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Abstract. For the site percolation model on the triangular lattice and certain generalizations for which Cardy’s Formula has been
established we acquire a power law estimate for the rate of convergence of the crossing probabilities to Cardy’s Formula.

Résumé. Dans le modèle de percolation sur le réseau triangulaire et pour certaines généralisations pour lesquelles la formule de
Cardy a été établie, nous démontrons un taux de convergence en loi de puissance des probabilités de percolation vers la formule de
Cardy.
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1. Introduction

Starting with the work [14] and continuing in [4–6,10,17], the validity of Cardy’s Formula [7] – which describes the
limit of crossing probabilities for certain percolation models – and the subsequent consequence of an SLE6 description
for the associated limiting explorer process has been well established. The purpose of this work is to provide some
preliminary quantitative estimates. Similar work along these lines has already appeared in [3] (also see [15]) in the
context of the so-called loop erased random walk for both the observable and the process itself. Here, our attention
will be confined to the percolation observable as embodied by Cardy’s Formula for crossing probabilities.

While in the case of the loop erased random walk, estimates on the observable can be reduced to certain Green’s
function estimates, in the case of percolation the observables are not so readily amenable. Instead of Green’s functions,
we shall have to consider the Cauchy integral representation of the complexified crossing probability functions, as first
introduced in [14]. As demonstrated in [14] (see also [2] and [10]) these functions converge to conformal maps from
the domain under consideration – where the percolation process takes place – to the equilateral triangle. Thus, a
combination of some analyticity property and considerations of boundary value should, in principal, yield a rate of
convergence.

However, the associated procedure requires a few domain deformations, each of which must be demonstrated to
be “small,” in a suitable sense. While such considerations are not important for very regular domains (which we
will not quantify) in order to consider general domains, a more robust framework for quantification is called for. For
this purpose, we shall introduce a procedure where all portions of the domain are explored via percolation crossing
problems. This yields a multi-scale sequence of neighborhoods around each boundary point where the nature of the
boundary irregularities determines the sequence of successive scales. Thus, ultimately, we are permitted to measure
the distances between regions by counting the number of neighborhoods which separate them. This procedure is akin
to the approach of Harris [11] in his study of the critical state at a time when detailed information about the nature of
the state was unavailable.
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Ultimately we establish a power law estimate (in mesh size) for the rate of convergence in any domain with
boundary dimension less than two. (For a precise statement see the Main Theorem below.) As may or may not be
clear to the reader at this point the hard quantifications must be done via percolation estimates – as is perhaps not
surprising since we cannot easily utilize continuum estimates before having reached the continuum in the first place.
The plausibility of a power law estimate then follows from the fact that most a priori percolation estimates are of this
form.

Finally, we should mention that this problem is also treated in the posting [13], which appeared at approximately the
same time as (the preliminary version of) the present work. The estimates in [13] are more quantitative, however, the
class of domains treated therein are restricted. In the present work we make no efforts towards precise quantification,
but we shall treat the problem for essentially arbitrary domains. It is remarked that convergence to Cardy’s Formula
in a general class of domains is, most likely, an essential ingredient for acquiring a rate of convergence to SLE6 for
the percolation interfaces.

2. Preliminaries

2.1. The models under consideration

We will be considering critical percolation models in the plane. However in contrast to the generality professed in [4,
5] – where, essentially, “all” that was required was a proof of Cardy’s Formula, here the mechanism of how Cardy’s
Formula is established will come into play. Thus, we must restrict attention to the triangular site percolation problem
considered in [14] and the generalization provided in [10]. These models can all be expressed in terms of random
colorings (and sometimes double colorings) of hexagons. As is traditional, the competing colors are designated by
blue and yellow. We remind the reader that criticality implies that there are scale independent bounds in (0,1) for
crossing probabilities – in either color – between non-adjacent sides of regular polygons. In this work, for the most
part, we will utilize crossings in rectangles with particular aspect ratios.

2.2. The observable

Consider a fixed domain Ω ⊂ C that is a conformal rectangle with marked points (or prime ends) A, B , C and D
which, as written, are in cyclic order. We let Ωn denote the lattice approximation at scale ε = n−1 to the domain Ω .
The details of the construction ofΩn – especially concerning boundary values and explorer processes – are somewhat
tedious and have been described, e.g., in [5], Sections 3 and 4 and [4], Section 4.2. For present purposes, it is sufficient
to know thatΩn consists of the maximal union of lattice hexagons – of radius 1/n – whose closures lie entirely inside
Ω ; we sometimes refer to this as the canonical approximation. (We shall also have occasions later to use other discrete
interior approximating domains which are a subset ofΩn.) Moreover, boundary arcs can be appropriately colored and
lattice points An – Dn can be selected. We consider percolation problems in Ωn.

The pertinent object to consider is a crossing probability: performing percolation on Ωn, we ask for the crossing
probability – say in yellow – from (An,Bn) to (Cn,Dn). Here and throughout this work, a colored crossing necessarily
implies the existence of a self-avoiding, connected path of the designated color with endpoints in the specified sets
and/or that satisfies specific separation criteria. Below we list various facts, definitions and notations related to the
observable that will be used throughout this work. In some of what follows, we temporarily neglect the marked point
An and regard Ωn with the three remaining marked points as a conformal triangle.

◦ Let us recall the functions introduced in [14], here denoted by SB,SC,SD where, e.g., SD(z) with z ∈Ωn a lattice
point, is the probability of a yellow crossing from (Cn,Dn) to (Dn,Bn) separating z from (Bn,Cn). Note that it is
implicitly understood that the SB,SC,SD-functions are defined on the discrete level; to avoid clutter, we suppress
the n index for these functions. Moreover, we will denote the underlying events associated to these functions by
SB,SC,SD , respectively.

◦ It is the case that the functions SB,SC,SD are invariant under exchange of color (see [10] and [14]). While it is not
essential to the arguments in this work, we sometimes may take liberties regarding whether we are considering a
yellow or blue version of these functions.
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◦ It is also easy to see that, e.g., SB has boundary value 0 on (Cn,Dn) and 1 at the point Bn. Moreover, the complex-
ified function Sn = SB + τSC + τ 2SD , with τ = e2πi/3, converges to the conformal map to the equilateral triangle
with vertices at 1, τ, τ 2, which we denote by T. (See [2,5,14].)

◦ For finite n, we shall refer to the object Sn(z) as the Carleson–Cardy–Smirnov function and sometimes abbreviated
CCS-function.

◦ We will use Hn :Ωn → T to denote the unique conformal map which sends (Bn,Cn,Dn) to (1, τ, τ 2). Similarly,
H :Ω → T is the corresponding conformal map of the continuum domain.

◦ With An reinstated, we will denote by Cn the crossing probability of the conformal rectangle Ωn and C∞ its limit
in the domain Ω ; i.e., Cardy’s Formula in the limiting domain.

◦ Since SC(An)≡ 0,

Sn(An)= SB(An)+ τ 2SD(An)=
[
SB(An)− 1

2
SD(An)

]
− i

√
3

2
SD(An).

Now we recall (or observe) that Cn can be realized as SD(An) and so from the previous display, Cn = − 2√
3

·
Im[Sn(An)]. Since it is already known that Sn converges to H (see [2,5,14]) it is also the case that C∞ = − 2√

3
·

Im[H(A)]. Therefore to establish a rate of convergence of Cn to C∞, it is sufficient to show that there is some
ψ > 0 such that∣∣Sn(An)−H(A)∣∣ ≤ Cψ · n−ψ,

for some ψ > 0 and Cψ <∞ which may depend on the domain Ω .
◦ The functions Sn are not discrete analytic but the associated contour integrals vanish with lattice spacing (see [2,10]

and [14].) In particular, this is exhibited by the fact that the contour integral around some closed discrete contour
Γn behaves like the length of Γn times n to some negative power. Also, the functions Sn are Hölder continuous with
estimates which are uniform for large n. For details we refer the reader to Definition 4.1.

Our goal in this work is to acquire the following theorem on the rate of convergence of the finite volume crossing
probability, Cn, to its limiting value:

Main Theorem. Let Ω be a domain and Ωn its canonical discretization. Consider the site percolation model or the
models introduced in [10] on the domainΩn. In the case of the latter we also impose the assumption that the boundary
Minkowski dimension is less than 2 (in the former, this is not necessary). Let Cn be described as before. Then there
exists some ψ(Ω) > 0 (which may depend on the domain Ω) such that Cn converges to its limit with the estimate

|Cn − C∞| � n−ψ,

provided n≥ n0(Ω) is sufficiently large and the symbol � is described with precision in Notation 2.1 below.

Notation 2.1. In the above and throughout this work, we will be describing asymptotic behaviors of various quantities
as a function of small or large parameters (usually n in one form or another). The relation X � Y relating two
functions X and Y of large or small parameters (below denoted by M and m, respectively) means that there exists
a constant c ∈ (0,∞) independent of m and M such that for all M sufficiently large and/or m sufficiently small
X(m,M)≤ c · Y(m,M).

Remark 2.2. The restrictions on the boundary Minkowski dimension for the models in [10] is not explicitly important
in this work and will only be implicitly assumed as it was needed in order to establish convergence to Cardy’s Formula.

Remark 2.3. It would seem that complementary lower bounds of the sort presented in the Main Theorem are actually
not possible. For example, in the triangular site model, the crossing probabilities for particular shapes are identically
1
2 independently of n, as is demonstrated in Fig. 1.
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Fig. 1. In certain conformal rectangles, the crossing probabilities at the discrete level will be identically 1
2 independent of scale.

We end this preliminary section with some notations and conventions: (i) the notation dist(·, ·) denotes the usual
Euclidean distance while the notation dsup(·, ·) denotes the sup-norm distance between curves; (ii) we will make use
of both macroscopic and microscopic units, with the former corresponding to an ε→ 0 approximation to shapes of
fixed scale and the latter corresponding to n→ ∞, wherein distances are measured relative to the size of a hexagon.
So, even though analytical quantities are naturally expressed in macroscopic units, it is at times convenient to use
microscopic units when performing percolation constructions; (iii) we will use a1, a2, . . . to number the powers of n
appearing in the statements of lemmas, theorems, etc. Thus, throughout, n= ε−1. Constants used in the course of a
proof are considered temporary and duly forgotten after the Halmos box.

3. Proof of the Main Theorem

Our strategy for the proof of the Main Theorem is as follows: recall that Hn is the conformal map from Ωn to T (the
“standard” equilateral triangle) so that Bn,Cn,Dn map to the three corresponding vertices, where it is reiterated that
Cn corresponds to a boundary value of Sn. Thus it is enough to uniformly estimate the difference between Sn and Hn
and then the difference between Hn and H .

Foremost, the discrete domain may itself be a bit too rough so we will actually be working with an approxima-
tion to Ωn which will be denoted by Ω�

n (see Proposition 3.2). Now, on Ω�
n , we have the function S�n associated

with the corresponding percolation problem on this domain and, similarly, the conformal map H�
n :Ω�

n → T. Via
careful consideration of Euclidean distances and distortion under the conformal map, we will be able to show that
both |Sn(An)− S�n (A�

n )| (for an appropriately chosen A�
n ∈ ∂Ω�

n ) and |H(A)−H�
n (A

�
n )| are suitably small (see

Theorem 3.3). Thus we are reduced to proving a power law estimate for the domain Ω�
n .

Towards this goal, we introduce the Cauchy-integral extension of S�n , which we denote by F�
n , so that

F�
n (z) :=

1

2πi

∮
∂Ω�

n

S�n (ζ )
ζ − z dζ.

Now by using the Hölder continuity properties and the approximate discrete analyticity properties of the Sn’s, we
can show that, barring the immediate vicinity of the boundary, the difference between F�

n and S�n is power law small
(see Lemma 3.5). It follows then that in an even smaller domain, ΩF

n , which can be realized as the inverse image of a
uniformly shrunken version of T, the function F�

n is in fact conformal and thus it is uniformly close to HF
n , which is

the conformal map from ΩF
n to T (see Lemma 3.9).

Now for z ∈Ω�
n the dichotomy we have introduced is not atypical: on the one hand, F�

n (z) is manifestly analytic
but does not necessarily embody the function S�n of current interest. On the other hand, S�n (z) has the desired bound-
ary values – at least on ∂Ω�

n – but is, ostensibly, lacking in analyticity properties. Already the approximate discrete
analyticity properties permit us to compare F�

n to S�n in ΩF
n . In order to return to the domain Ω�

n , we require some
control on the “distance” between ΩF

n and Ω�
n (not to mention a suitable choice of some point AF

n ∈ ∂ΩF
n as an

approximation to A). It is indeed the case that if ΩF
n is close to Ω�

n in the Hausdorff distance, then the proof can be
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quickly completed by using distortion estimates and/or Hölder continuity of the S function. However, such informa-
tion translates into an estimate on the continuity properties of the inverse of F�

n , which is not a priori accessible (and,
strictly speaking, not always true).

Further thought reveals that we in fact require the domain ΩF
n to be close to Ω�

n in both the conformal sense
and in the sense of “percolation” – which can be understood as being measured via local crossing probabilities. (In
principle, given sufficiently strong control on boundary distortion of the relevant conformal maps, these notions should
be directly equivalent; however, we do not explicitly address this question here, as this would entail overly detailed
consideration of domain regularity.)

While with a deliberate choice of a point on the boundary corresponding to A we may be able to ensure that either
one or the other of the two criteria can be satisfied, it is not readily demonstrable that both can be simultaneously
satisfied without some additional detailed considerations; it is for this reason that we will introduce and utilize the
notion of Harris systems (see Theorem 3.10) in order to quantify the distances between ΩF

n and Ω�
n .

The Harris systems are collections of concentric topological rectangles (portions of annuli) of various scales cen-

tered on points of ∂Ω�
n and heading towards some “central region” of Ω�

n ; they are constructed so that uniform
estimates are available for both the traversing of each annular portion and the existence of an obstructing “circuit” (in
dual colors). This leads to a natural choice of AF

n : it is a point on ∂ΩF
n which is in the Harris system of A�

n (i.e., a
point in one of the “rings”). Consequently, the distance between A�

n and AF
n – and other such pairs as well – can be

measured vis a counting of Harris segments (see Lemma 3.12).
Specifically, we will make use of another auxiliary point, A♦

n , which is also in the Harris system centered at A�
n ,

chosen so that it is inside the domain ΩF
n . The task of providing an estimate for |S�n (A♦

n )− S�n (A�
n )| (and thus also

|F�
n (A

♦
n )− S�n (A�

n )|) is immediately accomplished by the existence of suitably many Harris segments surrounding
both A�

n and A♦
n (see Proposition 3.15). Also, considering n to be fixed, the domain Ω�

n can be approximated at
scales N−1 � n−1 and the estimates derived from the Harris systems remain uniform in N as N tends to infinity and
thus also immediately imply an estimate for |H�

n (A
�
n )−H�

n (A
♦
n )| (see Proposition 3.14).

At this point what remains to be established is an estimate relating the conformal map HF
n , which is defined by

percolation at scale n via F�
n , and H�

n , the “original” conformal map. It is here that we shall invoke a Marchenko
theorem for the triangle T (see Lemma 3.16): indeed, again considering Ω�

n to be a fixed domain and performing
percolation at scales N−1 � n−1, we have by convergence to Cardy’s Formula that S�n,N (s)→ H�

n (s) as N → ∞,

for all s ∈ ∂ΩF
n . The inherent scale invariance of the Harris systems permits us to establish that in fact S�n,N (s) is close

to ∂T, uniformly in N (see Lemma 3.18) and thus, H�
n (∂Ω

F
n ) is close to ∂T (in fact in the supremum norm). Armed

with this input, the relevant Marchenko theorem applied at the point A♦
n immediately gives that H�

n (A
♦
n )−HF

n (A
♦
n )

is suitably small.
The technical components relating to the Cauchy-integral estimate and the construction of the Harris systems are

relegated to Section 4 and Section 5, respectively. As for the rest, we will divide the proof of the main theorem into
three subsections, corresponding to:

(i) the regularization of the boundary (introduction of Ω�
n ) and showing that crossing probabilities are close for the

domains Ω�
n ,Ωn and Ω ;

(ii) the construction of the Cauchy-integral F�
n and of the domain ΩF

n ;
(iii) the establishment of the remaining estimates needed to show that the domains ΩF

n and Ω�
n are suitably close,

by using the Harris systems of neighborhoods.

3.1. Regularization of boundary length

We now introduce the domainΩ�
n ⊆Ωn. The primary purpose of this domain is to reduce the boundary length of the

domain that need be considered; in particular, this will be pivotal when estimating the discrete analyticity properties
of S�n in the next section.

Definition 3.1. Let 1> a1 > 0 and consider a square grid whose elements are squares of (approximately) microscopic
size na1 and let Ω�

n denote the union of all (hexagons within the) squares of this grid that are entirely within the
original domain Ω .
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We have:

Proposition 3.2. Let Ω ⊆C be a domain with boundary Minkowski dimension at most 1 + α′ with α′ ∈ [0,1], which
we write as M(∂Ω) < 1 + α for any α > α′. Then the domain Ω�

n satisfies Ω�
n ⊆Ωn and

∣∣∂Ω�
n

∣∣� nα(1−a1).

Proof. Since M(∂Ω) < 1 + α we have (for all n sufficiently large) that the number of boxes required to cover ∂Ω is
essentially bounded from above by (n1−a1)1+α which is then multiplied by 1

n(1−a1) , the size of the box (in macroscopic

units). The fact that Ω�
n ⊆Ωn is self-evident. �

Next we will choose A�
n ,B

�
n ,C

�
n ,D

�
n ∈ ∂Ω�

n by some procedure to be outlined below and denote by S�n the
corresponding CCS-function. Particularly, this can be done so that the crossing probabilities do not change much:

Theorem 3.3. Let Ω�
n ⊆Ωn with marked boundary points (An, . . . ,Dn) be as described, so particularly ∂Ω�

n is of
distance at most n1−a1 from ∂Ωn. Then there is an A�

n as well as B�
n , C�

n and D�
n such that the corresponding S�n

satisfies, for some a2 > 0 and for all n sufficiently large,∣∣Sn(An)− S�n (
A�
n

)∣∣ � n−a2

and, moreover,∣∣H(A)−H�
n

(
A�
n

)∣∣� n−a2 .

Remark 3.4. In the case that the separation between An and ∂Ωn is the order of na1 – as is usually imagined – facets
of Theorem 3.3 are essentially trivial. However, the reader is reminded that An could be deep inside a “fjord” and
well separated from ∂Ω�

n . In this language, the forthcoming arguments will demonstrate that, notwithstanding, an
A�
n may be chosen near the mouth of the fjord for which the above estimates hold.

Proof of Theorem 3.3. For η > 0 and a subsetK ⊂Ω we will denote byNη(K) the η-neighborhood ofK intersected
with Ω . Now let us first choose η sufficiently small so that[[B,C,D] ∪N4η(B)∪N4η(D)∪N4η(C)

] ∩N4η(A)=∅,

where [B,C,D] denotes the closed boundary segment containing the prime ends B,C,D.
Next we assume that n > n◦ where n◦ is large enough so that for all n > n◦, An ∈ Nη(A), . . . ,Dn ∈ Nη(D).

Moreover, Ω�
n ∩Nη(A) �=∅ and similarly for Ω�

n ∩Nη(B), . . . ,Ω�
n ∩Nη(D). Then, since

0< dist
(([A,B] \Nη(A)

)
,
([D,A] \Nη(A)

))
it is assumed that for n > n◦, the above is very large compared with n−(1−a1) and similarly for the other three marked
points. Finally, consider the uniformization map ϕ :D →Ω . Then taking n◦ larger if necessary, we assert that for all
n > n◦, the distance (in the unit disc) between ϕ−1(Nη(A)) and [ϕ−1(N4η(A))]c satisfies

dist
[
ϕ−1(Nη(A)), [ϕ−1(N4η(A)

)]c] � n−1/2. (3.1)

We first state:

Claim. For n > n◦,

dist
(
Nη(A), [Bn,Cn,Dn]

)
> 0.
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Proof. We note that the pre-image of ∂Ωn under uniformization has the following property: for n sufficiently large as
specified above, consider the pre-image of the boundary element ϕ−1([An,Bn]). Then starting at ϕ−1(An), once the
segment enters ϕ−1(Nη(Bn)), it must hit ϕ−1(Bn) before exiting ϕ−1(N4η(Bn)).

