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Abstract. We discuss the scaling limit of large planar quadrangulations with a boundary whose length is of order the square root
of the number of faces. We consider a sequence (σn) of integers such that σn/

√
2n tends to some σ ∈ [0,∞]. For every n ≥ 1,

we denote by qn a random map uniformly distributed over the set of all rooted planar quadrangulations with a boundary having n

faces and 2σn half-edges on the boundary. For σ ∈ (0,∞), we view qn as a metric space by endowing its set of vertices with the
graph metric, rescaled by n−1/4. We show that this metric space converges in distribution, at least along some subsequence, toward
a limiting random metric space, in the sense of the Gromov–Hausdorff topology. We show that the limiting metric space is almost
surely a space of Hausdorff dimension 4 with a boundary of Hausdorff dimension 2 that is homeomorphic to the two-dimensional
disc. For σ = 0, the same convergence holds without extraction and the limit is the so-called Brownian map. For σ =∞, the proper

scaling becomes σ
−1/2
n and we obtain a convergence toward Aldous’s CRT.

Résumé. On s’intéresse à la limite d’échelle de grandes quadrangulations planaires à bord dont la longueur du bord est de l’ordre
de la racine carrée du nombre de faces. On considère une suite (σn) d’entiers telle que σn/

√
2n tende vers un certain σ ∈ [0,∞].

Pour tout n≥ 1, on note qn une carte aléatoire uniformément distribuée dans l’ensemble des quadrangulations planaires enracinées
à bord ayant n faces internes et 2σn demi-arêtes sur le bord. Dans le cas où σ ∈ (0,∞), on voit qn comme un espace métrique
en munissant l’ensemble de ses sommets de la distance de graphe, renormalisée par le facteur n−1/4. On montre que cet espace
métrique converge en loi, tout du moins le long d’une sous-suite, vers un espace métrique limite aléatoire, au sens de la topologie de
Gromov–Hausdorff. On montre que l’espace métrique limite est presque sûrement un espace de dimension de Hausdorff 4 ayant un
bord de dimension 2 qui est homéomorphe au disque de dimension 2. Pour σ = 0, on a également la même convergence mais cette
fois-ci, l’extraction d’une sous-suite n’est plus nécessaire et la limite est l’espace métrique connu sous le nom de carte brownienne.

Pour σ =∞, le bon facteur d’échelle devient σ
−1/2
n et on a convergence vers l’arbre continu brownien d’Aldous.
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1. Introduction

1.1. Motivations

In the present work, we investigate the scaling limit of random (planar) quadrangulations with a boundary. Recall
that a planar map is an embedding of a finite connected graph (possibly with loops and multiple edges) into the two-
dimensional sphere, considered up to direct homeomorphisms of the sphere. The faces of the map are the connected
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components of the complement of edges. A quadrangulation with a boundary is a particular instance of planar map
whose faces are all quadrangles, that is, faces incident to exactly 4 half-edges (or oriented edges), with the exception
of one face of arbitrary even degree. The quadrangles will be called internal faces and the other face will be referred to
as the external face. The half-edges incident to the external face will constitute the boundary of the map. Beware that
we do not require the boundary to be a simple curve. We will implicitly consider our maps to be rooted, which means
that one of the half-edges is distinguished. In the case of quadrangulations with a boundary, the root will always lie
on the boundary, with the external face to its left.

In recent years, scaling limits of random maps have been the subject of many studies. The most natural setting is
the following. We consider maps as metric spaces, endowed with their natural graph metric. We choose uniformly at
random a map of “size” n in some class, rescale the metric by the proper factor, and look at the limit in the sense
of the Gromov–Hausdorff topology [22]. The size considered is usually the number of faces. From this point of
view, the most studied class is the class of planar quadrangulations. The pioneering work of Chassaing and Schaeffer
[15] revealed that the proper rescaling factor in this case is n−1/4. The problem was first addressed by Marckert and
Mokkadem [33], who constructed a candidate limiting space called the Brownian map, and showed the convergence
toward it in another sense. Le Gall [27] then showed the relative compactness of this sequence of metric spaces and
that any of its accumulation points was almost surely of Hausdorff dimension 4. It is only recently that the problem
was completed independently by Miermont [36] and Le Gall [29], who showed that the scaling limit is indeed the
Brownian map. This last step, however, is not mandatory in order to identify the topology of the limit: Le Gall and
Paulin [31], and later Miermont [34], showed that any possible limit is homeomorphic to the two-dimensional sphere.

