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Abstract. Let A be a standard Borel space, and consider the space AN(k)
of A-valued arrays indexed by all size-k subsets of N.

This paper concerns random measures on such a space whose laws are invariant under the natural action of permutations of N.
The main result is a representation theorem for such “exchangeable” random measures, obtained using the classical representation
theorems for exchangeable arrays due to de Finetti, Hoover, Aldous and Kallenberg.

After proving this representation, two applications of exchangeable random measures are given. The first is a short new proof of
the Dovbysh–Sudakov Representation Theorem for exchangeable positive semi-definite matrices. The second is in the formulation
of a natural class of limit objects for dilute mean-field spin glass models, retaining more information than just the limiting Gram–de
Finetti matrix used in the study of the Sherrington–Kirkpatrick model.

Résumé. Soit A un espace de Borel standard, et soit AN(k)
l’ensemble des tableaux à valeurs dans A indexés par les sous-ensembles

de N de taille k. On s’intéresse aux mesures aléatoires sur un tel espace dont la loi est invariante par l’action naturelle des permuta-
tions de N. Le résultat principal est une représentation de ces mesures aléatoires « échangeables », obtenue à partir des théorèmes
de représentation classiques de de Finetti, Hoover, Aldous et Kallenberg pour des tableaux échangeables.

Après avoir prouvé cette représentation, on en donne deux applications. La première est une nouvelle courte preuve du théorème
de représentation de Dovbysh–Sudakov pour des matrices définies semi-positives échangeables. La seconde concerne la formu-
lation d’une classe naturelle d’objets limites pour des modèles de champ moyen dilués pour des verres de spins qui capture plus
d’information que la seule matrice limite de Gram–de Finetti qui est notamment utilisée dans l’étude du modèle de Sherrington–
Kirkpatrick.
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1. Introduction

The theory of exchangeable arrays of random variables emerged in work of Hoover [13,14], Aldous [1–3] and Kallen-
berg [15,16], and amounts to a significant generalization of the classical de Finetti–Hewitt–Savage Theorem on ex-
changeable sequences. The heart of the theory is a collection of representation theorems for general such arrays,
which then beget more specialized representation results such as the Dovbysh–Sudakov Theorem for exchangeable
PSD matrices.

This note will consider the related setting of random measures on spaces of arrays, where now the laws of those
random measures are assumed invariant under the relevant group action. Intuitively, this introduces an “extra layer of
randomness.” In order to introduce these formally, let [n] := {1,2, . . . , n} for n ∈ N, let SN = ⋃

n≥1 S[n] be the group
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of all permutations of N which fix all but finitely many elements, and consider a measurable action T : SN � E on a
standard Borel space E. In full, this is a measurable function

T :SN × E −→ E : (σ, x) �→ T σ x

such that

T idN = idE and T σ1T σ2x = T σ2σ1x ∀σ1, σ2, x.

As is standard, if μ ∈ PrE and σ ∈ SN then T σ∗ μ denotes the image measure of μ under T σ .

Definition 1.1. If E is a standard Borel space and T : SN � E is a measurable action, then an exchangeable random
measure (ERM) on (E,T ) is a random variable μ taking values in PrE such that

μ
law= T σ∗ μ ∀σ ∈ SN;

that is,(
μ(A)

)
A⊆BorelE

law= (
μ

{
x : T σ x ∈ A

})
A⊆BorelE

∀σ ∈ SN.

These are essentially what ergodic theorists call “quasi-factors” ([11], Chapter 8). We will study these for the group
actions that underly the theory of exchangeable arrays. Given a standard Borel space A and k ∈ N, the space of k-
dimensional arrays valued in A is AN(k)

, where N(k) denotes the set of size-k subsets of N. An element of such a
space of arrays will often be denoted by (xe)|e|=k or similarly. (In the following, one could focus instead on arrays
indexed by ordered k-tuples, but we have chosen the symmetric case as it is a little simpler and arises more often in
applications.) The group SN acts on AN(k)

by permuting coordinates in the obvious manner:

T σ
(
(xe)|e|=k

) = (xσ(e))|e|=k,

where σ(e) = {σ(i): i ∈ e}. Slightly more generally, our main results will also allow Cartesian products of such
actions over finitely many different k. Thus, our arrays will usually be indexed by the family N(≤k) of subsets of N of
size at most k for some fixed k.

Examples. (1) If an exchangeable random measure μ on (E,T ) is deterministic, then its constant value must itself
be invariant under the action T . In case E = AN(k)

with the action above, this means μ is almost surely the law of an
exchangeable A-valued, N(k)-indexed array.

(2) On the other hand, if μ is a T -invariant measure for any action (E,T ), then another way to obtain an ex-
changeable random measure from it is to let

μ := δX,

where X is a random element of E with law μ, and δX is the Dirac mass at X.
(3) In case E = AN(k)

with the action above, example (2) fits into a more general family as follows. The space
of probability measures PrA is also standard Borel with the Borel structure generated by evaluation of measures on
Borel sets. Suppose (λe)|e|=k is an exchangeable array of (PrA)-valued random variables, and now let

μ =
⊗
|e|=k

λe.

This class of examples will feature again later. Such an example is called an exchangeable random product measure
(ERPM).
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(4) It is also easy to exhibit an ERM which is not ERPM. For example, let � = (A,B) be a uniform random
bipartition of N (this is obviously exchangeable), and having chosen � let μ ∈ Pr{0,1}N(2)

be the probability which
has two atoms of mass 1

2 on the points

1
AN(2) and 1

BN(2) .

(5) Lastly, given a measurable family of exchangeable random measures μt indexed by a parameter t ∈ [0,1), we
may average over this parameter to obtain a mixture of these exchangeable random measures:

μ =
∫ 1

0
μt dt.

This is clearly still exchangeable.

The main result of this paper characterizes all ERMs on spaces of arrays. To motivate it, we next recall the Repre-
sentation Theorem for exchangeable arrays themselves. This requires some more notation.

First, for any set S we let PS denote the power set of S.
Next, suppose that B0, B1, . . . ,Bk and A are standard Borel spaces. A Borel function

f :B0 × Bk
1 × B

[k](2)

2 × · · · × Bk =
∏
i≤k

B
[k](i)
i −→ A

is middle-symmetric if

f
(
x, (xi)i∈[k], (xa)a∈[k](2) , . . . , x[k]

) = f
(
x, (xσ(i))i∈[k], (xσ(a))a∈[k](2) , . . . , x[k]

)
for all σ ∈ S[k].

Given standard Borel spaces B0, B1, . . . ,Bk and A0, A1, . . . ,Ak , and middle-symmetric Borel functions

fi :
∏
j≤i

B
[i](j)

j −→ Ai, i = 0,1, . . . , k,

we will write f̂ for the function∏
i≤k

B
[k](i)
i −→

∏
i≤k

A
[k](i)
i : (xe)e⊆[k] �→ (

f|e|
(
(xa)a⊆e

))
e⊆[k],

which combines all of the fi .
The tuple (f0, . . . , fk) is referred to as a skew-product tuple, and the associated function f̂ as a function of skew-

product type; clearly the latter determines the former uniquely.