Indeed, if this were not true, then necessarily there would be three or more crossings of the “annular region”
ϕ−1(N4η(Bn)) \ ϕ−1(Nη(Bn)). It is noted that all such crossings – indeed all of ϕ−1(Ωn) – lies within a distance
of the order n−1/2 of ∂D. This follows by standard distortion estimates (see, e.g., [12], Corollary 3.19 together with
Theorem 3.21) and the definition of canonical approximation: each point on ∂Ωn is within distance 1/n of some point
on ∂Ω . It is further noted, by the final stipulation concerning n◦, that the separation scale of the above mentioned
“annular region” is large compared with the distance n−1/2.

Envisioning ∂Ω to be the “bottom,” consider now a point on the “topmost” of these crossings which is well away
– compared with n−1/2 – from the lateral boundaries of the annular region and also the pre-image of its associated
hexagon. Since this point is the pre-image of one on ∂Ωn, the hexagon in question must intersect ∂Ω and therefore
its pre-image must intersect ∂D. However, in order to intersect ∂D, the pre-image of the hexagon in question must
intersect all the lower crossings, since our distortion estimate does not permit this pre-image to leave (a lower portion
of) the annular region. This necessarily implies it passes through the interior ofΩn, which is impossible for a boundary
hexagon.

The same argument also shows that once ϕ−1(∂Ωn) exits ϕ−1(N4η(Bn)), it cannot re-enter ϕ−1(Nη(Bn)) and so
must be headed towards ϕ−1(Cn) and certainly cannot enter ϕ−1(Nη(A)) since

dist
(
ϕ−1(Nη(A)), ϕ−1([B,C,D] ∪ [

N4η(B)∪N4η(D)∪N4η(C)
])) � n−1/2

by assumption (by the choice of η, it is the case that [B,C,D] ∪ [N4η(B) ∪ N4η(D) ∪ N4η(C)] ⊆ [N4η(A)]c from
which the previous display follows from Eq. (3.1)).

Altogether we then have that dist(ϕ−1(Nη(A)),ϕ
−1([Bn,Cn,Dn])) > 0, and so the claim follows after apply-

ing ϕ. �

The above claim in fact implies that there exist points Apn ∈ [An,Bn] and Agn ∈ [An,Dn] such that

dist
(
A
p
n ,A

g
n

)
<

1

n1−a1

and

dist
(
A
p
n , ∂Ω

�
n

)
, dist

(
A
g
n, ∂Ω

�
n

)
<

1

n1−a1
.

Indeed, consider squares of side length na1 intersecting ∂Ωn which share an edge with ∂Ω�
n and have non-trivial

intersection with Nη(A), then since ∂Ωn passes through such boxes, we can unambiguously label them as either an
[An,Bn], an [An,Dn] box, or both, and by the claim there are no other possibilities. Therefore, a pair of such boxes
of differing types must be neighbors or there is at least one single box of both types, so we indeed have points Apn ,A

g
n

as claimed. Finally, by the stipulation

1

n1−a1
� dist

(([A,B] \Nη(A)
)
,
([D,A] \Nη(A)

))
it is clear that these points must lie in Nη(A).

Thus we choose A�
n ∈ ∂Ω�

n to be any point near the (Apn ,A
g
n) juncture (e.g., the nearest point). Now consider

the scale na3 with 1 > a3 > a1. We may surround the points Apn ,A
g
n and A�

n with the order of log2 n
a3−a1 disjoint

concentric annuli. These annuli have the property that the fragment consisting of its intersection with Ωn forms a
conduit between some portion of the [An,Dn] boundary (which need not be connected) and a similar portion of
the [An,Bn] boundary. Moreover, any circuit in the annulus necessarily provides a path which connects these two
portions. Thus the probability of a blue connected path between [An,Dn] and [An,Bn] within any particular annulus
fragment is no less than the probability of a blue circuit in the corresponding full annulus, which is uniformly positive.
So letting A denote the event that in at least one of these fragments the desired blue connection occurs, we have

P(A)≥ 1 − n−a4 (3.2)
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for some a4 > 0. Similar constructions may be enacted about the Bn,B�
n ; . . . ;Dn,D�

n pairs leading, ultimately, to the
events B, . . . ,D (which are analogous to A) with estimates on their probabilities as in Eq. (3.2). For future reference,
we denote by E the event A∩ · · · ∩D and so P(E)� 1 − na4 (by the FKG inequality).

We are now in a position to verify that |Sn(An) − S�n (A
�
n )| obeys the stated power law estimate. Indeed, the

C-component of both functions vanish identically while the differences between the other two components amount
to comparisons of crossing probabilities on the “topological” rectangles [An,Bn,Cn,Dn] verses [A�

n ,B
�
n ,C

�
n ,D

�
n ].

There are two crossing events contributing to the (complex) function Sn(An) (and similarly for S�n (A
�
n )) but since the

arguments are identical, it is sufficient to treat one such crossing event. Thus we denote by Kn the event of a crossing
in Ωn by a blue path between the [An,Dn] and [Bn,Cn] boundaries (the event contributing to SB(An)) and similarly
for the event K�

n for a blue path in Ω�
n . It is sufficient to show that |P(K�

n )− P(Kn)| has an estimate of the stated
form.

The greater portion of the following is rather standard in the context of 2D percolation theory so we shall be
succinct. The idea is to first “seal” together, e.g., An and A�

n (and similarly for B,C,D) by circuits and then perform
a continuation of crossings argument.

Without loss of generality we may assume that S�B (A
�
n ) > SB(An) since otherwise the SD functions would satisfy

this inequality and we may work with SD instead. For ease of exposition, let us envision [An,Bn] and [A�
n ,B

�
n ] as

the “bottom” boundaries and the D,C pairs as being on the “top.”
Let Γ denote a crossing between [A�

n ,D
�
n ] and [B�

n ,C
�
n ] withinΩ�

n and let Γ
K�
n

∈ K
�
n denote the event that Γ is

the “lowest” (meaning [A�
n ,B

�
n ]-most) crossing. These events form a disjoint partition so that P(K�

n )=
∑
Γ P(K�

n |
Γ
K�
n
) · P(Γ

K�
n
). From previous discussions concerning Apn ,A

g
n, we have that P(E)≥ 1 − n−a4 , which we remind the

reader, means that with the stated probability, these crossings do not go into any “corners” and hence there is “ample
space” to construct a continuation.

So let a5 > a1 denote another constant which is less than unity (recall that in microscopic units, dist(∂Ω�
n , ∂Ωn)≤

na1 ). Then, to within tolerable error estimate (by the Russo–Seymour–Welsh estimates) it is sufficient to consider
only the crossings Γ with right endpoint a distance in excess of na5 away from C�

n and with left endpoint similarly
separated from D�

n .
Let ΓD and ΓC denote these left and right endpoints of Γ , respectively. Consider a sequence of intercalated annuli

starting at the scale na1 – or, if necessary, in slight excess – and ending at scale na5 (where ostensibly they might run
aground at C�

n ) around ΓC . A similar sequence should be considered on the left. Focusing on the right, it is clear that
each such annulus provides a conduit between Γ and ∂Ωn that runs through the [B�

n ,C
�
n ] boundary of Ω�

n . Let γ̄r
denote an occupied blue circuit in one of these annuli and similarly for γ̄
 on the left.

The blue circuit γ̄r must intersect Γ and, since, e.g., ΓC is at least na5 away from A�
n ,D

�
n , these circuits must end

on the [D�
n ,A

�
n ] boundary so that the portion of the circuit above Γ forms a continuation to ∂Ωn; similar results hold

for ΓD and γ̄
 and the crossing continuation argument is complete. As discussed before, we may repeat the argument
for the other crossing event contributing to the S-functions, so we now have that |Sn(An)−S�n (A�

n )| ≤ n−a2 for some
a2 > 0, concluding the first half of the theorem.

The second claim of this theorem, concerning the conformal maps Hn(An) and H�
n (A

�
n ) in fact follows readily

from the arguments of the first portion. In particular, we claim that the estimate on the difference can be acquired by
an identical sequence of steps by the realization of the fact that the S-function for a given percolative domain which is
the canonical approximation to a conformal rectangle converges to the conformal map of said domain to T ([2,5,14]).

Thus, while seemingly a bit peculiar, there is no reason why we may not consider Ωn to be a fixed continuum
domain and, e.g., for N ≥ n, the domain Ωn,N to be its canonical approximation for a percolation problem at scale
N−1. Similarly for Ω�

n,N . Of course here we underscore that, e.g., A�
n , . . . ,D

�
n are regarded as fixed (continuum)

marked points which have their own canonical approximates A�
n,N , . . . ,D

�
n,N but there is no immediately useful

relationship between them and the approximates An,N , . . . ,Dn,N .
It is now claimed that uniformly in N , withN ≥ n and n sufficiently large the entirety of the previous argument can

be transcribed mutatis mutantis for the percolation problems onΩn,N andΩ�
n,N . Indeed, once all points were located,

the seminal ingredients all concerned (partial) circuits in (partial) annuli and/or rectangular crossings of uniformly
bounded aspect ratios and dimensions not smaller than n−1. All such events enjoy uniform bounds away from 0 or 1
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(as appropriate) which do not depend on the scale and therefore apply to the percolation problems onΩn,N andΩ�
n,N .

We thus may state without further ado that for all N > n (and n sufficiently large)

∣∣Sn,N (An,N )− S�n,N (
A�
n,N

)∣∣� 1

na2
(3.3)

and so |Hn(An)−H�
n (A

�
n )| � n−a2 as well.

Finally, since the relationship between Ωn and Ω is the same as that between Ω�
n and Ωn (both Ωn, Ω�

n are
inner domains obtained by the union of shapes (squares or hexagons) of scale an inverse power of n from Ω , Ωn,
respectively) the same continuum percolation argument as above gives the estimate that |Hn(An)−H(A)| ≤ n−a2 .

�

We remark that the idea of uniform estimates leading to “continuum percolation” statements will be used on other
occasions in this paper.

3.2. The Cauchy-integral extension

We will now consider the Cauchy-integral version of the function S�n . Ostensibly this is defined on the full Ω�
n

however as mentioned in the introduction to this section, its major rôle will be played on the subdomain ΩF
n which

will emerge shortly.

Lemma 3.5. Let Ω�
n and S�n be as in Proposition 3.2 so that∣∣∂Ω�

n

∣∣ ≤ nα(1−a1),

where M(∂Ω) < 1 + α. For z ∈Ω�
n (with the latter regarded as a continuum subdomain of the plane) let

F�
n (z)=

1

2πi

∮
∂Ω�

n

S�n (ζ )
ζ − z dζ. (3.4)

Then for a1 sufficiently close to 1 there exists some β > 0 and some a5 > 0 such that for all z ∈Ω�
n (meaning lying

on edges and sites of Ω�
n ) with dist(z, ∂Ω�

n ) > n
−a5 it is the case that∣∣S�n (z)− F�

n (z)
∣∣ � n−β.

The proof of this lemma is postponed until Section 4.2 and we remark that while S�n is only defined on vertices
of hexagons a priori, it can be easily interpolated to be defined on all edges, as discussed in Section 4. We will now
proceed to demonstrate that F�

n is conformal in a subdomain of Ω�
n . Let us first define a slightly smaller domain:

Definition 3.6. Let Ω�
n be as described. Let a5 > 0 be as in Lemma 3.5 and define, for temporary use,

Ω�
n := {

z ∈Ω�
n : dist

(
z, ∂Ω�

n

) ≥ n−a5
}
.

We immediately have the following:

Proposition 3.7. For n sufficiently large, there exists some β > a3 > 0 (with β as in Lemma 3.5) such that

dsup
(
F�
n

(
∂Ω�

n

)
, ∂T

)
� n−a3 .

Here dsup denotes the supremum distance between curves, i.e.,

dsup(γ1, γ2)= inf
ϕ1,ϕ2

sup
t

∣∣γ1
(
ϕ1(t)

) − γ2
(
ϕ2(t)

)∣∣,
where the infimum is over all possible parameterizations.



Rate of convergence for critical crossing probabilities 681

Proof. Let us first re-emphasize that S�n maps ∂Ω�
n to ∂T. This is in fact fairly well known (see, e.g., [2] or [5],

Theorem 5.5) but a quick summary proceeds as follows: by construction S�n is continuous on ∂Ω�
n and, e.g., takes

the form λτ + (1 − λ)τ 2 on one of the boundary segments, where λ represents a crossing probability which increases
monotonically – and continuously – from 0 to 1 as we progress along the relevant boundary piece. Similar statements
hold for the other two boundary segments.

Now by Lemma 3.5, F�
n (z) is at most the order n−β away from S�n (z) for any z ∈ ∂Ω�

n , so the curve F�
n (∂Ω

�
n )

is in fact also that close to S�n (∂Ω
�
n ) in the supremum norm. Finally, by the Hölder continuity of S�n up to ∂Ω�

n (see
Proposition 4.3) and the fact that ∂Ω�

n is a distance which is an inverse power of n to ∂Ω�
n , it follows that S�n (∂Ω

�
n )

is also close to ∂T and the stated bound emerges. �

Equipped with this proposition, we can now introduce the domain ΩF
n :

Definition 3.8. Let a4 > 0 be such that β > a3 > a4 (with a3 > 0 as in Proposition 3.7) and let us denote by

T
F = (

1 − n−a4
) ·T

the uniformly shrunken version of T. Finally, let

ΩF

n := (
F�
n

)−1(
T

F
)

and denote by (BF
n ,C

F
n ,D

F
n ) the pre-image of (1 − n−a4) · (1, τ, τ 2) under F�

n .

The purpose of introducing ΩF
n is illustrated in the next lemma:

Lemma 3.9. Let F�
n and ΩF

n , etc., be as described. Then F�
n is conformal in ΩF

n . Next let HF
n :ΩF

n −→ T be the

conformal map which maps (BF
n ,C

F
n ,D

F
n ) to (1, τ, τ 2). Then for all z ∈ΩF

n ,

∣∣F�
n (z)−HF

n (z)
∣∣ � n−a4 .

Proof. Since F�
n is manifestly holomorphic in order to deduce conformality it is only necessary to check that it is

1-to-1. Let Kn := F�
n (∂Ω

�
n ) and let us start with the following observation on the winding of Kn:

Claim. If w ∈ T
F, then the winding of Kn around w is equal to one:

W(Kn,w)= 1

2πi

∫
Kn

dz

z−w = 1.

Proof. The result is elementary and is, in essence, Rouché’s Theorem so we shall be succinct and somewhat informal.
Foremost, by continuity, the winding is constant for any w ∈ T

F. (This is easily proved using the displayed formula
and the facts that the winding is integer valued and that Kn is rectifiable.) Clearly, since ∂T and Kn are close in the
supremum norm, it follows, by construction that ∂TF and Kn are also close in this norm.

Let zK(t) and zF(t), 0 ≤ t ≤ 1 denote counterclockwise moving parameterizations of Kn and ∂TF that are uni-
formly close. For zF, this starts and ends on the positive real axis and we let θF(t) denote the evolving argument
of zF(t) (with respect to the origin as usual): 0 ≤ θF(t) ≤ 2π. We similarly define θK(t): in this case, we stipulate
that |θK(0)| is as small as possible – and thus approximately zero – but of course θK(t) evolves continuously with
zK(t) and therefore ostensibly could lie anywhere in (−∞,∞). But |zF(t)| and |zK(t)| are both of order unity (and
in particular not small) and they are close to each other. So it follows that |θF(t)− θK(t)| must be uniformly small,
e.g., within some ϑ with 0< ϑ � π for all t ∈ [0,1]. Now, since θF(1)− θF(0)= 2π, we have

∣∣W(Kn,0)− 1
∣∣ =

∣∣∣∣θK(1)− θK(0)2π
− θF(1)− θF(0)

2π

∣∣∣∣ ≤ 2ϑ

2π
� 1,
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so we are forced to conclude that W(Kn,0)= 1 by the integer-valued property of winding. The preceding claim has
been established. �

The above implies that F�
n is in fact 1-1 in ΩF

n : from Definition 3.8 we see that a4 is chosen so that (for n
sufficiently large) n−a4 is large compared with n−a3 (from the conclusion of Proposition 3.7) so that Kn (which is
clearly a continuous and possibly self-intersecting curve) lies outside T

F. Now fix some point ξ ∈ΩF
n and consider

the function hξ (z) := F�
n (z)−F�

n (ξ). Next parametrizing ∂Ω�
n := γ as γ : [0,1] →C, noting that F�

n (ξ) ∈ T
F and

using the chain rule we have that

1 =W (
Kn,F

�
n (ξ)

) = 1

2πi

∮
F�
n ◦γ

1

ζ − F�
n (ξ)

dζ

= 1

2πi

∫ 1

0

(F�
n )

′(γ (t))γ ′(t)
F�
n (γ (t))− F�

n (ξ)
dt = 1

2πi

∮
γ

h′
ξ /hξ dz.

By the argument principle, the last quantity is equal to the number of zeros of hξ in the region enclosed by γ , i.e., in
Ω�
n . The desired 1-to-1 property is established.
We have now that F�

n |
Ω

F
n

is analytic and maps ΩF
n in a one-to-one fashion onto T

F. Therefore F�
n |

Ω
F
n

is the

conformal map from ΩF
n to T

F (mapping BF
n ,C

F
n ,D

F
n to (1 − n−a4) · (1, τ, τ 2), the corresponding vertices of TF).

Thus by uniqueness of conformal maps we have that HF
n = 1

1−n−a4 · (F�
n |

Ω
F
n
) and the stated estimate immediately

follows. �

3.3. Harris systems

We will now introduce the notion of Harris systems; proofs will be postponed until Section 5.

Theorem 3.10 (Harris systems). Let Ω�
n ⊆ Ω be as described with marked boundary points (prime ends)

A,B,C,D ∈ ∂Ω and let z be an arbitrary point on ∂Ωn. Further, let 2Δ denote the supremum of the side-length
of all circles contained in Ω , and let DΔ denote a circle of side Δ with the same center as a circle for which the
supremum is realized.

Then there exists some Γ > 0 such that for all n ≥ n(Ω) sufficiently large, the following holds: around each
boundary point z ∈ ∂Ω�

n there is a nested sequence of at least Γ · logn neighborhoods the boundaries of which are
segments (lattice paths) separating z from DΔ. We call this sequence of segments the Harris system stationed at z.
The regions between these segments (inside Ω�

n ) are called Harris ring fragments (or just Harris rings).
Further, there exists some 0< ϑ < 1/2 such that in each Harris ring, the probability of a blue path separating z

from DΔ is uniformly bounded from below by ϑ .
Also, let J denote the d∞-distance (see the definitions in Section 5.2) between successive segments forming a

Harris ring – of course, J depends on the particulars of the ring under consideration – and let B > 0 be such that the
probability of a hard way crossing of a B by 1 topological rectangle (in both yellow and blue; see Proposition 5.3) is
less than ϑ2. The following properties hold:

(1) for r > 0 sufficiently large (particularly, 2−r < B−1) the Harris rings can be tiled with boxes of scale 2−2r ·J and
there is an aggregation of full boxes (unobstructed by the boundary of the domain) which connect the segments
forming the Harris rings; furthermore, percolating boxes for successive rings are contiguous;

(2) successive segments Y,YQ satisfy

B−1 · J ≤ ‖Y‖∞ ≤ 22r+1(κB) · J, B−1 · J ≤ ‖YQ‖∞ ≤ κB · J,
where, e.g., ‖Y‖∞ denotes the diameter of the segment Y ;

(3) let a be a point in the Harris system centered at A�
n such that the number of Harris rings between a and DΔ is of

order logn. Let A(a) denote the event of a blue (or yellow) path surrounding both a and A�
n with endpoints on

[A�
n ,B

�
n ] and [D�

n ,A
�
n ]. Then there exists some constant λ > 0 such that

P
(
A(a)

) ≥ 1 − n−λ;
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similar estimates hold at the points B�
n ,C

�
n ,D

�
n and hence the estimate also holds for the intersected event, by

FKG type inequalities (or just independence);
(4) finally, all estimates are uniform in lattice spacing in the sense of considering Ω�

n to be a fixed domain and
performing percolation at scale N−1.