To be a little more accurate, Le Gall considered in [27] the classes of 2p-angulations, for p ≥ 2 fixed, and, in [29],
the same classes to which he added the class of triangulations, so that the result about quadrangulations is in fact a
particular case. We also generalized the study of [27,34] to the case of bipartite quadrangulations in fixed positive
genus g ≥ 1 in [7,8], where we showed the convergence up to extraction of a subsequence and identified the topology
of any possible limit as that of the surface of genus g. In the present work, we adopt a similar point of view and
consider the class of quadrangulations with a boundary, where the length of the boundary grows as the square root of
the number of internal faces. We show the convergence up to extraction, and show that any possible limiting space
is almost surely a space of Hausdorff dimension 4 with a boundary of Hausdorff dimension 2 that is homeomorphic
to the two-dimensional disc. We also show that, if the length of the boundary is small compared to the square root
of the number of internal faces, then the convergence holds (without extraction) and the limit is the Brownian map.
When the length of the boundary is large with respect to the square root of the number of internal faces, then the
proper scaling becomes the length of the boundary raised to the power −1/2, and we obtain a convergence toward the
so-called Continuum Random Tree (CRT).

The study of these problems often starts with a bijection between the class considered and a class of simpler objects.
In the case of planar quadrangulations, the bijection in question is the so-called Cori–Vauquelin–Schaeffer bijection
[15,16,40] between planar quadrangulations and so-called well-labeled trees. This bijection has then been generalized
in several ways. Bouttier, Di Francesco, and Guitter [11] extended it into a bijection coding all planar maps (and even
more). Later, Chapuy, Marcus, and Schaeffer [14] considered bipartite quadrangulations of positive fixed genus. As
quadrangulations with a boundary are a particular case of planar maps, we will use in this work a slightly amended
instance of the Bouttier–Di Francesco–Guitter bijection. Let us also mention that Bouttier and Guitter studied in [12]
the distance statistics of quadrangulations with a boundary. In particular, their study showed the existence of the three
different regimes we consider in this work. Additionally, Curien and Miermont [18] studied in a recent work the local
limit of quadrangulations with a boundary.

From now on, when we speak of quadrangulations, we always mean rooted planar quadrangulations with a bound-
ary, and, by convention, we always draw the external face as the infinite component of the plane.

1.2. Main results

1.2.1. Generic case
Let m be a map. We call V (m) its sets of vertices, E(m) its sets of edges, and �E(m) its set of half-edges. We say that
a face f is incident to a half-edge e (or that e is incident to f ) if e belongs to the boundary of f and is oriented in
such a way that f lies to its left. We write e∗ the root of m, and, for any half-edge e, we call ē its reverse, as well as
e− and e+ its origin and end. We denote by dm the graph metric on m defined as follows: for any a, b ∈ V (m), the
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distance dm(a, b) is the number of edges of any shortest path in E(m) linking a to b. Finally, we call Qn,σ the set of
all quadrangulations with a boundary having n internal faces and 2σ half-edges on the boundary.

The Gromov–Hausdorff distance between two compact metric spaces (X , δ) and (X ′, δ′) is defined by

dGH
(
(X , δ),

(
X ′, δ′

)) := inf
{
δH

(
ϕ(X ), ϕ′

(
X ′

))}
,

where the infimum is taken over all isometric embeddings ϕ :X → X ′′ and ϕ′ :X ′ → X ′′ of X and X ′ into the same
metric space (X ′′, δ′′), and δH stands for the usual Hausdorff distance between compact subsets of X ′′. This defines a
metric on the set M of isometry classes of compact metric spaces ([13], Theorem 7.3.30), making it a Polish space.2

Our main results for quadrangulations with a boundary are the following.

