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Abstract. We study Bernoulli percolations on random maps in the half-plane obtained as local limit of uniform planar triangu-
lations or quadrangulations. Using the characteristic spatial Markov property or peeling process (Geom. Funct. Anal. 13 (2003)
935–974) of these random maps we prove a surprisingly simple universal formula for the critical threshold for bond and face perco-
lations on these graphs. Our techniques also permit us to compute off-critical and critical annealed exponents related to percolation
clusters such as the probabilities of a cluster having a large volume or perimeter.

Résumé. Nous étudions différentes percolations de Bernoulli sur les cartes aléatoires du demi-plan obtenues comme limites locales
de triangulations ou quadrangulations planaires uniformes. En utilisant la propriété de Markov spatiale – ou épluchage (Geom.
Funct. Anal. 13 (2003) 935–974) – de ces réseaux, nous prouvons une formule simple et universelle pour le paramètre critique
de percolation par arêtes ou par sites sur ces cartes. Nos techniques nous permettent également de calculer certains exposants
« annealed » presque-critiques et critiques comme la probabilité qu’un cluster ait un grand volume ou un grand périmètre.
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1. Introduction

In this work we study different types of percolations (bond and site percolation on the graph and its dual) on several
types of infinite random maps. For the sake of clarity we focus on three kinds of maps: triangulations, two-connected
triangulations and quadrangulations, though our method is more general and we shall indicate this at times. We show
that the spatial Markov property of the underlying random lattice (a term used interchangeably with random map) can
be used as in [5] in order to compute the critical threshold for percolation as well as geometric properties of critical
and near critical clusters. In order to state our results precisely let us start by introducing rigorously the random lattices
which we are working with.

Random infinite lattices

Recall that a finite planar map (map in short) is a finite connected graph embedded in the two-dimensional sphere
seen up to homeomorphisms preserving the orientation. The last decade has seen the emergence and the development
of the mathematical theory of “random planar maps.” A primary goal of this theory is to understand the geometry of
large random planar structures.
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One fruitful approach consists of defining infinite random maps which are the so-called local limits of random
planar maps and studying their properties. This idea has been first introduced in the seminal work of Benjamini and
Schramm [11] in the context of planar maps and is also related to works of Aldous and Steele featuring local limits of
trees [2]. Let us present this setup. As usual in the context of planar maps, we work with rooted maps, meaning maps
with a distinguished oriented edge �e called the root edge of the map. The origin vertex of the root edge is called the
origin or root vertex of the map. Following [11] we define a topology on the set of finite maps: If m, m′ are two rooted
maps, the local distance between m and m′ is

dloc
(
m,m′) = (1 + R)−1,

where R is the maximal radius so that BR(m) is isomorphic to BR(m′). Here, BR(m) is the ball of radius R in m

around the origin, namely the map formed by the edges and vertices of m that are at graph distance smaller than or
equal to R from the origin. The set of finite maps is not complete for this metric and so we shall work in its completion
which also includes infinite maps (see [17] for a detailed exposition and references).

In this work, we focus on two specific kinds of planar maps: triangulations (all faces have degree 3) and quadran-
gulations (all faces have degree 4). We also split the set of triangulations according to their connectivity properties:
A 1-connected triangulation is just a (connected) triangulation and a 2-connected triangulation is a triangulation with
no cut-vertex. It is easy to see that a triangulation can only fail to be 2-connected if some vertex has a self loop (an
edge whose target and origin vertices are confounded).

In the following, all the quantities referring to 1 or 2-connected triangulations are denoted with the symbols �1,
�2, and the ones referring to quadrangulations are denoted with the symbol �. To make statements that hold simulta-
neously about various types of maps we shall use ∗’s to indicate one of those, or possibly some other type of planar
map (since our methods work in much greater generality). See Fig. 1 for examples of a 1-connected triangulation and
a quadrangulation.

We review the now classical construction of the Uniform Infinite Planar Maps as weak local limits w.r.t. dloc of
uniform finite maps. Let ∗ ∈ {�1,�2,�} and for n ≥ 0 we write M∗

n for a random variable uniformly distributed over
the set of type-∗ maps with n vertices. Then we have the following convergence in distribution for dloc

M∗
n

(d)−→
n→∞M∗∞. (1)

The object M∗∞ is a random infinite rooted planar map called the (1 or 2-connected) Uniform Infinite Planar Trian-
gulation (UIPT) if ∗ ∈ {�1,�2} and the Uniform Infinite Planar Quadrangulation (UIPQ) if ∗ = �. The convergence
(1) was established by Angel and Schramm [8] in the triangular case ∗ ∈ {�1,�2} and by Krikun [25] in the quadran-
gulation case ∗ = �. The UIPQ has also been constructed by other means by Chassaing and Durhuus [15], see also
[17]. These random lattices have attracted a great deal of attention in recent years [5,10,22,26,29]. Their large scale
geometry is still a source of intensive research and is tightly connected (see [16]) to the Brownian map – the universal
continuous random surface obtained as the scaling limit of properly renormalized random planar maps – studied by
Le Gall and by Miermont [28,32].

An important area of research on the random lattices M∗∞ is to understand the behavior of statistical mechanics
models on them. Angel [5] already studied site percolation on the UIPT and in particular proved that the critical
percolation threshold is almost surely 1

2 . See also the recent preprint [31] deeling with bond percolation on the Uniform
Infinite Planar Map. In this paper, we extend this analysis to several other types of percolation, including bond and
site percolation on both the map and its plane dual.

Fig. 1. A type 1 triangulation (note the triangle inside the self-loop) with simple boundary and a quadrangulation with general boundary.
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We pursue the analysis of percolation on random maps by focusing on half-planar models. These models indeed
have an especially useful spatial Markov property which makes the analysis of the percolation process much simpler
(see [7] for a study of this property). These pages can thus be seen as a step towards the analysis of percolation on the
full-plane UIP∗, which we do in a subsequent paper [6].

In order to construct these half-plane models we first extend (1) to maps with a boundary: A triangulation (or
a quadrangulation) with a boundary is a planar map whose faces are triangles (resp. quadrangles) except the face
incident on the right of the distinguished oriented edge which can be of arbitrary degree. This face is called the external
face. The perimeter ∂m of a map m with a boundary is the degree of the external face. In general, the boundary of a
map m can possess “pinch-points,” that are vertices visited at least twice during the contour of the external face. If the
boundary does not have pinch-points we say that the boundary is simple.

In the following, we only consider maps with a simple boundary and call them maps of the p-gon where p ≥ 1 is
the perimeter. For n ≥ 0 and p ≥ 1, we denote by M∗

n,p the set of all type-∗ maps of the p-gon with n inner vertices.

Euler’s formula implies that M�
n,p = ∅ for p odd, hence in the case of quadrangulations we implicitly restrict all

statements to p even. For p ≥ 1, let M∗
n,p be a random variable uniformly distributed over the sets M∗

n,p . Then we
have the following convergences in distribution for the distance dloc:

M∗
n,p

(d)−→
n→∞M∗∞,p.

Extending the previous terminology we call these objects the UIP∗ of the p-gon.
The preceding convergences are easy corollaries of the convergences with no boundary (1), proved by conditioning

on the root having a suitable neighborhood and removing that neighborhood to get the boundary (see [5,18] for
details).

We can now introduce the main characters of our work: the half-plane UIP∗. These are obtained as limit of the
UIPT (resp. UIPQ) of the p-gon as p → ∞. More precisely, we have the following convergence in distribution for
dloc

M∗∞,p

(d)−→
p→∞ M∗. (2)

(As noted, in the case ∗ = � the convergence holds along even values of p.) The random infinite planar map M∗
is called the half-plane UIPT (resp. UIPQ) which we abbreviate by UIHP∗. The convergence (2) was established in
[4] in the case of triangulations and can be easily adapted to the quadrangulation case. See also [18] for a different
construction of M� via bijective techniques “à la Schaeffer” [33].

Percolation

Having introduced the random lattices, let us specify the models of percolation that we will discuss. Conditionally on
M∗, we consider Bernoulli percolation on the edges, vertices or faces, that is, we color the elements of the map white
with probability p ∈ (0,1) and black with probability 1 −p independently from each other, and consider the structure
of connected white clusters. If we color the edges, we speak of bond percolation, if we color the vertices we speak of
site percolation. Coloring faces yields site percolation on the dual of the map (two faces are adjacent if they share an
edge) and will be called “face percolation” in this work.

In the triangular case ∗ ∈ {�1,�2}, site percolation has already been analyzed in [4,5] where it is proved that
p∗

c,site = 1
2 . The techniques developed in this paper do not apply to site percolation on general planar maps (other than

triangulations) and for example the value of p�
c,site is still unknown. However in the case of bond or face percolation

we prove that the critical percolation thresholds are almost surely constant and can be expressed by a universal formula
in terms of a unique parameter depending on the model. To give their values, we introduce for each model of planar
map a quantity δ∗ > 0. This quantity is well defined and can be computed for fairly general models of planar maps.
Roughly, δ∗ is the expected number of boundary edges that are separated from infinity by the face containing the root
edge (see Section 2.3.2). In the main classes we study we have

δ�1 = 1√
3
, δ�2 = 2

3
and δ� = 1. (3)
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Theorem 1 (Percolation thresholds). For ∗ ∈ {�1,�2,�}, the critical thresholds for bond and face percolations
are almost surely constant and are given by

p∗
c,bond = δ∗

2 + δ∗ and p∗
c,face = δ∗ + 2

2δ∗ + 2
.

In the case of bond percolation on quadrangulations or 1-connected triangulations, our results agree with the
derivation done by Kazakov in [23] by taking the (non-rigorous) limit q → 1 of the critical thresholds in the q-states
Potts models on such lattices.

We prove that in each model considered in Theorem 1, at the critical probability, there is no infinite cluster. We
also study the associated dual percolations, which in the case of bond percolation is just bond percolation on the dual
lattice (edges in a map are in bijection with edges in the dual map, so bond percolation on a map and on its dual use
the same randomness, and are dual to each other) and prove the unsurprising identity

p∗
c,bond = 1 − p∗

c,bond′ .