Proof. The constructions required for the establishment of this theorem is the content of Section 5. That there exists at
least of order logn such neighborhoods follows from the fact that each point on ∂Ω�

n is a distance at leastΔ from DΔ
and so proceeding “directly” towards DΔ and increasing the scale each time by the maximum allowed while fixing
the aspect ratio already leads to of order logn such neighborhoods.

As for the various statements, items (1), (2) are consequences of the full Harris construction (see Section 5.4); item
(3) follows from Lemma 5.14 and item (4) is a direct consequence of the fact that at criticality, crossing probabilities
of rectangles with bounded aspect ratios remain bounded away from 0 and 1 uniformly in lattice spacing. �

Let us start with the quantification of the “distance” between the corresponding marked points of ΩF
n and Ω�

n :

Proposition 3.11. BF
n is in the Harris system stationed at B�

n . Moreover, there exists some κ > 0 such that there are
at least κ · logn Harris rings from this Harris system which enclose BF

n . Similar statements hold for CF
n ,D

F
n .

Proof. The argument that BF
n is indeed in the Harris system stationed at B�

n and the argument that there are many
Harris rings enclosing BF

n are essentially the same.
First we have that by Lemma 3.5 and Definition 3.8 that, e.g., |S�B (BF

n )| � 1 − n−a4 − n−β � 1 − n−a4 . (Recall
that β > a3 > a4 and S�B (B

F
n ) is the probability of a yellow crossing from (B�

n ,C
�
n ) to (D�

n ,B
�
n ) separating BF

n

from (C�
n ,D

�
n ).) On the other hand, let us consider the “last” Harris ring separating BF

n from B�
n which forms a

conduit between [D�
n ,B

�
n ] and [B�

n ,C
�
n ], c.f., Theorem 3.10, item (3); we may enforce a crossing in this conduit

with probability ϑ (as in Theorem 3.10) and then via a box construction and a “large scale” crossing (as appears below
in the proof of Lemma 3.12) the said crossing can be connected to [C�

n ,D
�
n ] in blue. This construction procedure is

illustrated in Fig. 2. Therefore, if the number of Harris rings enclosing BF
n were less than γ · logn, then there would

be some V > 0 such that the journey from the vicinity of BF
n to [C�

n ,D
�
n ] can occur at a probabilistic cost in excess

of n−γV .
Since such a blue connection renders a yellow version of the event S�B (B

F
n ) impossible, we conclude that there

must be more than a4/V Harris rings enclosing BF
n , for n sufficiently large. Similar arguments yield the result also

for CF
n ,D

F
n . �

More generally, we have the following description of the distance between ∂Ω�
n and ∂ΩF

n :

Lemma 3.12. Let s ∈ ∂ΩF
n and z ≡ z(s) the point on ∂Ω�

n which is closest to s (in the Euclidean distance). Then
there exists some κ > 0 such that in the Harris system stationed at z, there are at least κ · logn Harris rings that
enclose s.

Proof. Let us set λ := dist(s, z). First, logically speaking, we must rule out the possibility that s is outside the Harris

system stationed at z altogether: if this were true, then it would imply that dist(s, ∂Ω�
n ) = λ > 1

2Δ (since Harris
circuits plug into ∂Ω�

n the point s can only be outside the Harris system at z altogether if it is “beyond” the last Harris
segment which parallels ∂DΔ; see Theorem 3.10) which then readily implies that all of the S-functions are of order
unity: indeed, in this case S�B (s), S

�
C (s) and S�D (s) can all be bounded from below by large scale events of order unity

(consider, e.g., the crossing of a suitable annulus whose aspect ratio is order unity with s on the boundary of the inner
square and the outer square touching ∂Ω�

n (from inside Ω�
n ) together with yet another couple of crossings from the

inner square of this annulus to a larger rectangle which encloses all of Ω�
n ) which would place s well away from the

boundary of ΩF
n by Definition 3.8 and Lemma 3.5. Thus s is in a Harris ring of z.

If the separation – measured in number of Harris rings – between s and DΔ is not so large, then we will show that
|S�n (z)| is larger than a small inverse power of n. We will accomplish this by constructing configurations which lead
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Fig. 2. Preliminary circuit element “inside” BF
n plus connection to [C�

n ,D
�
n ] boundary – first via intermediate scales then to the vicinity of DΔ

and the rest by large-scale events – prevents the occurrence of the yellow circuit described. If there are fewer than γ logn intermediate scales then
this circuit would have substantive probability.

to the occurrence of all three events corresponding to S�B ,S
�
C ,S

�
D with sufficiently large probability. To this end we

will make detailed use of the Harris system.
Let J denote the separation distance of the Harris segments which form the ring containing s and let r > 0 be as

given in Theorem 3.10. Now note that if the statement of the lemma were false, then there would be an abundance of
Harris rings separating z from s, which will enable us to construct a path “beneath” s to yield the events S�B ,S

�
C ,S

�
D .

Consider the boxes of size 2−2r · J which grid the ring containing s. Let us observe that there are three cases: (1)
the main type, s is contained in a full box which is connected to the cluster which percolates through the ring (see
Theorem 3.10, item (1); (2) the partial type, meaning that s is in a partial box, i.e., a box intersected by ∂Ω�

n ; (3) s is
in a full box which is separated from the cluster of main types of percolating boxes by a partial box.

Let us rule out the possibility of (2) and (3). Case (2) is impossible since it implies that dist(s, z)= dist(s, ∂Ω�
n )≤

2−2r · J which (see Theorem 3.10, items (1) and (2) necessarily implies that z and s are in the same ring. But,
supposing they do reside in the same ring then with probability in excess of (some constant times) 1 − n−Γ , with
Γ as in Theorem 3.10, the occurrence or not of the events contributing to S�B ,S

�
C ,S

�
D would be the same for both

s and z (c.f., the proof of Proposition 3.15 below). Then by Lemma 3.5 and Definition 3.8, it would the case that
|S�n (z)− S�n (s)| � n−a4 − n−β , which is a contradiction if a4, β are appropriately chosen relative to Γ .

Similar reasoning shows that (3) is also not possible: indeed, since z is the closest point to s, z and s must lie along
a straight line segment which lies in Ω�

n and this segment must pass through the partial box in question (i.e., the
“bottleneck”; we emphasize here that we are considering the Harris system centered at z) which separates s from the
connected component of boxes which percolate through the ring. From previous considerations regarding 2−2rJ (the
scale of the boxes) versus dist(s, z), it is clear that there is a point on ∂Ω�

n within this partial box which is closer to s
than z, a contradiction. These considerations are illustrated in Fig. 3.

Thus, we find s in the main percolating component of boxes. For convenience, we focus on the sub-case where the
box containing s is separated from ∂Ω�

n by at least one layer of full boxes. Indeed, the complementary sub-cases are
easily handled by arguments similar to those which dispensed with cases (2) and (3).

We shall now proceed to construct, essentially by hand, any of the events S�B (s), S
�
C (s) or S�D(s) corresponding to

the functions S�B ,S
�
C ,S

�
D , respectively, with “unacceptably large” probability.

It is understood that the constructions that follow utilize the main body of boxes percolating through a given Harris
ring fragment, as detailed in Theorem 3.10, item (1). Ultimately we will be constructing two (disjoint) paths. For
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Fig. 3. Case 3 of Lemma 3.12: if the box containing s is separated from the main percolating cluster of full boxes (of scale 2−2r · J ) associated
with its ring by a partial box then, necessarily, z could not be the point on ∂Ω�

n which is closest to s.

example, for the S
�
B (s) event, one path from the vicinity of s to the [B�

n ,C
�
n ] boundary and the other from the

vicinity of s to the [D�
n ,B

�
n ] boundary. While not strictly necessary, it is slightly more convenient to construct the

“bulk” of both paths at once. Therefore, we shall undertake a double bond construction. For further convenience, we
will base our construction on 3 × 1 bond events which will be described in the next paragraph.

We remark, again, that arguments of this sort have appeared before, e.g., at least as far back as [1], so we will
be succinct in our descriptions. The events are described as follows: let us assume, for ease of exposition, that three
neighboring boxes form a horizontal 3 × 1 rectangle. The bond event – in yellow – would then consist of two disjoint
left–right yellow crossings of the 3 × 1 rectangle together with two disjoint top–bottom yellow crossings in each of
the outer two squares, as is illustrated in Fig. 4, it is seen that if a pair of such rectangles overlap on an end-square,
and the bond event occurs for both of them, then, regardless of the orientations, there are two disjoint yellow paths
which transmit from the beginning of one to the end of the other. That is, these “bonds” have the same connectivity
properties as the bonds of Z2 and provide us with double paths.

Starting with the square containing s we may suppose there is (or construct) a yellow ring in the eight boxes
immediately surrounding and encircling this square. Via the bond events just described, we connect this encircling
ring to the outward boundary of the Harris annulus to which s belongs. Each of these events – which are positively
correlated – incurs a certain probabilistic cost. However, it is observed, with emphasis, that since the relative scales
of the Harris ring and the bonds used in the construction are fixed independent of the actual scale, the cost may be
bounded by a number independent of the actual scale.

Similarly, we may use the bonds to acquire a double path across the next (outward) ring and the two double paths
may be connected to form a continuing double path by explicit use of a “patch” consisting of the smaller of the two
bond types. Again, since the ratio of scales of (boxes of) successive Harris rings are uniformly bounded above and
below, the probabilistic cost does not depend on the actual scale. The procedure of double crossing via bond events
and patches can be continued till the boundary of DΔ is reached; thereupon, treating DΔ and its vicinity as an annulus
in its own right, the two paths can be connected to separate boundaries at an additional cost of order unity.

Now let us assume for the moment that s ∈ [BF
n ,C

F
n ], so that by Lemma 3.5 and Definition 3.8 it is the case that

S�D (s) ≤ C · (n−a4 + n−β) for some constant C > 0, so denoting by e−V (for some V > 0) the uniform bound on
the cost of one patch and one annular crossing via the double bonds, if κ > 0 is sufficiently small so that e−κV logn =
n−κV > C · (n−a4 + n−β), then it is not possible that s ∈ [BF

n ,C
F
n ]. By cyclically permuting the relevant B,C,D

labels, the cases where s ∈ [CF
n ,D

F
n ] and s ∈ [DF

n ,B
F
n ] follow similarly. �

The ensuing arguments will require an auxiliary point somewhat inside ΩF
n , which we will denote A♦

n :

Definition 3.13. Let Ω�
n ,Ω

F
n , etc., be as described. Let η > 0 be a number to be specified in Proposition 3.14. Then

we let A♦
n be a point in the Harris ring of the Harris system stationed at A�

n which is separated from DΔ by η · logn
Harris segments. Moreover, A♦

n is in the center of a box which belongs to the connected component of the boxes which
percolate through the relevant ring (see the description in Theorem 3.10, item (1) as in the proof of Lemma 3.12.
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Fig. 4. Two pairs of disjoint left–right crossings in successive overlapping 3 × 1 blocks together with two disjoint top–bottom crossings in the
common square allow for the continuation of two disjoint paths. Not all crossings described in the bond event are shown. Note, as illustrated in the
insert that, in the case of right angle continuations, the additional paths in the overlap block are superfluous.

Proposition 3.14. There exists some η > 0 such that if A♦
n is as in Definition 3.13, then there exists some γ > 0 such

that

(1) |S�n (A�
n )− S�n (A♦

n )| � n−γ ;
(2) |H�

n (A
�
n )−H�

n (A
♦
n )| � n−γ ;

In particular, with appropriate choice of γ , A♦
n is strictly inside ΩF

n .

Proof. First let us establish item (1). It is claimed that for any configuration in which the event A(A♦
n ) – of a blue

circuit connecting [D�
n ,A

�
n ] to [A�

n ,B
�
n ] which surrounds both A�

n and A♦
n (as described in Theorem 3.10, item

(3)) – occurs, the indicator function of the yellow version of S�n (A
�
n ) is equal to that of S�n (A

♦
n ). Indeed, for the

S�C -component, which always vanishes for A�
n , the requisite event in yellow is directly obstructed by the blue paths

of A(A♦
n ). As for the rest, for either of the differences in the B or D components to be non-zero, there must be a long

yellow path separating A�
n from A♦

n heading to a distant boundary, but this separating path is preempted by the blue
event A(A♦

n ). We may thus conclude that

E
(|I

S�n (A�
n )

− I
S�n (A

♦
n )

| | A(
A♦
n

)) = 0 (3.5)

(where I(•) denotes the indicator) which together with Lemma 3.12 and Theorem 3.10, item (3) gives the result.
As for item (2), recalling the discussion near the end of the proof of Theorem 3.3, we may consider Ω�

n to be
a fixed continuum domain and, e.g., for N ≥ n, the domain Ω�

n,N to be its canonical approximation (together with

appropriate approximations for the marked points A�
n ,B

�
n , etc.) for a percolation problem at scale N−1. We will

consider the corresponding CCS-functions S�n,N on the domains Ω�
n,N .

Let us now argue that the arguments for item (1) persist, uniformly, for all N sufficiently large. First, it is em-
phasized that all the results follow from the occurrence of paths in each Harris ring, which has probability uniformly
bounded from below. We claim that this remains the case for percolation performed at scale N−1. Indeed, while the
scales of the Harris rings were constructed existentially to ensure uniform bounds on crossings at scale n−1, it is re-
called that these rings are gridded by boxes of scale 2−2r relative to the rings themselves (see Theorem 3.10, item (1)).
Thence, using uniform probability crossings in squares/rectangles, etc., the necessary crossings can be constructed by
hand as in, e.g., the proof of Lemma 3.12.

For the last statement, we invoke an argument similar to that in the proof of Lemma 3.12. Recapitulating the
construction, we acquire a lower bound on the probability of occurrence of any of the events associated with the S-
functions for A♦

n . Finally, since S�n is close to F�
n by Lemma 3.5 the latter of which is used to define ∂ΩF

n , with an
appropriate choice of power of n (i.e., γ ) A♦

n can be placed in the interior of ΩF
n . �

Proposition 3.15. There exists some a5 > 0 such that∣∣F�
n

(
A♦
n

) − S�n
(
A�
n

)∣∣ ≤ n−a5 .

Proof. This follows immediately from Proposition 3.14, item (1) and Lemma 3.5. �
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Finally, we will need a result concerning the conformal maps HF
n and H�

n . First we state a distortion estimate:

Lemma 3.16. Let ε > 0 and let K ⊆ T be a domain whose boundary is a Jordan curve such that the sup-norm
distance between ∂K and ∂T is less than ε. We consider K to be a conformal triangle with some marked points
KB,KC,KD such that |KB − 1|< ε, |KC − τ |< ε, |KD − τ 2|< ε, and let gK denote the conformal map from K to
T mapping (KB,KC,KD) to (1, τ, τ 2). Then for z ∈K it is the case that

∣∣gK(z)− z∣∣ � [
ε · log(1/ε)

]1/3
.

Proof. The result for the disk (without the power of 1/3) is a classical result going back to Marchenko (for a statement
see [16], Section 3) and of course, we can transfer our hypotheses to the disk by applying a conformal map φ, which
maps T to the unit disk such that φ(0)= 0. The map φ does not increase the distances, because it is smooth up to the
boundary everywhere but at 1, τ , and τ 2, where it behaves locally like ε3, which in fact only decreases the distances.

We are almost in a position to directly apply Marchenko’s Theorem except for a few caveats. First of all
Marchenko’s Theorem requires a certain geometric condition on the tortuosity of the boundary of K , which is mani-
festly satisfied under the assumption that ∂K and the boundary of the triangle are close in the sup-norm distance.

Secondly, Marchenko’s Theorem is stated for some map fK with fK(0)= 0 and f ′
K(0) > 0, and we have a possibly

different normalization. Specifically, we have some map GK :φ(K)→ D so that φ−1 ◦GK ◦ φ = gK , so it suffices to
check thatGK has approximately the correct normalizations (indeed, the conformal self-map of the unit disc mapping
a point a to the origin takes the form eiθ · ( z−a1−āz )).

Since φ(0) = 0 and 1 + τ + τ 2 = 0 it is the case that φ−1((1 − ε) · φ(KB +KC +KD)) is close to 0 and also
close to w := φ−1((1 − ε) · φ(KB))+ φ−1((1 − ε) · φ(KC))+ φ−1((1 − ε) · φ(KD)); since it is also the case that
gK(KB)+ gK(KC)+ gK(KD) is close to 0, we have that GK(w) is close to 0. So we now have that GK(z) is close
to some eiθ z for some fixed θ . But since φ(KB) is close to φ(1), and so z0 := φ−1((1 − ε)φ(KB)) is close to both 1
and e−iθ ·GK(1), it follows that |eiθ − 1|� ε · log(1/ε).

Finally, in transferring the result back to the triangle, the behavior near the vertices of the triangle requires us to
replace the distances by their cube roots. �

Remark 3.17. We remark that for our purposes, we can in fact avoid the fractional power: indeed, we shall only
use this result at the point A♦

n , which we remind the reader is chosen to be in the Harris system stationed at A�
n

and by Lemma 5.14 we may assert that it is within a fixed small neighborhood of A�
n and therefore outside fixed

neighborhoods of the other marked points.

Lemma 3.18. There exists some a6 > 0 such that for all n sufficiently large,∣∣HF

n

(
A♦
n

) −H�
n

(
A♦
n

)∣∣ � n−a6 .

Proof. Denoting by Gn the conformal map mapping H�
n (Ω

F
n ) to T with the points (H�

n (B
F
n ),H

�
n (C

F
n ), H

�
n (D

F
n ))

mapping to the points (1, τ, τ 2), we have by uniqueness of conformal maps that

HF

n =Gn ◦H�
n .

The stated result will follow from Lemma 3.16, and in order to utilize this lemma, we need to verify that
(H�
n (B

F
n ),H

�
n (C

F
n ),H

�
n (D

F
n )) is close to (1, τ, τ 2) and to show that the sup-norm distance between ∂[H�

n (∂Ω
F
n )]

and ∂T is less than n−γ for some γ > 0. The first statement is a direct consequence of Proposition 3.11: since O(logn)
Harris rings surround both BF

n and B�
n , by an argument as in the proof of Proposition 3.14, their S�n values differ by

an inverse power of n and the result follows since S�n (B
�
n )≡ 1; similar arguments yield the result for CF

n ,D
F
n .

As for the second statement, first we have by Lemma 3.5 and Lemma 3.9 that the distance between ∂[S�n (∂ΩF
n )]

and ∂T is less than (some constant times) n−a4 + n−β ; we emphasize that here we in fact have closeness in the
sup-norm since both lemmas yield point-wise estimates. Next, as near the end of the proof of Theorem 3.3, we may
considerΩ�

n to be a fixed continuum domain and, e.g., for N ≥ n, the domainΩ�
n,N to be its canonical approximation
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(together with appropriate approximations for the marked points A�
n ,B

�
n , etc.) for a percolation problem at scale

N−1. We will consider the corresponding CCS-functions S�n,N on the domains Ω�
n,N .

We claim that there exists some γ > 0 such that uniformly in N for N sufficiently large, the sup-norm distance be-
tween ∂[S�n,N (∂ΩF

n )] and ∂T is less than n−γ . Indeed, from Lemma 3.12, we know that for each point s on ∂ΩF
n , there

are κ · logn Harris rings stationed at z(s) which separate it from the central region DΔ. While by fiat S�n,N=n(∂ΩF
n )

is close to ∂T, we shall reprove this using the Harris systems since we require an estimate which is uniform in N . We
start with the following observation concerning the central region DΔ:

Claim. For n sufficiently large, with probability of order unity independent of n, there are monochrome percolative
connections (in blue or yellow) between DΔ and any or all of the three boundary segments.