Theorem 1. Let σ ∈ (0,∞) and (σn)n≥1 be a sequence of positive integers such that σn/
√

2n→ σ as n→∞. Let
qn be uniformly distributed over the set Qn,σn of all planar quadrangulations with a boundary having n internal faces
and 2σn half-edges on the boundary. Then, from any increasing sequence of integers, we may extract a subsequence
(nk)k≥0 such that there exists a random metric space (qσ∞, dσ∞) satisfying(

V (qnk
),

1

γ n
1/4
k

dqnk

)
(d)−−−−→

k→∞
(
qσ∞, dσ∞

)
in the sense of the Gromov–Hausdorff topology, where

γ :=
(

8

9

)1/4

.

Moreover, the Hausdorff dimension of the limit space (qσ∞, dσ∞) is almost surely equal to 4, regardless of the choice
of the sequence of integers.

Remark that the constant γ is not necessary in this statement (simply change dσ∞ into γ dσ∞). We made it figure at
this point for consistency with the other works on the subject and because of our definitions later in the paper. Note
also that, a priori, the metric space (qσ∞, dσ∞) depends on the subsequence (nk)k≥0. In view of the recent developments
made by Miermont [36] and Le Gall [29] in the case without boundary, we conjecture that the extraction in Theorem 1
is not necessary and that dσ∞ can be explicitly expressed in a way similar to their expression. This is under investigation
and will be the object of an upcoming work. We also believe that the space (qσ∞, dσ∞) only depends on σ , and arises
as some universal scaling limit for more general classes of random maps with a boundary. In particular, our approach
should be generalizable to the case of 2p-angulations, p ≥ 2, by using the same kind of arguments as Le Gall in [27].

As in the case without boundary, Theorem 1 is nonetheless sufficient to identify the topology of the limit, regardless
of the subsequence (nk)k≥0.

Theorem 2. For σ > 0, any possible metric space (qσ∞, dσ∞) from Theorem 1 is a.s. homeomorphic to the 2-
dimensional disc D2.

We may also compute the Hausdorff dimension of the boundary of the limiting space: we define ∂qσ∞ ⊆ qσ∞ as the
set of points having no neighborhood homeomorphic to a disc.

Theorem 3. For any σ > 0, the boundary ∂qσ∞ is a subset of (qσ∞, dσ∞) whose Hausdorff dimension is almost surely
equal to 2.

1.2.2. Case σ = 0
In the case where σ = 0, we may actually be a little more precise than in the previous theorems. In particular, we
have a whole convergence, instead of just a convergence along subsequences. We find that, in the limit, the boundary
“vanishes” in the sense that we obtain the same limit as in the case without boundary: the Brownian map [29,36].

2This is a simple consequence of Gromov’s compactness theorem [13], Theorem 7.4.15.
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Theorem 4. Let (σn)n≥1 be a sequence of positive integers such that σn/
√

2n→ 0 as n→∞. Let qn be uniformly
distributed over the set Qn,σn of all planar quadrangulations with a boundary having n internal faces and 2σn half-
edges on the boundary. Then,(

V (qn),
1

γ n1/4
dqn

)
(d)−−−−→

n→∞
(
m∞,D∗

)
in the sense of the Gromov–Hausdorff topology, where (m∞,D∗) is the Brownian map.

As a consequence, we retrieve immediately the classical properties of the Brownian map, from which the results of
the previous section are inspired. For instance, it is known that the Hausdorff dimension of (m∞,D∗) is almost surely
equal to 4 ([27]), and that the metric space (m∞,D∗) is a.s. homeomorphic to the 2-dimensional sphere S2 ([31,34]).

