost all x if f

and ϕ are suitably restricted.
The issues discussed in the present appendix fall within the field of maximal functions and approximation of the

identity ([49,53]). The novelty is that we allow the family {ϕε1,ε2 : ε1 > 0, ε2 > 0} (the so-called approximation of the
identity) to depend upon two independent parameters ε1 and ε2. Interestingly, the real analysis literature offers little
help with respect to this important question, which is however fundamental in the study of multivariate nonparametric
estimates. Valuable ideas and comments in this respect are included in [12].

Let ϕ be an integrable function on R
n =R

n1 ×R
n2 , termed “the kernel” hereafter. It is assumed throughout that ϕ

is a product kernel, of the form

ϕ(x) = ϕ1(x1)ϕ2(x2), x = (x1,x2) ∈R
n1 ×R

n2 . (A.1)

For ε1 > 0 and ε2 > 0, we set

ϕε1,ε2(x) = 1

ε
n1
1 ε

n2
2

ϕ1

(
x1

ε1

)
ϕ2

(
x2

ε2

)
.

We will need the following assumption:

Assumption [K]. For i = 1,2, the functions

ψi(xi ) = sup
‖yi‖≥‖xi‖

∣∣ϕi(yi )
∣∣, xi ∈ R

ni ,

are in L1(Rni ), with
∫
R

ni

ψi(xi )dxi ≤ √
A < ∞.

If f is a locally integrable function in R
n, we also denote by M12f the associated Hardy–Littlewood maximal

function with two degrees of freedom. It is defined for x = (x1,x2) by

(M12f )(x) = sup
ε1,ε2>0

[
1

Vn1ε
n1
1 Vn2ε

n2
2

∫
Bn1 (x1,ε1)

∫
Bn2 (x2,ε2)

∣∣f (y1,y2)
∣∣dy1 dy2

]
,

where Bn1(x1, ε1) (respectively, Bn2(x2, ε2)) is the closed ball in R
n1 (respectively, Rn2), with center at x1 (respec-

tively, x2) and radius ε1 (respectively, ε2), and Vn1 (respectively, Vn2 ) is the volume of the unit ball in R
n1 (respectively,

R
n2 ).
Our objective is to prove the following theorem, which is a more general version of Theorem 3.2.
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Theorem A.1. Let f be a measurable function in R
n satisfying

∫
Rn

∣∣f (x)
∣∣(1 + log+∣∣f (x)

∣∣)dx < ∞, (A.2)

and let ϕ be a product kernel of the form (A.1) satisfying Assumption [K]. Assume, in addition, that
∫
Rn ϕ(x)dx = 1.

(i) For λn-almost all x ∈R
n, limε1,ε2→0(f � ϕε1,ε2)(x) = f (x).

(ii) For λn-almost all x ∈R
n,

sup
ε1,ε2>0

∣∣(f � ϕε1,ε2)(x)
∣∣ ≤ A(M12f )(x) < ∞,

where A is the constant of Assumption [K].
(iii) Moreover, if f is in Lq(Rn), 1 < q ≤ ∞, then M12f is in Lq(Rn) and

‖M12f ‖q ≤ cq‖f ‖q,

where the constant cq depends only on q and the dimension n.

Proof. To prove the theorem, we will need some general results on singular integrals and Hardy–Littlewood maximal
functions. As shown in p. 50 of [10], for all α > 0 and a locally integrable f ,

λn

({
x ∈R

n: (M12f )(x) > α
}) ≤ c

∫
Rn

|f (x)|
α

(
1 + log+ |f (x)|

α

)
dx, (A.3)

where c is a constant independent of f and α. This result will be crucial in our proof. It easily follows that whenever

∫
Rn

∣∣f (x)
∣∣(1 + log+ ∣∣f (x)

∣∣)dx < ∞,

then (M12f )(x) < ∞ at λn-almost all x.