Example. If k = 2, then a function of skew-product type [0,1)P[2] −→ [0,1) takes the form

f̂ (x, x1, x2, x12) = (
f0(x), f1(x, x1), f1(x, x2), f2(x, x1, x2, x12)

)
.

It is easily checked that if f̂ and ĝ are functions of skew-product type for the same k, then so is ĝ ◦ f̂ . In terms of
(f0, . . . , fk) and (g0, . . . , gk) this composition corresponds to the skew-product tuple

hi

(
(xa)a⊆[i]

) := gi

((
f|a|

(
(xb)b⊆a

))
a⊆[i]

)
, i = 0,1, . . . , k.

Slightly abusively, we will also write f̂ for the related function∏
i≤k

BN(i)

i −→
∏
i≤k

AN(i)

i : (xe)|e|≤k �→ (
f|e|

(
(xa)a⊆e

))
|e|≤k

,

which also determines (f0, . . . , fk) uniquely.
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Theorem 1.2 (Representation Theorem for Exchangeable Arrays; Theorem 7.22 in [18]). Suppose that A0,
A1, . . . ,Ak are standard Borel spaces and that (Xe)|e|≤k is an exchangeable random array of r.v.s with each Xe

valued in A|e|. Then there are middle-symmetric Borel functions

fi : [0,1)P[i] −→ Ai, i = 0,1, . . . , k,

such that

(Xe)|e|≤k
law= (

f|e|
(
(Ua)a⊆e

))
|e|≤k

dfn= f̂
(
(Ue)|e|≤k

)
,

where (Ue)|e|≤k is an i.i.d. family of U[0,1)-r.v.s.

The companion Equivalence Theorem, which addresses the non-uniqueness of the representing function f̂ , will be
recalled later.

To produce a random measure, the idea will simply be to use directing functions fi that depend on two sources of
randomness, and then condition on one of them.

Theorem A. Suppose that μ is an ERM on A0 × · · · × AN(k)

k . Then there are middle-symmetric Borel functions

fi :
([0,1) × [0,1)

)P[i] −→ Ai

such that

μ(·) law= P
(
f̂

(
(Ue,Ve)|e|≤k

) ∈ ·|(Ue)|e|≤k

)
,

where Ue and Ve for e ⊆ N, |e| ≤ k are all i.i.d. ∼ U[0,1). On the right-hand side, this is a measure-valued random
variable as a function of the r.v.s (Ue)|e|≤k .

We will find that after some manipulation of the problem, Theorem A can be deduced from the Representation
Theorem and Equivalence Theorems for exchangeable random arrays themselves.

The proof of Theorem A can be considerably simplified when k = 1, so we will first prove that case separately. In
that case, the structure given by Theorem A is essentially a combination of examples (3) and (5) above. To see this,
we reformulate the result as follows.

Given a standard Borel space A, let B([0,1),PrA) denote the space of Lebesgue-a.e. equivalence classes of mea-
surable functions [0,1) −→ PrA. Then B([0,1),PrA) has a natural measurable structure generated by the functionals

f �→
∫ 1

0
φ(t)f (t,B)dt

corresponding to all φ ∈ L∞[0,1) and Borel subsets B ⊆ A. This measurable structure is also standard Borel: for
instance, if one realizes A as a Borel subset of a compact metric space, then the above becomes the Borel structure of
the topology of convergence in probability on B([0,1),PrA), which is Polish.

Theorem B. If μ is an ERM on AN, then there is an exchangeable sequence of r.v.s (λi )i∈N taking values in
B([0,1),PrA) such that

μ(·) law=
∫ 1

0

(⊗
i∈N

λi (t, ·)
)

dt.

So when k = 1, every ERM is a mixture of ERPMs.
With the structure given by Theorem B, one may next apply the de Finetti–Hewitt–Savage Theorem to the sequence

λi to obtain a random measure γ on B([0,1),PrA) such that λi is obtained by first choosing γ and then choosing λi
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i.i.d. with law γ . We write Samp(γ ) for the ERM obtained by this procedure, and refer to γ as a directing random
measure for μ.

After proving Theorems A and B, we offer a couple of applications of the case k = 1. These applications can
also be given higher-dimensional extensions using the cases k ≥ 2, but those extensions seem less natural. The reader
interested only in the applications need not read the proof of the general case of Theorem A.

The first application is a new proof of the classical Dovbysh–Sudakov Theorem:

Dovbysh–Sudakov Theorem. Suppose (Rij )i,j∈N is a random matrix which is a.s. positive semi-definite, and is
exchangeable in the sense that

(Rσ(i)σ (j))i,j
law= (Rij )i,j ∀σ ∈ SN.

Then there are a separable real Hilbert space H and an exchangeable sequence (ξi, ai)i∈N of random variables valued
in H× [0,∞) such that

(Rij )i,j
law= (〈ξi, ξj 〉 + δij ai

)
i,j

,

where δij is the Kronecker delta.

This first appeared in [9], and more complete accounts were given in [12] and [21]. The proofs of Hestir and
Panchenko start with the Aldous–Hoover Representation Theorem, which treats (Rij )i,j as a general two-dimensional
exchangeable array. They then require several further steps to show that the PSD assumption implies a simplification
of that general Aldous–Hoover representation into the form promised above. On the other hand, we will find that if
one simply interprets (Rij )i,j as the covariance matrix of an exchangeable random measure, then one can read off the
Dovbysh–Sudakov Theorem from Theorem B, which in turn does not require the Aldous–Hoover Theorem.

Our second application is to the study of certain mean-field spin glass models, and particularly Viana and Bray’s
dilute version of the Sherrington–Kirkpatrick model [25]. In the case of the original Sherrington–Kirkpatrick model a
great deal has now been proven, much of it relying on the notions of “random overlap structures” and their directing
random Hilbert space measures: see, for instance, Panchenko’s monograph [22]. The analogous theory for dilute
models is less advanced. In this note we will simply sketch how the main conjecture of Replica Symmetry Breaking
can be formulated quite neatly in terms of limits of exchangeable random measures, translating from the earlier works
[20,23]. We will not recall most of the spin glass theory behind this conjecture, but will refer the reader to those
references for more background.

2. The replica trick

The key to Theorem A is the simple observation that the law of a random measure on some space E can be equivalently
described by the law of a random sequence in E, obtained by first sampling and quenching that random measure, and
then sampling i.i.d. from it. This idea is standard in the more general setting of representing quasi-factors in ergodic
theory ([11], Chapter 8). In a sense, it is an abstract version of the “replica trick” from the statistical physics of spin
glasses ([19]). In physics, the phrase “replica trick” usually refers to the calculation of the sequence of moments of the
(random) partition function of a random Gibbs measure, which is then fed into an ansatz for guessing more about the
law of the partition function, such as the expected free energy. This resembles our “replica trick” insofar as computing
a moment of the random partition function amounts to computing the partition function for the law of several i.i.d.
samples from the random Gibbs measure.