1.2.3. Case σ =∞
In the case σ =∞, the proper scaling factor is no longer n−1/4, but the length of the boundary raised to the power
−1/2. We find Aldous’s so-called CRT [1,2] defined as follows. We denote the normalized Brownian excursion by e,
and we define the pseudo-metric

δe(s, t) := e(s)+ e(t)− 2 min[s∧t,s∨t]e, 0≤ s, t ≤ 1.

It defines a metric on the quotient Te := [0,1]/{δe=0}, which, by a slight abuse of notation, we still write δe. The
Continuum Random Tree is the random metric space (Te, δe). Moreover, we also have a whole convergence in this
case.

Theorem 5. Let (σn)n≥1 be a sequence of positive integers such that σn/
√

2n→∞ as n→∞. Let qn be uniformly
distributed over the set Qn,σn of all planar quadrangulations with a boundary having n internal faces and 2σn half-
edges on the boundary. Then,(

V (qn),
1

(2σn)1/2
dqn

)
(d)−−−−→

n→∞ (Te, δe)

in the sense of the Gromov–Hausdorff topology.

Let us try to give an intuition of what happens here. Roughly speaking, the boundary takes so much space that we
need to rescale by a factor that suits its length. The faces, which should be in the scale n1/4, are then too much rescaled
and disappear in the limit, leaving only the boundary visible. As a result, for n large enough and in the proper scale,
the quadrangulation itself is not very far from its boundary, which in its turn is not very far from a random tree. This
rough reasoning gives an intuition of why the CRT arises at the limit.

We also observe an interesting phenomenon if we take all these theorems into account. It can be expected that, if
we take a uniform quadrangulation in Qn,σn with n large and σn large enough but not too large (probably in the scale
n1/2+ε with ε > 0 small) then, in the scale n−1/4, it should locally resemble the Brownian map, whereas in the scale
σ
−1/2
n , it should look more like the CRT. We believe this picture could be turned into a rigorous statement but we

choose not to pursue this route in the present paper.

1.3. Organization of this paper and general strategy

We begin by exposing in Section 2 the version of the Bouttier–Di Francesco–Guitter bijection that we will need. As
we do not use it in its usual setting, we spend some time explaining it. In particular, we introduce a notion of bridge
that is not totally standard. We then investigate in Section 3 the scaling limit of the objects appearing in this bijection,
and deduce Theorem 1.

Discrete forests play an important part in the coding of quadrangulations with a boundary through the Bouttier–
Di Francesco–Guitter bijection, and the analysis of Section 3 leads to the construction of a continuum random forest,
which may be seen as a generalization of Aldous’s CRT [1,2]. We carry out the analysis of Le Gall [27] to our case in
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Section 4 and see any limiting space of Theorem 1 as a quotient of this continuum random forest via an equivalence
relation defined in terms of Brownian labels on it.

Following Miermont [34], we then prove Theorem 2 in Section 5 thanks to the notion of regularity introduced by
Whyburn [43,44]. As we consider in this work surfaces with a boundary, the notion of 1-regularity used by Miermont
in [34] is no longer sufficient: we will also need here the notion of 0-regularity, which we will present in Section 5.1.

Section 6.1 is devoted to the case σ = 0 in which we use a totally different approach, consisting in comparing
quadrangulations with a “small” boundary with quadrangulations without boundary. In Section 6.2, we treat the case
σ =∞ by a different method.

We will need to use the so-called Brownian snake to prove some remaining technical results. We prove these in
Section 7. In particular, in Section 7.2, we will look at the increase points of the Brownian snake we consider. From
our approach, we can retrieve [31], Lemma 3.2.

Finally, Section 8 is devoted to some developments and open questions.
Our general strategy is in many points similar to [7,8]. Although we will try to make this work as self-contained as

possible, we will often refer the reader to these papers when the proofs are readily adaptable, and will rather focus on
the new ingredients. One of the main difficulties that was not present in [7,8] arises from the fact that the Brownian
labels on the continuum random forest we construct do not have the same diffusion factor on the floor than in the
trees. To be a little more precise, the labels in the trees vary like standard Brownian motion, whereas on the floor they
vary as a Brownian motion multiplied by the factor

√
3 (see Proposition 7 for a rigorous statement). This factor comes

from the fact that the bridge coding the external face in the Bouttier–Di Francesco–Guitter bijection does not have the
same variance as the Motzkin paths appearing everywhere else. Its presence generates new technical issues and forces
us to find new proofs for some of Le Gall’s estimates.