In the case of face percolation, the dual percolation is the same percolation but where faces are declared adjacent if
they share a vertex. We call it the face′ percolation; here also p∗

c,face = 1 − p∗
c,face′ .

The universal form of the critical probability thresholds expressed in Theorem 1 in terms of δ∗ holds in a much
larger list of maps than the ones we consider in this work and could be applied, e.g. to pentagulations, general planar
maps or planar maps with Boltzmann distribution, see [30]. The only quantity to compute would be the equivalent
of δ∗ defined in Proposition 3. Notice also that p∗

c,bond and p∗
c,face are functions of each other. If an oracle such as a

physics conjecture or a self-duality property, etc. furnishes one of the two thresholds then Theorem 1 automatically
gives the other.

In relation to [5], one key idea which enables us to treat bond percolation is to keep as much randomness as we
can during the exploration process. In other words, even after being discovered in the map, the status of an edge can
be kept random until it is necessary for the exploration process to know its color.

Critical exponents

In contrast with the critical threshold values which depend on the local features of model considered, we also compute
a few annealed critical exponents which are not model-dependent. The exploration of percolation interfaces in random
maps involves random walks with heavy-tailed step distribution in the domain of attraction of a totally asymmetric
(spectrally negative) stable law of parameter 3/2. Using standard results for heavy-tailed random walks we are able
to compute critical exponents related to the perimeter (boundary) and the volume of critical percolations clusters.

For sake of simplicity we restricted our proof to the case of site percolation on triangular lattices. It seems very
likely that our methods could be adapted to more general cases and would yield the same critical exponents (see the
discussion in Section 4.3). We now make our setting precise. In M�2

we consider the hull H of the cluster of a unique
white vertex in an otherwise black boundary (see Fig. 2). That is, we consider the cluster, together with all finite
components of its complement. We will consider the volume |H| of H, that is its number of vertices, and the volume
|∂H| of its boundary, which is the number of vertices of H adjacent to M∗ \ H. We shall also consider the extended
hull H1 which is the hull formed by all the triangles adjacent to H. More precisely we are interested in the boundary
|∂H1| of this extended hull.

Theorem 2 (Critical exponents). At the critical percolation threshold pc = 1/2, we have the following estimates

(i) Ppc (|H| > n) = n−1/4+o(1),
(ii) Ppc (|∂H| > n) � n−1/3,

(iii) Ppc (|∂H1| > n) = n−1/2+o(1).

Here and later we use the notation A � B to denote that A/B is bounded below and above by some absolute
constants. The estimates we get in the proof are significantly more explicit than the above statement. In particular, for
(i) and (iii) we get lower and upper bounds with only a poly-logarithmic correction, see Section 4. We expect these
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Fig. 2. An example of cluster, its extended hull and its hull in gray.

asymptotics to hold with no correction to the polynomial term. Indeed, it is even expected that a cluster conditioned to
be large should have a scaling limit, and that the different quantities we observe should all be closely related to each
other. Moreover, our proofs relate these to various aspects of stable processes, which are scale invariant, allowing only
polynomial behaviour. Note that these critical exponents are annealed versions, that is the P averages over the random
lattice and the percolation. We do not know if quenched critical exponents exist and if their values coincide with the
annealed ones.

As can be seen in the last theorem the perimeter of the hull and the perimeter of the extended hull have completely
different exponents: after filling-in the “fjords” created by a percolation cluster we drastically reduce its perimeter.
This fact is well-known in the physics literature and it well understood for site percolation on the regular triangular
lattice thanks to the SLE processes.

One motivation for this research is the physics theory of 2-dimensional quantum gravity. In particular the KPZ
relation [24] predicts connections between critical exponents of statistical mechanics models on a regular lattice and
on a random lattice: if a set defined in terms of a percolation process on a fixed regular lattice has dimension 2(1 − x)

and the corresponding set defined in terms of percolation on a random map has “dimension” 4(1 − Δ), then the KPZ
relation states that

x = Δ(2Δ + 1)

3
.

For models other than percolation a similar relation holds, with the coefficients in the quadratic relation given in terms
of the so-called central charge c associated with the model. While there is some recent progress towards understanding
this relation in the work of Duplantier and Sheffield [20], the KPZ relation remains unproved. This relation has already
been checked for various other sets including e.g. pioneer points of simple random walk [10]. Our work gives another
strong indication that the relation does hold for critical percolation interface and boundary of the hull generated, in
other words for SLE6 and SLE8/3.

Indeed, going to a discrete level, a random subset FN of a planar quadrangulation with N faces is said to have a
quantum scaling exponent Δ if |FN | is of order N1−Δ as N → ∞. We consider now the hull of the UIPHT obtained
after n steps of exploration along the critical percolation interface. We know from Theorem 2 (and its proof) that
this map has roughly N ≈ n4/3 vertices. Since the percolation interface lying in this map has roughly n = N(1−1/4)

vertices, its “quantum scaling exponent” is Δ = 1
4 . Going through KPZ this becomes x = 1/8 and indeed, 2−2x = 7/4

is the dimension of the SLE6 curve [9]. Similarly if one considers the frontier of the extended hull after n exploration
steps, this set has roughly n2/3 = N(1−1/2) vertices (see the proof of Theorem 2) so that Δ = 1/2 in this case. Applying
KPZ we find that x = 1/3 and indeed, 2 − 2x = 4/3 is the dimension of SLE8/3 in the Euclidean setting.

The paper is organized as follows. In Section 2 we present in a unified way some enumeration results on random
planar maps and introduce the spatial Markov property as well as the peeling process which are the key ingredients
of this work. Section 3 is devoted to identifying the critical threshold parameters presented in Theorem 1. The last
section uses classical results on heavy-tailed random walk to get off-critical and critical exponents.
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2. Peeling process

2.1. A few properties of M∗

The random infinite half-planar maps M∗ for ∗ ∈ {�1,�2,�} were obtained as local limits of uniform ∗-angulations
of the p-gon with n faces by first letting n → ∞ and then sending p to infinity. Since the distribution of uniform
∗-angulation of the p-gon is invariant under re-rooting along the boundary the same property holds true for M∗. More
precisely, M∗ has an infinite simple boundary that can be identified with Z, the root edge being 0 → 1. Then for every
k ∈ Z, the law of the UIHP∗ re-rooted at the edge k → k + 1 is the same as the original distribution of M∗. Because
of this invariance we allow ourselves to be imprecise at times about the location of the root edge of M∗.

A less trivial property satisfied by M∗ is one-endness. Recall that a graph is one-ended if the complement of any
finite subgraph A contains a unique infinite connected component. It has been proved that M∗ almost surely has one
end in [4] in the triangulation case, and the method applies to other classes of maps as well. See also [18] for an
alternate approach to the quadrangulation case.

However, the foremost property of M∗ is the spatial Markov property. The half-planar model has the most simple
form of spatial Markov property which, roughly speaking, states that the complement of a simply connected region of
M∗ that contains the root edge (properly explored) is independent of this region and is distributed according to M∗.
This property, also called the domain Markov property in this context, is explored further in [7]. In order to make this
statement precise we shall need some enumerative background.

2.2. Enumeration

We gather here several results about enumeration and asymptotic enumeration of planar maps. Recall that for ∗ =
�1,�2,� respectively, and for n ≥ 0, p ≥ 1 we denote by M∗

n,p the sets of all type 1 or 2 triangulations and the set

of quadrangulations of the p-gon with n inner vertices. The reader should keep in mind that M�
n,p = ∅ if p is odd.

By convention the set M∗
0,2 contains the unique map (with simple boundary) composed of a single oriented edge.

All the results presented here can easily be deduced from the exact formulae for #M∗
n,p (or the intermediate steps

to reach them) and can be found in [21] for ∗ = �2, in [27] for ∗ = �1 and in [14] for ∗ = �. By convention the
asymptotics for #M�

n,p only apply to even values of p.
For n ≥ 0 and p ≥ 1 we have the following asymptotics for #M∗

n,p:

#M∗
n,p ∼

n→∞C∗(p)ρn∗n−5/2, (4)

where

ρ�1 = √
432, ρ�2 = 27/2 and ρ� = 12.

The asymptotics (4) in general and the exponent 5/2 are typical to enumeration of planar maps and hold for many
other classes of planar maps. As in previous works and as we will see below, the exponent 5/2 plays a crucial role
in the large scale structure of the random lattices. Furthermore, the functions C∗ also have a universal asymptotic
behavior:

C∗(p) ∼
p→∞K∗αp∗

√
p, (5)

where

α�1 = 12, α�2 = 9 and α� = √
54.

The exact values K�1 = (36
√

2π)−1,K�2 = (54π
√

3)−1 and finally K� = (8
√

6π)−1 will not be relevant in what
follows but we furnish them for completeness. Thanks to the n−5/2 polynomial correction in the asymptotic (4) the
series

∑
n≥0 #M∗

n,pρ−n∗ converges and we denote its sum by Z∗(p) < ∞. In fact, for ∗ ∈ {�1,�2,�}, the functions
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Z∗(p) can be exactly computed and all exhibit an asymptotic behaviour of the form Z∗(p) ∼ κ∗p−5/2α
p∗ with κ∗ > 0,

more precisely we have

Z�1(p) = (2p − 5)!!6p

8
√

3p! for p ≥ 2 and Z�1(1) = 2 − √
3

4
,

Z�2(p) = (2p − 4)!
(p − 2)!p!

(
9

4

)p−1

for p ≥ 2,

Z�(2p) = 8p(3p − 4)!
(p − 2)!(2p)! for p ≥ 1.

(We use the notation (2n+1)!! = (2n+1)(2n−1) · · ·3 ·1 and (−1)!! = 1.) The reader may identify Z as the partition
function in the following measure:

Definition 1. The free ∗-Boltzmann distribution of the p-gon is the probability measure on
⋃

n≥0 M∗
n,p that assigns

a weight ρ−n∗ Z∗(p)−1 to each map belonging to M∗
n,p .

Thus we may talk of �1-Boltzmann or �-Boltmann distributions in an p-gon.

2.3. The spatial Markov property

2.3.1. One-step peeling of M∗
We now present the version of the spatial Markov property (also called the domain Markov property [7]) that we use.
This version describes the conditional laws of the different sub-maps we obtain from M∗ after conditioning on the face
that contains the root edge. We do not present the proofs since they are contained in [4] for the case of triangulations
(∗ = �1,�2) and can easily be adapted to the case of quadrangulations. We do however include a rough sketch of the
calculations involved.