Proof. Consider the domain Ω with marked points B,C,D, viewed as a conformal triangle. It is recalled that DΔ is
roughly half the size of the largest circle which can be fit into Ω . Let us focus on two of the three marked points, say
B and D. We now mark two boundary points on DΔ and denote them by b and d and consider two disjoint curves
which join B to b and D to d , thereby forming a conformal rectangle. Since the aspect ratio of the said rectangle is
fixed, it therefore follows, by convergence to Cardy’s Formula, that for n sufficiently large, there is a uniform lower
bound on the probability of a discrete realization of the desired connection. Similar arguments apply to the other two
boundary segments. �

Claim. Consider s ∈ ∂ΩF
n and the Harris rings from the Harris system stationed at z(s) ∈ ∂Ω�

n which also enclose
s as in Lemma 3.12. Without loss of generality, we may assume that z(s) ∈ [B�

n ,D
�
n ]. Then there exists some fixed

constant Υ <∞ such that all but Υ of the Harris segments have at least one endpoint on [B�
n ,D

�
n ]. Moreover, among

these, either the other endpoint of the Harris segment is also on [B�
n ,D

�
n ] or the existence of the corresponding path

event within this Harris segment achieves S�B or S�D (which, we remind the reader, are the percolation events defining
S�D and S�B , respectively) for both s and z(s). Similar statements hold if z belongs to the other boundary segments.

Proof. Let us first rule out the possibility that too many Harris segments have endpoints on [B�
n ,C

�
n ,D

�
n ]. It is noted

that each Harris segment of this type in fact separates all of [B�
n ,D

�
n ] from DΔ. Thus, if there are say Υ such Harris

segments, then the probability of a connection between DΔ and [B�
n ,D

�
n ] would be less than (1 − ϑ)Υ , with ϑ > 0

as in Theorem 3.10. It follows from the previous claim that Υ cannot scale with n.
Finally, if there are too many Harris segments with one endpoint on [B�

n ,D
�
n ], but accomplishes neither S

�
B nor

S
�
D , then necessarily the other endpoint must be on [B�

n ,C
�
n ] or [C�

n ,D
�
n ] in such a way that the Harris segment

separates DΔ from [B�
n ,C

�
n ] or [C�

n ,D
�
n ]. The same reasoning as in the above paragraph then implies that this also

cannot occur “too often”. For illustrations of some of these cases, see Fig. 5. �

We also note that there cannot be Harris segments of conflicting “corner types” (e.g., [D�
n ,B

�
n ] to [B�

n ,C
�
n ] and

[B�
n ,C

�
n ] to [C�

n ,D
�
n ]) since the Harris segments are topologically ordered and cannot intersect one another.

We can now acquire the needed conclusion that the Harris rings themselves force S�n,N (s) to be close to ∂T. The
essence of the argument can be captured by the (redundant) case N = n, so let us proceed. Consider then s ∈ ∂ΩF

n and
the Harris system stationed at z(s) ∈ ∂Ω�

n as above which, without loss of generality, we assume to be in [B�
n ,D

�
n ].

Then we claim that |S�n (z(s))−S�n (s)| � n−κ . Indeed, from the previous claim, all but Υ of the Harris segments have
beginning and ending points on ∂Ω�

n which are such that conditioned on the existence of paths of the appropriate
color within these segments, the indicator functions of all S�n -events are the same value for both s and z(s).

Let us now argue that the above argument persists, uniformly, for all N sufficiently large. First, it is emphasized
that all arguments follow from the occurrence of paths in each Harris ring, which has probability uniformly bounded
from below. We claim that this remains the case for percolation performed at scaleN−1. Indeed, let us again recall that
these rings are gridded by boxes of scale 2−2r relative to the rings themselves (see Theorem 3.10) and using uniform
probability of crossings in squares/rectangles, etc., which is characteristic of critical 2D percolation problems, the
necessary crossings can be constructed by hand as in, e.g., the proof of Lemma 3.12.
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Fig. 5. (a) and (b): Harris annular segment of the type envisioned for s ∈ ∂ΩF
n and z(s) ∈ [B�

n ,D
�
n ]; in case (b), it so happens that z(s) and B�

n

are close. (c) and (d): since yellow paths indicated in these illustrations represent typical large scale events, there cannot be too many Harris rings
of the contrary type.

Now by convergence to Cardy’s Formula (or rather, the statement that the CCS-function converges uniformly on
compact sets to the conformal map to T) it is the case that S�n,N (s)→H�

n (s). Uniformity in s follows from the fact

that ΩF
n ⊆Ω�

n is a fixed (for n fixed) compact set, c.f., Section 5 in [5]. We conclude therefore that each point on
∂ΩF

n maps to a point sufficiently close to ∂T, and since ∂[H�
n (∂Ω

F
n )] is a curve, it easily follows that the Hausdorff

distance is small.
However, we require the stronger statement that the relevant objects are close in the sup-norm (i.e., in dsup(·, ·)).

We will now strengthen the above arguments to acquire this conclusion. Let us define the set of all points which are
chosen as the z(s) (the closest point to s) for some s in 〈∂ΩF

n 〉N (the approximation to ∂ΩF
n at scale N−1):

ZN := {
z ∈ ∂Ω�

n,N | ∃s ∈ 〈
∂ΩF

n

〉
N
, z= z(s)}.

Let us first observe that a priori S�n,N (ZN) is a discrete set of points on ∂T which we may consider to be a curve
by linear interpolation. For simplicity let us consider the portion of ∂T corresponding to the [C,D] boundary, i.e.,
the vertical segment connecting τ and τ 2. Let us focus attention on S�n,N ([C�

n,N ,D
�
n,N ] ∩ ZN). By monotonicity of

crossing probabilities, it is the case that these points are ordered along the vertical segment.
Now our contention is that there are no substantial gaps between successive points:

Claim 1. Let s ∈ 〈∂ΩF
n 〉N and z(s) be as described. Let ν > 0 be such that the inequality n−ν � n−κ is sufficiently

strong, as will emerge in the proof, where κ as above is such that |S�n,N (s)− S�n,N (z(s))| � n−κ . Then for all N > n,

it is the case that the maximum separation between successive points of S�n,N ([C�
n,N ,D

�
n,N ] ∩ ZN) is less than n−ν ,

with ZN as described.

Proof. Suppose there are two points x1, x2 ∈ [C�
n,N ,D

�
n,N ] ∩ ZN , say with S�n,N (x1) below S�n,N (x2), which are

separated by a gap in excess of n−ν . Let us denote by s1, s2 ∈ 〈∂ΩF
n 〉N the points corresponding to x1, x2, respectively.

Next consider the 1
4 · n−ν neighborhoods of S�n,N (s1) and S�n,N (s2) and consider the points in ∂ΩF

n “between” s1
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and s2. There must be points between s1 and s2 since |S�n,N (s1)− S�n,N (s2)| � n−ν − 2 · n−κ . So if these points were

neighbors, by standard critical percolation arguments, the difference between their S�n,N values must be small and the
above inequality would render this difference unacceptably large, for ν appropriately chosen.

If these points all have S�n,N -value which lie in the 1
4 · n−ν neighborhoods described above, then there would be a

neighboring pair whose S�n,N values are separated by 1
2 · n−ν , which would again be unacceptably large. We conclude

therefore that there exists some point between s1 and s2 with S�n,N value outside these neighborhoods and therefore a

point in ZN whose S�n,N value lies between those of x1 and x2. This is a contradiction. �

Finally, let us describe the parameterization. First we denote by UN the number of points in ZN and then we
may parametrize say the vertical portion of ∂T by having, for t = j , the curve on the j th site of ZN and linearly
interpolating for the non-integer times. Similarly, we parametrize the corresponding portion of S�n,N (〈∂ΩF

n 〉N , so
that pairs of points at integer times correspond to their s, z(s) pair. The above claim then implies that with this
parametrization, the two curves are within n−ν at all times. We have verified that S�n,N (〈∂ΩF

n 〉N) is sup-norm close to
∂T, uniformly in N .

The stated result now follows from Lemma 3.16. �

Proof of the Main Theorem. The required power law estimate for the rate of convergence of crossing probabilities
now follows by concatenating the various theorems, propositions and lemmas we have established. Let us temporarily
use the notation A∼ B to mean that A and B differ by an inverse power of n.

Starting with Sn(An), we have that Sn(An)∼ S�n (A�
n ) by Theorem 3.3; S�n (A

�
n )∼ S�n (A♦

n ) by Proposition 3.14,
item (1); S�n (A

♦
n ) ∼ F�

n (A
♦
n ) by Lemma 3.5; F�

n (A
♦
n ) ∼ HF

n (A
♦
n ) by Lemma 3.9; HF

n (A
♦
n ) ∼ H�

n (A
♦
n ) by

Lemma 3.18; H�
n (A

♦
n )∼H�

n (A
�
n ) by Proposition 3.14, item (2); finally, H�

n (A
�
n )∼H(A) by Theorem 3.3. �

4. σ -holomorphicity

The main goal in this section is to establish the so-called Cauchy integral estimates which is one of the more technical
aspects required for the proof of Lemma 3.5. We will address such issues in somewhat more generality than strictly
necessary by extracting the two properties of functions of the type Sn(z) which are of relevance: (i) Hölder continuity
and (ii) that their discrete (closed) contour integrals are asymptotically zero as the lattice spacing tends to zero. As for
the latter, it should be remarked that the details of how our particular Sn(z) exhibits its cancelations on the microscopic
scale can be directly employed to provide the Cauchy-integral estimates.

4.1. (σ,ρ)-holomorphicity

As a starting point – and also to fix notation – let us review the concept of a discrete holomorphic function on a
hexagonal lattice. Let Hε denote the hexagonal lattice at scale ε, e.g., the length of the sides of each hexagon is ε, so
we envision ε = n−1, where the hexagons are oriented horizontally (i.e., two of the sides are parallel to the x-axis).
For now, let Λε denote any collection of hexagons and Q :Λε → C a function on the vertices of Λε . For each pair
of adjacent vertices in Λε let us linearly interpolate Q on the edges. In particular, Q as a function on edges when
integrated with respect to arc length yields the average of the values of Q at the two endpoints. Hence all integrals
may be regarded as taking place in the continuum.

We say that Q is discrete holomorphic on Λε if for any hexagon hε ∈Λε with vertices (v1, . . . , v6) – in counter-
clockwise order with v1 the leftmost of the lowest two – the following holds:

0 =
(
Q(v1)+Q(v2)

2
+ · · · + ei(5/3)π · Q(v6)+Q(v1)

2

)
= ε−1 ·

∮
∂hε

Qdz.

That is, the usual discrete contour integral (by this or any equivalent) definition vanishes. By way of contrast, we have
the following mild generalization pertaining to sequences of functions.
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Definition 4.1. Let Λ⊆C be a simply connected domain and denote by Λε the (interior) discretized domain given as
Λε := ⋃

hε⊆Λ hε and let (Qε :Λε → C) be a sequence of functions defined on the vertices of Λε . Here ε is tending to
zero and, without much loss, may be taken as a discrete sequence. We say that the sequence (Qε) is σ -holomorphic if
there exist constants 0< σ,ρ ≤ 1 such that for all ε sufficiently small:

(i) Qε is Hölder continuous (down to the scale ε) and up to ∂Λε , in the sense that there exists someψ > 0 (envisioned
to be small) such that (1) Qε is Hölder continuous in the usual sense for zε,wε ∈Λε \Nψ(∂Λε): if |zε −wε|<
ψ , then |Qε(zε)−Qε(wε)| � ( |zε−wε |ψ

)σ and (2) if zε ∈ Nψ(∂Λε), then there exists some w�ε ∈ ∂Λε such that

|Qε(zε)−Qε(w�ε)| � ( |zε−w
�
ε |

ψ
)σ .

(ii) for any simply closed lattice contour Γε ,∣∣∣∣
∮
Γε

Qdz

∣∣∣∣ =
∣∣∣∣ ∑
hε⊆Λ′

ε

∮
∂hε

Qdz

∣∣∣∣ � |Γε| · ερ, (4.1)

with Λ′
ε, |Γε| denoting the region enclosed by Γε and the Euclidean length of Γε , respectively.

Remark 4.2.

(i) Obviously any sequence of discrete holomorphic functions which also satisfy the Hölder continuity condition are
σ -holomorphic.

(ii) There are of order |Γε|/ε terms in a discrete contour integration but each term is multiplied by ε and so in cases
where |Γε| = O(1) (a contour of fixed finite length) |Γε| need not be explicitly present on the right hand side of
Eq. (4.1). We have introduced a more general definition as we shall have occasion to consider contours whose
lengths scale with ε (specifically they are discrete approximations to contours that are not rectifiable).

(iii) From the assumption of Hölder continuity alone, we already have that | ∮
∂hε
Qdz| � ε1+σ , but on a moment’s

reflection, it is clear that this is quite far from what is necessary to provide adequate estimates for the integral
around contours of larger scales that are amenable to the ε→ 0 limit.

We will now gather the necessary ingredients to establish that the (complexified) CCS-functions are (σ,ρ)-
holomorphic. The arguments here are certainly not new: various ideas and statements needed are already almost
completely contained in [5,10] and [14].

Proposition 4.3. Let Λ denote a conformal triangle with marked points (or prime ends) B , C, D and let Λε denote
an interior approximation (see Definition 3.1 of [5]) of Λ with Bε,Cε,Dε the associated boundary points. Let Sε(z)
denote the complex crossing function defined on Λε . Then for all ε sufficiently small, the functions (Sε :Λε → C) are
(σ,ρ)-holomorphic for some σ,ρ > 0.

Proof. We will first establish, using some conformal mapping ideas, that Sε enjoys Hölder continuity up to the bound-
ary; since arguments like this already appear in [5], we will be brief. Let us start with a pointwise statement:

Claim. Suppose we have a point A on the [D,B] boundary, then we claim that there is some Δ� ≡ Δ�(A) (with
1 � Δ� � ε) and a connected set NΔ� ⊂ Λε , also contained in the Δ� neighborhood of Aε and connected to Aε ,
such that the following holds: there exists some σ > 0 such that for any z ∈NΔ� ,

∣∣Sε(z)− Sε(Aε)∣∣ � [ |z−Aε|
Δ�

]σ
.

Proof. Let z ∈ Λε and consider Sε(z) to correspond to blue paths. Then it is clear that if there is a yellow path
starting on [Dε,Aε] and ending on [Aε,Bε] which encircles z, then events contributing to Sε(z) and Sε(Aε) occur
together and there is no contribution to |Sε(z)− Sε(Aε)|. The power (|z−Aε|/Δ�)σ corresponds to having the order
of | log(|z−Aε|/Δ�)| annuli (or coherent portions thereof) connecting the two parts of the [Dε,Bε] boundary with an
independent chance of such a yellow circuit in each segment with uniformly bounded probability. Thus the principal
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task is to construct the reference scale Δ� in a manner which is uniform in ε. While the entire issue is trivial when
|A−Aε|, |B − Bε| etc., are small compared to the distance between various relevant “points” on Λ, we remind the
reader that under certain circumstances, the separation between these points and their approximates may be spuriously
large. Thus we turn to uniformization.

To this end, let ϕ :D → Λ denote the uniformization map. Let X′
A denote a crosscut neighborhood of ϕ−1(A)

which does not contain any of the inverse images of the marked points ϕ−1(B), . . . nor, for ε small, the inverse images
of their approximates ϕ−1(Bε), . . . but which does (for ε small) contain ϕ−1(Aε). Next we set XA :=X′

A ∩ ϕ−1(Λε)

so that

ϕ(XA)= ϕ
(
X′
A ∩ ϕ−1(Λε)

)
.

Note that (ϕ−1
ε ◦ ϕ)(XA) is itself a crosscut neighborhood of the image of Aε since Λε is an interior approximation;

here ϕε denotes the uniformization map associated with Λε .
Next let rΠ = rΠ(Aε) be standing notation for the square centered at Aε of sideΠ . Then, forΔ� sufficiently small,

it is the case that ϕ−1(rΔ�)⊆XA and it is worth observing that ϕ−1
ε (∂(rΠ ∩ϕ(Xδ))) is a crosscut containing ϕ−1

ε (Aε)

for all Π ≤Δ�.
But now, it follows that there is a nested sequence of (partial) annuli, down to scale |z−Aε|, contained inside rΔ� ,

within each of which there is a connected monochrome chain with uniform and independent probability separating z
from Aε . �

From the claim we have that corresponding to each boundary point of Λ, we have a neighborhood Δ�(z) in
which we have Hölder continuity and it is certainly the case that ∂Λ⊆ ⋃

z∈∂Λ NΔ�(z), so by compactness there exist

z(1), . . . , z(k) such that ∂Λ⊆ ⋃k

=1NΔ�(z(
)). Adding a few NΔ(z)’s if necessary so that all neighborhoods have non-

trivial overlap, this implies the existence of some ψ > 0 such that Nψ(∂Λ)⊆ ⋃k

=1NΔ�(z(
)) (here Nψ(∂Λ) denotes

the Euclidean ψ -neighborhood of ∂Λ). In particular, ψ ≤Δ�(z(
)), 
= 1, . . . , k, so if ε�ψ , and zε ∈Nψ(∂Λ), then

zε ∈NΔ�(z(
)) for some 
 and so |Sε(zε)− Sε(z(
)ε )| � ( |zε−z
(
)
ε |

ψ
)σ . For zε,wε ∈Λε \Nψ(∂Λ), |zε −wε|<ψ , so there

are clearly of the order log(|zε −wε|/ψ) annuli surrounding both zε from wε and we obtain |zε −wε| � ( |zε−wε |ψ
)σ .

Finally, the statement concerning the behavior of discrete contour integrals of Sε can be directly found in [14] for
the triangular lattice (also c.f., [2]) and in [10], Section 4.3, for the extended models. �

4.2. Cauchy integral estimate

We will start by establishing a multiplication lemma for an actual holomorphic function with a nearly-holomorphic
function:

Lemma 4.4. Let Qε be part of a (σ,ρ)-holomorphic sequence as described in Definition 4.1. above. Let ε > 0 and
suppose Γε is a discrete closed contour consisting of edges of hexagons at scale ε. Let q(z) be a holomorphic function
on Λ restricted to Λε (both vertices and edges, all together regarded as a subset of C). Next let 1 � D � ε (both
considered small). Then for all ε ≥ 0 sufficiently small∣∣∣∣

∮
Γε

q ·Qε dz

∣∣∣∣�
(

‖q‖∞ · ε
ρ

D
+ ‖q‖C1 ·Dσ

)
· (∣∣Int(Γε)

∣∣ + |Γε| ·D
)
.

Here we remind the reader that ‖q‖C1 = ‖q‖∞ +‖q ′‖∞. Moreover, in the statement and upcoming proof of the lemma
we also remind the reader that all integrals are regarded as taking place in the continuum.

Proof. Consider a square-like grid of scaleD and let Rk denote the kth such square which has non-empty intersection
with Λε . Next we let

γk := ∂(Rk ∩ Int(Γε)
)
.
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Fig. 6. Aspects described in the proof of Lemma 4.4.

Note that γk is not necessarily a single closed contour, but each γk is a collection of closed contours. See Fig. 6. It is
observed that if F is a function, then

∮
Γε
F dz= ∑

k

∮
γk
F dz, where by abuse of notation, as mentioned above, each

term on the right-hand side may represent the sum of several contour integrals. Next let us register an estimate within
a single region bounded a γk , the utility of which will be apparent momentarily:

Claim. Let zk ∈ Rk (if Rk intersects ∂Λε then choose zk in accordance with item (i) of the definition of
σ -holomorphicity so that Hölder continuity of Q can be assumed). Then∮

γk

q ·Qdz= q(zk) ·
∮
γk

Qdz+ Ek, (4.2)

where

|Ek|� |γk| · ‖q‖C1 ·D1+σ

and to avoid clutter, we omit the ε subscript on the Q’s.