A key point of our analysis is that, at the limit, the boundary does not have any pinch points (Lemma 19). As the
boundary of the map roughly corresponds to the floor of the forest (Proposition 21), it will be crucial to see that, in the
quotient we define, the points of the floor are not identified with one another (Lemma 14). We will see in Theorem 13
that two points are identified if they have the same labels and if the labels of the points “between them” are all greater.
From the already known cases, we could think that everything will work similarly but, a priori, this factor

√
3 could

induce some identification of points on the floor of the forest. Fortunately, this does not happen. However, we can see
from our proofs in Section 7.2 that this value is critical, in the sense that if it was strictly greater, then some of the
points of the floor would be identified, so that the boundary would no longer be a simple curve. See the note page 468.

The presence of this factor also suggests that the limiting spaces appearing in Theorem 1 cannot easily be con-
structed from the Brownian map.

Except in Section 7, all the random variables considered in this work are taken on a common probability space
(Ω,F,P).

2. The Bouttier–Di Francesco–Guitter bijection

As is often the case in this kind of problems, we start with a bijection allowing us to work with simpler objects.
We use here a particular instance of the so-called Bouttier–Di Francesco–Guitter bijection [11], which has already
been used in [12]. For more convenience, we modify it a little to better fit our purpose. This will allow us to code
quadrangulations with a boundary by forests whose vertices carry integer labels.

2.1. Forests

We use for forests the formalism of [7,8], which we briefly recall here. We denote by N := {1,2, . . .} the set of positive
integers and for i ≤ j , �i, j � := [i, j ] ∩ Z= {i, i + 1, . . . , j}. For u= (u1, . . . , un), v = (v1, . . . , vp) ∈⋃∞n=1 N

n, we
let ‖u‖ := n be the height of u, and uv := (u1, . . . , un, v1, . . . , vp) be the concatenation of u and v. We say that u is an
ancestor of uv and that uv is a descendant of u. In the case where v ∈N, we use the terms parent and child instead.

Definition 1. A forest is a finite subset f⊂⋃∞
n=1 N

n satisfying:

(i) there is an integer t (f)≥ 1, called the number of trees of f, such that f∩N= �1, t (f)+ 1�,
(ii) if u ∈ f \N, then its parent belongs to f,
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Fig. 1. The facial sequence and contour pair of a well-labeled forest from F20
7 . The paths are dashed on the intervals corresponding to floor edges.

(iii) for every u ∈ f, there is an integer cu(f)≥ 0 such that ui ∈ f if and only if 1≤ i ≤ cu(f),
(iv) ct(f)+1(f)= 0.

The set fl := f∩N is called the floor of the forest f. When u ∈ fl, we sometime denote it by (u) to avoid confusion
between the integer u and the point (u) ∈ f. For u = (u1, . . . , up) ∈ f, we set a(u) := u1 ∈ fl its oldest ancestor. For
1≤ j ≤ t (f), the set {u ∈ f: a(u)= j} is called the tree of f rooted at (j). Beware that the point (t (f)+ 1) ∈ fl is not a
tree. As we will see later, it is here for convenience. The points u,v ∈ f are called neighbors, and we write u∼ v, if
either u is a parent or child of v, or u,v ∈ fl and |u− v| = 1. On the figures, we always draw edges between neighbors
(see Fig. 1). We say that an edge drawn between a parent and its child is a tree edge whereas an edge drawn between
two consecutive tree roots will be called a floor edge.

Definition 2. A well-labeled forest is a pair (f, l) where f is a forest and l : f→ Z is a function satisfying:

(i) for all u ∈ fl, l(u)= 0,
(ii) if u∼ v, then |l(u)− l(v)| ≤ 1.

