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Seven-dimensional forest fires
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Abstract. We show that in high dimensional Bernoulli bond percolation, removing from a thin infinite cluster a much thinner
infinite cluster leaves an infinite component. This observation has implications for the van den Berg–Brouwer forest fire process,
also known as self-destructive percolation, for dimension high enough.

Résumé. Cette article montre que dans la percolation de Bernoulli par arête en grande dimension, retirer d’une composante
connexe infinie de faible densité une composante connexe de densité beaucoup plus faible laisse une composante connexe infinie.
Cette observation a des implications pour le processus de feux de forêt de van den Berg–Brouwer, également connu sous le nom
de percolation auto-destructive, en dimension suffisamment grande.
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1. Introduction

Think about the open vertices of supercritical site percolation as if they were trees, and about the infinite cluster as a
forest. Suddenly a fire breaks out and the entire forest is cleared. New trees then start growing randomly. When can
one expect a new infinite cluster to appear? The surprising conjecture, due to van den Berg and Brouwer [11], is that
in the two-dimensional case, even if the original forest were extremely thin, still a considerable amount of trees must
be added to create a new infinite cluster. Heuristically, the conjecture claims that the infinite cluster might occupy a
very low proportion of vertices but they sit in a way that separates the remaining finite clusters by gaps that cannot be
easily bridged. This conjecture is still open. See [11–13] for connections to other models of forest fires and more.

Let us define the model formally, in three steps. The model was originally introduced as a site percolation model,
but we will define it for bonds, as some of the auxiliary results we need have only been proved for bond percolation.
We are given a graph G, a probability p ∈ [0,1] (“the original density”) and a probability ε ∈ [0,1] (“the recovered
density”). Let Pp be the Bernoulli bond percolation measure on G with parameter p.

1. Assign independent uniformly distributed values from [0,1] to the edges of G. Let ωp ∈ {0,1}E(G) denote the set of
edges with value at most p. The configuration ωp is distributed as Pp , and a cluster refers to a maximal connected
component of edges. It will be of importance below that as p ranges over [0,1], we obtain a simultaneous coupling
of Bernoulli configurations on G such that ωp1 ⊂ ωp2 when p1 ≤ p2.

2. Let P̃p be the law of the configuration ω̃p constructed as follows: for any edge e,

ω̃p(e) =
{

ωp(e), if e is in a finite cluster of ωp,
0, otherwise.
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3. Let P̃p,ε be the law of ω̃p,ε where ω̃p,ε is defined as follows: for any edge e, ω̃p,ε(e) = max{ω̃p(e),ω′
ε(e)}, where

ω′
ε is a percolation configuration with edge-weight ε, which is independent of ωp .

We can now define our property of interest.

Definition. Let pc(G) denote the critical threshold for bond percolation on a graph G. We say that G recovers from
fires if for every ε > 0, there exists p > pc(G) such that P̃p,ε has an infinite connected component, with probability 1.
We say that G site-recovers from fires if the analogous definitions for site percolation hold.

In [11] the authors showed that a binary tree site-recovers from fires and conjectured that Z2 lattice does not site-
recover from fires. The binary tree is an example of a non-amenable graph, that is, a graph in which the boundary of
a (finite) set of vertices is comparable in size to the set itself. Recovery from fires, both in edge and site sense, was
proven in [2] for a large class of non-amenable transitive graphs. Our result concerns hyper-cubic lattices.

Theorem 1. For d sufficiently large, Zd recovers from fires.

Here and below, Zd refers to the Z
d nearest neighbour lattice. The main property of Zd that we will use is that

Ppc (0 ←→ ∂B(0, r)) ≤ Cr−2 (see below for a discussion on this condition, and also for the notations). This was
proved in [9] based on results of Hara, van der Hofstad and Slade [6,7]. These establish the necessary estimate for d

sufficiently large (19 seems to be enough, though this can be improved) and also for stretched-out lattices in d > 6.
The number 6 is actually meaningful and is the limit of the technique involved, lace expansion. Our proof easily
extends to the stretched-out 7-dimensional lattice (hence the title of the article), but for simplicity we will prove the
theorem only for nearest-neighbour percolation in d sufficiently high. In fact, our proof provides further information
in the supercritical percolation regime. Recall the common notation C∞(ωp) for the infinite cluster of edges present
in ωp .

Theorem 2. For every ε > 0 and d sufficiently large, there exists p > pc such that ωpc+ε \ C∞(ωp) contains an
infinite cluster almost surely.

Theorem 1 is clearly a corollary of Theorem 2. Another consequence is that for every ε > 0, the critical probability
for percolation on the random graph obtained from Z

d by removing a sufficiently ‘thin’ supercritical percolation
cluster, that is C∞(ωpc+δ) for small enough δ = δ(ε) > 0, is almost surely at most pc + ε. Theorem 2 and the last
statement cannot possibly hold for site percolation on Z

2, since an infinite cluster cuts space up into finite pieces.

Proof sketch. We will show that for every ε > 0, there exists some p > pc such that when removing the infinite cluster
of p-percolation from (pc + ε)-percolation, the remainder still percolates. The proof proceeds by a renormalization
procedure.