Let M∗ be a uniform infinite planar map of the half-plane. Assume that we reveal in M∗ the face on the left of
the root edge, we call this operation peeling at the root edge. The revealed face can separate the map into many
regions and different situations may appear depending on the type of planar map we consider. Let us make a list of
the possibilities and describe the probabilities and the conditional laws for each case.

Triangulation case. In this paragraph ∗ ∈ {�1,�2}. We reveal the triangle that contains the root edge in M∗. Two
cases may occur:

• The revealed triangle could simply be a triangle with a third vertex lying in the interior of M∗, see Fig. 3(left). This
event appears with probability which we denote by q∗−1, and it is easy to see from the convergences (1) and (2) the
asymptotics (4) and (5) that

q∗−1 = lim
p→∞ lim

n→∞
#M∗

n−1,p+1

#M∗
n,p

= α∗
ρ∗

.

We deduce that q
�2

−1 = 2/3 and q
�1

−1 = 1/
√

3.
Furthermore, conditionally on this event, the remaining triangulation (in light gray in Fig. 3) has the same

distribution as M∗. To be precise, we need to specify a root for this new map, but due to the translation invariance
discussed above, any boundary edge will do. For example we may root it at the edge of the revealed triangle which
is adjacent on the left of the original root edge.

• Otherwise, the revealed triangle has all of its three vertices lying on the boundary and the third one is either k ≥ 0
edges to the left of the root edge or k edges to the right of the root edge, see Fig. 3(right). These two events have
the same probability which we denote by q∗

k . Notice first that when ∗ = �2 we must have k > 0 since loops are not
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Fig. 3. Cases when peeling a triangulation. The map in the light gray area has the same law as the entire map.

allowed. Here also, one can use (1) and (2) to compute q∗
k , and we get

q∗
k = lim

p→∞ lim
n→∞

∑
n1+n2=n

#M∗
n1,k+1#M∗

n2,p−k

#M∗
n,p

= lim
p→∞Z∗(k + 1)

C∗(p − k)

C∗(p)
+ Z∗(p − k)

C∗(k + 1)

C∗(p)

= Z∗(k + 1)α−k∗ .

Furthermore, conditionally on the fact that the revealed triangle has its third vertex lying k edges away from the
root edge, the triangulation with finite simple boundary it encloses (in dark gray on Fig. 3(right)) is distributed
according to a ∗-Boltzmann of the k + 1-gon. The remaining infinite part (in light gray on the figure) with arbitrary
choice of root, is independent of the finite map enclosed and is distributed according to M∗. The k edges separating
the root edge from the third vertex are called the swallowed boundary.

Quadrangulation case. Let M� be a half-plane UIPQ and let us reveal the quadrangle that contains the root edge.
We have three different cases.

• The simplest of all is the case when the quadrangle containing the root edge has two of its vertices lying inside M�.
As for triangulations, we may compute the probability of this event to be

q�−1 = lim
p→∞ lim

n→∞
#M�

n−2,p+2

#M�
n,p

=
(

α�
ρ�

)2

= 3

8
.

Here also, conditionally on this event, the remaining half-plane quadrangulation (rooted arbitrarily at the first edge
of the revealed quadrangle) is distributed according to M�.

• The revealed square could also have three vertices lying on the boundary of the map and one in the interior and
separate the map into a region with a finite boundary and one with an infinite boundary. This again separates into
two sub-cases depending whether the third vertex is lying on the left or on the right of the root edge, by symmetry
these events have the same probability. Suppose for example that the vertex is on the left of the root edge. This
further splits according to whether the fourth vertex of the quadrangle lies on the boundary of the finite region or
of the infinite region. Since all quadrangulations are bipartite, this is related to the parity of the number of edges
between this third point on the boundary and the root edge, which we denote by 2k or 2k + 1 (see figure below).
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Fig. 4. Two of the ways a revealed quadrangle may have all its vertices on the boundary.

If the length of the swallowed boundary is odd, then the fourth point of the discovered square lies on the boundary
which is exposed to infinity. This event has a probability

q�
2k+1 = lim

p→∞ lim
n→∞

∑
n1+n2=n−1

#M�
n1,2k+2#M�

n2,p−2k

#M�
n,p

= Z�(2k + 2)α−2k
�

ρ�
.

On the other hand, if the length of the swallowed boundary is even, then the fourth point of the square must lie
in the enclosed region and this event has a probability

q�
2k = lim

p→∞ lim
n→∞

∑
n1+n2=n−1

#M�
n1,2k+2#M�

n2,p−2k

#M�
n,p

= Z�(2k + 2)α−2k
�

ρ�
.

In both cases, conditionally on any of these events the enclosed maps are �-Boltzmann of the (2k + 2)-gon (see
Definition 1), and the infinite remaining part is independent of it and has the same distribution as M�.

• The last case to consider is when the revealed square has all of its four vertices on the boundary. This could happen
in three ways, as 0, 1, or 2 vertices could be to the right of the root edge (see Fig. 4). In this case the revealed
quadrangle separates from infinity two segments along the boundary of lengths k1 and k2 as depicted on the figure
below. The numbers k1 and k2 must both be odd. These events have the same probability

q�
k1,k2

= lim
p→∞ lim

n→∞
∑

n1+n2+n3=n

#M�
n1,k1+1#M�

n2,k2+1#M�
n3,p−k1−k2

#M�
n,p

= Z�(k1 + 1)Z�(k2 + 1)α
−k1−k2
� .

As in all other cases, conditionally on any of these events the three components are independent, the finite ones are
�-Boltzmann of proper perimeters and the infinite one is distributed as M�.

General case. This method applies to more general maps, including d-angulations for any d (odd or even) as well
as maps with mixed face sizes and a weight for each face size. In complete generality the analogues of (4) and (5) are
not known, though they are believed to hold, and are known in some cases, most notably fairly general bipartite maps
[13]. In any class of maps where these asymptotics hold, a similar peeling procedure may be applied. The number
of cases grows exponentially in d , as each vertex of the revealed face may or may not be on the boundary, and in
general some of the vertices may coincide. However, the separated components of the map are always independent
Boltzmann maps, and are independent of the remaining infinite part which is distributed as the half-plane model. While
the computational complexity of such analysis increases quickly with d , it seems there is no conceptual difficulty
involved in generalizing our arguments to any specific d .

2.3.2. Starring δ∗
Although the one-step peeling transitions in the cases of triangulations and quadrangulations seem different they share
several common key properties which specify here. To this end, let us introduce a few notions. Imagine that we reveal
the face adjacent to the root edge in M∗ as above. The new face may enclose a finite region (or two) and can surround
some of the edges of ∂M∗. We call these edges the swallowed edges.
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Fig. 5. The exposed edges are in fat black lines and the swallowed ones are in fat gray lines (the remaining cases are symmetric).

On the other hand, some edges of the new discovered face form a part of the boundary of the remaining half-
planar map. These edges are called exposed edges. In the triangulation case there are two exposed edges when the
discovered triangle has only two vertices lying on the boundary (first case) and one exposed edge otherwise. In the
quadrangulation there are three exposed edges on the event of probability q�−1, two exposed edges on the events of

probabilities q�
k for k ≥ 1 odd and only one on the events of probabilities q�

k′ for k′ ≥ 2 even and q�
k1,k2

. See Fig. 5.
Let E∗, R∗, L∗ be respectively the number of exposed edges and the number of edges swallowed to the right and

to the left of the peeling point when revealing a single face. By symmetry, the number of edges swallowed to the left
of the peeling location has the same distribution as R∗. Of course, the number of edges swallowed on the two sides
and E∗ are not independent. We now define

δ∗ := E[#Swallowed edges] = 2E
[
R∗]. (6)

We will see that δ∗ plays a key role in determining percolation thresholds on these infinite maps.

Proposition 3. We have

E
[
E∗] = 1 + δ∗ and E

[
L∗] = E

[
R∗] = δ∗

2
. (7)

Moreover, for ∗ ∈ {�1,�2,�} we have

δ�1 = 1√
3
, δ�2 = 2

3
and δ� = 1. (8)

Proof. Both statements follow from a direct computation using the exact expression of the probabilities q∗· and the
enumerative formulae of the last section. We omit the details, though the result is easily and reliably verified in a
computer algebra system such as Mathematica™ or Maple™. �

Remark. It would be nice to have a conceptual proof of the identity (7) that would apply to many classes of planar
maps, perhaps in terms of singularities of generating functions. As it is, we get this identity on a case by case basis by
computational methods.

Note that in the triangulation case this implies that δ∗ is simply equal to q∗−1, since E ∈ {1,2}. The relation between
the expected number of swallowed and exposed edges can also be interpreted as follows. During the exploration of
a face the change in the length of the boundary of the external infinite half-plane map has zero expectation. Indeed
the initial edge at which we peel, together with the swallowed edges are no longer on the boundary, and the exposed
edges are added.

Note however that the number of exposed edges is always bounded by 2 in the triangulation case and by 3 in the
quadrangulation case, whereas the number of swallowed edges has a heavy tail. Indeed, in the cases we consider here,
and under mild assumptions in much greater generality, a computation shows that R∗ has a heavy-tail of index 5/2,
that is,

P
(
R∗ = k

) ∼ c∗k−5/2 as k → ∞.

In particular, R∗ is in the domain of attraction of a spectrally negative 3
2 -stable random variable, a fact we use in

Section 4.
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2.3.3. Markovian exploration: The peeling process
Based on the description of the one-step peeling of the root edge one can define a growth algorithm for random
maps, the peeling process, that was first used heuristically by physicists (see [35] and [3], Section 4.7) in the theory
of dynamical triangulations. Angel [4,5] then defined it rigorously and used it to study the volume growth and site
percolation on the uniform infinite planar triangulation M∗∞ for ∗ ∈ {�1,�2}. See also [10] where the peeling has
been used to study the simple random walk on the UIPQ. We adapt these ideas to the context of half-plane UIP∗.