Before we proceed, first observe that, since any standard Borel space is isomorphic to a Borel subset of a compact
metric space, we may replace the spaces A0, . . . ,Ak with such enveloping compact spaces in Theorems A and B,
and so assume these spaces are themselves compact. We will make this assumption throughout the proofs of those
theorems, although some non-compact examples will re-appear later in the applications.

Proposition 2.1 (Replica trick). If μ is an ERM on
∏

i≤k AN(i)

i , then there are auxiliary standard Borel spaces A0,
A1, . . . ,Ak and an exchangeable array (Ye,Xe)|e|≤k of random variables such that
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• each (Ye,Xe) takes values in A|e| × A|e|, and
• one has

μ(·) law= P
(
(Xe)|e|≤k ∈ ·|(Ye)|e|≤k

)
.

Proof. After enlarging the background probability space if necessary, we may couple the random variable μ with a
doubly-indexed family of random variables(

(Xi,e)i∈N,e∈N(≤k) , (Xe)e∈N(≤k)

)
, (1)

all taking values in one of the Ai ’s, as follows:

• first, sample the random measure μ itself;
• then, choose the sub-families (Xe)|e|≤k , (X1,e)|e|≤k , (X2,e)|e|≤k, . . . independently with law μ.

In notation, this coupling is defined by

P
(
(Xe)|e|≤k ∈ da, (X1,e)|e|≤k ∈ da1, (X2,e)|e|≤k ∈ da2, . . . |μ

)
= μ(da) · μ(da1) · μ(da2) · · · · .

Having done this, let Ai := AN
i and let Ye := (Xj,e)j∈N ∈ A|e| for each e ∈ N(≤k). The exchangeability of μ implies

that the joint distribution of the family (1) is invariant under applying elements of SN to the indexing sets e, and hence
that the process (Ye,Xe)|e|≤k is exchangeable.

On the other hand, since we assume each Ai is compact, so is
∏

i≤k AN(i)

i , and now the Law or Large Numbers
shows that in the above process one has the a.s. convergence of empirical measures

1

N

N∑
n=1

δ(Xn,e)|e|≤k
−→ μ

in the vague topology on Pr
∏

i≤k AN(i)

i .
Therefore in the process(

(Ye)|e|≤k, (Xe)|e|≤k,μ
)

the family of r.v.s (Ye)|e|≤k determine μ a.s., whereas conditionally on μ the family (Ye)|e|≤k becomes independent
from (Xe)|e|≤k . This implies that

P
(
(Xe)|e|≤k ∈ ·|(Ye)|e|≤k

) = P
(
(Xe)|e|≤k ∈ ·|μ) = μ(·) a.s.,

as required. �

3. Proofs in one dimension

3.1. Some preliminaries

We will repeatedly need the following standard tool from measure-theoretic probability. See, for instance, the slightly-
stronger Theorem 6.10 in [17].

Lemma 3.1 (Noise-Outsourcing Lemma). Suppose that A and B are standard Borel spaces and that (X,Y ) is an
(A × B)-valued r.v. Then, possibly after enlarging the background probability space, there are a r.v. U ∼ U[0,1)

coupled with X and Y and a Borel function f :A × [0,1) −→ Y such that U is independent from X and

(X,Y ) = (
X,f (X,U)

)
a.s.
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Of course, the function f in this lemma is highly non-unique. The degenerate case in which X is deterministic is
still important: it reduces to the assertion that for any standard Borel probability space (B, ν) there is a Borel function
f : [0,1) −→ B such that f (U) ∼ ν when U ∼ U[0,1).

Finally, let us recall the full de Finetti–Hewitt–Savage Theorem for the case k = 1, which is rather stronger than
just the case k = 1 of Theorem 1.2. The following is the combination of Proposition 1.4 and Corollaries 1.5 and 1.6
in [18].

Theorem 3.2. Suppose A is a compact metric space and (Xn)n is an exchangeable sequence of A-valued r.v.s. Then
the sequence of empirical distributions

WN := 1

N

N∑
n=1

δXn ∈ PrA

converges a.s. to a (PrA)-valued r.v. W which has the following properties:

(i) W is a.s. a function of (Xn)n,
(ii) W generates the tail σ -algebra of (Xn)n up to μ-negligible sets;

(iii) the r.v.s Xn are conditionally i.i.d. given W ;
(iv) if Z is any other r.v. on the same probability space such that

(Z,X1,X2, . . .)
law= (Z,Xσ(1),Xσ(2), . . .) ∀σ ∈ SN,

then Z is conditionally independent from (Xn)n over W .

3.2. Proofs in one dimension

Proof of Theorem A in one dimension. Suppose μ is an ERM on AN and let (Yn,Xn)n be a process as given by
Proposition 2.1.

We next apply Theorem 3.2 twice: first to the sequence (Yn)n, to obtain a r.v. W taking values in E := PrA; and
secondly to (Yn,Xn)n, to obtain a r.v. Z taking values in F := Pr(A×A). From their definitions as limits of empirical
distributions, W is almost surely a function of Z. On the other hand, property (iv) of Theorem 3.2 gives that Z is
conditionally independent from (Yn)n over W .

Now pick an n ∈N. By Lemma 3.1, there is a Borel function f1 :E × F × A × [0,1) −→ A such that

(W,Z,Yn,Xn)
law= (

W,Z,Yn,f1(W,Z,Yn,Vn)
)
,

where (Vn)n are i.i.d. ∼ U[0,1) and are independent from (W,Z,Yn). Moreover, this same f1 works for every n, by
exchangeability. It follows that in fact(

W,Z, (Yn,Xn)n∈N
) law= (

W,Z,
(
Yn,f1(W,Z,Yn,Vn)

)
n∈N

)
, (2)

because both sides have the same marginals for individual n, and both sides are conditionally i.i.d. over (W,Z), so all
finite-dimensional marginals agree.

Next, another appeal to Lemma 3.1 gives a Borel function g :E × [0,1) −→ F such that

(W,Z)
law= (

W,g(W,V )
)

with a new independent V ∼ U[0,1). This implies that(
W,Z, (Yn)n∈N

) law= (
W,g(W,V ), (Yn)n∈N

)
,

because Z is conditionally independent from (Yn)n over W , so again all finite-dimensional marginals agree. Combin-
ing this with (2) gives(

W,Z, (Yn,Xn)n∈N
) law= (

W,g(W,V ),
(
Yn,f2(W,Yn,V,Vn)

)
n∈N

)
,
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where

f2
(
w,y, v, v′) := f1

(
w,g(w,v), y, v′).

It follows that

P
(
(Xn)n ∈ ·|(Yn)n

) = P
((

f2(W,Yn,V,Vn)
)
n

∈ ·|(Yn)n
)
.