Proof of (ii). The proof follows arguments of pp. 63–64 of [49]. For i = 1,2, with a slight abuse of notation, we
write ψi(ri) = ψi(xi ) if ri = ‖xi‖. This should cause no confusion since each ψi is anyway radial. Observe that, for
i = 1,2,

∫
ri/2≤‖xi‖≤ri

ψi(xi )dxi ≥ ψi(ri)

∫
ri/2≤‖xi‖≤ri

dxi ∝ ψi(ri)r
ni

i .

Therefore, the assumption ψi ∈ L1(Rni ) proves that r
ni

i ψi(ri) → 0, as ri → 0 or ri → ∞. To prove (ii), it is enough
to show that for all nonnegative f satisfying (A.2), all ε1 > 0, ε2 > 0,

(f � ψε1,ε2)(x) ≤ A(M12f )(x), (A.4)

where

ψε1,ε2(x) = 1

ε
n1
1 ε

n2
2

ψ1

(
x1

ε1

)
ψ2

(
x2

ε2

)
, x = (x1,x2) ∈R

n.

Set ψ = ψ1ψ2. Since assertion (A.4) is clearly translation invariant (with respect to f ) and also dilatation invariant
(with respect to ψ ), it suffices to show that

(f � ψ)(0) ≤ A(M12f )(0).
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Moreover, recalling (A.3), we may clearly assume that (M12f )(0) < ∞. For i = 1,2, denote by Sni−1 the unit
(ni − 1)-sphere in R

ni and let σi be the corresponding spherical measure. We set as well

�(r1, r2) =
∫

Sn1−1

∫
Sn2−1

f (r1x1, r2x2)dσ1(x1)dσ2(x2),

Λ1(r1, r2) =
∫ r1

0
�(u1, r2)u

n1−1
1 du1 =

∫ r2

0
Λ1(r1, u2)u

n2−1
2 du2

=
∫ r1

0

∫ r2

0
�(u1, u2)u

n1−1
1 u

n2−1
2 du1 du2,

and will repeatedly use the inequality

Λ(r1, r2) =
∫
Bn1 (0,r1)

∫
Bn2 (0,r2)

f (x)dx ≤ Vn1 .Vn2r
n1
1 r

n2
2 (M12f )(0). (A.5)

With this notation, we have

(f � ψ)(0) =
∫ ∞

0

∫ ∞

0
�(r1, r2)ψ1(r1)r

n1−1
1 ψ2(r2)r

n2−1
2 dr1 dr2

= lim
ε1→0

N1→∞
ε2→0

N2→∞

∫ N2

ε2

[∫ N1

ε1

�(r1, r2)ψ1(r1)r
n1−1
1 dr1

]
ψ2(r2)r

n2−1
2 dr2.

Denote by I1(ε1,N1) the integral inside the brackets. We may write, using an integration by parts (in the sense of
Stieltjès–Lebesgue),

I1(ε1,N1) =
∫ N1

ε1

Λ1(r1, r2)d
(−ψ1(r1)

) + Λ1(N1, r2)ψ1(N1) − Λ1(ε1, r2)ψ1(ε1).

Consequently,

∫ N2

ε2

I1(ε1,N1)ψ2(r2)r
n2−1
2 dr2 = IA + IB − IC

=
∫ N2

ε2

∫ N1

ε1

Λ1(r1, r2)d
(−ψ1(r1)

)
ψ2(r2)r

n2−1
2 dr2

+
∫ N2

ε2

Λ1(N1, r2)ψ1(N1)ψ2(r2)r
n2−1
2 dr2

−
∫ N2

ε2

Λ1(ε1, r2)ψ1(ε1)ψ2(r2)r
n2−1
2 dr2.

Each term of the sum is analyzed separately. Using again an integration by parts, we are led to

IA =
∫ N1

ε1

[∫ N2

ε2

Λ(r1, r2)d
(−ψ2(r2)

) + Λ(r1,N2)ψ2(N2) − Λ(r1, ε2)ψ2(ε2)

]
d
(−ψ1(r1)

)

=
∫ N1

ε1

∫ N2

ε2

Λ(r1, r2)d
(−ψ1(r1)

)
d
(−ψ2(r2)

)

+
∫ N1

ε1

Λ(r1,N2)ψ2(N2)d
(−ψ1(r1)

)
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−
∫ N1

ε1

Λ(r1, ε2)ψ2(ε2)d
(−ψ1(r1)

)

= A1 + A2 − A3.