Let M be an infinite ∗-angulation with an infinite simple boundary. If a is an edge on the boundary of M we denote
the one-step peeling outcome by Peel(M,a). This is the map obtained from M by “removing” the submap made of
the face adjacent to a together with any finite regions this face encloses, see Section 2.3.1. The choice of root edge in
this new map is somewhat arbitrary. We use the leftmost exposed edge, though any deterministic rule would do.

A peeling process is a randomized algorithm that consists of exploring M∗ by revealing at each step one face,
together with any finite regions that it encloses. More precisely, it can be defined as a sequence of infinite ∗-angulations
with infinite boundary · · · ⊂ M∗

1 ⊂ M∗
0 = M∗ such that for all i > 0

M∗
i = Peel

(
M∗

i−1, ai

)
for a (necessarily unique) edge ai on the boundary of M∗

i−1. We denote the revealed part by P ∗
i . This consists of all

faces of M∗ not in M∗
i , and all vertices and edges contained in them. Moreover the choice of the edge ai should be

independent of the unrevealed part M∗
i−1. That is ai can be chosen by looking at the revealed part P ∗

i−1 made of the
union of all the faces revealed and the finite regions they enclose up to step i − 1 and possibly an independent source
of randomness which is independent of M∗

i−1. Note that many different algorithms can be used in order to choose the
next edge to reveal. The only constraint is that we do not use information from the undiscovered part. Under these
hypotheses we have

Proposition 4. Let · · · ⊂ M∗
1 ⊂ M∗

0 = M∗ be a peeling process then

1. for every i ≥ 0, M∗
i is distributed as M∗ and is independent of P ∗

i ,
2. the sequence of pairs (E∗

i ,R∗
i )i≥1 representing the number of exposed edges and the number of edges swallowed

to the right of the peeling edge ai for i ≥ 1 is an i.i.d. sequence with the same law as (E∗,R∗) and hence mean
given by Proposition 3,

3. for ∗ ∈ {�1,�2} these have distribution

P
((
E∗

i ,R∗
i

) = (e, r)
) =

⎧⎨⎩
q∗−1, (e, r) = (2,0),
q∗

0 + (
1 − q∗−1

)
/2, (e, r) = (1,0),

q∗
k , (e, r) = (1, k), k > 0.

The explicit distribution of (E�,R�) can be computed from the description and formulae in Section 2.3.1, but
will not be used in the following.

Proof of Proposition 4. We prove the first statement by induction. Suppose that at step i +1 ≥ 1 the as yet unrevealed
part M∗

i is independent of the revealed part P ∗
i and is distributed as a standard UIHP∗. We then pick an edge ai+1 on

the boundary of M∗
i . Since the choice of this edge is independent of M∗

i itself, the map M̃∗
i obtained by re-rooting M∗

i

at ai+1 is also distributed as the UIHP∗. We can thus reveal the face in M̃∗
i adjacent to this edge and deduce from the

previous section that M∗
i+1 = Peel(M̃∗

i , ai+1) = Peel(M∗
i , ai+1) is independent of the union of P ∗

i and of the finite
regions discovered by this operation.

The second point easily follows from these considerations, and the third from the description of q∗
k above. The

additional term in the case k = 0 comes from the event that the revealed triangle has its third vertex to the left of the
root edge, which has probability 1

2 (1 − q∗−1). �

3. Percolation thresholds

We now use the peeling exploration described in the last section in order to study percolation on UIHP∗. The key idea
being as in [5] to explore the (leftmost) percolation interface. But this needs some care and tricks depending on the
type of percolation and lattice considered.
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To help the reader getting used to the tools and methods, we start by recalling the exploration of percolation
interfaces in site percolation on triangulations as developed in [4,5]. We then generalize this exploration process to
treat the case of face and bond percolations on UIHP∗. As we will see, the exploration of site-percolation interfaces is
possible in the triangular lattice, but present methods fail for more general lattices. On the other hand our exploration
of face and bond percolations can be performed in virtually any class of map.

We begin with Theorems 5–8, where we study the cluster of the origin with special boundary conditions. The
structure of the proof of each of these theorems is as follows: First we introduce a special boundary condition and
a peeling algorithm. We then check that the process leaves the form of the boundary condition invariant and check
that the exploration is Markovian in the sense of the previous section. For each model, a planar topological argument
shows that the peeling stops if and only if the cluster of the origin is finite. We finally relate the length of the “active
boundary” during this exploration to a random walk whose increments have a computable mean expressed in terms
of p ∈ (0,1) and δ∗ only. The peeling threshold is given when these increments have zero mean. Proposition 9 then
proves that the threshold probabilities found in these results indeed correspond to the quenched critical probabilities
for percolation in the standard models.

3.1. Site percolation on triangulations

Let M∗ for ∗ ∈ {�1,�2} be a UIHPT. Suppose that conditionally on M∗ we color the vertices of M∗ with two colors
(black and white) as follows: We first color deterministically all the vertices of the boundary in black except the right
extremity of the root edge that we color in white. We then color all the remaining vertices independently in white
with probability p ∈ (0,1) and in black with probability 1 − p. This yields site percolation on M∗ with mostly black
boundary condition, except for a single vertex. Our goal is to study the white cluster C = C∗

site containing the only
white vertex of the boundary. We shall use C when there is no risk of confusion, and make explicit the type of lattice
and percolation only when needed.

Theorem 5 ([4,5]). We have P(|C∗
site| = ∞) > 0 if and only if p > p∗

c,site where

p
�1

c,site = p
�2

c,site = 1/2.

Proof. The central idea is to explore along the (leftmost) percolation interface using a peeling procedure. Let us
describe precisely the algorithm to choose the edges to peel:

Algorithm. Assume that M∗
i is a site-percolated UIHP∗ with a boundary condition of the form · · · − • − ◦ − · · · −

◦ − • − · · · (i.e. all white vertices form a single finite connected segment). Peel the edge ai+1 := • − ◦ (which is well
defined on the assumption). If the peeling of ai+1 discovers a new vertex inside M∗

i (case 1 in Section 2.3.1) then also
reveal the color of this new vertex.

There are a couple of easy facts to check to see that this indeed defines a peeling process. First, it is easy to see that
the form of the boundary condition black–white–black is preserved after peeling at the edge ai and possibly revealing
the color of a new vertex. Here we use the fact that M∗ is a triangulation. Second, the edge ai chosen to be peeled at
time i ≥ 1 indeed depends on the submap P ∗

i−1 discovered up to time i − 1 as well as on the color of its vertices but
clearly does not depend on M∗

i−1, nor on the color of its internal vertices. Hence Proposition 4 applies, at least as long
as the boundary of M∗

i contains a white region necessary to designate the next point to peel.
It is easy to check that if this peeling algorithm is used from the very beginning then all the white vertices on

the boundary of M∗
i are part of the cluster of the white origin vertex. This exploration process terminates at the first

peeling step when the white boundary is “swallowed,” that is, when the new discovered triangle makes a jump to the
right of the peeling point and reaches the black boundary. If that happens, a simple topological argument shows that
the white cluster C must be finite (see Fig. 6). If the process does not terminate then C is infinite.

Let Si for i ≥ 0 be the number of white vertices on the boundary of M∗
i . Thus S0 = 1. If |C| = ∞ then Si is defined

and positive for all i ≥ 0. On the other hand, if C is finite then Sn = 0 for some n, after which the above peeling
process is no longer defined. (For completeness, we let Si = 0 for all i > n in that case.)
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Fig. 6. Exploration of the percolation interface in site percolation on a UIHPT. The gray part are the finite regions discovered during the peeling
process. The interface is in red. See online version for figure in colors.

Fig. 7. The different one-step peeling transitions during the exploration of site percolation interface with ∗ ∈ {�1,�2}.

We let εi = 1 if the peeling of ai discovers a new vertex inside M∗
i−1 and if the color of this vertex is white, set

εi = 0 otherwise. Notice that conditionally on the fact that the face adjacent to ai in M∗
i−1 has a vertex lying inside

M∗
i−1 (that is we discover two exposed edges) then εi is a Bernoulli variable of parameter p, and is independent of

P ∗
i−1 and of its coloring.

Recall that (E∗
i ,R∗

i ) are the number of exposed and swallowed edges during the ith step of peeling, and that as
long as the white interface is not empty these are i.i.d. random variables whose distribution is given in Proposition 4.
Then we have the following relation between the sequences defined so far that holds for ∗ ∈ {�1,�2}:

Sn = (
Sn−1 + εn1{E∗

n=2} −R∗
n

)+
, (9)

as long as Sn−1 > 0 (where X+ = X ∨ 0), see Fig. 7.
Hence the process (Sn) is a random walk with i.i.d. steps starting from 1 and killed (and set to 0) at the first hitting

time of Z− = {0,−1,−2, . . .}. Furthermore the increments of this walk have mean

E
[
ε
(
E∗ − 1

) −R∗] = δ∗
(

p − 1

2

)
.

It follows that the cluster C is almost surely finite if and only if E[ΔS] ≤ 0, thus p∗
c,site = 1/2 for ∗ ∈ {�1,�2} and

that the cluster of the origin is finite at p = p∗
c,site. �

Interface. It is easy to see that the above peeling process just explores the leftmost interface of the cluster of the
origin. More precisely, there is a well defined path in the dual graph separating C from the black cluster containing
the left part of the boundary. At each step of the peeling process we reveal a face along this interface. We also discover
the color of the vertices in the same time we peel M∗. Faces visited by the interface correspond to peeling steps except
that part of the interface that is contained in the triangulation enclosed by the last jump (in dotted red line on Fig. 6).

Remark. Note that it is essential that M∗ is a triangulation for the exploration of the interface of site percolation
to work. Indeed the boundary condition black–white–black may not be conserved during an exploration of site per-
colation on quadrangulations or other maps. We do not know how to adapt these ideas for quadrangulations, and
the value of p�

c,site is unknown. Note also that the fact that pc,site = 1/2 for triangulations is not surprising since site
percolation is self-dual on any triangulation.
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3.2. Face percolation

We now use similar arguments to study face percolation on UIHP∗ (two faces are adjacent if they share an edge).
Equivalently this is site percolation on their dual lattices. This time we are not restricted to the triangulation case. Our
results are valid for ∗ ∈ {�1,�2,�}, and there is no serious obstacle to deriving them for more general maps.