Finally, we may apply de Finetti’s Theorem again, this time to (Yn)n, to obtain Borel functions h1 : [0,1) −→ E and
h2 : [0,1)2 −→ A such that(

W,(Yn)n∈N
) law= (

h1(U),
(
h2(U,Un)

)
n∈N

)
,

where U and (Un)n are i.i.d. ∼ U[0,1) r.v.s, independent of everything else. Letting

f
(
u,u′, v, v′) := f2

(
h1(u),h2

(
u,u′), v, v′),

substituting for (W, (Yn)n) in the above gives

P
(
(Xn)n ∈ ·|(Yn)n

) law= P
((

f (U,Un,V,Vn)
)
n

∈ ·|U, (Un)n
)
,

as required. �

Proof of Theorem B. By the Law of Iterated Conditional Expectation, the representation obtained above may be
re-written as

μ(·) law= E
(
P
((

f (U,Un,V,Vn)
)
n

∈ ·∣∣U, (Un)n,V
)|U, (Un)n

)
= E

(⊗
n∈N

P
(
f (U,Un,V,Vn) ∈ ·∣∣U,Un,V

)|U, (Un)n

)

=
∫ 1

0

(⊗
n∈N

λn(t, ·)
)

dt,

where

λn(t, ·) := P
(
f (U,Un, t,Vn) ∈ ·|U,Un

)
.

As functions of (U,Un) for each n, these form an exchangeable sequence of r.v.s taking values in B([0,1),PrA), so
the proof is complete. �

3.3. Relation to row–column exchangeability

A relative of exchangeability for a two-dimensional random array (Xi,n)(i,n)∈N2 is row–column exchangeability, which
asserts that

(Xσ(i),τ (n))i,n
law= (Xi,n)i,n ∀σ, τ ∈ SN.

Since σ and τ may be chosen separately, this is a rather stronger symmetry than ordinary two-dimensional exchange-
ability. Here, too, there is a representation theorem due to Aldous and Hoover, and also a version in arbitrary dimen-
sions due to Kallenberg, who calls such arrays “separately exchangeable.”
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Theorem 3.3 (Corollary 7.23 in [18]). If (Xi,n)i,n is an A-valued row–column exchangeable array then there is a
Borel function [0,1)4 −→ A such that

(Xi,n)i,n
law= (

f (Z,Ui,Vn,Wi,n)
)
i,n

,

where Z, Ui for i ∈ N, Vn for n ∈ N and Wi,n for (i, n) ∈N2 are i.i.d. ∼ U[0,1).

An alternative proof of Theorem B can be given via Theorem 3.3. One begins with the construction of the two-
dimensional random array (Xi,n)i,n as in the proof of Proposition 2.1 (where the sets e have become singletons n).
Since this array is row–column exchangeable, the Representation Theorem gives

(Xi,n)i,n
law= (

f (U,Ui,Vn,Wi,n)
)
i,n

for some Borel directing function f : [0,1)4 −→ A, where U , Ui for i ∈ N, Vn for n ∈N and Wi,n for i, n ∈N are i.i.d.
∼ U[0,1). One can now read off a directing random measure γ (U) on B([0,1),PrA), a function of U ∼ U[0,1), in
the following two steps:

• first, for each fixed U and U ′ one obtains an element λ(U,U ′) ∈ B([0,1),PrA) according to

λ
(
U,U ′)(t, ·) = PW

(
f

(
U,U ′, t,W

) ∈ ·), W ∼ U[0,1);
• second, γ (U) is the distribution of λ(U,U ′) where U ′ ∼ U[0,1).

On the other hand, a couple of simple applications of the Noise-Outsourcing Lemma show that any directing random
measure γ on B([0,1),PrA) can be represented this way, so this gives a bijective correspondence{

directing random measures on B
([0,1),PrA

)
up to equivalence

}
↔ {

directing functions [0,1)4 −→ A up to equivalence
}
,

where “up to equivalence” refers to the possibility that different directing random measures or directing functions may
give rise to the same row–column exchangeable array.

This approach is the basis of the paper [20], to be discussed later. It is quick, but at the expense of assuming
Theorem 3.3.

On the other hand, our approach to Theorem B does not use any exchangeability theory in dimensions greater than
one. Moreover, one can reverse the idea above to give a fairly quick proof of Theorem 3.3 using Theorem B.

Proof of Theorem 3.3 from Theorem B. First let (Xi,n)i,n = ((Xi,n)i)n, thought of as an exchangeable sequence of
AN-valued r.v.s. By the de Finetti–Hewitt–Savage Theorem applied to the exchangeability in n, its law is a mixture of
product measures; equivalently, there is a (PrAN)-valued r.v. μ such that

law
((

(Xi,n)i
)
n

) = E
(
μ⊗N)

.

On the other hand, for any σ ∈ SN the exchangeability in i gives

E
(
μ⊗N) = law

((
(Xi,n)i

)
n

) = law
((

(Xσ(i),n)i
)
n

) = E
((

T σ∗ μ
)⊗N)

,

where T σ :AN −→ AN is the corresponding coordinate-permuting transformation. By the uniqueness of the de
Finetti–Hewitt–Savage decomposition, this implies

μ
law= T σ∗ μ ∀σ ∈ SN,

so μ is an ERM. Therefore Theorem B gives

law
((

(Xi,n)i
)
n

) = E

(∫ 1

0

⊗
i∈N

λi (t, ·)dt

)⊗N
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for some exchangeable random sequence (λi )i taking values in B([0,1),PrA).
Next, applying the de Finetti–Hewitt–Savage Theorem to the sequence (λi )i itself gives a Borel function

F : [0,1)2 −→ B([0,1),PrA) such that the above becomes

law
((

(Xi,n)i
)
n

) = EZ,(Ui)i

(∫ 1

0

⊗
i∈N

F(Z,Ui, t, ·)dt

)⊗N

= EZ,(Ui)i ,(Vn)n

⊗
(i,n)∈N2

F(Z,Ui,Vn, ·), (3)

where Z, Ui for i ∈ N and Vn for n ∈ N are i.i.d. ∼ U[0,1), and in the second equality we have simply changed
notation from “

∫ 1
0 ·dt” to “EVn .”

Finally, by Lemma 3.1 there is a Borel function f : [0,1)4 −→ A such that

P
(
f (Z,U,V,W) ∈ ·|Z,U,V

) = F(Z,U,V, ·) a.s.

when Z, U , V , W are i.i.d. ∼ U[0,1), and now the right-hand side of (3) becomes law((f (U,Ui,Vn,Wi,n)i)n), as
required. �

4. Proof in higher dimensions

Not all parts of Theorem 3.2 generalize to higher-dimensional arrays, and instead we must make a more careful
argument using the Equivalence Theorem 4.1 below.