Proof. Let us write

Q(z)=Q(zk)+ δQ(z)
and similarly,

q(z)= q(zk)+ δq(z).
We then have that∮

γk

q ·Qdz− q(zk) ·
∮
γk

Qdz=
∮
γk

δQ · δq dz+Q(zk) ·
∮
γk

δq dz.

The second term on the right hand side vanishes identically by analyticity of q whereas the integrand of the first term,
by the assumed Hölder continuity of Q and analyticity of q , can be estimated via � ‖q‖C1 ·D ·Dσ and the claim
follows. �

Therefore we may write∮
Γε

q ·Qdz=
∑
k

∮
γk

q ·Qdz :=
∑
k

q(zk) ·
∮
γk

Qdz+
∑
k

Ek,

where zk is a representative point in the region Rk ∩ Int(Γε). We divide the error on the righthand side into two terms,
corresponding to interior boxes – which do not intersect Γε , and boundary boxes – the complementary set.
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Let us first estimate the interior boxes. Here, from the claim we have that the integral over each such box incurs
an error of ‖q‖C1 ·D2+σ since here |γk| � D. There are of the order | Int(Γε)| ·D−2 interior boxes so we arrive at
the estimate ‖q‖C1 ·Dσ · | Int(Γε)|. On the other hand, for boundary boxes, the contribution to the errors from the
boundary boxes will certainly contain the original contour length |Γε|. To this we must add � D × [the number of
boundary boxes] corresponding to the “new” boundary of the boxes themselves that we might have introduced by
considering the boxes in the first place. This is estimated as follows:

Claim. Let M(Γε,D) denote the number of boundary boxes – i.e., the number of boxes on the grid visited by Γε .
Then M � |Γε|/D.

Proof. Since arguments of this sort have appeared in the literature (e.g., [8,9]) many times, we shall be succinct: we
divide the grid into 9 disjoint sub-lattices each of which is indicated by its position on a 3 × 3 square. LetM1, . . . ,M9

denote the number of boxes of each type that are visited by Γε . We may assume without loss of generality that ∀j ,
M1 ≥Mj . Let us consider the coarse grained version of Γε as a sequence of boxes on the first lattice (visited by Γε);
revisits of a given box are not recorded until/unless a different element of the sub-lattice has been visited in-between.
Since the distance between each visited box is more thanD it follows that corresponding to each visited box the curve
Γε must “expend” at least D of its length, i.e., |Γε| ·D ≥M1 ≥ (1/9) ·M and the claim follows. �

It is specifically observed that the additional boundary length incurred is at most comparable to the original bound-
ary length. In any case altogether we acquire an estimate of the order |Γε| · ‖q‖C1 ·D1+σ . We have established∣∣∣∣∑

k

Ek
∣∣∣∣� ‖q‖C1 ·Dσ · (∣∣Int(Γε)

∣∣ + |Γε| ·D
)
.

Finally, by item (ii) of (σ,ρ)-holomorphicity,

∑
k

∣∣∣∣q(zk) ·
∮
γk

Qdz

∣∣∣∣ � ‖q‖∞ · ερ · (∣∣Int(Γε)
∣∣ ·D−1 + |Γε|

)
.

This follows from the decomposition similar to the estimation of the Ek terms with the first term corresponding to
interior boxes and the second to boundary boxes. The lemma been established. �

We can now immediately control the Cauchy integral of a (σ,ρ)-holomorphic function uniformly away from the
boundary:

Corollary 4.5. Let Qε be part of a (σ,ρ)-holomorphic sequence as described in Definition 4.1 above. Let Gε(z) be
given as the Cauchy-integral ofQε – as in Eq. (3.4) – over some (discrete Jordan) contour Γε . Let z denote any lattice
point in Int(Γε) such that

dist(z,Γε)≥ n−a5 := d1

for some a5 > 0 and let D� ε (both considered small). Then for all ε > 0 sufficiently small, and any d2 < d1,

∣∣Gε(z)−Qε(z)∣∣ =
∣∣∣∣ 1

2πi

∮
Γε

(
Qε(ζ )−Qε(z)

) · 1

ζ − z dζ

∣∣∣∣
�

(
ερ

d2D
+ Dσ

d2
2

)
· (∣∣Int(Γε)

∣∣ + |Γε| ·D
) +

(
d2

d1

)σ
. (4.3)

Proof. This is the adaptation of standard arguments from the elementary theory of analytic functions to the present cir-
cumstances. Let γd2 denote an approximately circular contour that is of radius d2 and which is centered at the point z.
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Let Γ ′
ε denote the contour Γε together with γd2 – traversed backwards – and a back and forth traverse connecting the

two. We have, by Lemma 4.4, that∣∣∣∣ 1

2πi

∮
Γ ′
ε

(
Qε(ζ )

) · 1

ζ − z dζ

∣∣∣∣�
(
ερ

d2D
+ Dσ

d2
2

)
· (∣∣Int(Γε)

∣∣ + |Γε| ·D
)
,

where, in the language of this lemma, we have used ‖q‖∞ � d−1
2 and ‖q‖C1 � d−2

2 . Thus we write

Gε(z)= 1

2πi

∮
γd2

Qε(ζ )

ζ − z dζ + E2,

with |E2| bounded by the right hand side of the penultimate display. So, subtracting Qε(z) in the form

Qε(z)= 1

2πi

∮
γd2

Qε(z)

ζ − z dζ,

we have that

∣∣Gε(z)−Qε(z)∣∣ � |E2| + 1

2π

∮
γd2

|Qε(z)−Qε(ζ )|
ζ − z dζ

and the stated result follows immediately from the Hölder continuity of Qε . �

By inputing information on |∂Ω�
n |, the required Cauchy-integral estimate now follows:

Proof of Lemma 3.5. We first recall the statement of the lemma:
Let Ω�

n and S�n be as in Proposition 3.2 so that

∣∣∂Ω�
n

∣∣ ≤ nα(1−a1),

where M(∂Ω) < 1 + α. For z ∈Ω�
n (with the latter regarded as a continuum subdomain of the plane) let

F�
n (z)=

1

2πi

∮
∂Ω�

n

S�n (ζ )
ζ − z dζ. (4.4)

Then for a1 sufficiently close to 1 there exists 0 < β < σ,ρ and some a5 > 0 such that for all z ∈ Ω�
n so that

dist(z, ∂Ω�
n ) > n

−a5 ,

∣∣S�n (z)− F�
n (z)

∣∣ � n−β.

By Proposition 4.3, we have that the functions S�n (z) (with ε = n−1) have the (σ,ρ)-holomorphic property. In
addition, we shall also have to keep track of a few other powers of ε, which we now enumerate:

(i) let us define b1 > 0 so that in macroscopic units we have∣∣∂Ω�
N

∣∣ ≤ ε−α(1−a1) := ε−αb1;

(ii) let us define

d2 := εs,

for some s > 0 to be specified later;
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(iii) finally, we define

D := εt ,
where the role of D will be the same as in the proof of Lemma 4.4 (it is the size of a renormalized block).

Plugging into Corollary 4.5 (again with n−a5 = d1) we obtain that

∣∣S�n (z)− F�
n (z)

∣∣ � (
ερ

d2D
+ Dσ

d2
2

)
· (∣∣Int

(
∂Ω�

n

)∣∣ + ∣∣∂Ω�
n

∣∣ ·D) +
(
d2

d1

)σ

�
(
ερ−(s+t) + εtσ−2s) · (1 + ε−αb1+t) + εsσ

dσ1

= ερ−(s+t) + ερ−s−αb1 + εtσ−2s + ε(1+σ)t−αb1−2s + εsσ

dσ1
.

With σ fixed, the parameters s, t > 0 and d1 can be chosen so that all terms in the above are positive powers of ε:
set t = λσ , where λ ∈ (0,1) so that σ > 1−λ

λ
. This choice of t implies that (1+σ)t > σ > t . Now let s > 0 and b1 > 0

be sufficiently small so that 2s < tσ and αb1 < t so altogether we have the last two terms are positive powers of ε.
Next take t and then s and b1 even smaller if necessary, we can also ensure that ρ > s + t and ρ > s + αb1. Finally,
d1 can be chosen to be some power of ε so that εs � d1. �

5. Harris systems

This last section is devoted to the proof of Theorem 3.10, although the construction may be of independent interest
and find further utility.

5.1. Introductory remarks

For many purposes, the pertinent notion of distance – or separation – is Euclidean; in the context of critical percola-
tion, what is more often relevant is the logarithmic notion of distance: how many scales separate two points. These
matters are relatively simple deep in the interior of a domain or in the presence of smooth boundaries. However, for
points in the vicinity of rough boundaries, circumstances may become complicated. For certain continuum problems,
including, in some sense, the limiting behavior of critical percolation, there is a natural notion for a system of in-
creasing neighborhoods about a boundary point: the pre-images under uniformization of the logarithmic sequence
of cross cuts centered about the pre-image of the boundary point in question. This device was employed implicitly
and explicitly at several points in [5]. In the present context, we cannot so easily access the limiting behavior we are
approaching. Moreover, in order to construct such a neighborhood sequence at the discrete level, it will be necessary
to work directly with Ωn itself.

We will construct a neighborhood system for each point in ∂Ωn by inductively exploring the entire domain via
a sequence of crossing questions. Our construction demonstrates (as is a posteriori clear from the convergence of
Sn to a conformal map) that various domain irregularities, e.g., nested tunnels, which map to a small region under
uniformization are, in a well-quantified way, also unimportant as far as percolation is concerned.

5.2. Preliminary considerations

For completeness let us first recall the setting. Let Ω ⊂ C be a simply connected domain with diam(Ω) <∞ and let
2Δ denote the supremum of the radius of all circles which are contained inΩ . Further, let DΔ denote a circle of radius
Δwith the same center as a circle for which the supremum is realized. We will denote byΩm any interior discretization
of Ω , e.g., one of the types discussed before; we use n−1 to denote the lattice spacing. For ω ∈ ∂Ωm we will define
a sequence of segments the boundaries of which are paths beginning and ending on ∂Ωm. As a rule, these segments
separate ω from DΔ. The dimensions of these segments will be determined by percolation crossing probabilities
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analogous to the system of annuli (of which these are fragments) investigated by Harris in [11]. Notwithstanding that
the regions between segments do not actually form annuli, we will refer to the resultant objects as Harris rings – or,
occasionally, ring segments, annular fragments, etc. The ultimate goal will be to ensure that Harris rings have uniform
upper and, to some extent, lower bounds on their crossing probabilities (among other properties). Moreover, these
represent the essence of what must be traversed by paths emanating from DΔ which reach to “the essential vicinity”
of the point ω. Details will unfold with the construction. The ultimate object will be called the Harris system stationed
at ω.

We will start with the preliminary considerations of the construction. Let S0(ω) denote the smallest square (i.e.,
lattice approximation thereof) which is centered at ω ∈ ∂Ωm and whose boundary intersects DΔ. That is to say,
the boundary is approximately tangent to ∂DΔ. We set R0(ω) := S0(ω) ∩ Ωm. Successive topological rectangles
A1(ω), . . . ,Ak(ω), . . . which may be envisioned as the intersection of Ωm with a nested sequence of square annuli
centered at ω will in practice be constructed via a non-trivial inductive procedure: (1) there will be deformations of
the shape of the annular segments; (2) the sizes of the “smaller squares” (i.e., the location of the “next” boundary)
will be determined by percolation crossing probabilities; (3) the basic shape will not always be a square centered at ω.
Nevertheless, we will call these annular (ring) fragments.

The annular fragmentAk will have four boundary pieces, forming a topological rectangle; opposing pairs of bound-
aries will be denoted as yellow and blue with blue corresponding to a portion of ∂Ωm. The rectangle Ak will constitute
an arena for exclusive crossing type events, e.g., yellow crossings between the yellow boundaries and blue crossings
between the blues. A good portion of our inductive procedure involves the refinement and coloring of the boundaries.

All points on the yellow boundaries can be connected to ω via a (self-avoiding) path in the complement of ∂Ωm
and in the complement of the blue boundaries. The outer and inner yellow boundaries may be – somewhat loosely –
defined by the stipulation that all such paths to the outer boundary must first pass through the inner boundary. Already,
it is the case that all of ∂Ωm ∩ ∂Ak is blue; indeed, envisioning Ak as the intersection of Ωm with an actual square
annulus, some of the blue boundary will be where ∂Ωm cuts through such a ring.

Key in the initial portion of the construction is that for some ϑ with 0 < ϑ < 1/2, it will be the case that the
probability of a yellow crossing between the yellow segments of the boundaries and the probability of a blue crossing
between the blue segments of the boundaries are both in excess of ϑ (and therefore less than 1 − ϑ ). Eventually
we will forsake the lower bound for the yellow crossings in favor of an ostensibly much smaller bound pertaining
to geometric properties of the annular fragments which permit yellow crossings under tightly controlled conditions.
And, eventually, we may have to consider ϑ as a small parameter. Nonetheless all quantities will be uniform in the
ultimate progression of fragments and in the lattice spacing n−1 for n sufficiently large.

The essence of the geometric property which we will require of the Harris regularization scheme is that ω – or its
relevant vicinity – can be connected to DΔ via a sequence of boxes housed within the ring fragments. The size of the
boxes is uniform within a layer and does not increase or decrease too fast between neighboring layers. While the box
sizes may be “small,” this will only be relative to the characteristic scale of the layer via a numerical constant which
is independent of n and the particulars of the fragment. Thus, the scale of the boxes may be considered comparable to
the scale of the fragments to which they belong.

Dually, ω can be “sealed off” from DΔ by the independent events of separating paths which have an approximately
uniform probability in each segment. Thus we envision an orientation to our constructions leading from DΔ to ω.
(Indeed, it is this orientation which permits us to choose the appropriate components to be colored yellow at various
stages of the construction.) Moreover, from these considerations, it emerges that only the first O(logn) of these
segments are relevant for the problems under consideration. IfΩm has a smooth boundary this would, in fact, be all of
them; under general circumstances, as it turns out, the configurations in the region beyond the first O(logn) segments
have negligible impact on the percolation problem at hand.

We will describe what is fully required in successive stages of increasing complexity, but before we begin, let
us dispense with some geometric and some lattice details. While the definitions and conventions which follow are
certainly not all immediately necessary – and possibly unnecessary for an understanding of the overall scheme – we
have elected to display them at the outset in a place where they are readily accessible. The reader is invited to skim
these lightly and later, if required, refer back to these paragraphs.

Preliminary definitions
The moral behind the upcoming definitions is that all lattice details should be resolved in as organic a way as possible
via the definition of the percolation properties for the model at hand. All of the models of interest for us have repre-
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Fig. 7. Various of notions of horizontal and vertical consistent with hexagonal tiling: (a) a horizontal string, (b) a vertical string, (c) a vertical
segment, (d) a horizontal segment.

sentations which are hexagonal based: each model provides some smallest independent unit (abbreviated SIU) in the
sense that such a unit (a subset of the lattice) can be stochastically configured independently of one another and any
smaller subset is either empty or is correlated with some neighbor. In the case of independent hexagonal tiling, the
smallest such unit is simply a hexagon whereas for the generalized models in [10] the smallest unit can be either a
single hexagon or a flower (which consists of 7 hexagons). All notions of neighborhood, self-avoiding, etc., are now
to be thought of in terms of the intrinsic definition of connectivity associated with the underlying percolation problem.
However, it is pointed out that in the case of the models introduced in [10], path transmissions may take place over
fractions of hexagons.

(1) A string of hexagons is a sequence of hexagons with no repeats each of which – save the first – has an edge
in common with its predecessor. Similarly, a segment is a self-avoiding path consisting of edges (which are the
boundary elements of hexagons). With apology, both objects will on occasion be referred to as paths; in all cases,
the relevant notion will be clear from context and/or the distinction will be of no essential consequence. Similarly,
if A ⊂Ωm is a connected set of hexagons then the boundary, ∂A, could mean the hexagons in Ωm \ A which
share an edge with an element of A or the segment consisting of the afore described shared edges. Again, the
distinction will usually be unimportant but, if need arises will be made explicit.

(2) For x, y ∈Ωm, we will use P :x� y to denote a string inΩm connecting x and y. By contrast, the event {x� y}
will mean, in the pure hexagon problem, the existence of a P :x� y such that each element of P is of the same
color thereby forming a monochrome percolation connection (or transmission) between these points. For the more
general cases, {x� y} also denotes this monochrome connectivity event but here some of the transmissions may
take place through hexagon fragments (see, if desired, [10], Figure 1).

(3) We shall often use descriptions like horizontal and vertical, and this should be understood to mean the closest
lattice approximation to either a horizontal or vertical segment. The precise details are actually unimportant but
recall that, to be definitive, we have assumed that hexagons are oriented so that there are two vertical edges parallel
to the y-axis. For the moment, let us discuss the pure hexagon problem.

A horizontal string of hexagons would consist of a sequence of neighboring hexagons the centers of which are
horizontally aligned. Thus, each hexagon in the string shares only vertical edges in common with its neighbors
or neighbor. By contrast, a vertical string of hexagons will “zigzag” a bit. For example, the kth hexagon in the
sequence shares in common the segments to the left of the right vertical segment with the (k ± 1)st hexagon.
And similarly for the (k + 2)nd hexagon in the sequence. More pertinently, a horizontal segment consists, e.g.,
of the tops of hexagons in a horizontal string with each hexagon in the string contributing (except, perhaps at
the endpoints) the two edges above and adjacent to the vertical. A vertical segment alternates, e.g., between left
vertical edges on even hexagons and, for the odd hexagons, the entire left sides connect these (even vertical edges)
together. Thus, horizontal segments are above or below horizontal strings and similarly vertical segments are to
the left or right of vertical strings. See Fig. 7 Square boxes will be understood as already aligned with respect to
the fixed Cartesian axes with boundaries consisting of vertical and horizontal segments as described.

There is a natural notion of neighboring segments, namely with a fixed string in mind, the segment which is
of (approximately) the same length that is on the other side of the string. More formally, given a segment and
associated string, the next segment in the direction of the string is given by the symmetric difference over all
hexagons in the string of the edges of each hexagon and then deleting the initial segment. These observations will
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be useful when we define the concept of sliding. Notwithstanding, the ends of strings and segments must often be
tended to on an individual basis as is the case of composite SIU.

For extended SIU – flowers – for now it is only important to state a few rules: for strings, the entire SIU must
be incorporated as a single unit. It should be noted that this incorporation can have a variety of manifestations;
e.g., in the case of horizontal segments, there are three levels at which the string may impinge. However, all pure
hexagons in a horizontal string must still have their centers horizontally aligned. Similarly for the case of vertical
strings. In conjunction with the above, segments are forbidden to pass through the flower and therefore must
circumvent. In the context of extended SIU, there will be some small amount of “special considerations” when
we turn our discussion to distances and neighborhoods.

(4) If x = (x1, x2) and y = (y1, y2) are SIU in Ωm and V ⊆ Ωm then we define the distance dV∞(x, y) to be the
L∞-distance, i.e., max{|x1 − x2|, |y1 − y2|}, subject to the local connectivity constraint that they can actually be
connected within the stated distance scale. With precision: if bL is notation for a box of side-length 2L then

dV∞(x, y)= min{L | ∃bL such that a string in bL contains x and y}.
If no such bL exists – i.e., if it is not the case that both x and y are in V , than we will regard dV∞(x, y) as being
infinite.

If X and Y are sets in V , then dV∞(X,Y) is defined in the usual way, i.e.,

dV∞(X,Y)= inf
x∈X,y∈Y

dV∞(x, y).

Once again, with apology, we will also use d(·)∞ (·) to denote similar minded distances between pairs (or sets) of
edges and, often enough, omit the superscript when it is clear from context.