Let each face of M∗ be colored independently white with probability p ∈ (0,1) and black otherwise. Face perco-
lation does not have any apparent boundary condition, but in a sense we explain now, it does. Let us color the infinite
external face in black, which corresponds to an all black boundary condition. As far as percolation clusters are con-
cerned, this is equivalent to adding an extra face adjacent to each boundary edge and colouring it black. We do this
for all boundary edges except for the root edge. For the root edge, we add a white external face, see Fig. 8. We now
consider C = C∗

face to be the white cluster of this “origin face,” and show that it is a.s. finite if and only if p ≤ p∗
c,face.

Theorem 6. We have P(|C∗
face| = ∞) > 0 if and only if p > p∗

c,face where

p∗
c,face = δ∗ + 2

2δ∗ + 2
.

Proof. We adapt the exploration process of the last section. Having added the starting white face outside M∗ and after
coloring the infinite remaining face in black we have a black–white–black boundary condition similar to the situation
with site-percolation. Each edge of M∗

i is incident to one face inside and one outside of M∗
i . The form of the boundary

conditions that we maintain is as follows:

Algorithm. Assume that the boundary of M∗
i is of the following form: there is a single connected finite segment along

the boundary adjacent to white external faces and all other edges are adjacent to black faces. That is we have a
black–white–black boundary condition. We then peel the leftmost edge ai+1 of the white part and reveal the color of
the discovered face.

Here also a few checkings are in order. The initial boundary condition is trivially of the required form. Second,
notice that the boundary condition black–white–black is preserved by the peeling of the leftmost “white” edge, and
this is valid for ∗ ∈ {�1,�2,�} (and indeed for any planar map). Next, as before, the choice of the edge to peel stays
independent of the unknown region and of its coloring.

If this algorithm is used from the beginning then every edge on the boundary of M∗
i that is adjacent to a white

face of P ∗
i is actually connected is the dual of the map P ∗

i to the origin white face. Here also the exploration stops
when there is no edge to peel and a simple topological argument shows that this happens after a finite number of steps
precisely when the white cluster of the origin is surrounded by black faces and is consequently finite. Otherwise the
peeling process goes on forever (see Fig. 8).

During this exploration process, we still denote by (E∗
i ,R∗

i )i≥1 respectively the number of exposed edges and the
number of edges swallowed on the right of ai in the ith peeling step. We also let εi = 1 if the face discovered at
time i ≥ 1 is white and 0 otherwise. Hence, the process (εi)i≥1 is just a sequence of i.i.d. Bernoulli variables with
parameter p, and are independent of (E∗

i ,R∗
i ).

Fig. 8. Exploration of the percolation interface in site percolation on the dual of a type-1 UIHPT (explored edges are in fat lines). Note that the
external face is black, except for one white face added next to the root edge. The interface is in red. See online version for figure in colors.
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Let Sn denote the number of edges on the boundary of P ∗
n (or equivalently M∗

n) adjacent to a white face, and let Sn

be absorbed at 0. Then we have S0 = 1 and as long as Sn−1 > 0

Sn = (
Sn−1 −R∗

n − 1
)+ + εnE∗

n . (10)

Thus the process (Sn)n≥0 is almost but not quite a random walk with i.i.d. increments killed at the first hitting time
of Z−. In particular, as long as Sn is above 2 for triangulations or 3 for quadrangulations, its previous increment is
just εE∗ −R∗ − 1. Still, it is easy to see that Sn will a.s. reach 0 if and only if

0 ≥ E
[
εE∗ −R∗ − 1

] = p
(
1 + δ∗) − δ∗

2
− 1.

which completes the proof. �

Interface. In this case also, the above peeling process roughly follows the leftmost interface of the origin cluster.
However, contrary to site percolation on triangulation some parts of the interface (even before the last jump) are not
explored and are contained in enclosed maps: see the red dotted line in gray parts on Fig. 8.

3.3. Bond percolation

We now turn to bond percolation. Let us present the setting which is very similar to the ones treated before. Let
∗ ∈ {�1,�2,�}. To treat bond percolation a new type of boundary condition will be required. Conditionally on M∗
we color the edges of M∗ with two colors (black and white) with special boundary conditions: The root edge, and
every edge to its right along the boundary are black. Every other edge of the map is colored white with probability
p ∈ (0,1) and black with probability 1 − p independently. Thus the boundary is half-free and half-black. We are
interested in C = C∗

bond: the connected white cluster of the root vertex (the tail of the root edge).

Theorem 7. We have P(|C∗
bond| = ∞) > 0 if and only if p > p∗

c,bond where

p∗
c,bond = δ∗

2 + δ∗ .

Proof. When dealing with bond percolation a new important idea is to keep as much randomness as we can. Thus we
do not reveal the status (white or black) of all the edges we discover and keep most of them as unknown. Instead we
only check the color of an edge when necessary to determine if this edge is part of C or not. More precisely, we again
maintain a certain boundary condition on M∗

i .
One further difference is that we do not reveal a face of the map at every step. Instead, on some steps we only reveal

the color of an edge. Thus for some i ≥ 1 we will have that M∗
i = M∗

i−1, except for differing boundary conditions.

Algorithm. Assume M∗
i is a bond-percolated UIHP∗ with a boundary condition of the following form: There is a

single finite segment of boundary edges that are white (possibly of length 0). All edges to the right of this segment are
black, and all edges to their left are unknown and are i.i.d. with probability p of being white (and also independent of
the remaining map and its inside coloring). That is we have a free–white–black boundary condition. We then reveal
the color of the rightmost unknown edge ai+1. If (and only if) it is black, we also perform a peeling step at that edge
and reveal a face of M∗

i without revealing the status of the new edges discovered.

It is again straightforward to check that this form of boundary conditions free–white–black is preserved under
the peeling process (this holds for any class of map) and that the starting boundary condition is of the required type
(a single origin vertex with 0 white edges), see Fig. 9. We will further assume that this algorithm is used from the
beginning.

Contrary to the previous cases, there is no clear stopping time for the process because there is always a rightmost
unknown edge to reveal. In fact even if at some peeling time the whole white boundary is eaten there is still a possibility
that the new vertex at the junction free–black is linked to the white cluster, see Fig. 10. However as soon as p < 1 it is
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Fig. 9. Algorithm for bond percolation. Dotted edges have an unknown status.

Fig. 10. On the left the entire white boundary is swallowed, but it is still possible for the white cluster to connect to infinity as shown. With positive
probability, the next step rules out such a connection, as on the right.

easy to see that if at time i ≥ 1 the white boundary is of length 0 then there is a strictly positive probability that at time
i + 1 the rightmost unknown edge turns out to be black and the revealed face blocks the white cluster that is, even the
new junction free–black vertex is not part of the white origin cluster. See Fig. 10. In this case the white cluster of the
origin is finite.

Let Sn be the number of edges in the white boundary segment of M∗
n, so that initially S0 = 0. Let εn be the indicator

of the event that the edge tested in step n is white, and let R∗
n be the number of edges swallowed to the right of an.

Note that if an is white then no face is revealed and by convention we let R∗
n = 0 in this case. We do not need E∗

n in
this model. Then we find that Sn satisfies

Sn = (
Sn−1 + εn − (1 − εn)R∗

n

)+
,

and is defined for all n ≥ 0. According to the previous considerations if Sn = 0 infinitely often then |C| < ∞ almost
surely. On the other hand if Sn > 0 for all but finitely many n ≥ 0, then there is a positive probability that |C| = ∞
a.s. The expected increment of Sn is E[εn − (1 − εn)R∗

n] = p − (1 − p)δ∗/2 which is positive precisely when p >

δ∗/(2 + δ∗). The theorem follows. �

Interface. It is useful to consider simultaneously the percolation configuration on the lattice and the dual percolation
configuration on the dual lattice. Since each edge of the lattice corresponds to a dual edge in the dual lattice, the
randomness is the same. We will use the same colors for an edge and a dual edge, so we study white primary clusters
and black dual clusters. The above exploration process just follows the (leftmost) interface of the cluster C, that is the
interface that separates the cluster of the root vertex from the dual black cluster of the face containing the edge to its
left. As in Section 3.2 not every face visited by the interface corresponds to a step of the peeling process and some
parts of the interface lie in enclosed maps. See Fig. 11.

3.4. Dual percolations

In this section we study the “duals” of the percolations addressed in the preceeding sections. By dual percolations we
mean that if the origin cluster is blocked this is because there is a “dual” cluster in the dual percolation preventing
it from going further. In particular we shall prove the unsurprising result that the corresponding thresholds equal 1
minus the initial ones.

Since site percolation on triangulations is self-dual this case is already solved. As we already noticed, the dual
percolation of bond percolation on the UIHP∗ is bond percolation on the dual of the lattice. This process is studied in
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Fig. 11. Interface (in red) in bond percolation between the white cluster of the origin and the dual black cluster (dual edges in blue). See online
version for figure in colors.

Section 3.4.1. In Section 3.4.2 we sketch the analysis of the dual of face percolation which is given by site percolation
on the “star” lattice associated to M∗.

3.4.1. Dual bond = bond dual
Here we establish the unsurprising result p∗

c,bond + p∗
c,bond′ = 1. While the arguments is very similar to the one used

in the previous section, we describe it here as an illustration of how going from the primal to the dual lattice and
following the same interfaces yields a slightly different exploration procedure.

For sake of clarity we stay with the primal lattice M∗ but explore the dual cluster of the origin. We will first get
the result with a slightly different boundary condition: All the edges of the boundary of the primal but the root edge
are black. The root edge and all edges not on the boundary of M∗ are independent and randomly colored, white with
probability p ∈ (0,1) and black with probability 1 −p. Recall that the color of a dual edge is that of its corresponding
primal edge. We are now interested in C = C∗

bond′ the dual white bond percolation cluster containing the dual of the
root edge, which by convention is empty if the root edge is black.

Theorem 8. We have P(|C∗
bond′ | = ∞) > 0 if and only if p > p∗

c,bond′ where

p∗
c,bond′ = 2

2 + δ∗ .

Proof. As for bond percolation, the color of some edges will remain unknown. At each step we shall reveal the color
of one edge whose status is still unknown, and possibly reveal additionally a face of the map. The preserved boundary
condition is now black–free–black.