4.1. Some more preliminaries

The Equivalence Theorem characterizes when two functions direct the same process in the setting of Theorem 1.2. Its
formulation needs the following notion. Let C = [0,1)r and D = [0,1)s for some r, s ∈ N. Then a skew-product tuple
(f0, . . . , fk) in which each fi :

∏
j≤i C

[i](j) −→ D for each i gives rise to a skew-product-type function f̂ :CP[k] −→
DP[k], which is a map between Euclidean cubes. We will write that the skew-product tuple is Lebesgue-measure-
preserving if for all i = 0,1, . . . , k and all (xa)a�[i] ∈ CP[i]\[i], one has

U ∼ U(C) �⇒ fi

(
(xa)a�[i],U

) ∼ U(D).

This implies, in particular, that f̂ pushes Lebesgue measure on CP[k] to Lebesgue measure on DP[k] (although these
cubes have different dimensions if r �= s). However, the assertion that the skew-product tuple is Lebesgue-measure-
preserving can be strictly stronger than this, in case the functions fi are not all injective.

The Equivalence Theorem is as follows.

Theorem 4.1 (Equivalence Theorem for directing functions; Theorem 7.28 in [18]). If f̂ , f̂ ′ : [0,1)P[k] −→ A0 ×
· · · × A

[k](i)
i × · · · × Ak are functions of skew-product type such that

(
f|e|

(
(Ua)a⊆e

))
|e|≤k

law= (
f ′|e|

(
(Ua)a⊆e

))
|e|≤k

,

then there are functions Ĝ, Ĝ′ : [0,1)P[k] −→ [0,1)P[k] of skew-product type, whose skew-product tuples are
Lebesgue-measure-preserving, and which make the following diagram commute:
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[0,1)P[k]

Ĝ Ĝ′

[0,1)P[k]

f̂

[0,1)P[k]

f̂ ′

A0 × Ak
1 × · · · × Ak

In connection with this theorem, we will also need the following “factorization” result.

Corollary 4.2. Let U⊆[k] = (Ue)e⊆[k] and V⊆[k] be independent uniform r.v.s valued in [0,1)P[k]. If

G : [0,1)P[k] −→ [0,1)P[k]

is a function of skew-product type whose skew-product tuple is Lebesgue-measure-preserving, then there is another
function

H :
([0,1) × [0,1)

)P[k] −→ [0,1)P[k]

of skew-product type, whose skew-product tuple is Lebesgue-measure-preserving, and such that

U⊆[k] = G
(
H(U⊆[k],V⊆[k])

)
a.s.

Another way to express this is that the maps in the following diagram come from Lebesgue-measure-preserving
skew-product tuples and a.s. commute:

([0,1) × [0,1))P[k]

Π

H [0,1)P[k]

G

[0,1)P[k]

where

Π
(
(xe, ye)e⊆[k]

) = (xe)e⊆[k]

is the obvious projection.
Geometrically, the intuition here is that G is “almost onto” (since its image measure is Lebesgue), and that as a

result one can represent it as the projection map Π after using H to “straighten out the fibres.”

Proof of Corollary 4.2. Let G be defined by the skew-product tuple (G0, . . . ,Gk). We must construct the skew-
product tuple (H0, . . . ,Hk) that defines H . In terms of these tuples, our requirement is that

Gi

((
H|e|

(
(Ua,Va)a⊆e

))
e⊆[i]

) = U[i] a.s. ∀i = 0,1, . . . , k. (4)

When i = 0 this simplifies to

G0
(
H0(U0,V0)

) = U0 a.s.

We can obtain such an H0 from the Noise-Outsourcing Lemma 3.1 as follows. Let Z0 be a U[0,1)-r.v. and let X0 :=
G0(Z0), so this is also ∼ U[0,1). Applying Lemma 3.1 to the pair (X0,Z0) gives a Borel function H0 : [0,1) ×
[0,1) −→ [0,1) such that

(X0,Z0) = (
X0,H0(X0, Y0)

)
a.s.
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for some Y0 ∼ U[0,1) independent from X0. Since X0 = G0(Z0), applying G0 to the second coordinates here gives

X0 = G0
(
H0(X0, Y0)

)
a.s.

The general case now follows by induction on i. Suppose that i ≥ 1, let Ye for e � [i] and Ze for e ⊆ [i] be i.i.d.
∼ U[0,1); define Xe := G|e|((Za)a⊆e) for all e ⊆ [i]; and assume that H0, . . . ,Hi−1 have already been constructed
such that Ze := H|e|((Xa,Ya)a⊆e) for each e � [i]. Applying Lemma 3.1 again gives a Borel function Hi : ([0,1) ×
[0,1))P[i] −→ [0,1) and a r.v. Y[i] ∼ U[0,1) such that(

(Xe)e⊆[i], (Ye)e�[i],Z[i]
) = (

(Xe)e⊆[i], (Ye)e�[i],Hi

(
(Xe)e⊆[i], (Ye)e⊆[i]

))
,

and as before this is equivalent to the desired equality (4). �

4.2. Completion of the proof

We need the following enhancement of Proposition 2.1.

Lemma 4.3. If μ is an ERM on
∏

i≤k AN(i)

i , then there is an exchangeable array (Ue,Xe)|e|≤k such that

• (Ue)|e|≤k are i.i.d. ∼ U[0,1),
• each Xe takes values in A|e|,
• and one has

μ(·) law= P
(
(Xe)|e|≤k ∈ ·|(Ue)|e|≤k

)
.

Proof. Let (Ye,Xe)|e|≤k be the process given by Proposition 2.1, with each (Ye,Xe) taking values in A|e| × A|e|. By

the Representation Theorem 1.2 applied to (Ye)|e|≤k , there is a function f̂ : [0,1)P[k] −→ ∏
i≤k A

[k](i)
i of skew-product

type such that

(Ye)|e|≤k
law= f̂

(
(Ue)|e|≤k

)
,

where (Ue)|e|≤k is an i.i.d. ∼ U[0,1) array.
Now consider the coupling (Ue,Xe)|e|≤k whose law is the relatively independent product over the condition

(Ye)|e|≤k = f̂ ((Ue)|e|≤k):

P
(
(Ue)e ∈ du, (Xe)e ∈ da

)
= P

(
(Ue)e ∈ du

) · P
(
(Xe)e ∈ da|(Ye)e = f̂ (u)

)
. (5)

This is exchangeable and has the three desired properties. The exchangeability follows because both factors on the
right-hand side of (5) are invariant under the action of SN on the indexing set e, by the exchangeability of (Ue)e and
(Ye,Xe)e . The first two of the properties listed are obvious, and the third follows from Proposition 2.1 because the
above relative product formula gives

P
(
(Xe)e ∈ da|(Ue)e = u

) = P
(
(Xe)e ∈ da|(Ye)e = f̂ (u)

)
,

and we conditioned on the equality (Ye)e = f̂ ((Ue)e). �

Proof of Theorem A. Let the process (Ue,Xe)|e|≤k be as in the preceding corollary. Applying Theorem 1.2 to this

whole process gives functions ĝ : [0,1)P[k] −→ [0,1)P[k] and ĥ : [0,1)P[k] −→ ∏
i≤k A

[k](i)
i of skew-product type

such that(
(Ue)|e|≤k, (Xe)|e|≤k

) law= (
ĝ
((

U ′
e

)
|e|≤k

)
, ĥ

((
U ′

e

)
|e|≤k

))
, (6)
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where again (U ′
e)|e|≤k are i.i.d. ∼ U[0,1).