1. We first choose � ∈N sufficiently large such that for any L ≥ �, connectivity properties of boxes of size L2 × �d−2

in (pc +ε)-percolation behave like (1−η)-percolation on a coarse grain lattice for some small η. This is a standard
application of Grimmett and Marstrand [5] and renormalization theory.

2. We then use the fact that the one-arm exponent in high dimensions is 2 to note that for any L, only a small number
M of vertices in a box of size L2 × �d−2 can connect to distance L in critical percolation.

3. Picking L sufficiently large, one can argue that these M points do not alter the connectivity properties of boxes
of size L2 × �d−2 for (pc + ε)-percolation. In particular, the coarse grain percolation still behaves like (1 − η)-
percolation even after removing that small number of vertices.

4. We now pick p sufficiently close to pc that the behaviour (for ωp) at scale L is not altered by moving from pc

to p. Since there are less sites in C∞(ωp) than sites connected to distance L in ωp , this p gives the result.

Examining this a little shows that what the proof really needs is that the one-arm exponent is bigger than 1, i.e., that

Ppc

(
0 ←→ ∂B(0, r)

) ≤ r−1−c, c > 0.

The number of points removed in the second renormalization step will in this case no longer be bounded independently
of L, but would still be too small to block the cluster of the boxes at scale �. This is interesting as it is conjectured
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to hold also below 6 dimensions. While nothing is proved, simulations hint that it might hold for Z5 [1], Chapter 2.7.
On the other hand, let us note that in Z

3 this probability is larger than cr−1 (this is well-known but we are not aware
of a precise reference – compare to [14], (3.15), and [8], Theorem 5.1). Hence, the approach used here has no hope of
working in Z

3 (though, of course, this does not preclude the possibility that Z3 does recover from fires). We remark
that a similar renormalization technique was recently used in [4], also under the assumption that the one-arm exponent
is bigger than 1. �

Notations. Identify Z
2 with the subgraph of Zd of points with the d − 2 last coordinates equal to 0. Let S� = {x ∈

Z
d : |xi | ≤ � ∀i ≥ 3} be the two-dimensional slab of height 2�+ 1. Recall also the following standard notations: For a

subgraph G of Zd , we say that x is connected to y in G if they are in the same connected component of G. We denote
this by x ←→ y, and believe that G will be understood from the context. We will use the notation x ←→ A to denote
the fact that x ←→ y for some y in A ⊂ Z

d . Let ‖ · ‖∞ be the infinity norm on R
d defined by

‖x‖∞ = max
{|xi |: i = 1, . . . , d

}
.

We consider the hypercubic lattice Zd for some large but fixed d . For �,L > 0, define the ball Bx(L) = {y ∈ Z
d : ‖y −

x‖∞ ≤ L} and let ∂Bx(L) be its inner vertex boundary.

2. Proof

From now on, d is fixed and large enough. For x ∈ Z
2, let A(x, �,L,M) be the event that there are less than M sites y

in the (6L+ 1)× (6L+ 1)× (2�+ 1)d−2 box S� ∩Bx(3L) that are connected to a site at distance L from themselves.
Note that we do not assume that this connection is contained in the slab S�, the connection may be anywhere in By(L).

Lemma 3. Let η > 0 and � > 0. There exists M > 0 such that for any integer L, there exists p > pc such that

Pp

(
A(x, �,L,M)

) ≥ 1 − η.

Proof. By [9], there exists C > 0 such that (for large enough d)

Ppc

(
0 ←→ ∂B0(n)

) ≤ C

n2
. (1)

Choose M in such a way that 49(2�+1)d−2C
M

< η. For any integer L, Markov’s inequality implies

Ppc

[∣∣{y ∈ S� ∩ Bx(3L) :y ←→ ∂By(L)
}∣∣ ≥ M

] ≤ 1

M

∑
y∈S�∩Bx(3L)

Ppc

(
y ←→ ∂By(L)

)
.

By (1) and the choice of M , the right-hand side is thus strictly smaller than η. By choosing p close enough to pc , we
obtain that

Pp

[∣∣{y ∈ S� ∩ Bx(3L) :y ←→ ∂By(L)
}∣∣ ≥ M

] ≤ η.

�

For a set S ⊂ Z
d , let ωS be the configuration obtained from ω by closing each edge adjacent to some site in S. Let

B(x, �,L,M) be the event that for any set S of M sites contained in Bx(3L), ωS contains

• a cluster crossing from ∂Bx(L) to ∂Bx(3L) contained in the slab S�,
• a unique cluster in the box S� ∩ Bx(3L) of radius larger than L.

Lemma 4. Let η > 0 and ε > 0. There exists � > 0 such that for any M > 0, there is L > 0 so that

Ppc+ε

(
B(x, �,L,M)

) ≥ 1 − η.
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Proof. For a given � and L denote by E = E(x, �,L) the event that:

1. There is a crossing from ∂Bx(L) to ∂Bx(3L) in S�.
2. There is exactly one cluster in S� ∩ Bx(3L) of radius larger than L.