Algorithm. Assume M∗
i is a bond-percolated UIHP∗ with a boundary condition of the following form: All the edges

are black except a finite connected white region of finitely many edges whose unknown colors are i.i.d. white with
probability p and black with probability 1 − p (and also independent of the unknown region). We then discover the
color of the leftmost edge with unknown color. If it is black we do nothing more. If it is white, we also discover the face
in M∗

i adjacent to it but do not reveal the status of the new edges. (See Fig. 12.)

Clearly M∗
0 is of the above form and as usual we see that the boundary condition black–free–black is preserved

under the peeling process (see Fig. 13), at least as long as unknown edges are present on the boundary. Again, this is
valid without any restriction on the type of maps considered.

If the process is used from the beginning up to time i > 0, then one can check that every edge of unknown color
on ∂M∗

i that turns out to be white is connected in the dual of P ∗
i to the dual root edge (if it is white). The process

stops when there are no more unknown edges at some stage and as usual, a planar topological argument shows that
this happens precisely when the dual white cluster of the origin edge is finite.

Let us denote by Sn the number of edges of unknown color on the boundary after n steps of the peeling process.
Let εn be the indicator of the event that the edge inspected at step n is white, and let R∗

n,E∗
n denote the swallowed and
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Fig. 12. Exploration of dual bond percolation. The dotted edges are undetermined at the considered time.

Fig. 13. The operations needed to peel an edge.

exposed edges as before, with the convention that both are 0 if no face is revealed in the nth step. Clearly S0 = 1 and
as long as Sn−1 > 0 we have

Sn = (
Sn−1 − 1 − εnR∗

n

)+ + εnE∗
n .

As before (Sn) is killed and set to 0 when reaching Z
−. Hence (Sn) is not exactly a random walk absorbed at Z−

but the increments are independent as long as Sn is large. In particular we see that Sn has a positive probability of
remaining positive if and only if

0 < E
[
εn

(
E∗

n −R∗
n

) − 1
] = p

(
1 + δ∗/2

) − 1. �

3.4.2. Dual face
Face percolation is not self-dual. If two faces have only a common vertex but no common edge, they need not be part
of a single connected white cluster, but if two such faces are black they do form a local barrier for connection of white
faces. Hence the dual percolation of face percolation is face percolation but where two faces are declared adjacent
if they share a vertex. Equivalently it corresponds to site percolation on the dual lattice where we add connections
between sites whose dual faces share a vertex. This is known as the star-lattice in the case of Zd . We call it face′
percolation in the sequel.

We have the expected result

p∗
c,face′ = 1 − p∗

c,face = δ∗

2δ∗ + 2
.

Since the reader has already seen several versions of this argument, we only sketch the proof: The preserved
boundary condition is now black–white–black (that is edges are adjacent to exterior faces of those colors). The white
part may be empty, in which case we consider it to include a single vertex. The peeling rule is to peel at the edge just
to the left of the white revealed part. The corresponding recursion for the length of the white boundary is

Sn = (
Sn−1 −R∗

n

)+ + εnE∗
n .
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As in Section 3.3 even if the white part is swallowed in the process, it could be that the vertex at the junction enables
the origin cluster to grow further. The problem is treated similarly and as long as E[εE∗ − R∗] ≤ 0 we have Sn =
0 infinitely often and then |C| < ∞ a.s. Otherwise |C| = ∞ with positive probability. We leave the details to the
interested reader.

3.5. Free boundary conditions, universality

In Theorems 5–8 we focused on the cluster of a single boundary point (or edge or face) with specially chosen boundary
conditions: black for site percolation on triangular lattice, black for face, face′ and dual bond percolation and free–
black for bond percolation. Note that black boundary condition is the natural setting for studying the white cluster of
the origin in face percolation because of the presence of the infinite root face which cannot be part of C (otherwise, C is
trivially infinite). The same remark holds for dual bond and face′ percolation. However, one can wonder whether free
boundary condition (that is all edges or vertices have i.i.d. colors) changes the percolation threshold in Theorems 5
and 7. The answer is no:

Proposition 9. The percolation thresholds p∗
c,site and p∗

c,bond identified in Theorems 5 and 7 correspond to the a.s.
thresholds for percolation on the corresponding percolations on the half-planar maps with free boundary conditions.

Proof. Let us focus first on the case of bond percolation with free boundary condition. Imagine that we reveal the
right neighbors of the root edge until we find a black edge. At this point we have a free–white–black–free boundary.
We then run our exploration process at the free–white junction. If p ≤ p∗

c,bond then there will be some time where the
white boundary is completely swallowed. At this stage, as in the proof of Theorem 7, there is a positive probability that
the next step of the exploration totally blocks the cluster of the origin which is thus finite (as in Fig. 10). If this is not
the case we just continue the exploration process at the junction. We a.s. eventually end up with a blocking situation.
Clearly if for every vertex u of the boundary the probability that u is in an infinite white cluster is 0 then there no
infinite percolation cluster intersects the boundary. To see that there is no infinite cluster that avoids the boundary, let
us begin to explore the map (in an arbitrary order). The unexplored part of the map still has the law of a half planar
infinite map independent of the part observed, and therefore every vertex reached by the peeling process is in a finite
percolation cluster. Since every vertex is eventually reached, there is no infinite cluster anywhere in the map.

Conversely, if p > p∗
c,bond there is a positive probability that the cluster of the origin is infinite. By ergodicity of

the half planar maps (see [7]) w.r.t. the translation operator (that preserves the map M∗ but shifts the root edge along
the boundary) we deduce that in this case percolation a.s. occurs somewhere on the map.

The case of site percolation involves similar ideas, and the super-critical case works with no change. The boundary
has the form free–black–white–free, and for p > pc,site the white part of the boundary tends to infinity.

In the critical case, the white part will a.s. be completely swallowed at some time (as for bond percolation). If the
boundary vertex hit on that step happens to be black, then a blocking configuration has been found and the cluster is
finite. There is one additional difficulty in this case, in that it is possible that the black boundary segment is completely
swallowed. If when this happens we find that one of the (previously free) boundary vertices is white, we must keep
revealing boundary vertices to the left until another black cluster is found. This increases the white boundary segment
by a geometric random variable (with mean 1) every time the black boundary segment is swallowed. Since the black
segment also has increments in the domain of attraction of a stable variable, the black segment will be swallowed
roughly n1/3 times in the first n steps, thereby adding roughly n1/3 vertices to the white boundary segment. However,
if the white boundary segment is swallowed on step n, the typical overshoot (additional vertices swallowed) is of order
n2/3, and so the additional n1/3 white vertices will not prevent the white segment from being swallowed. �

Universality
Whereas the exploration of site percolation of Theorem 5 is specific to the triangulation case, we have already indicated
in the proofs and at the beginning of Section 3 that the methods developed for bond and face percolations can be
applied to any kind of planar maps without restriction on the shape of a face.

In [6] we plan to prove that the percolation thresholds identified in this work also correspond to percolation thresh-
olds for the corresponding models on the full-plane UIP∗.
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4. Critical and off-critical percolation exponents

We now show how peeling along percolation interfaces allows us to deduce certain geometrical properties of the
percolation clusters and in particular compute certain critical exponents. We reiterate that all the estimates of this
section are annealed versions, that is we average on the random lattice and on the percolation in the same time. For
sake of clarity we focus on the simplest case which is site percolation on the triangular lattice �2. Thus we fix ∗ = �2,
and omit it from notation. We shall comment in Section 4.3 on the adaptations needed for our proofs to cover more
general cases.

Recall the setting of Section 3.1: Let M be a half-plane UIPT endowed with Bernoulli site percolation of parameter
p ∈ (0,1) (for white) with boundary condition given by the infinite boundary being black with the exception of the
root vertex which is white. Theorem 5 states that the probability that the cluster C := C∗

site containing the only white
vertex of the boundary is infinite is positive if and only if p > 1/2. More precisely, we have from (9) that the length
of the white boundary during the exploration process evolves as a random walk with i.i.d. increments of law

ξ
(p)
i := εi(Ei − 1) −Ri ,

where the joint law of E,R is given by Proposition 3 and ε is an independent Bernoulli variable of parameter p. The
process starts at S0 = 1 and is killed at the first entrance of Z−. In particular ξ (p) takes its values in {. . . ,−2,−1,0,1}
and satisfies for k > 0

P
(
ξ (p) = −k

) = q
�2

k = (2k − 2)!
4k(k − 1)!(k + 1)! ∼ 1

4
√

π
k−5/2 as k → ∞.

When p = pc = 1/2 the increments ξ (pc) have mean 0. In this case we simply write ξ for ξ (pc). Since the r.v.
ξ is in the domain of attraction of a stable random variable, the associated (unkilled) random walk converges once
renormalized towards a stable process of parameter 3

2 . Let us be a bit more precise and recall some background about
the spectrally negative 3

2 -stable process and its discrete version. The interested reader should consult [12] and the
references therein for more details.

We slightly abuse notation here and consider the walk S not killed at the first entrance of Z− that is, let S0 = 1 and
Sn = 1 + ξ1 + ξ2 + · · · + ξn be a random walk with i.i.d. increments of law ξ then we have(

S�nt�
n2/3

)
t≥0

(d)−→
n→∞κ · (St )t≥0,

where (St ) is the standard 3
2 -stable process with no drift and no positive jumps with κ = 3−2/3 and the convergence

holds in distribution for the Skorokhod topology.
By standard spectrally negative 3

2 -stable process, we mean that its Laplace transform is given by E[eλSt ] = etλ3/2

for all λ ≥ 0, equivalently its Levy measure is given by

Π(dx) = 3

4
√

π
|x|−5/2 dx1x<0.

This process is also known as the Airy-stable process and S1 as the (map-)Airy distribution. Note that the Airy
distribution is not symmetric, has stretched exponential tail on the right but power law tail on the left, see Fig. 14. This
process enjoys the scaling property with parameter 3/2 that is (St )t≥0 = (λ−2/3Sλt )t≥0 in distribution for any λ > 0.
By the scaling property, the positivity probability P(St ≥ 0) is independent of t ≥ 0 and equals

ρ = P(St ≥ 0) = 2

3
.