For the first coordinates, this reads

(Ue)|e|≤k
law= ĝ

((
U ′

e

)
|e|≤k

)
.

Since both input and output are i.i.d. U[0,1) arrays, we may apply the Equivalence Theorem 4.1 to this equal-
ity of laws: it gives functions G,G′ : [0,1)P[k] −→ [0,1)P[k] of skew-product type whose skew-product tuples are
Lebesgue-measure-preserving and which make the following diagram commute:

[0,1)P[k]

G

G′

[0,1)P[k]

ĝ

[0,1)P[k]

(Note that this seems almost unnecessary, since ĝ already sends Lebesgue measure on [0,1)P[k] to itself. However,
we will need the structure of Lebsgue-measure-preserving skew-product tuples, which need not follow in case ĝ is
not injective: see the remarks immediately preceding Theorem 4.1.)

Now applying Corollary 4.2 to G, one obtains a function H : ([0,1) × [0,1))P[k] −→ [0,1)P[k] of skew-product
type, given by a Lebesgue-measure-preserving skew-product tuple, and such that the above commutative diagram can
be enlarged to

([0,1) × [0,1))P[k] H

Π

[0,1)P[k]

G

G′

[0,1)P[k]

ĝ

[0,1)P[k]

Let (Ve)|e|≤k be another collection of i.i.d. U[0,1)-r.v.s independent from (Ue)|e|≤k , and let f̂ := ĥ ◦ G′ ◦ H . Then
the above diagram implies that:

• on the one hand,

(Ue)|e|≤k = ĝ
(
G′(H (

(Ue,Ve)|e|≤k

)))
a.s.,

• and on the other, G′(H((Ue,Ve)|e|≤k)) is an i.i.d. array of U[0,1)-r.v.s, and so(
ĝ
((

U ′
e

)
|e|≤k

)
, ĥ

((
U ′

e

)
|e|≤k

))
law= (

ĝ
(
G′(H (

(Ue,Ve)|e|≤k

)))
, ĥ

(
G′(H (

(Ue,Ve)|e|≤k

))))
.

Combining (6) with these two facts now gives

(Ue,Xe)|e|≤k
law= (

ĝ
(
G′(H (

(Ue,Ve)|e|≤k

)))
, ĥ

(
G′(H (

(Ue,Ve)|e|≤k

))))
|e|≤k

law= (
(Ue)|e|≤k, f̂

(
(Ue,Ve)|e|≤k

))
,
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and conditioning both sides of this on (Ue)|e|≤k gives

P
(
(Xe)|e|≤k ∈ ·|(Ue)|e|≤k

) = P
(
f̂

(
(Ue,Ve)|e|≤k

) ∈ ·|(Ue)|e|≤k

)
,

as required. �

5. Relation to Dovbysh–Sudakov Theorem

Proof of Dovbysh–Sudakov Theorem. The trick to this is the standard one-to-one correspondence{
PSD (N×N)-matrices

} ↔ {
Gaussian measures on RN}

in which a Gaussian measure is identified with its variance–covariance matrix. (This is elementary for finite PSD
matrices, and then the infinite case follows by the Daniell–Kolmogorov Theorem: see [17], Theorem 6.14.) Because
Gaussian measures are uniquely determined by their variance–covariance matrices, this correspondence intertwines
the two permutations actions of N, so from (Rij )i,j we may construct an ERM μ on RN which is almost surely
Gaussian, and such that

Rij =
∫
RN

xixjμ
(
d(xn)n∈N

)
a.s.

Now Theorem B gives a representation

μ
law=

∫ 1

0

⊗
i

λi (t, ·)dt

with (λi )i drawn from some exchangeable sequence taking values in B([0,1),PrR). Substituting this above gives

Rii
law=

∫ 1

0

∫
R

x2λi (t,dx)dt

and

Rij
law=

∫ 1

0

(∫
R

xλi (t,dx)

)(∫
R

xλj (t,dx)

)
dt when i �= j.

Letting

H = L2([0,1),dt
)
,

ξi(t) =
∫
R

xλi (t,dx)

and

ai =
∫ 1

0

(∫
R

x2λi (t,dx) −
(∫

R
xλi (t,dx)

)2)
dt,

this is the desired representation.
(Note that ξi must be in H a.s. because∫ 1

0
ξi(t)

2 dt =
∫ 1

0

(∫
R

xλi (t,dx)

)2

dt ≤
∫ 1

0

∫
R

x2λi (t,dx)dt
law= Rii,

which is finite a.s.) �
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6. Limiting behaviour of the Viana–Bray model

Our second, and much more tentative, application for ERMs is to the study of the Viana–Bray (VB) model [25]. This
is the basic “dilute” mean-field spin glass model. On the configuration space {−1,1}N , it is given by the random
Hamiltonian

HN(σ) =
M∑

k=1

Jkσikσjk
, (7)

where:

• M is a Poisson r.v. with mean αN (the thermodynamic limit is be taken with α fixed);
• i1, j1, i2, j2, . . . are indices from [N ] chosen uniformly and independently at random;
• and J1, J2, . . . are i.i.d. symmetric R-valued r.v.s with some given distribution, often taken to be uniform ±1.

(There are many essentially equivalent variants of this model, but this popular version will do here.) From a quenched
choice (that is, a fixed sample) of the random function HN , the objects of interest are the resulting Gibbs measure

γβ,N {σ } = 1

ZN(β)
exp

(−βHN(σ)
)
,

the partition function

ZN(β) =
∑
σ

exp
(−βHN(σ)

)
and the expected specific free energy

FN(β) = 1

N
E logZN(β), (8)

where the expectation is over the random function HN . We will sometimes drop the subscript “β” or “N” in the
sequel.

This is a relative of the older Sherrington–Kirkpatrick (SK) model [19], in which all pairs of spins ij interact
according to independent random coefficients gij ∼ N(0,1/N). The rigorous study of the SK model has become quite
advanced in recent years; we will not credit all of the important contributions, but refer the reader to the books [22,24]
and the many references given there. By contrast, most properties of the VB model remain conjectural.

A key tool in the study of the SK model is the use of random measures on Hilbert space as a kind of “limit object”
for the random Gibbs measures γβ,N as N −→ ∞. Viewing 1√

N
{−1,1}N as a subset of 
N

2 , γβ,N is itself a random
Hilbert space measure, and the appropriate notion of convergence is convergence in distribution of the Gram–de Finetti
matrices obtained by sampling. Having taken a limit in this sense, a limit object in the form of a random measure on
Hilbert space is provided by the Dovbysh–Sudakov Theorem. This use of exchangeability and limit objects originates
in works of Arguin [4] and Arguin and Aizenman [5], with a precedent in the study of classical mean-field models in
the work [10] of Fannes, Spohn and Verbeure. It is explained in more detail in [22].