Shortly, the event E is just B without the set S, or, if you want, B is the event that E occurred in ωS for all S with
|S| ≤ M .

We claim that for � sufficiently large, Ppc+ε(¬E) ≤ exp(−cL) for some c = c(ε, �) > 0 independent of L. Finding
such an � is a standard exercise in renormalization theory, but let us give a few details nonetheless. Call a box of
side-length 2� + 1 good if it contains crossings between opposite faces in all directions, and if all clusters of diameter
at least 1

4� connect inside the box. By choosing � large, we can require that a box is good with arbitrarily high
probability (see, e.g., the appendix of [3]). Considering such boxes centered around the sites in �Z2. The events that
these boxes are good are 2-dependent (in the sense of Liggett, Schonmann, and Stacey [10], i.e., disjoint boxes are
good independently), and hence by [10], if the probability that a box is good is sufficiently large, then the good boxes
stochastically dominate two-dimensional site percolation at density, say, 9

10 . Now, a cluster of good boxes contains a
cluster in the underlying percolation, since the crossings of adjacent boxes must intersect. This means that if either of
the conditions in the definition of E fail, then there is an �∞-cluster of bad boxes containing at least L/� boxes. (Here
an �∞-cluster refers to a maximal set of connected sites with respect to �∞-distance, as opposed to �1-distance used
elsewhere.) But the probability for that, from Peierls’ argument, is at most (8/10)L/� · (6L/�)2. This shows the claim.

Fix M > 0. Let FM be the set of configurations in Bx(3L) for which there exists S ⊂ Bx(3L) with |S| = M and
ωS /∈ E. We have

Ppc+ε(FM) ≤
∑

S⊂Bx(3L):|S|=M

Ppc+ε

(
ωS /∈ E

)

≤
∑

S⊂Bx(3L):|S|=M

(1 − pc − ε)−2dM
Ppc+ε(¬E)

≤ (1 − pc − ε)−2dM(6L + 1)dM
Ppc+ε(¬E)

≤ (1 − pc − ε)−2dM(6L + 1)dM exp(−cL).

For L large enough, this quantity is smaller than η. The lemma follows from the fact that if ω /∈ B(x, �,L,M), then
there exists S ⊂ Bx(3L) with |S| = M and ωS /∈ E, i.e., ω ∈ FM . �

In order to prove Theorems 1 and 2, we will use Lemma 4 to construct an infinite cluster at density pc + ε, and
Lemma 3 to make sure that the infinite cluster present at the lower density p does not interfere too much with this
construction.

Proof of Theorems 1 and 2. Recall the notations ωp , ω̃p and ω′
ε from pages 862 and 863. We need to show that for

any ε > 0, there exists p > pc such that ω̃p,ε has an infinite component. Note that (ωpc ∪ω′
ε)\C∞(ωp) is stochastically

dominated by ω̃p,ε . Thus, it suffices to show that for every ε > 0, there is p > pc such that ωpc+ε \ C∞(ωp) contains
an infinite component. That is, Theorem 1 follows from Theorem 2, and it suffices to prove the latter.

Let therefore ε > 0. Fix η > 0 such that 1 − 2η exceeds the critical parameter for any 8-dependent percolation on
vertices of Z2. Define successively �,M,L and p as follows. Fix � = �(ε, η) > 0 as defined in Lemma 4. Pick M =
M(η, �) > 0 as defined in Lemma 3. This defines L = L(η, ε, �,M) > 0 by Lemma 4, and then p = p(η, �,M,L) >

pc by Lemma 3.
Let P denote the joint law of (ωp,ωpc+ε) under the increasing coupling described above. A site x ∈ LZ2 is said to

be good if ωp ∈A(x, �,L,M) and ωpc+ε ∈ B(x, �,L,M). By definition,

P
[
A(x, �,L,M) ∩B(x, �,L,M)

] ≥ 1 − 2η.

Since these events depend on edges in Bx(4L) only, the site percolation (on LZ2) thus obtained is 8-dependent. As a
consequence, there exists an infinite cluster of good sites on the coarse grained lattice LZ2.
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On the event that there exists an infinite cluster of good sites on the coarse grained lattice, there exists an infinite
path in ωpc+ε \ C∞(ωp). Indeed, by induction, consider a path of adjacent good sites x1, . . . , xn. Consider Ci to be a
cluster in

[
ωpc+ε \ C∞(ωp)

] ∩ [
Bxi

(3L) \ Bxi
(L)

]

of radius larger than L. By the definition of A there are at most M sites in the box Sl ∩ Bxi
(3L) connected to distance

L in ωp . Hence the same box also contains no more than M sites in C∞(ωp) since any site connected to infinity
must be connected to distance L. Using the definition of B with S being exactly C∞(ωp) ∩ Sl ∩ Bxi

(3L) we see that
ωpc+ε \ C∞(ωp) contains a crossing cluster for the box Sl ∩ Bxi

(3L) with all the properties listed before Lemma 4. In
particular, the uniqueness property ensures two such crossing clusters in two neighbouring boxes must intersect. The
result follows readily. �
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