(5) Similar to the above item: let Γ denote a segment or a string. Then ‖Γ ‖∞ denotes the dΓ∞– or L∞-diameter of Γ .
(6) A topological rectangle is a simply connected subset of Ωm containing all its SIU that has four marked points

on the boundary dividing the boundary into two pairs of “opposing” segments: (L,R) and (T ,B). We envision
such a rectangle as a stadium for a dual percolation crossing problem.

Definition 5.1 (Sliding). Let q , q ′ denote points in Ωm. Let z1, z2 ∈ ∂Ωm and let Γ denote a segment in Ωm, con-
necting z1 to z2 and which separates q and q ′. Thus, Ωm is disjointly decomposed into the connected components
CΓ (q) and CΓ (q

′) of q and q ′ respectively with the sets CΓ (q) and CΓ (q
′) having Γ as a common portion of their

boundaries. If necessary, it is assumed that Γ is such that CΓ (q) – and hence CΓ (q
′) do not contain any partial SIU.

Moreover, to avoid spurious complications, it is assumed that the L∞ separation between Γ and q ′ is at least a few
units in excess of the 
 to be discussed below.

We now define the sliding of Γ by 
 units in the direction of q ′. In essence, this is the construction of a new segment
– which we denote by Γ ′ – that is 
 units closer to q ′ and, correspondingly 
 units further from q . The segment Γ ′
also connects some z′1 and z′2 on ∂Ωm and, most importantly, also separates q from q ′. The segment Γ ′ in most cases
can be envisioned as a displacement of Γ with some natural adjustments. We reiterate that, as was the case above,
the microscopic details are not essential and may be omitted in a preliminary reading.

Let hΓ,q denote the hexagons in CΓ (q) which have at least one edge in Γ and for h ∈ hΓ,q , let N
,C(q ′)(h) denote

the radius 
 neighborhood of h using the dCΓ (q
′)∞ -distance:

N
,CΓ (q ′)(h)=
{
h′ | dCΓ (q

′)∞
(
h,h′) ≤ 
}.

Next we have

Ñ
,CΓ (q ′)(Γ )=
⋃
h∈hΓ,q

N
,CΓ (q ′)(h)

this set along with the completion of any partial SIU it contains may be regarded as the relevant k-neighborhood
of Γ and will be denoted as above without the tilde. The “
-slide” of Γ will be a subset of the edge boundary of
N
,CΓ (q ′)(Γ ).
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Indeed, let us consider

Γ̃ ′ = ∂N
,CΓ (q ′)(Γ ) \ (∂Ωm ∪ Γ ),

where in the above, both notions of boundary refer to edge boundaries. It is evident that Γ̃ ′ consists of one or more
segments each of which must begin and end on the domain boundary. Let us denote these segments by Γ ′

1,Γ
′

2, . . .; one
of these will be selected as the new segment Γ ′.

We now claim that exactly one Γ ′
j separates q from q ′. Indeed let us reconsider the amalgamated Γ̃ ′: since q ′ /∈

N
,CΓ (q ′)(Γ ) (because of the assumed distance between q ′ and Γ in excess of 
) it is clear that Γ̃ ′ separates q ′
from Γ and hence certainly separates q and q ′. Thus any self-avoiding path of edges Ωm connecting q and q ′ must
intersect Γ̃ ′ and the above claim is now readily established.

Indeed, consider the set CΓ (q
′) \ N
,CΓ (q ′)(Γ ) which consists of connected components K1, K2, etc. The edge

boundaries of these Kj ’s consist of an edge segment of ∂Ωm joined together with an edge segment from Γ̃ ′ the latter
of which correspond to the aforementioned (Γ ′

j )’s. If q ′ ∈Ωm then we observe that only one of these Kj can contain
it and this corresponds to the Γ ′

j selected. If q ′ ∈ ∂Ωm, then, similarly, only one of the Kj uses edges of this hexagon
(where we again invoke the fact that the separation between q ′ and Γ is in excess of 
) and this corresponds to the Γ ′

j

selected.

Let us use A as notation for the connected region bounded by Γ , Γ ′ and the appropriate portion of ∂Ωm. Then it
is noted that to within a few lattice spacings (due to inherent discreetness and the possible effects SIU) all points on
Γ ′ are the same dA∞-distance from Γ . However, it should be noted that due to the possibility of pockets that had been
sealed off by the now discarded Γ ′

j there might well be points in A considerably further from Γ than Γ ′. Moreover,
the contrast between Γ ′′ and Γ ′ with the former constructed via an (
+ 1)-neighborhood slide will be regarded – by
definition – as the (precursory) addition, modulo the aforementioned discreet irregularities, of a single layer to A.

5.3. Preliminary constructions

Using the above described sliding procedure, we will start with some initial segment which separates ω from DΔ (or
some representative point therein) and consider the sequence of slides indexed by 
 in the direction of ω. We stop
this procedure when certain criteria are satisfied within the region (which is a topological rectangle) whose boundary
consists of the initial segment, the current slide and the relevant portions of the boundary. This region will be referred
to as a ring fragment and the criteria will pertain to crossing probabilities within and certain geometric properties of
the region itself. When the requisite criteria are satisfied, we will refer to the current slide (or certain modifications
thereof) as the successor segment of the initial segment. It is this successor segment which then plays the role of the
“initial” segment when the next successor is to be defined.

We remark that the overall construction is somewhat intricate due to the modifications to which we have already
alluded. Indeed, the full assemblage will actually require an inductive procedure. Our expository methodology is as
follows: we will first describe the one-step procedure, i.e., constructing an acceptable successor segment from some
given segment and then describe the full logical inductive procedure in a last subsubsection; further, the one-step
procedure may in itself be complicated so we have therefore broken the construction into three stages which we will
call the S-construction, the Q-construction and the R-construction. We will describe them in order as they require
more and more detailed control on successive Harris segments. In all cases we will refer to the running (current)
initial segment as YI and the constructed successor segment as Y (·)F where (·) indexes the relevant modification. At
each stage, we need not make any specific claim as to the nature of YI however, it may be generally assumed that YI
is such that it already satisfies the criteria (·).

Finally, we remark that for simple domains, e.g., convex domains or domains bounded only by straight line seg-
ments, the vast majority of the forthcoming is unnecessary: here we create successors as just described stopping when
crossing probability within the region acquires a desired value (the simplified S-construction) – or when a fixed scale
determined by the domain has been reached – and then divide the region into boxes the scale of the region itself
(the simplified R-construction). All of the up and coming technology concerns the possibility of (multi-scale) fjords,
needle-like tunnel structures (on multi-scales) and similar minded impediments.
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5.3.1. The S-construction (Harris ring fragments)
The initial stage is the S-construction, which starts with a square centered at the specified ω ∈ ∂Ωm. Recall the
square S0(ω) centered about ω and note that since ∂Ωm ∩ ∂DΔ = ∅ whereas ∂DΔ has non-trivial intersection with
∂S0(ω), we can declare the first yellow segment of the boundary of the first ring fragment to be, simply, the connected
component of ∂S0(ω)∩ ∂DΔ in Ωm. We denote this yellow boundary portion by Y0.

Consider a slide of Y0 which we temporarily denote XS and let S = CXS
(ω). For immediate use and for future

reference, let us define some auxiliary objects:

(a) Let Pω be the set of all paths P :ω� Y0 defined as usual: they are self-avoiding paths (strings) consisting of
hexagons with P ⊆Ωm ∪ {ω}, and P ∩ ∂Ωm = {ω}.

(b) Let YS ⊆ XS be such that any z ∈ YS is the last point in S for some P ∈ Pω. Note that in general these could be
SIUs.

(c) Let YS ⊂ YS be the set of points (edges) in YS that can be reached from ω by a portion of a path P ∈ Pω which
lies in the complement of YS .

In general a string P may be regarded as a sequence of neighboring hexagons, a sequence of centers of neighboring
hexagons (points of the original triangular lattice) connected by straight line segments (bonds of the original triangular
lattice) or the corresponding sequence of edges separating the elements of the hexagon description (bonds of the
honeycomb lattice dual to the aforementioned bonds). To avoid excessive clutter, here and in the future, we will be
non-specific about such matters when they are of no actual consequence to the main argument. Some illustrations
which indicate generic differences between the sets YS and YS can be found in the inserts of Fig. 8.

We shall refer to these YS as yellow segments. We will now establish some elementary topological properties of
these yellow segments YS ; in particular, we claim that as segments, the YS are in fact well-defined:

Claim. The set YS as described above is non-empty and consists of a single connected component. Moreover, YS
separates ω from Y0, i.e., every path in Pω contains at least one element of YS .

Proof. To establish that YS is non-empty, let P ∈ Pω and let z ∈ YS denote the first element of YS encountered by P .
Further, let PI denote the (initial) portion of P till it reaches z. Now, by definition of the set there is some other
P ′ ∈ Pω (which is possibly the same as P ) such that z is the last element of P ′ which is in S. We denote by P ′

F the
(final) portion of P ′ after it has passed through z. Now consider the path R which may be informally described as
PI ∪ {z} ∪ P ′

F. It is seen that R satisfies the requisite properties of a path described in item (c) above for the point z
and so, indeed, YS is not empty.

Fig. 8. Illustration of the principal concepts for the proof that YS is a connected set. In the example illustrated, the loop L is completed using
portions of ∂S0. Top insert: YS �= YS . Bottom insert: YS = YS .
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An argument along these lines also demonstrates that YS separates ω from Y0: again letting P ∈ Pω, we can
consider z as above. The same argument then shows that z ∈ YS and thus we conclude that every path in Pω contains
an element of YS .

We now turn to the central portion of the claim, namely that YS is a single component. To this end, let us consider
the ancillary paths which are along the lines of R above. This set of paths will be called PS and each P ∈ PS has the
property that it has a unique encounter with YS – which is necessarily a single element z in YS . So, in particular, each
P ∈ PS divides into a PI – before the encounter with YS , a PF – after the encounter with YS , and a point z in YS itself.

Foremost, it is clear by construction of paths along the lines of R that any z ∈ YS has a P ∈ PS which goes
through z. We further define VS to be the connected component of ω relative to the PI’s just described:

VS = {v ∈Ωm | v ∈ PI for some PI ⊂ P ∈ PS}.
Similarly, we define US to be the points reachable by some PF ⊂ P ∈ PS . Formally, we define both sets as disjoint
from YS and adjoin ω to VS .

Now it is noted that ∂Ωm may in general divide ∂S into many components so we are showing that only one of these
contains YS . We refer the reader to Fig. 8 for the up and coming argument. We must demonstrate that any z1, z2 ∈ YS
must be in the same component. We may as well assume that z1 �= z2 and that they are not neighbors, since otherwise
it is immediate that they are in the same component.

Consider paths P1,P2, in PS which contain z1 and z2, respectively. The initial portions of these paths PI,1 and
PI,2 may very well intersect, so let κ1 denote the last such point along PI,1 and similarly for κ2; if there are no such
point along the paths proper, then we define κ1 = κ2 = ω. Nevertheless, we certainly allow the possibility that κ1 = κ2.
Assuming though that κ1 �= κ2, there is (for the sake of definitiveness) a portion of PI,1 connecting κ2 to κ1 since, by
definition, κ1 was the last such “collision” point along PI,1. Thus, starting at z2, moving (backwards) along P2 till
κ2 is reached then moving (forwards) along P1 through κ1 and on to z1 we have achieved a path z2 � z1 which is
entirely in VS . This latter path we regard as one part of a loop.

On the other side of YS , in US , we follow a similar procedure and define, in an analogous fashion, the points η1
and η2. Again, if no such points exist along the paths proper, then we join these paths together using the relevant
portion of Y0. This constitutes another path z1 � z2 which is disjoint from the first. This is the second part of the
loop the entirety of which – including z1 and z2 – is denoted by L. Now, with the possible exception of ω itself, L is
disjoint from ∂Ωm. Thus, Int(L)⊂Ωm and so the entire portion of YS in between z1 and z2 lies within.

Let z3 be one such point in between. Consider any path residing in US from z3 to the second half of the loop. (Such
a path may be acquired by attempting a path z3 � ∂S0 – in US – until obstructed.) Joining this path with the relevant
portions of, PF,1 and/or PF,2 we now have a path z3 � ∂S0 in US . Performing a similar construction in VS we get
a path z3 � ω in VS and putting these two together we have constructed a bona fide P3 ∈ PS which contains z3. We
have therefore demonstrated z3 ∈ YS as desired. �

Next we may consider a further successor segment YS′ of YS and the corresponding component of ω, S′. Then we
have the following “partial ordering” property:

Claim. Let S, S′, YS′ etc. be as described. Then YS separates YS′ from Y0 and YS′ separates YS from ω. A similar
result holds for intermediate Y -segments. For example, if YS† is an earlier successor of Y0 than YS , then YS† separates
Y0 from YS or if YS† is an intermediate successor segment between YS′ and YS , then YS† separates YS from YS′ etc.

Proof. This follows readily from the ideas invoked in the proof of the previous claim. Consider P :YS′ � Y0 and
define PF,S′ to be the portion of this path after its final exit from YS′ – which takes place at some z′. Now adjoin to
this an “initial” path, PI,S′ (of the type described in the proof of the previous claim) so that PI,S′ ∪ z′ ∪ PF,S′ is a path
in PS′ . It is asserted that PI,S′ cannot meet YS : indeed, supposing to the contrary, we could adjoin its portion from ω

to YS with an appropriate PF,S – and a z ∈ YS . Now since the latter two take place, essentially, in Sc, this composite
object would represent a path ω� Y0 which circumvents YS′ altogether which is impossible since YS′ separates ω
from Y0 by a result of the previous claim.

However, the path PI,S′ ∪ z′ ∪ PF,S′ is a path from ω to Y0 so it must intersect YS somewhere; by the above, this
has to be in PF,S′ which, it is recalled was part of the original P . With regards to intermediate successors, e.g., if
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YS† is an earlier successor of Y0 than YS , we observe that as a consequence of their mutual construction, S ⊂ S†, and
the preceding argument may be taken over directly. Further generalities discussed in the statement of this claim are
handled similarly. �

Given Y0 and its successor YS , the blue boundary is defined to be the portions of ∂Ωm connecting the endpoints of
Y0 and YS . The topological rectangle formed by the blue boundaries and Y0, YS will be denoted by an A (an annular
fragment).

The size of the annular fragment will be adjusted, if possible, to keep the probability of a yellow crossing Y0 � YS
in the range (ϑ,1 − ϑ) with ϑ a constant of order unity independent of n, A, etc., with a constraint to be described
below (but eventually to be taken as “small”). This will be attempted by using the sliding scale construction described
in Definition 5.1; in essence, we advance by single lattice units till the crossing probability achieves a value in the
desired range. Thus, we arrive at a sequence of ring fragments A1,A2, . . . with, essentially, uniform crossing proba-
bilities of both types. Unfortunately, as will emerge (and as is not hard to envision) for the general cases, the procedure
may fail. Then we must engage the more complicated constructions described in the rest of this subsubsection.

For the time being, let us assume then that A1,A2, . . . ,Ak−1 have been constructed with the desired properties
so far mentioned; we will go about constructing Ak . In the present stage of the construction it is, as part of the
assumption, the case that we have already acquired the yellow boundaries Y0, . . . Yk−1. We investigate the sequence
Xk,1,Xk,2, . . . of successively progressing slides starting with Yk−1 (in the direction of ω). This necessarily leads to
the consideration of a double sequence of temporary boundaries – the slides themselves – and the associated yellow
segments, Yk,1, Yk,2, . . . ; these are both temporary especially the first (temporary) compared with the second which is
more legitimate (legitimate temporary). It is noted that Yk,
 ⊆Xk,
 where, it is emphasized, the inclusion is generically
strict. These form two sequences of temporary topological rectangles. Elements of the first sequence will be denoted
by Ak,
 which has yellow boundaries Yk−1 and Yk,
 and those of the second by Ãk,
 which has in the stead of the
second yellow boundary, the successor set Xk,
. Our pertinent crossing questions actually concern the ring fragments
Ak,1,Ak,2, . . . (which are of the legitimate nature). Again, for ease of exposition, let us assume that the first 
 − 1
renditions have yellow crossing probabilities in excess of 1 − ϑ , i.e., suppose

P(P :Yk−1 � Yk,
−1)= κ > 1 − ϑ.
Then, we claim, that for ϑ chosen appropriately, the yellow crossing in Ãk,
 is not too small:

P(P :Yk−1 �Xk,
) > ϑ.

Indeed, conditional on the existence of a yellow crossing of the type described in Ak,
−1, it is only necessary to attach
one more (SI) unit of yellow to achieve the desired connection up to Xk,
. In the usual hexagon tiling problem, this
occurs with probability 1/2; in general, to include the models introduced in [10], let us say that this occurs with
probability r . Then we have

P(P :Yk−1 �Xk,
)≥ (1 − ϑ) · r ≥ ϑ
if ϑ satisfies

ϑ <
r

1 + r . (5.1)

It may be envisioned that the process proceeds smoothly till eventually we get an 
 large enough so that the desired
yellow crossing probability falls into the range (ϑ,1 − ϑ) – even if this occurs, we are far from done. However, we
have already allowed for an obstruction which is akin to an “uncontrolled approximation,” namely the difference
between the (temporary) yellow boundaries Xk,
 and the (legitimate, temporary) yellow boundaries Yk,
 ⊆Xk,
. As is
clear from previous discussions – and has, in fact been a basis of the derivation – it is the legitimate, temporary yellow
boundary that must actually be considered. In particular, we must account for the possibility that the yellow crossing
probability in Ãk,
 is in (ϑ,1 − ϑ) – or even lies above 1 − ϑ – but when we replace the yellow boundary Xk,
 with
the smaller Yk,
, the crossing probability in Ak,
 falls below ϑ .

These circumstances would tend to occur if ω lies deep inside a narrow tunnel which opens into a wider central
region where the sliding is currently taking place; when the slide reaches the mouth of the tunnel, huge portions of
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the segment can be lost. In this case, the appropriate action is in fact to slide backwards: indeed, let us note that this
discontinuity is engendered by the fact that not all legitimate crossings from Yk−1 to Yk,
−1 can be extended by one
SIU to a path to Yk,
. On the other hand, it is the case that all points on Yk,
 are one SIU away from some point in
Yk,
−1; this asymmetry is inherent in the definition of successors. Thus, continuity can be ensured by backsliding Y
:

Lemma 5.2 (Sliding scales). Let Yk,Yk,
, etc., be as described such that P(Yk−1 � Yk,
) < ϑ . Consider F (k)0 ≡
Yk,
,F

(k)
1 ,F

(k)
2 , . . . successive backward slides (i.e., in CYk−1(DΔ)) of Yk,
. Let the corresponding yellow segments

(relative to Yk−1) G(k)j ⊆ F (k)j be constructed as above so that all of G(k)j is accessible from Yk−1. Then it is the case
that successive crossing probabilities do not increment too fast, i.e.,

P
(
Yk−1 �G

(k)
j−1 | Yk−1 �G

(k)
j

)
> r.

Proof. First note that by definition F (k)0 ≡ G(0)0 and each SIU in G(k)j is connected to some SIU in G(k)j−1 and so a

crossing to G(k)j−1 necessarily implies a crossing to G(k)j . (We re-remind the reader that here we are sliding backwards,
so the preceding are exactly the desired connectivity relation.) It follows, by attaching one more yellow SIU, that
P(Yk−1 �G

(k)
j−1 | Yk−1 �G

(k)
j ) > r . �

For later purposes, we will need a slightly more complex procedure than just sliding backwards. Supposing that
there is a jump in crossing probabilities as described, e.g., at the 2
th-stage, let us consider, e.g., the segment Yk,
; by
the previous separation claim, this segment separates Yk−1 from Yk,2
. We backslide as described above, however, we
use Yk,
 as a “barrier”: i.e., we only consider the connected component of our neighborhoods in the region bounded
by Yk,
, Yk,2
 and the relevant portions of ∂Ωm. In point of fact, we will not exactly use Yk,
 but a certain modification
thereof. Nevertheless, the above procedure works for any Zk (replacing Yk,
 as a barrier) which separates Yk−1 from
Yk,2
 and has the property that P(Yk−1 � Zk) > 1 − ϑ . Notwithstanding, we will still call the backward slides G(k)j ’s
(suppressing the Zk dependence).