The key point for this use of random Hilbert-space measures is that the main properties of the SK model, such as the
free energy, really depend only on the covariances among the random variables H(σ), and hence on this Hilbert space
structure. This is no longer true for the VB model, so a more refined tool is needed. One possibility has been explored
in [20], and before that physicists and mathematicians had already worked with the related notion of “multi-overlap
structures” (see, e.g., [7,8], and also [23], although the latter does not use that terminology).

Here we will simply propose exchangeable random measures as a fairly intuitive equivalent formalism, and com-
pare it with two predecessors from the literature: the weighting schemes used by Panchenko and Talagrand in [23],
and Panchenko’s use of directing functions in [20]. After introducing our notion of “limit object,” we will give a fairly
brisk summary of the translations between these formalisms; the calculations are all routine. We will restrict attention
to the Viana–Bray model as above for simplicity, but the discussion could easily be extended to a more general class
of dilute models, as in [20,23].
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6.1. Basic idea

If γβ,N is as above, then it defines an ERM μ by sampling: first quench the random measure γβ,N ; then select samples
(called “replicas”) σ 1, σ 2, . . . ∈ {−1,1}N i.i.d. ∼ γN ; and finally use these to define μ as a mixture of delta masses:

μ = 1

N

N∑
n=1

δ(σ 1
n ,σ 2

n ,...). (9)

Identifying ±1 with the extreme points of Pr{−1,1}, this is clearly a mixture of ERPMs of the kind considered
previously. Let Samp(γβ,N ) be the law of μ.

It now makes sense to say that γβ,N sampling converges to some random probability measure γ β on B([0,1),

Pr{−1,1}) if Samp(γβ,N ) converges to Samp(γ β) for the vague topology on Pr(Pr{−1,1}N). This last space is com-
pact, and the laws of exchangeable random measures clearly comprise a further subspace which is closed for the vague
topology (since invariance under any given continuous transformation of {−1,1}N is a closed property). Therefore one
can always at least take subsequential limits of (Samp(γβ,N ))N , and now Theorem B promises the existence of some
γ β that represents the limiting ERM (although it is unique only up to equivalence).

This idea generalizes the more classical use of Gram–de Finetti matrices and their limits recalled above. Starting
from the SK model, the associated Gram–de Finetti matrix is obtained by sampling and then quenching the Gibbs
measure, and then sampling from that Gibbs measure a sequence of states in {−1,1}N and computing their inner
products as elements of 
N

2 , normalized by N (that is, their “overlaps”). Comparing with the random measure μ in
(9), this Gram–de Finetti matrix may be recovered as simply the (random) matrix of covariances of the different
coordinates in {−1,1}N under this (random) measure.

6.2. Comparison with weighting schemes and directing functions

In [23] the authors do not introduce a notion of limits as such for the random measures γβ,N , but they do formulate
their most general results (Section 3 of that paper) in terms of some data that they call a “weighting scheme.” This
consists of:

• a sequence of R-valued r.v.s (Xk)k , and a family ((X
i,j
k )k)i,j of i.i.d. copies of this sequence indexed by (i, j) ∈N2;

• and, independently of these, a [0,1]-valued random sequence of weights (vk)k such that
∑

k vk = 1.

These data appear in an upper-bound formula for the free energy which will be recalled below. They can be
encapsulated in a certain directing random measure γ on B([0,1),Pr{−1,1}) as follows. First, identifying elements
of Pr{−1,1} with their expectations gives

B
([0,1),Pr{−1,1}) = B

([0,1), [−1,1]).
Now let Φ(x) := ex/(ex + e−x). Applying Lemma 3.1, we may find a sequence (fk)k in B([0,1), [−1,1]) such that

(
Φ(Xk)

)
k

law= (
fk(U)

)
k

when U ∼ U[0,1). (10)

To finish, let γ be the atomic random measure

γ =
∑
k≥1

vkδfk
, (11)

so the randomness of γ is derived from the random choice of the weights vk .
Clearly one could find many other ways to convert a weighting scheme into an ERM, but this translation is appro-

priate because it gives the correct correspondence between upper-bound formulae for the free energy to be recalled
below.



858 T. Austin

On the other hand, in [20] Panchenko does introduce a family of limit objects, closely related to our use of limiting
ERMs. Given the random Gibbs measure γβ,N on {−1,1}N , he draws independent replicas σ 1, σ 2, . . . from it and
then considers the joint distribution of the whole (N × ∞)-indexed, {−1,1}-valued random array(

σ

n

)
1≤n≤N,
≥1.

Whereas we used these replicas to form an empirical measure which is an ERM, Panchenko chooses an arbitrary
extension of this to a two-dimensional infinite random array. Letting N −→ ∞, if one considers a subsequence of the
γN for which these joint distributions converge, then in the limit one obtains a random {−1,1}-valued array which is
row–column exchangeable. Applying Theorem 3.3, this array has the same law as(

σ(U,Un,V
,Wn
)
)
n,
≥1

for some measurable function σ : [0,1)4 −→ {−1,1}, where U , Un for n ≥ 1, V
 for 
 ≥ 1 and Wn
 for n, 
 ≥ 1 are
i.i.d. ∼ U[0,1).

Panchenko then uses σ itself as his limit object for the sequence (γβ,N )N . The equivalence between this formalism
and the use of directing random measures on B([0,1),Pr{−1,1}) is just the equivalence between our Theorem B and
Theorem 3.3 described in Section 3.3 above.

6.3. Formula for the limiting free energy

A central result of [20] is a formula for the asymptotic expected free energy of models such as (7) in terms of a
functional of the directing functions introduced above: see [20], Theorem 2. For the VB model itself the result is as
follows.