This quantity is of great importance since it rules the behavior of many distributional properties of (St )t≥0 and its
discrete analog (Sn)n≥0.
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Fig. 14. A sample of an Airy-stable process and the density of its distribution at time t = 1 (also known as the map-Airy distribution). See online
version for figure in colors.

4.1. The off-critical percolation probability

A first application is the exact computation in M of the probability that the cluster C is infinite.

Theorem 10. For site percolation on M�2
with black boundary conditions except for a white root vertex, we have

Pp

(|C| = ∞) = p − 1/2

p
1p>1/2.

In particular this implies that the off-critical exponent for the percolation probability is 1 (which means Pp−pc (|C| =
∞) = (p −pc)

1+o(1) for p ↓ pc). Note that if the root vertex is instead taken to be random, the percolation probability
becomes simply (p − 1

2 )+.
It is perhaps surprising that the probability of percolation tends to 1/2 as p → 1. This comes from the fact that

even if p = 1 (that is, every new discovered point is white) there is still a non-zero probability that the first step (or
first few steps) of peeling swallows the white boundary by making a connection towards the right and swallowing the
white cluster.

Proof of Theorem 10. By (9) in the proof of Theorem 5, the probability that the cluster of the single white point on
the boundary of M�2

is infinite is equal to the probability that a random walk starting from 1 and with i.i.d. increments
distributed as ξ (p) never hits Z−. In our very specific case this probability can be evaluated exactly. Indeed, if ξ

(p)
i are

i.i.d. copies of ξ (p) we have

Pp

(
1 + ξ

(p)

1 + · · · + ξ
(p)
n > 0,∀n ≥ 1

) = P
(
ξ

(p)

0 + · · · + ξ
(p)
n > 0,∀n ≥ 1|ξ (p)

0 = 1
)

= P(ξ
(p)

0 + · · · + ξ
(p)
n > 0,∀n ≥ 1)

P(ξ
(p)

0 = 1)
.

We have that P(ξ (p) = 1) = P(E = 2, ε = 1) = 2
3p. Since ξ (p) ≤ 1, the ballot theorem (see e.g. [1], Theorem 3)

implies that P(ξ
(p)

0 + · · ·+ ξ
(p)
n > 0,∀n ≥ 1) is equal to the mean of ξ (p) which is 2p−1

3 . This finishes the proof of the
theorem. �

4.2. Critical exponents

We now turn to the study of the geometry of the cluster C for site percolation on M�2
at the critical point pc = 1/2.

Recall that the cluster of the only white vertex of the boundary is almost surely finite at pc. We denote by H the
hull of C that is the sub map of M obtained by filling-in all the finite holes of C. This hull has a connected boundary
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made of white vertices which we denote by ∂H (unlike the boundary of C which may have any number of connected
components). We also consider the extended hull H1 of the cluster which is made of the hull of all triangles adjacent to
C (see Fig. 2) or equivalently of the hull of the triangles discovered during the exploration process (see Fig. 15 below).
This has the effect of adding to H any so-called fjords, i.e. any parts of the complement separated from infinity by a
single vertex.

We are interested in the boundary of H1 w.r.t. M∗, that is the number |∂H1| of vertices in H1 adjacent to a vertex
outside H1. Note that part of the perimeter of H1 coincides with the boundary of M∗. That part of the perimeter is
not included in our estimates. Considering the full boundary of H1 would not change the critical exponents but would
require some additional arguments. In fact, this part of the perimeter has the same scale as the rest of the perimeter.

Before going into the proof of Theorem 2 let us recall a few facts on random walks in the domain of attraction of a
spectrally negative 3

2 -stable Lévy process. Remember that the length of the white boundary of Mi in the exploration
of the cluster of the origin evolves as a random walk (Si)i≥0 started from S0 = 1 and with independent increments
ξi = εi(Ei − 1) − Ri where the Bernoulli variables εi have parameter pc = 1/2. In particular the negative jumps
Si+1 < Si correspond to Ri > 0. Recall also that ξ is supported on {1,0,−1,−2, . . .}. The hitting time of Z− for such
walks has been analyzed by [34] and (combined with [19], Theorem 1 (2.4)) we get

Lemma 11 (Hitting time of Z−). If τ = inf{i ≥ 0: Si ≤ 0} is the hitting time of Z− by (Sn: n ≥ 0), then we have

P(τ = n) ∼ c · n−4/3 as n → ∞
for some c > 0.

It is possible to get an explicit value for c from [19,34], though we do not need it here. We shall also need an
estimate on the fluctuations of sums of i.i.d. variables of this type. This is a standard type of result, but we were not
able to locate a precise reference, so we include a quick proof.

Lemma 12 (Exponential tail on the right). There exists c > 0 such that for every λ > 0 and for every n ≥ 0 we have
for Sn as above

P
(
Sn > λn2/3) ≤ e−cλ3

.

Proof. Clearly if λ > 2n1/3 we have P(Sn > 2n) = 0 so we may suppose that λ ≤ 2n1/3. Using the tail asymptotic of
ξ and that Eξ = 0 we have for x > 0

E
[
exξ

] = 1 + cx3/2 + o
(
x3/2) as x → 0 (11)

for some c > 0. Applying an exponential Markov inequality after we get for all u > 0

P

(
n∑

i=1

ξi > λn2/3

)
≤ P

(
n∑

i=1

un−2/3λ2ξi > uλ3

)
≤ E[exp(un−2/3λ2ξ)]n

euλ3 .

Recall that λ ≤ 2n1/3, so we can choose u small enough so that un−2/3λ2 is small and by (11),

n log
[
E

[
exp

(
n−2/3uλ2ξ

)]] = (
c + o(1)

)
u3/2λ3 ≤ uλ3/2.

Choosing such u completes the proof. �

Proof of Theorem 2. We have sorted (i)–(iii) according to the value of the critical exponent but we prove first (ii)
then (i) and finally (iii). In order to lighten notation and spare use the introduction of constants we use the symbol
an � bn if there exists some universal constant C > 0 such that an ≤ Cbn for all n ≥ 0.

(ii): The hull’s perimeter. The peeling exploration of the cluster of the origin follows the contour of the cluster
keeping it on the right. In particular, the number of steps of peeling necessary to explore the cluster of the origin is at
most the number of triangles adjacent to H, which is easily related to the size of ∂H below. The reason the two are
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Fig. 15. Left: The peeling exploration goes along the boundary of the cluster until the first time it touches the axis on the right of the root. Right:
The interface explored from its other end. See online version for figure in colors.

not equal is a slight problem arising at the last step of the exploration. The exploration reveals enough of the map to
guarantee that the cluster is finite, but does not enter the region surrounded by the last jump, see Fig. 15.

This problem can be circumvented by using a rightmost exploration process as depicted in the figure. This is just
a mirror image of the process, and since the M is symmetric in distribution, this dual exploration has the same law
as the original one. Thus if we denote by τ 
 (resp. τ r ) the number of steps of peeling when discovering the cluster
clockwise (resp. counterclockwise) and if |∂̃H| denotes the number of triangles on the boundary of H then we have

τ 
 ∨ τ r ≤ |∂̃H| ≤ τ 
 + τ r .

By the description of the peeling process in the triangulation case, both τ 
 and τ r are distributed according as τ

(though they are not independent!). Since each triangle is incident to at most 3 vertices of ∂H, Lemma 11 now implies
that P(|∂H| > n) � n−1/3.

For the lower bound, observe that at each step of the peeling the probability of having R > 0 is some constant
((1 − q−1)/2 = 1/6 as it happens). Thus the number of triangles on the interface incident to any vertex of ∂H is
dominated by a geometric random variable. Moreover, these dominating random variables may be made independent.
(That is, there is a coupling of independent geometric variables and the map so that the domination holds a.s.) By a
standard large deviation estimate for sums of random variables, for suitable constants,

P
(|∂H| > n,τ r ∨ τ 
 < cn

)
< e−cn � n−4/3.

With Lemma 11 this gives the lower bound.
(i): The hull’s volume. The volume of the hull |H|, can be measured in vertices or faces. We work below with

vertices, though the two are directly connected for triangulations in terms of the boundary which is smaller by (ii),
and so the number of faces is of the same order of magnitude. Working with faces has the (slight) advantage that our
exploration process adds faces to the hull only in the enclosed triangulations encountered on the right of the peeling
process, which are filled with a Boltzmann triangulation, whereas vertices are added to the hull on every step. Special
care is needed again for the last peeling step because the triangulation put inside the last peeling step is not entirely
contained in the hull.

Let Zi be the number of vertices added to the hull in the ith step. This is 1 when a new internal vertex is discovered.
When Ri > 0, this is the number of internal vertices in the Boltzmann map added, except at the last step when only
part of that map is in the hull. Thus we have

τ−1∑
i=1

Zi ≤ |H| ≤
τ∑

i=1

Zi.

A simple observation using the formulae for #M�2

n,p shows that a Boltzmann triangulation with perimeter p typically
has a size of order p2. More precisely from [5], Proposition 5.1, and [5], Proposition 6.4, there exists c > 0 such that
for all p > 0 and λ > 1 we have

E[Zi |Ri = p] ∼ 2

3
p2 and P

(
Zi > λp2|Ri = p

) ≤ cλ−3/2 (12)
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for some c > 0. In fact by [5], Proposition 6.4, the distribution of the size of a Boltzmann triangulation of perimeter p

renormalized by p2 (i.e. p−2Zi , conditioned on Ri = p) converges in distribution.
For the lower bound, we exhibit a way for H to have size n with probability of order n−1/4: First the peeling

process continues for at least n3/4 steps that is τ > n3/4. This has probability of order n−1/4 by Lemma 11. On this
event, there are typically (several) times before τ when Ri is of order (n3/4)2/3 = n1/2, so with probability bounded
from 0 there is at least one such jump of size at least

√
n. Such a jump adds to the hull a Boltzmann triangulation of

perimeter of order n1/2 which is typically of size n by (12). Thus on the event that τ > n3/4 there is at least a constant
probability that |H| > n, and so P(|H| > n) ≥ Cn−1/4 for some C > 0.