The main term, A1, is handled as follows via inequality (A.5):

A1 ≤ Vn1 .Vn2(M12f )(0)

∫ ∞

0

∫ ∞

0
r
n1
1 r

n2
2 d

(−ψ1(r1)
)

d
(−ψ2(r2)

)

≤ A(M12f )(0)

since for i = 1,2, we have

Vni

∫ ∞

0
r
ni

i d
(−ψi(ri)

) =
∫
R

ni

ψi(xi )dxi ≤ √
A,

by Assumption [K]. The remaining terms, A2 and A3, converge to 0. To see this, just note that

A2 ≤ Vn1 .Vn2(M12f )(0) × N
n2
2 ψ2(N2)

∫ ∞

0
r
n1
1 d

(−ψ1(r1)
)
,

which goes to 0 since the integral is convergent and N
n2
2 ψ2(N2) → 0 as N2 → ∞. Similarly,

A3 ≤ Vn1 .Vn2(M12f )(0) × ε
n2
2 ψ2(ε2)

∫ ∞

0
r
n1
1 d

(−ψ1(r1)
)
.

The term on the right-hand side tends to 0 since ε
n2
2 ψ2(ε2) → 0 as ε2 → 0. Using similar arguments, it is easy to

prove that IB and IC go to 0 as ε1, ε2 → 0 and N1,N2 → ∞. Proof of (ii) is therefore complete.

Proof of (i). For the sake of clarity, the proof is divided into three steps.
Step 1. If f is continuous and has compact support, then the result is easy to verify. Indeed, we have in this case

(f � ϕε1,ε2)(x) =
∫
R

n1

∫
R

n2
f (x1 − ε1y1,x2 − ε2y2)ϕ(y1,y2)dy1 dy2,

whence, using the fact that
∫
Rn ϕ(x)dx = 1,

∣∣(f � ϕε1,ε2)(x) − f (x)
∣∣

≤
∫
R

n1

∫
R

n2

∣∣f (x1 − ε1y1,x2 − ε2y2) − f (x)
∣∣ · ∣∣ϕ(y1,y2)

∣∣dy1 dy2

≤ sup
x1,x2,y1,y2

∣∣f (x1 − ε1y1,x2 − ε2y2) − f (x)
∣∣ ∫

R
n1

∫
R

n2

∣∣ϕ(y1,y2)
∣∣dy1 dy2.

Since f is uniformly continuous, this term tends to 0.
Step 2. We establish that limε1,ε2→0(f � ϕε1,ε2)(x) exists for λn-almost all x ∈R

n. As for now, to ease the notation,
we set g�

ε1,ε2
(x) = (g � ϕε1,ε2)(x), and let

(Ωg)(x) =
∣∣∣lim sup
ε1,ε2→0

g�
ε1,ε2

(x) − lim inf
ε1,ε2→0

g�
ε1,ε2

(x)

∣∣∣.
Let α > 0 and δ > 0 be arbitrary. Thanks to Proposition A.1 at the end of the section, we may write f = h + g, where
h is continuous with compact support and g is such that

∫
Rn

|g(x)|
α

(
1 + log+ |g(x)|

α

)
dx ≤ δ.
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By (ii), we have at λn-almost all x, (Ωg)(x) ≤ 2A(M12g)(x). Thus, by (A.3),

λ
({

x ∈R
n: (Ωg)(x) > 2Aα

}) ≤ c

∫
Rn

|g(x)|
α

(
1 + log+ |g(x)|

α

)
dx ≤ cδ.

Clearly, Ωf ≤ Ωg + Ωh and, by Step 1, Ωh ≡ 0. Therefore

λ
({

x ∈R
n: (Ωf )(x) > 2Aα

}) ≤ cδ.

Since α and δ are arbitrary, we conclude that λ({x ∈R
n: (Ωf )(x) > 0}) = 0.