Theorem 6.1 (Free energy formula). As N −→ ∞, the expected specific free energy from (8) satisfies

lim
N−→∞FN = inf

σ
P(σ ),

where for σ : [0,1)4 −→ {−1,1} we have

P(σ ) := log 2 + E(1) log E(2)

(
coshβ

K1∑
i=1

Jiσ (W,U,Vi,Xi)

)

− E(1) log E(2)

(
expβ

K2∑
i=1

Jiσ (W,U,Vi,Xi)σ
(
W,U,V ′

i ,X
′
i

))
,

where:

• all the r.v.s W , U , V1, V2, . . . , V
′
1,V

′
2, . . . ,X1,X2, . . . ,X

′
1,X

′
2, . . . are i.i.d. ∼ U[0,1),

• K1 is an independent Poisson r.v. of mean 2α,
• K2 is an independent Poisson r.v. of mean α,
• and the coefficients Ji are chosen independently from the same distribution as before,

and where

E(1) = expectation over W,K1,K2, (Vi)i ,
(
V ′

i

)
i

and (Ji)i

and

E(2) = expectation over U, (Xi)i and
(
X′

i

)
i
.
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If γ is the random directing measure on B([0,1),Pr{−1,1}) that corresponds to σ , then the above formula may
easily be recast in terms of γ : it is

log 2 + E log
∫

B

∑
ε1,...,εK1 =±1

K1∏
i=1

f
(
Vi, {εi}

)(
coshβ

K1∑
i=1

Jiεi

)
γ (df )

− E log
∫

B

∑
ε1,...,εK2=±1

ε′
1,...,ε

′
K2

=±1

K2∏
i=1

f
(
Vi, {εi}

)
f

(
V ′

i ,
{
ε′
i

})(
expβ

K2∑
i=1

Jiεiε
′
i

)
γ (df ),

where

B = B
([0,1),Pr{−1,1}),

and where E is now the expectation over all the random data γ , K1, K2, (Vi)i , (V ′
i )i and (Ji)i .

Another elementary (but tedious) calculation shows that under the correspondence (11) this coincides with the
upper-bound expression that appears in [23]: the right-hand side of inequality (3.3) in that paper. It is for the sake of
this calculation that one uses the function Φ to define fk in (10).

Remark. In [20] Panchenko also shows that the quantity above is unchanged if one instead takes the infimum only
over those directing functions σ that satisfy an analog of the Aizenman–Contucci stability under cavity dynamics.
This modification could also easily be formulated in terms of random directing functions, but we omit it for the sake
of brevity.

6.4. The analog of ultrametricity

After the general formalism of Section 3 of [23], Sections 4 and 5 of that paper propose a special class of weighting
scheme objects that correspond to the physicists’ notion of “replica-symmetry breaking,” and conjecture that these
give the correct expression for the limiting free energy. Following the prescriptions of the preceding subsections, we
can translate this conjecture into a proposal for a class of limiting random directing measures which adapt the classical
Parisi ultrametricity ansatz [22] to the setting of dilute models. As before, the necessary calculations are simple but
tedious, so we omit the details. Some discussion along these lines is given in [20] for the SK model, rather than for
dilute models.

The key objects seem to be the following. Suppose that T is a discrete rooted tree with all leaves at a fixed finite
distance from the root. (The discussion that follows can certainly be extended to more general trees, but we omit that
here.) Let ∗ be the root and ∂T the set of leaves. Also, let Σ be the Borel σ -algebra of [0,1). We formulate the
following on [0,1), but it clearly makes sense on any probability space.

Definition 6.2. A branching filtration on ([0,1),Σ,Leb) indexed by T is a family of σ -subalgebras (Σt )t∈T such
that

• t ≤ t ′ �⇒ Σt ⊆ Σt ′ ;
• for any t0, . . . , tm, the σ -algebra Σt0 is conditionally independent from Σt1 ∨ · · · ∨ Σtm over Σs where s = (t0 ∧

t1) ∨ (t0 ∧ t2) ∨ · · · ∨ (t0 ∧ tm), the closest vertex of T to t0 which is a common ancestor of t0 and some other ti .

By analogy with ordinary filtrations, the branching filtration is complete if every Σt is complete for Lebesgue measure.
Given a branching filtration � = (Σt )t∈T , a branchingale adapted to � is a family of integrable R-valued functions

(ft )t∈T on [0,1) such that

• ft is Σt -measurable;
• t ≤ t ′ �⇒ ft = E(ft ′ |Σt).
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Observe that in this case every root-leaf path ∗v1v2 · · ·vd gives a martingale (f∗, fv1, . . . , fvr ) adapted to the filtration
(Σ∗,Σv1, . . . ,Σvd

); we call the branchingale homogeneous if every root-leaf path gives a martingale with the same
distribution.

Sometimes we refer to the whole collection (ft ,Σt )t∈T as a branchingale.

Remark. Of course, stochastic processes indexed by trees have been studied before, but I have not been able to find a
reference for precisely this notion. Much of the literature concerns tree-indexed Markov processes, as in [6], but I do
not see why the r.v.s fv that we will use should have the Markov property.

Definition 6.3. A subset Y ⊆ B([0,1), [−1,1]) is hierarchically distributed if it equals {fv: v ∈ ∂T } for some homo-
geneous branchingale (ft ,Σt )t∈T . The minimal depth of T in such a representation is the depth of the set Y .

Now a simple calculation shows that under the correspondence (11), the special weighting schemes used to formu-
late the r-step replica-symmetry breaking bound in [23], Section 5, correspond to random measures γ which are a.s.
supported on hierarchically distributed sets of depth r , and with the weights given by a Derrida–Ruelle probability
cascade that follows the indexing tree.

To be more specific, in their work they consider r.v.s Xt indexed by the leaves t of a tree T of depth r and infinite
branching, and specify their joint distribution by constructing a larger family of random variables(

η(0), η
(1)
t1

, η
(2)
t1t2

, . . . , η
(r−1)
t1t2···tr−1

, η
(r)
t1t2···tr

)
indexed by all downwards paths from the root in T , where:

• η
(r)
t1···tr = Xtr for each leaf tr ∈ ∂T ,

• for a shorter path t1t2 · · · ts , 0 ≤ s ≤ r − 1, the r.v. η
(s)
t1t2···ts takes values in the space

Pr
(
Pr

(· · ·Pr(︸ ︷︷ ︸
r−s

R)
))

,

• and for each t1t2 · · · ts with s ≤ r − 1, the r.v.s η
(s+1)
t1t2···ts t indexed by all the children t of ts are chosen indepen-

dently from η
(s)
t1t2···ts , and similarly the random variables at all further children along distinct ancestral lines are

conditionally independent.

Such a structure arises from a homogeneous branchingale (ft ,Σt )t∈T for which 0 < ft < 1 a.s. as follows. Let
η

(r−1)
t1···tr−1

be the conditional distribution of Φ−1 ◦ ftr on Σtr−1 for any child tr of tr−1, where Φ(x) = ex/(ex + e−x) as

before, and the condition 0 < ftr < 1 ensures that this composition is defined a.s. Now let η
(r−2)
t1···tr−2

be the conditional

distribution of η
(r−1)
t1···tr−1

on Σtr−2 , and so on. These are then related to the functions ft themselves in that fts is obtained

from η
(s)
t1···ts by applying Φ and then taking barycentres r − s times. If one starts instead from the r.v.s η

(s)
t1···ts as above,

another simple (but lengthy) iterated appeal to Lemma 3.1 produces a homogeneous branchingale that gives rise to it.
Thus, the natural analog of the Parisi ultrametricity ansatz for the Viana–Bray model seems to be that in the infimum

of Theorem 6.1, if one formulates the right-hand side in terms of directing random measures, it is enough to consider
directing random measures that are a.s. supported on hierarchically distributed subsets of B([0,1),Pr{−1,1}).
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