In any case, on the basis of the above lemma, we may now assert that there exists an m such that

P
(
Yk−1 �G(k)m

) ∈ (ϑ,1 − ϑ).
Indeed, the result of the lemma remains true under the modified procedure and so if it is the case that P(Yk−1 �
G
(k)
j−1) < ϑ , then

r · P(
Yk−1 �G

(k)
j

)
< ϑ,

and hence P(Yk−1 �G
(k)
j ) < 1 − ϑ if r satisfies Eq. (5.1). This leads to the existence of the stated m.

We will then promote G(k)m into Yk . As alluded to before, there are additional modifications to be performed on Yk ,
but nevertheless we are finished with the S-construction.

5.3.2. The Q-construction (effective regions)
The S-construction is not sufficient to capture certain irregularities which may be present in the domain Ω – nor to
achieve our purpose. These problems manifest themselves on two levels: the successive yellow regions may be vastly
different in length, as can be caused by a narrow tunnel suddenly leading to a wide region. On a more subtle level, there
are cases where the S-construction yields consecutive yellow regions which are of comparable size but the “effective”
yellow region where the crossing would actually take place is in fact much smaller. This is indicative of “pinching” of
∂Ωm in the vicinity of the current segment. In any case, the problem here is that, in essence, the process is proceeding
too quickly. Thus we will reduce the relevant scales in order to slow the growth of the evolving neighborhood sequence
and possibly perform some further “backwards” steps. To a first approximation, given YI , a successor YF is not
utilizable for us if it is the case that it is too large relative to the separation between YI and YF . In this case we will
instead consider future segments grown around some “effective region” determined by some subsegment of YF . The
purpose of this subsubsection is to modify the segment YF into some Y (e)F (representing the effective region) so that it
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has the correct aspect ratio relative to YI (≡ Y (e)I ). We will make the notion of “effective region” precise but first we
need a proposition concerning crossing probabilities of more general topological rectangles:

Proposition 5.3. Let A denote a topological rectangle with sides (L,R) and (T ,B), respectively. Consider the
following notion of aspect ratio: with

a := dA∞(T ,B), b := dA∞(L,R),

we set

B = BA = b/a.

Let η > 0, then for any A(= An), there exists some B(η) such that if BA > B(η), then for the critical percolation
problems of interest in this work,

P(L � R) < η

with the above uniform in n.

Proof. Let x∗ be a point on T and y∗ a point on B where the infimum defining a is realized and consider a box,
denoted by Ga , of side 2a containing these points and a path pa in A connecting them. It is noted that pa separates L
and R. Now consider a box, denoted byGb which is of side 2λb for λ� 1 with the same center as the aforementioned
box; it is assumed that λb > a. By the definition of the dA∞-distance, it is the case that any path in A connecting L to
R must have a portion outside Gb – although L and R may themselves lie within. It is now claimed that any circuit
in the annulus Gb \Ga separates L from R. Indeed, let P :L� R denote a path in A. It may be assumed, e.g., that

P :L� ∂Gb � pa � R

(the other case is identical). Therefore a portion of P connects ∂Gb to ∂Ga and thus meets the circuit as claimed.
Now, by standard critical 2D percolation arguments (now so-called RSW arguments) there are of the order log(b/a)

independent chances of creating a circuit in Gb \Ga thus preventing a crossing between L and R and the desired
result is established. �

Henceforth, to avoid inconsequentials, we shall assume that ϑ has been chosen small enough so that all relevant
B’s are certainly greater than two or three. We are now ready to prove:

Lemma 5.4 (Aspect ratio estimate). Let YI denote some (initial) segment and YF a successor segment which is
constructed as described previously. Let AF denote the topological rectangle of relevance – of which these are two
of the sides – and within which the crossing problem of current interest takes place. In particular it is assumed that
P(YI � YF ) ∈ (ϑ,1 − ϑ). Moreover, it is assumed that YF is obtained from YI by the direct sliding construction,
i.e., without invoking the backsliding as was featured in Lemma 5.2 and the discussions immediately following. Let
us denote the separation distance between YI and YF by JF , i.e., JF := dAF∞ (YI , YF ). Then there exists some B with
1<B <∞ and a modification of YF , which we denote by Y (e)F , such that

B−1 · JF ≤ ∥∥Y (e)F ∥∥∞ ≤ (3B + 2) · JF + c′ ≤ κ ′B · JF
for some constant c′ and κ ′ and

θ ′′ ≤ P
(
YI � Y

(e)
F

) ≤ 1 − θ ′′,

where θ ′′ = ϑ − ϑ2.
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Fig. 9. Setup described in the proof of Lemma 9 under simplified assumption that segments are fragments of squares. The constant B here is
envisioned to be about 2. Left: Γ
 and Γr situated as anticipated; Yk � Yk+1 is too likely. Right: Γ
 and Γr switched from anticipated placement;
here Yk � Yk+1 is too unlikely.

Proof. Let B be chosen from Proposition 5.3 corresponding to η = ϑ2. Let us suppose that ‖YF ‖∞ > 3B · JF . We
define x
 and xr as the extreme “left” and “right” endpoints of YF and similarly define y
 and yr for YI . Consider the
path B
,F which is the “left” boundary of AF and which is a portion of ∂Ωm that starts at y
 and proceeds to x
. To
avoid future clutter, we shall omit the F subscript and, when clear from context write B
 := B
,F . Similarly we have
the other blue boundary which is the path Br starting with xr and proceeding to yr .

The essence of the argument is captured in the simplified version where YI and YF are (essentially) horizontal
regions. In order to expedite the overall process, we shall first treat this case. The general case – which can certainly
be omitted on a preliminary reading – will be attended to subsequently.

Simplified version. Note that due to the constraint on all dAF∞ -distances and envisioning B � 1, YI and YF must
have considerable “overlap.” Let us now define an auxiliary curve Γ
: in this simplified setup, Γ
 is defined to be the
leftmost perpendicular extension from YF to YI which does not intersect B
 inside the region bounded by YI and YF
and similarly define Γr . (It is noted that despite the nomenclature, Γ
 may actually be to the “right” of Γr .) See Fig. 9
which will also be useful for the up and coming.

We claim that the displacement (along YF ) between Γ
 and Γr cannot exceed B · JF : first if Γ
 were to the left of
Γr , then the relevant yellow crossing probability in AF would be bounded from below by the easy way crossing of
the topological rectangle bounded by Γ
, Γr , YI and YF . By the definition of B this would exceed 1 − ϑ2, while by
assumption, AF was constructed so that this yellow crossing probability could not exceed 1 −ϑ . On the other hand, if
Γ
 were to the right of Γr , then any yellow crossing would now be forced to traverse the hard way along a topological
rectangle with aspect ratio exceeding B , which again by definition of B would be less than ϑ2 which is again contrary
to the assumption concerning AF .

Next, if possible, we will extend the portion of YF which is in between Γ
 and Γr by an amount from YF no more
than an additional B · JF on each side. Obviously, we do this only if space is available, otherwise, e.g., ‖YF ‖∞ is
already less than 3B · JF . We denote as necessary the bounding vertical segments at the end of the extensions by
γ
 and γr . In any case, these bounding segments γ
, γr , should they exist will hit B
 ∪ Br and we will denote the
portions of γ
 and γr which connect YF to B
 and Br by τ
 and τr , respectively. The portion of YF between τ
 and
τr together with the τ ’s themselves constitute our effective region Y (e)F . (If no reconstruction is required, then we may

consider τ
 = τr =∅ and set Y (e)F ≡ YF .) Notice in particular that ‖τ
‖∞ and ‖τr‖∞ cannot exceed JF .
We now argue that the yellow crossings actually occur between the effective regions with high “conditional”

probability. Consider the event D := {YI � YF } \ {YI � Y
(e)
F }. We first claim that the event D implies the existence

of yellow and blue crossings in fragments of aspect ratio at least B and therefore has probability less than ϑ4.
For simplicity, we will suppose that Γ
 is the left of Γr . In this case – assuming for non-triviality that YF �= Y (e)F –

it may be further supposed without any additional loss of generality that YF \ Y (e)F contains points to the right of Γr
from which the yellow crossing producing the event D emanates. Then, the fragment between γr and Γr has aspect
ration B ′ with B ′ ≥ B . This fragment must be traversed the hard way by a yellow path in order that (this version of)
the event YF \ Y (e)F � YI occurs. But in addition, a similar sort of blue path must occur to separate the lowest version
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of said yellow path from the yellow boundary region between Γr and γr ; the intersection of these two path events has
probability less than ϑ4 and so here the desired result has been established. Other cases are handled similarly.

The stated upper bound on the crossing probability follows more easily: it suffices to observe that the probability
of a yellow connection between YI and γ
 or γr by the choice of B is bounded by ϑ2.

The general case. The key point here is to have a tangible construction of Γr and Γ
 along with the associated τr
and τ
, at which point the argument proceeds along the lines of the simplified case. We let xr , . . . ,Br be as defined
before. Consider the composite curve consisting of YF ,Br , the portion of ∂Ωm connecting yr to y
 (not containing
ω) and B
. The curve described forms a closed loop whose interior we denote by C and note particularly that YI must
lie in C.

We emphasize that by definition of the sliding procedure, the dAF∞ -distance of every element of YF to some element
of YI is within a few lattice spacings of JF (small discrepancies may arise due to the extended SIU’s and certain lattice
details). Thus let J ′

F = JF + c – for some constant c of order unity – denote the maximal such distance. Let xα and xβ
denote two points along YF with xα to the right of xβ and such that dAF∞ (xα, xβ) > 2 · J ′

F ; thus the boxes of side 2J ′
F

(i.e., “radius” J ′
F ) centered about these points are disjoint. Note that YI must visit both of these boxes; for simplicity,

let us, if necessary, shrink these boxes by a few lattice spacings (no more than c) so that YI can only visit the surface
of these boxes. We denote the boxes centered at xα and xβ by bα and bβ , respectively.

Our claim is that (regarding YI as moving from yr to y
) YI must visit bα before it visits bβ . Indeed, supposing
to the contrary that YI visits bβ first, then it is noted that the curve consisting of the portion of YI from yr till it hits
bβ and portions of ∂bβ (plugging into YF ) would divide C into two disjoint components, one containing xα (on its
boundary) and the other containing y
 (on its boundary). Moreover, the former component contains all of bα ∩ C.
Thus YI could not possibly then proceed to visit ∂bα without crossing the aforementioned separating curve and/or
∂C.

Now consider a sequence of successive non-overlapping boxes b1,b2, . . .bq centered on points in YF oriented from
right to left, so that b1 is centered at xr . All these boxes have diameter approximately 2J ′

F which have been tuned, as
above, so that YI just visits their surfaces. Let us look at the last such box which intersects Br and denote it by bs . Due
to the above claim, it is clear that b1, . . . ,bs−1 are all intersected by Br and, moreover, within each box, the relevant
portion of Br separates YF from YI (at least twice). Indeed, first consider paths B̃r and B̃
 outside of Ωm which do
not intersect the b boxes and also connect xr to yr and x
 to y
, respectively. Next consider the domain bounded by
YI ∪ YF ∪ B̃r ∪ B̃
; the curve Br (and later also B
) must lie within this domain. Now on each bj , there are two
portions of ∂bj connecting YI to YF and both of these separate yr from bs within the domain just described.

We will now define Γr to be the portion of ∂bs+1 which is inside AF and connects YF to YI . (There are, in fact at
least two choices; to be definitive, we choose, starting from YF , the “rightmost”.) As before, we move from bs to bs−k
where bs−k is the nearest box whose dAF∞ -distance from bs is greater than B · JF . The topological statements above
about Br then permits us to define τr as any (lattice) path between the center of bs−k and Br within the box. Note in
the above that we have tacitly assumed s ≥ 1, otherwise, e.g., τr = ∅. Finally, Γ
, etc., are defined analogously. With
these tangible definitions of Γr , Γ
, τr and τ
, the proof concludes mutatis mutantis along the lines of the simplified
case. Notice that again, ‖τ
‖∞,‖τr‖∞ ≤ JF +c≈ JF and so the diameter of Y (e)F is bounded above as in the statement
of this lemma.

As for the stated lower bound on the diameter, let us first note, supposing Y (e)F = YF , that since ‖YF ‖∞ ≥
d
AF∞ (B
,Br ), if it were the case that ‖YF ‖∞ < B−1 · JF , then by the choice of B we would conclude that the

blue crossing probability is in excess of 1 − ϑ2, which is impossible. Therefore, ‖YF ‖∞ ≥ B−1 · JF . On the other
hand, if we actually had to perform the effective regions construction, then we clearly have ‖Y (e)F ‖∞ ≥ B · JF . �

We will now address the cases where a successful construction of a YF requires a backsliding construction, as
featured in Lemma 5.2 and the discussions thereafter. The relevant barrier segment ZF will be constructed by a
modification of YF,L, where L is the smallest integer larger than JF /2.

We observe that by construction, each box of size L around an element of YF,L is visited by YI , so with the meaning
of bj the same as in the above proof, we let bα be the leftmost box which is not intersected by Br and bβ the rightmost
box which is not intersected by B
. If it is the case that α < β (considering the orientation to be from right to left)
then we perform effective region construction on YF,L (here we clearly have ∂Ωm sufficiently close to YF,L so that
the construction can be performed with ‖τ
‖∞ and ‖τr‖∞ remaining well-controlled) and set ZF to be the resulting
modified segment.
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We are left with the case that α > β; here we will set ZF ≡ YF,L. But let us note the following fact (which is only
non-trivial if β − α > B): if wF,L ⊆ YF,L is any connected subsegment which traverses more than B of the bj boxes
between bα and bβ , then

P(YI �wF,L) > 1 − ϑ2,

where the above crossing is allowed to take place anywhere in the region bounded by YI ,YF,L and the relevant
portions of ∂Ωm. Indeed this follows since to prevent such a connection entails a long way blue crossing with aspect
ration in excess of B .

Proposition 5.5. In the cases where YF must be obtained from YI via a backsliding procedure as described following
Lemma 5.2 and above, there exists an m such that G(F)m has the following properties:

(1) P(YI �G
(F)
m ) ∈ (ϑ,1 − ϑ);

(2) there is some constant κ > 0 such that ‖G(F)m ‖∞ ≤ κB ·L.

Proof. Let us temporarily denote by ỸF the first successor segment such that P(YI � ỸF ) < ϑ (i.e., the suppressed
second index is approximately equal to 2L). First, if necessary, we perform effective region like construction on ỸF :
again, we reiterate that if the relevant Γ
 lies to the right of Γr , then the relevant τ
 and τr are well controlled and the
diameter of the effective region obeys the bounds stated in Lemma 5.4 (relative to J̃F which is the relevant separation
distance between YI and ỸF ). On the other hand, if Γ
 is to the left of Γr , then the observation immediately preceding
the statement of this proposition implies that the separation between Γ
 and Γr cannot exceed B ·L and, if necessary,
we may perform an additional effective region construction.

In any case, as in Lemma 5.4, we have manufactured a Ỹ (e)F whose diameter does not exceed κ ′B ·L. Now we will

carry out the backsliding procedure starting with Ỹ (e)F with the barrier ZF as described above. We observe that after
approximately L iterations, we will have reached ZF . We will not do more than an additional κ ′B · L iterations (in
order to achieve the crossing probability criterion) because if so, we would have subsumed a portion of ZF at least
this large (or perhaps all of it) and, by the observation immediately preceding the proposition, the crossing probability
from YI would exceed 1 − ϑ2. Thus, m is certainly less than (κ ′B + 1) · L. It follows that ‖G(F)m ‖∞ is less than
‖Ỹ (e)F ‖∞ + c ·m, where the constant c corresponds to increase in diameter due to the d∞-neighborhood construction.

We thus have that ‖G(F)m ‖∞ is less than or equal to κB ·L for some constant κ , as stated. �

We can now set YF to be equal to the G(F)m existentiated above and set JF to be equal to L. For future reference
we will adopt κ as the constant bounding the diameter of all such regions.

5.3.3. The R-construction (percolative boxes)
Our objectives will eventually be achieved by establishing the existence of monochrome percolation connections
between, e.g., (the vicinity of) ω and the central region DΔ. This will be accomplished by establishing a grid of
contiguous boxes within each of the successor ring fragments. This entails a suitable modification of Y (·)F , which
will then define the final ring fragment of interest. Most pertinently, as will emerge later, the sizes of the boxes in
neighboring fragments will differ by at most a uniform scale factor.

Remark 5.6. We remark that in the forthcoming use of boxes, as far as connectivity properties are concerned, all
notions are inherited from the standard 2D square site lattice, e.g., boxes are connected if they share an edge in
common and, dually, ∗-connected means an edge or corner in common.

Suppose now that YI ,YF and JF are such that the conclusion of Lemma 5.4 holds (particularly, P(YI � YF ) ∈
(θ ′′,1 − θ ′′)). Let us tile the region enclosed by YI and YF (i.e., AF ) by boxes of size 2−r · JF for some r > 0. The
boxes under consideration will include all boxes whose closure intersects the closure of AF ; the precise value of r
will be specified later. We remark that these boxes will be a super-grid for boxes of the ultimate small scale which will
be 2−2r · JF . We start with the larger scale:



Rate of convergence for critical crossing probabilities 709

Claim. There exists some fixed r0 ≡ r(θ ′′) > 0 such that if r > r0 then among the aforementioned boxes of scale
2−r · JF there is a connected path between YI and YF by boxes which do not intersect the blue boundaries.

Proof. Let β denote any box which intersects B
. Then we assert, for r chosen suitably large, that β or any box in
its ∗-connected neighborhood does not meet Br . Indeed, supposing to the contrary, let us consider the r − 2 annuli
of doubling sizes 2−r · JF × [4, . . . ,2r−1] with β at the center. Since we have started at 4 × 2−r · JF the inner ring
always contains the ∗-neighborhood of β and since we have ended at 1

2 · JF , it cannot be the case that both YF and YI
penetrate (any of) these annuli. In each such annulus, by weak scale invariance of critical percolation, a blue circuit
independently exists with probability at least some λ and each such blue circuit would connect B
 to Br in AF ,
thereby preventing a yellow crossing. But then for r large enough, the yellow crossing probability would be too small;
indeed,

θ ′′ ≤ P(YI � YF )≤ (1 − λ)r−2.

The above defines r0: (1 − λ)r0−2 := θ ′′ and so the assertion has been established. Now the claim will (eventually)
follow: let yr and y
 denote the left and right endpoints of YI and moving from y
 to yr along YI let β
 denote the
last (rightmost) box intersected by YI which also intersects B
. We similarly define β ′


 along YF and βr,β ′
r relative

to BR . We further define YI , YF , B
 and Br : the set YI consists of those boxes which meet the portion of YI which
is after its last exit from β
 and before its first entrance into βr . Similarly, let B
 denote those boxes which meet the
portion of B
 after its last exit from β
 and before its first entrance into β ′


. Similarly for YF and Br .
It is seen that save for the four corners mentioned, all these sets are disjoint: the Y pair are “well separated,” the B

pair are (not quite as well) separated due to the above assertion and, e.g., YI and B
 are disjoint save for β
 essentially
by definition. Now these sets, which are ∗-connected objects (although not necessarily ∗-connected paths) certainly
form the boundary of a “crossing problem arena” – we temporarily delete from consideration all other boxes which
meet ∂AF . The desired crossing exists because, due to the first assertion, we have, for example, that the ∗-connected
boundary of B
 is disjoint from Br . �

Remark 5.7. For the benefit of the forthcoming, the above display should be modified to read (1 − λ)r < ϑ2 � θ ′′ –
where in addition, we have now stipulated ϑ ∼ θ ′′ � 1. This will set our scales. Thus we envision 2r as comparable
to B but, in any case, we certainly have

2r ≥ B

We will now define the current modification to YF :

Definition of Y (b)F . Consider now the grid of scale 2−2r · JF – considerably smaller than the previous grid. Here it is
stipulated that r (with r > r0) has been chosen so as to satisfy

(1 − λ)r−1 <
(
θ ′′)2

,

with λ being the probability of a monochrome circuit in an annulus where the outer scale is twice the inner scale.
Again we consider the (closed) boxes which have non-zero intersection with the region AF – and for the immediate
future, no others. From this set we delete all boxes which have non-empty intersection with YF and their ∗-neighboring
boxes.