Step 3. We finally prove that, for λn-almost all x ∈ R
n,

lim
ε1,ε2→0

f �
ε1,ε2

(x) = f (x).

Set f1(x) = limε1,ε2→0 f �
ε1,ε2

(x) (this limit exists λn-almost everywhere by Step 2). Fix α > 0, δ > 0, and choose h

continuous with compact support as in Step 2 such that
∫
Rn

|(f − h)(x)|
α

(
1 + log+ |(f − h)(x)|

α

)
dx ≤ δ.

For λn-almost all x ∈R
n,

∣∣f (x) − f1(x)
∣∣ ≤ ∣∣f (x) − h(x)

∣∣ +
∣∣∣ lim
ε1,ε2→0

h�
ε1,ε2

(x) − lim
ε1,ε2→0

f �
ε1,ε2

(x)

∣∣∣ = A1 + A2.

By (ii),

A2 ≤ sup
ε1,ε2>0

∣∣(f − h)�ε1,ε2
(x)

∣∣ ≤ A
(
M12|f − h|)(x).

Thus,

λ
({

x ∈R
n:

∣∣f (x) − f1(x)
∣∣ > 2Aα

})
≤ λ

({
x ∈R

n:
∣∣f (x) − h(x)

∣∣ > Aα
})

+ λ
({

x ∈R
n:

(
M12|f − h|)(x) > α

})

≤ ‖f − h‖1

Aα
+ c

∫
Rn

|(f − h)(x)|
α

(
1 + log+ |(f − h)(x)|

α

)
dx

≤
(

1

A
+ c

)
δ.

In the second inequality, we used Markov’s inequality together with inequality (A.3). Since both α and δ can be chosen
arbitrarily, we conclude that

λ
({

x ∈R
n:

∣∣f (x) − f1(x)
∣∣ > 0

}) = 0.

Proof of (iii). The proof is adapted from p. 307 of [55]. Let the partial maximal functions be defined for x = (x1,x2)

by

(M1f )(x) = sup
ε1>0

[
1

Vn1ε
n1
1

∫
Bn1 (x1,ε1)

∣∣f (y1,x2)
∣∣dy1

]

and

(M2f )(x) = sup
ε2>0

[
1

Vn2ε
n2
2

∫
Bn2 (x2,ε2)

∣∣f (x1,y2)
∣∣dy2

]
.
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From these definitions, it is clear that (M12f )(x) ≤ (M1(M2f ))(x). But, for 1 < q ≤ ∞, f1 ∈ Lq(Rn1), f2 ∈ Lq(Rn2),
it is known (see, e.g., [49], Theorem 1, p. 5), that

‖M1f ‖q ≤ c1,q‖f1‖q and ‖M2f ‖q ≤ c2,q‖f2‖q,

where the constants c1,q and c2,q depend only on n1, n2 and q . It immediately follows that ‖M12f ‖q
q ≤ c

q

1,qc
q

2,q‖f ‖q
q .

This concludes the proof of the theorem. �

Proposition A.1. Let Φ :R+ → R
+ be a continuous and nondecreasing function satisfying Φ(0) = 0, and let f be

a measurable function from R
n to R such that

∫
Rn Φ(|f (x)|)dx < ∞. Then, for all δ > 0, there exists a function h

continuous with compact support such that
∫
Rn

Φ
(∣∣f (x) − h(x)

∣∣)dx ≤ δ.

Proof. First, assume that f (x) ≥ 0 for all x. Take {ft } a sequence of nonnegative continuous functions, each with
compact support and such that 0 ≤ ft (x) ↑ f (x) at λn-almost all x ∈ R

n. For such an x, by the continuity of Φ at 0,
one has Φ(f (x)− ft (x)) → Φ(0) = 0. Since Φ(f (x)− ft (x)) ≤ Φ(f (x)) and Φ(f ) is in L1(Rn) by assumption, we
may apply Lebesgue’s dominated convergence theorem and conclude that

∫
Rn

Φ
(
f (x) − ft (x)

)
dx → 0 as t → ∞.

If we drop the assumption that f (x) ≥ 0, we may split f into positive and negative part and apply the above result.
�
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