Informally, the reason this is the typical way of getting a large hull is that it is easier to make τ even larger (exponent
1/3) than to have τ smaller and have an unusually large Boltzmann map (exponent 3/2 > 1/3). It is also possible to
have τ small and no abnormally large Boltzmann map, but this requires the discrete stable process to behave badly,
which is even less likely.

To prove the corresponding upper bound we start by ignoring the last step τ , and first split according to {τ > n3/4}:

P

(∑
i<τ

Zi > n

)
≤ P

(
τ > n3/4) + P

(
τ ≤ n3/4,

∑
i<τ

Zi > n

)
.

The first summand is at most a constant times n−1/4, so we focus on the second and apply Markov’s inequality:

P

(
τ ≤ n3/4,

∑
i<τ

Zi > n

)
= P

(
n3/4∧(τ−1)∑

i=1

Zi > n

)
≤ 1

n
E

[
n3/4∧(τ−1)∑

i=1

Zi

]
.

Using (12) we have that E[Zi |Ri] � 1 + R2
i (allowing for Ri = 0). So after conditioning on (Ri ) and taking the 1

terms outside the sum we end-up with

P

(∑
i<τ

Zi > n

)
� 1

n

(
n3/4 +

�n3/4�∑
i=1

E
[
R2

i 1{τ>i}
])

.

To compute the E[R2
i ] we need first to truncate it. On the event {τ > i} we have Ri < Si−1 ≤ i (since Si increases

by at most 1 at each step). By Lemma 12 we have that P(Si > λi2/3) < e−cλ. Thus with very high probability (super-
polynomially close to 1)

Si <
(
n3/4)2/3 log2 n = √

n log2 n for all i < n3/4.

This allows us to truncate the Ris: for some C > 0 we have

E
[
R2

i 1{τ>i}
] ≤ C +E

[
R2

i 1{τ>i}1{Ri<
√

n log2 n}
]
.

The next step is to separate the restriction to {τ > i}. For this we observe that the events {τ > i} and {Ri > k} are
negatively correlated since a larger negative jump can only help the process hitting Z

−. Thus conditioning on {τ > i}
stochastically decreases Ri and we have

E
[
R2

i 1{τ>i}1{Ri<
√

n log2 n}
] ≤ P(τ > i)E

[
R2

i 1{Ri<
√

n log2 n}
]
� i−1/3n1/4 logn,

where we have used the tail distribution of τ and the easy estimate E[R21{R<M}] �
√

M . Plugging this in we find

P

(∑
i<τ

Zi > n

)
� 1

n

(
n3/4 +

�n3/4�∑
i=1

i−1/3n1/4 logn

)
= n−1/4+o(1).

This almost completes the proof. It remains to show that the contribution from the last step when (Si) hits Z
− is

also unlikely to be large. Here we do not have Rτ ≤ Sτ−1 because of the undershoot below 0. Let us call L this last
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jump and let Z be the size of the Boltzmann map added during this last jump. Again, we may restrict to the event
{τ ≤ n3/4} and shall split according to the value of τ . By (12) we have

P(Z > n|L) ≤ c

(
n

L2

)−3/2

.

On the other hand we have for k ≥ 1

P(L = k|τ = i + 1, Si) = 1{k≥Si }
P(ξ = −k)

P(ξ ≤ −Si)
� S

3/2
i k−5/2.

Using Lemma 12 and the bound Si ≤ i + 1 we have E[S3/2
i |τ = i + 1]� (i + 1) so P(L = k|τ = i) � ik−5/2. Finally

P(Z ≥ n) � P
(
τ ≥ n3/4) +

�n3/4�∑
i=1

P(τ = i)

(�√n�∑
k=1

ik−5/2
(

n

k2

)−3/2

+ in−3/4

)

� n−1/4.

(iii): The hull’s perimeter, excluding fjords. In order to study ∂H1 we consider the evolution of the boundary of
H1 as the peeling process progresses. A new difficulty is that only after the process has terminated we can tell with
certainty whether any particular vertex is in ∂H1 or not. As we follow the peeling process, newly revealed black
vertices are added tentatively to ∂H1, but are removed from it if they are in a part of the boundary that is swallowed
by a connection to the left of the peeling edge.

In order to control the tail of ∂H1, let us introduce an auxiliary process Yn, which follows the evolution of the black
boundary left of C. This length is of course infinite always, so instead we follow only the change of this boundary, in
the form of vertices added and removed from the boundary. Formally let Li be the number of edges swallowed on the
left of the ith peeling point. We have that (Ei ,Li ) have the same law as (Ei ,Ri ), though Li is not independent of Ri .
Recall also that εi is the indicator of the event that this new vertex is white. We form the process (Y ) by putting Y0 = 0
and

Yi = Yi−1 + 1{Ei=2}(1 − εi) −Li .

Thus Y is just a random walk with i.i.d. increments distributed as ξ . Note that the two walks (S) and (Y ) are not
independent, since they use the same E and ε sequences, and since when E = 1, L, R are not independent.

With this notation we can determine |∂H1| from (Y ) and τ . Whenever Y reaches its infimum, all the black vertices
discovered so far are swallowed. The vertices tentatively in ∂H1 correspond exactly to increments of Y above its
infimum. Thus if we denote Y i = minj<i Yj , then∣∣∂H1

∣∣ = Yτ − Y τ .

While the processes (Y ) and (S) (and in particular τ ) are not precisely independent, they are quite close to being
independent in the following sense. Recall that we are considering only triangulations for now, so either Ri = 0 or
Li = 0 (possibly both). Since newly discovered vertices are also either black or white but not both, each step of the
peeling process changes at most one of Y and S. Consider a Markov chain (Xn,Yn)n so that at each step only one
of X,Y changes with probability 1/2 each, and the transition probabilities do not depend on the value of the other
coordinate. If the chain is run in continuous time with jumps taking place at the points of a Poisson process, then the
jump rates for X are independent of Y and vice versa, and so the coordinates become independent Markov chains.
Thus for site percolation on triangulations, if we switch to continuous time with peeling steps controlled by a Poisson
clock then (Y ) and (S) become completely independent. For other types of maps or percolation models, it is possible
for Y and S to change in the same step, so the two cannot be made completely independent. However, a slightly
weaker form of independence holds (see Section 4.3).

To get a lower bound on P(|∂H1| > n), consider the event {τ > n3/2}. This event has probability equal to a constant
times n−1/2 by Lemma 11. Conditioned on this event, by the above remarks, the process Yτ −Y τ is roughly distributed
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as n times S1 − S1, where S is the Airy-stable process introduced in the beginning of the section, and in particular
the conditional probability of |∂H1| > n is bounded away from 0.

Let us prove the corresponding upper bound. Since Y is a sum i.i.d. variables with 0 mean, bounded above by 1
and in the domain of attraction of a 3

2 -stable variable, we have from Lemma 12 for any j < i that

P(Yi − Yj > n) � e−cn/(j−i)2/3 � e−cn/i2/3

and so

P(Yτ − Y τ > n, τ = i) � ie−cn/i2/3
.

For i < n3/2 log−3 n the exponential term easily dominates and we have that P(|∂H1| > n,τ ≤ n3/2 log−3 n) decays
super-polynomially (faster than n3e−c log2 n). On the other hand, P(τ ≥ n3/2 log−3 n) ≥ Cn−1/2 logn, and the proof is
finally complete. �

4.3. Concerning universality of critical exponents

In this section we comment on some modifications needed in the previous section if we are to consider face or bond
percolation on general maps M∗ other than triangulations. We try to address the major difficulties that arise, and indi-
cate some possible ways to overcome them. We formally state Theorem 2 only for site percolation on triangulations.

First, the description of the active boundary Sn in the percolation exploration process is no longer exactly a random
walk killed upon hitting Z

−. However, it is very closely related to such a process. In particular, as long as Sn is
large the increments are i.i.d. It is easy to see that the increments of this walk have mean 0 exactly at the critical
point, that the increments are bounded from above and have heavy-tail of exponent 5/2 on the left (even in the case of
quadrangulations where there may be two segments swallowed on the right, as in Fig. 4). In particular these increments
are always in the domain of attraction of the 3

2 -stable process with no positive jumps. Obviously, the value of κ > 0
(the constant in the tail probabilities for the increments) is changed.

Concerning Theorem 10, a similar argument should hold for some of the other percolation models we discussed,
but yields a slightly weaker result. Indeed, for the other models the associated process Sn has increments that are
bounded from above but not by 1 anymore. Thus the ballot theorem does not give the precise probability of eternal
positivity. Still, the probability that a random walk on Z with steps bounded by k with expectation μ > 0 remains
positive at all times is between μ/k and μ. Thus the identity of the theorem should be replaced by lower and upper
bounds differing by a constant. Furthermore, in the case of bond percolation, the stopping time of the exploration may
not coincide with the first time the active boundary is swallowed but is lower bounded by the preceding and upper
bounded by a geometric number of them. All these modifications should not affect the near-critical exponent so that
we still have θ(p − pc) = (p − pc)

1+o(1).
Most likely the tail of the stopping time for the exploration process τ (which is related to the first entrance to Z

−)
is also going to be the same, and the lower bounds of Theorem 2 should be similar: On the event τ > n there is a high
probability that |H| > n4/3, that |∂H| > n and |∂H1| > n2/3.

For the upper bounds, again most of the estimates should hold. Some additional computations may arise since it is
possible to have multiple Boltzmann maps revealed at a single step. Special care is needed for the bound on |∂H1|.
Now the processes S and Y are even further from being independent, since it is possible for both of them to make
jumps at the same time. However, it is possible to show that the large jumps in these processes occur at distinct times,
and so the scaling limit of n−2/3(Yn, Sn)n≥0 is a pair of independent 3

2 -stable processes with no positive jumps. This
should allow one to estimate the fluctuations of Y above its infimum at the killing time τ of S.

We end this paper by raising the question of existence and a.s. constancy of quenched critical exponents for perco-
lation on the random half-planar maps. Let PM denote the law of critical percolation on M, so that formally, our P is
the average of PM w.r.t. the UIHP∗ measure for the map M.

Question. Let M be a UIHP∗. Prove (or disprove) for any of the models under consideration that for almost all M

P
M(|∂H| > n

) = n−1/3+o(1).

Of course, the analogous question for the other exponents are also of interest.
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