The remaining boxes may now consist of several components. Nevertheless, we may temporarily consider all boxes
with at least one edge not shared by another box in the collection to be a boundary box. These “exposed” box-edges
form closed circuits – the edge boundaries of the components. Among these circuits there is to be found a unique path
which begins on B
, ends on Br , have no other encounters with either of the B’s and which is disjoint from the old
YI . This special path is characterized as follows; we consider a larger set of paths which are allowed to use edges of
any box. These paths have the same general description used above: they connect B
 to Br and consist of whole (box)
edges save, possibly, for the first and last wherein occurs the only encounter with B
 ∪ Br . Such a set is obviously
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non-empty since B
 is connected to Br by boxes (even of the larger scale) and the paths are partially ordered with
respect to their separation from YI . The special path is the one that is “furthest” from YI .

One final modification is required. Consider the boxes which share at least one edge (or fragment thereof) with
the aforementioned path. By the ordering considerations of the construction, each edge belongs to a unique box (the
collection of which in fact form a ∗-connected chain). Moving from left to right along the path, we define, as in the
context of the larger grid, the box b
 to be the rightmost of the boxes which intersect B
 and similarly for br . We now
consider the portion of the path connecting b
 to br and adjoin to it the box edges (partial or otherwise) of b
 and br

so that overall we have reconstituted a connection between B
 and Br . This final step should be enacted by choosing
the path along the box edges to be “as far away” from YI as possible.

The definition is essentially complete, the above constructed path constitutes the segment Y (b)F . The region A(b)F is

the topological rectangle with boundaries YI , Y (b)F and the appropriate portions of B
 and Br which connect these
segments. Finally, we use the notation

bF := 2−2r · JF
for the scale – side length – of the individual boxes.

Remark 5.8. Let us note for future reference that by virtue of having used ∗-connected neighborhoods, it is the case
that there is a full layer of connected boxes separating YF from Y

(b)
F . The fact that there is a full layer is clear;

the fact that this layer is connected follows from the observation that the boxes which intersect YF were, certainly,
∗-connected, so the layer represents a portion of the dual circuit surrounding this set.

We now observe that Y (b)F , A(b)F etc., have various anticipated properties:

Proposition 5.9. Consider the boundary boxes of A(b)F that share portions of their boundary with Y (b)F . Then these

boxes form a ∗-connected cluster – and hence Y (b)F itself is connected. Moreover, each such box is connected by a
(connected) path of full boxes to boxes which intersect YI with a path length – measured in number of boxes – which
does not exceed some universal constant L ∈ (0,∞).

Proof. It is noted that by construction, Y (b)F is constituted from a non-repeating sequence of attached box edges all
of which are complete save the first and last. Therefore, it is manifestly connected and, moreover, the boxes which
contribute boundary elements to this segment form a ∗-connected chain running from b
 to br , inclusive. We denote
this chain by yF and define yI , b
 and br in the same fashion as their upper case counterparts were defined using
the larger scale boxes. The region bounded by yF and appropriate elements of the other sets yI , b
 and br form a
topological rectangle along with associated boundaries so that opposing pairs are well separated (as in the claim for
the larger scale boxes) and hence any box in yF can be connected to some box in yI .

Finally, concerning the length of the connection, let us provide a crude estimate: it is known that the diameter of
Y
(b)
F is bounded by ‖YF ‖∞ ≤ κB ·JF (by Lemma 5.4 and Proposition 5.5); moreover, every point on Y (b)F is separated

from some point on YI by d∞-distance some constant times κB · JF . Thus, a box which is a reasonable multiple of
B · JF centered about YF – let us call it B – contains all of YF and paths between every point on YF and some point
on YI and a substantial neighborhood (e.g., larger than JF ) of these paths.

Now consider any “microscopic” path P in AF between a point on YF and some point on YI contained in B and
let us denote by bP the set of small boxes visited by P . Of course, bP may contain boundary boxes from b
 and/or
br ; however, since these are well-separated, the ∗-connected closure of bP manifestly contains a connected path of
full boxes between yF and yI (indeed, the ∗-connected closure of, e.g., b
 itself consist of full boxes). Finally, it is
certainly the case that any such path cannot possibly consist of more boxes than the total number of boxes in the
aforementioned bounding set B. Since both B and the small boxes have area proportional to a universal constant times
J 2
F , the result follows for some L. �

Our next claim is that the replacement of YF by Y (b)F does not substantially alter the yellow crossing probability:
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Claim. Suppose P(YI � YF ) ∈ (θ ′′,1 − θ ′′), then

θ ′′ ≤ P
(
YI � Y

(b)
F

)
<

1 − θ ′′

(1 − (θ ′′)2)2
≈ 1 − θ ′′ + 2

(
θ ′′)2

.

Proof. The lower bound is immediate since a crossing from YI to YF certainly implies a crossing to Y (b)F . The upper
bound follows from an easy continuation of crossings argument: indeed, consider, e.g., the “left” endpoint of YF
whose grid box we surround by an annulus with inner scale 2r · bF and outer scale 2r times this inner scale. Let us
consider the event G that the rightmost crossing from YI to Y (b)F is outside the inner square defining the above annulus.
Then, we have at least r independent chances – by setting up independent annuli – to continue the rightmost crossing
to YF . This continuation therefore happens with (conditional) probability in excess of 1 − (θ ′′)2 by the choice of r
and so

P
(
YI � YF | {YI � Y

(b)
F

} ∩G
)
> 1 − (

θ ′′)2
.

On the other hand, let OQ denote the event of a yellow circuit somewhere inside the bF · 2r × bF · 22r annulus. We
note that should the event OQ occur, then, indeed, the rightmost crossing is to the right of this inner square and so by
the choice of r , P(G)≥ P(OQ) > 1 − (θ ′′)2.

The desired inequality now follows:

P(YI � YF ) ≥ P
(
YI � YF | {YI � Y

(b)
F

} ∩G
) · P({

YI � Y
(b)
F

} ∩G
)

>
(
1 − (

θ ′′)2)2 · P(
YI � Y

(b)
F

)
.

Here to arrive at the last line we have used the FKG inequality. �

Corollary 5.10. Consider the curve, denoted by Y
(b)

F which consists of the outer edges (i.e., closer to YF ) of the boxes
which share an (inner) edge with a box in yF and attached to B
 and Br by an analogous procedure as was used for
Y
(b)
F . Then

P
(
Y
(b)

F � Y
(b)
F

)
> 1 − (

θ ′′)2
.

Proof. This follows directly from the above argument using the observation that Y
(b)

F separates YF from Y
(b)
F . �

Remark 5.11. We remark that we should think of the above claim “dually,” i.e., that the complementary bound

θ ′′ − c2
(
θ ′′)2

< P
(
B ′

� B ′

r

) ≤ 1 − θ ′′

(for θ ′′ small and some constant c2) holds for blue crossings; here B
,Br now denote the appropriate “left” and
“right” blue boundaries of the topological rectangle formed by YI and Y (b)F . Indeed, as will unfold below, all that is
actually used for yellow crossings is the ability to cross these regions via paths inside the boxes with a probability
which is independent of the details of the region.

5.4. Induction

We are now ready to assemble all ingredients and describe the full inductive procedure. Our goal is to show that there
are box connections between all successive yellow segments and that the box scale of neighboring layers do not differ
by too much.

First let us set out the base case for our induction. Let Y0 := ∂S0(ω)∩ ∂DΔ be as described before. If P(Y0 � ω)≥
ϑ , then stop. (Indeed, this is one of the stopping criterion for our iteration and if it actually occurs on the first step,
then clearly the lattice spacing is too large to be worthy of any detailed consideration.) Otherwise, let us perform the
S,Q,R-constructions to yield some Ŷ1 so that P(Ŷ1 � Y0) ∈ (θ ′′,1 − θ ′′). Recall that here θ ′′ may differ from ϑ due
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to the O(ϑ2) errors in theQ,R-construction sections. It is noted that since DΔ has a radius half the maximal amount,
for judicious choice of ϑ , the ancillary constructions, in particular the Q-construction, are actually not necessary.

We will assume the existence of segments

P0 ≡ Ŷ0, P1 ≡ Ŷ1, . . . , Pk−1 ≡ Ŷk−1, Tk ≡ Ŷk.

(Here thêdenotes modifications to the original segments Y
 from the Q,R-constructions.) The following are our
inductive hypotheses:

(0) Tk is the box construction version of some Yk and there is some Y k which is the d∞-neighborhood boundary of
Tk such that
(i) P(Y k � Tk)≥ 1 − (θ ′′)2 (by Corollary 5.10);

(ii) d∞(Tk, Yk) > bk (by Remark 5.8);
(1) the following conclusions hold for Pk−1 and Tk :

(i) P(Pk−1 � Tk) ∈ (θ ′′,1 − θ ′′);
(ii) all of Tk can be connected to Pk−1 via boxes of size bk completely unobstructed by ∂Ωm and further the

number of boxes required for such a connection is not in excess of L (by Proposition 5.9);
(iii) it is the case that (see the effective regions construction subsubsection)

B−1 · Jk ≤ ‖Pk−1‖∞ ≤ 22r+1(κB) · Jk, B−1 · Jk ≤ ‖Tk‖∞ ≤ κB · Jk;

(2) the conclusions of (1)(ii) and (1)(iii) also hold for (prior) successive segments P
−1,P
, 1 ≤ 
 ≤ k − 1; also a
weakened version of (1)(i) holds for these prior segments: P(Pj−1 � Pj )≤ 1 − θ ′′ (which we think of as a lower
bound on the blue crossings).

Here the letter P denotes what is considered a permanent yellow segment whereas T denotes a temporary segment.
Let us note that we will not require the lower bound on yellow crossing probabilities per se except for the last layer
consisting of Pk−1, Tk .

Step 1. We first construct some segment Yk+1 by sliding Tk towards ω and backsliding if necessary so that

P(Tk � Yk+1) ∈ (ϑ,1 − ϑ).

Step 2. Next we perform the effective regions construction and the box construction to yield Ŷk+1 so that P(Tk �
Ŷk+1) ∈ (θ ′′,1 − θ ′′), ‖Ŷk+1‖∞ ≤ κB · Jk+1 and there are suitable box connections between Tk and Ŷk+1 with boxes
of scale bk+1 = 2−2r · Jk+1 (see Lemma 5.4, Proposition 5.5 and Proposition 5.9). Notice that we also immediately
have from the bound on the crossing probabilities and Lemma 5.4 that

‖Tk‖∞ ≥ B−1 · Jk+1, ‖Yk+1‖∞ ≥ B−1 · Jk+1.

Step 3. We have now satisfied items (1)(i) and (1)(ii) of the inductive hypothesis for the layer (Tk, Ŷk+1).
Step 4. Now we will verify item (1)(iii). First we claim that Jk+1 > bk/2.
Indeed, recall that there is a connected neighborhood of boxes separating Tk from Yk (again see Remark 5.8).

The (outer) boundary of this neighborhood is Y k which by item (0)(i) is connected to Tk with too high a probability
to consider stopping the process until at least some portion of the evolving neighborhood boundary reaches past it.
However, by the nature of the neighborhood sliding construction the entire evolving boundary pushes through this
curve coherently. So if the construction of Yk+1 does not entail a backsliding, then the result immediately follows,
in fact without the factor of two. Now if a backsliding were required, then recall that we used Yk+1,Lk+1 as a barrier
(here Lk+1 is the closest integer to Jk+1/2, as described in the discussions preceding Proposition 5.5) and so the claim
follows by item (0)(ii).

Item (1)(iii) has now been verified since we now have ‖Tk‖∞ ≤ κB · Jk ≤ 22r+1(κB) · Jk+1. All induction hy-
potheses have been verified, so we set Pk ≡ Tk and Tk+1 ≡ Ŷk+1.

The induction can now be continued towards ω, starting with Pk and Tk+1, provided that P(Tk+1 � ω) < ϑ and
k + 1 ≤ Γ · logn, with Γ as in the statement of Theorem 3.10 – otherwise we stop.



Rate of convergence for critical crossing probabilities 713

Remark 5.12. We note particularly that from item (3) in step 4 of the induction, the percolating boxes are connected
going from one layer to the next.

Also, for notational convenience, in the statement of Theorem 3.10, we have reverted back to using ϑ (so ϑ there
corresponds to θ ′′ here).

5.5. A refinement

We will require one additional property of these Harris systems. First let us define some terminology:

Definition 5.13. Let Ω ⊂ C be a bounded, simply connected domain and Ωm some interior discretization of Ω . For
ω ∈Ωm, consider the inductive construction as described, yielding P1,P2, etc., until the crossing probability between
ω and the last P
 is less than ϑ – indicating that we have approximately reached the unit scale – or until we have
succeeded a sufficient number of segments.

We remind the reader that we refer to the topological rectangles formed by successive P
’s as Harris rings and the
amalgamated system of these segments around ω the Harris system stationed at ω.

For our purposes we will also need to show that for n sufficiently large, for the marked point corresponding to A,
the relevant Harris segments have endpoints lying in the anticipated boundary regions:

Lemma 5.14. Let Ω ⊆ C be a bounded simply connected domain with marked boundary prime ends A,B,C,D ∈
∂Ω (in counterclockwise order) and suppose Ωm is an interior approximation to Ω with Am,Bm,Cm,Dm ∈ ∂Ωm
approximating A,B,C,D. Consider the hexagonal tiling problem studied in [14] or the flower models introduced in
[10] (in which case we assume the Minkowski dimension of ∂Ω is less than 2) and the Harris system stationed at Am.
Then there is a number vA such that for all m sufficiently large, all but vA of the Harris segments form conduits from
[Dm,Am] to [Am,Bm]. More precisely, under uniformization, there exists some η > 0 such that all but vA = vA(η) of
these segments begin and end in the η-neighborhood of the pre-image of A.

Proof. Let ϕ :D →Ω be the uniformization map with ϕ(0)= z0 for some z0 ∈ DΔ and let ζA, ζB, ζC, ζD denote the
pre-images of A,B,C,D, respectively. Let η > 0 denote any number smaller than, e.g., half the distance separating
any of these pre-images. LetNη(ζA) denote the η-neighborhood ofA and let {rd, rb} denote the pairNη(ζA)∩∂D with
rd in between ζA and ζD and rb between ζA and ζB . Similarly, about the point ζC we have Nη(ζA)∩ ∂D := {sd , sb}.

We denote by Gd the continuum crossing probability from [ζA, rd ] to [sd , ζC] (with (D; ζA, ζC , sd , rd) regarded as a
conformal rectangle) and similarly Gb for the continuum crossing probability from [rb, ζA] to [ζC, sb]. It is manifestly
clear that these are non-zero since all relevant cross ratios are finite.

Now considerΩ as a conformal polygon with (corresponding) marked points (or prime ends) A,Rb,B,Sb, . . . ,Rd
(corresponding to ζA, rb, ζB, sb, . . . , rd ) and Ωm with marked boundary points Am, . . . ,Rdm the relevant discrete
approximation. It is emphasized, perhaps unnecessarily, that this is just Ωm with A,B,C,D and with four additional
boundary points marked and added in. It follows by conformal invariance and convergence to Cardy’s Formula that
the probability of a crossing inΩm from [Rbm,Am] to [Cm,Sbm ] converges to Gb and similarly for the crossings from
[Am,Rdm ] to [Sdm,Cm].

We shall need an additional construct, denoted by Φm which is best described as the intersection of three events:
(i) a yellow connection between ∂DΔ and [Rdm,Sdm ], (ii) a similar connection between ∂DΔ and [Rbm,Sbm ] and (iii)
a yellow circuit in Ωm \ DΔ. It is observed that the intersection of these three events certainly implies a crossing
between [Rdm,Sdm] and [Rbm,Sbm ].

It is noted that item (iii) has probability uniformly bounded from below since DΔ is contained in a circle twice its
size. As for the other two, we must return to the continuum problem in D. Let E ⊆ D denote the pre-image of DΔ
under uniformization with corresponding evenly spaced boundary points p1,p2,p3 and p4. Let us pick an adjacent
pair of points – conveniently assumed to be p1 and p2 – which may be envisioned as approximately facing the [sd , rd ]
segment of ∂D. We now connect rd and p1 with a smooth curve in D and similarly for sd and p2. It is seen that
these two lines along with the [sd , rd ] portion of ∂D and the [p1,p2] portion of E are the boundaries of a conformal
rectangle. We let Ld denote the continuum crossing probability from [p1,p2] to [sd , rd ] within the specified rectangle.
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We perform a similar construct involving p3, p4, sb and rb and denote by Lb the corresponding continuum crossing
probability. Thus, as was the case above, in the corresponding subsets of Ωm, it is the case that as m→ ∞, the
probability of observing yellow crossings of the type corresponding to the aforementioned crossings in (i) and (ii)
tend to Ld and Lb , respectively. (While of no essential consequence, we might mention that at the discrete level, the
relevant portions of ∂DΔ may be defined to coincide with the inner approximations of the subdomains we have just
considered.)

Let us call Gm the intersection of all these events: Φm and the pair of [Rbm,Rdm ] � [Sbm,Sdm ] crossings (corre-
sponding to Gb and Gb). Then we have, uniformly in m for m sufficiently large,

P(Gm)≥ σ
for some σ = σ(η) > 0.

We next make the following claim:

Claim. Consider the event that there is a blue path beginning and ending on ∂Ωm that separates Am from DΔ. Then,
if the event Gm also occurs, it must be the case that (modulo orientation) the path begins on [Rbm,Am] and ends on
[Am,Rdm ].

Proof. To avoid clutter, we will temporarily dispense with all m-subscripts. Note that since Am,Rbm,Bm,Cm,Dm,
Rdm divide the boundary into six segments, there are 1

2 ·6 ·7 = 21 cases to consider and, therefore, twenty to eliminate.
Let us enumerate the cases:

◦ A crossing from [C,A] to [Rb,C] or from [A,C] to [C,Rd ] (5 cases): each possibility is prevented by (at least)
one of the yellow crossings between the segments in [Rd,Rb] and [Sb,Sd ].

◦ Corner cases, e.g., at the D corner, [C,D] to [D,Rd ] (4 cases): recalling that the blue path must separate DΔ and
A, these are obstructed by the yellow circuit about DΔ which is connected to the opposite R · S boundary, which in
this example corresponds to [Rb,Sb]. (We note that these circuits are constructed precisely to prevent the possibility
of connections “sneaking” through DΔ.)

◦ An [Rd,Rb] segment connected to a [B,C] or a [C,D] segment (4 cases): these are prevented by the yellow
crossing from [Sd,Rd ] to [Rb,Sb].

◦ Diagonal (same to same) paths, e.g., [C,D] to [C,D] (6 cases): recalling the separation clause, these are obstructed
by the connection of the circuit around DΔ and its connection to whichever – or both – R · S segment which is not
where the blue path begins and ends. In this example this corresponds to [Rb,Sb].

◦ Finally, [D,C] to [C,B]: this is the same as the previous case.

The claim is proved. �

With the above in hand, the rest of the proof of this lemma is immediate. Let v′
A denote the number of Harris

segments in the system stationed at Am which do not begin on [Rbm,A] and end on [A,Rdm ]. (I.e., the twenty cases
treated above.) Letting Bm denote the event of a blue circuit of the type described in the claim, we have

1 − σ ≥ 1 − P(Gm)≥ P(Bm)≥ 1 − (1 − ϑ)v′
A

which necessarily implies v′
A is bounded above (independently of m) by the ratio logσ/ log(1 − ϑ). Clearly, v′

A ≥ vA
as in the statement of the lemma so the result has been established.
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