Let Fn
σ := {(f, l): t (f)= σ, |f| = n+ σ + 1} be the set of well-labeled forests with σ trees and n tree edges. By a

simple application (see for example [7], Lemma 3) of the so-called cycle lemma [6], Lemma 2, and the fact that to
every forest with n tree edges correspond exactly 3n labeling functions, we obtain that

∣∣Fn
σ

∣∣= 3n σ

2n+ σ

(
2n+ σ

n

)
. (1)

For a forest f with σ trees and n tree edges, we define its facial sequence f(0), f(1), . . . , f(2n+ σ) as follows (see
Fig. 1): f(0) := (1), and for 0≤ i ≤ 2n+ σ − 1,

� if f(i) has children that do not appear in the sequence f(0), f(1), . . . , f(i), then f(i + 1) is the first of these children,
that is, f(i + 1) := f(i)j0 where

j0 =min
{
j ≥ 1: f(i)j /∈ {f(0), f(1), . . . , f(i)

}}
,

� otherwise, if f(i) /∈ fl, then f(i + 1) is the parent of f(i),
� if neither of these cases occur, which implies that f(i) ∈ fl, then f(i + 1) := f(i)+ 1.

A well-labeled forest (f, l) is then entirely determined by its so-called contour pair (Cf,Lf,l) consisting in its contour
function Cf : [0,2n+ σ ]→R+ and its spatial contour function Lf,l : [0,2n+ σ ]→R defined by

Cf(i) :=
∥∥f(i)∥∥+ t (f)− a

(
f(i)

)
and Lf,l(i) := l

(
f(i)

)
, 0≤ i ≤ 2n+ σ,

and linearly interpolated between integer values (see Fig. 1).

2.2. Bridges

Definition 3. We say that a sequence of integers (b(0),b(1), . . . ,b(σ )) for some σ ≥ 1 is a bridge if b(0)= 0, b(σ )≤
0, and, for all 0≤ i ≤ σ − 1, we have b(i + 1)− b(i)≥−1. The integer σ will be called the length of the bridge.
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The somehow unusual condition b(σ )≤ 0 will become clear in the following section: it will be used to keep track
of the position of the root in the quadrangulation. We let Bσ be the set of all bridges of length σ . In the following,
when we consider a bridge b ∈Bσ , we will always implicitly extend its definition to [0, σ ] by linear interpolation
between integer values.

Lemma 6. The cardinality of the set Bσ is

|Bσ | =
(

2σ

σ

)
.

Proof. With a bridge (b(i))0≤i≤σ ∈Bσ , we associate the following sequence

(b̃j )1≤j≤2σ := (+1,+1, . . . ,+1︸ ︷︷ ︸
b(0)−b(σ ) times

,−1,+1,+1, . . . ,+1︸ ︷︷ ︸
b(1)−b(0)+1 times

,−1,+1,+1, . . . ,+1︸ ︷︷ ︸
b(2)−b(1)+1 times

, . . . ,−1,+1,+1, . . . ,+1︸ ︷︷ ︸
b(σ )−b(σ−1)+1 times

).

The set Bσ is then in one-to-one correspondence with the set of sequences in {−1,+1}2σ counting exactly σ times
the number −1. The number of bridges of length σ is then the number of choices we have to place these σ numbers
among the 2σ spots. �

2.3. The bijection

A pointed quadrangulation (with a boundary) is a pair (q, v•) consisting in a quadrangulation (with a boundary) q
together with a distinguished vertex v• ∈ V (q). We define

Q•n,σ :=
{(
q, v•

)
: q ∈Qn,σ , v• ∈ V (q)

}
the set of all pointed quadrangulations with n internal faces and 2σ half-edges on the boundary. The Bouttier–
Di Francesco–Guitter bijection may easily be adapted into a bijection between the sets Q•n,σ and Fn

σ ×Bσ . We
briefly describe it here, and refer the reader to [11] for proofs and further details.

2.3.1. From quadrangulations to forests and bridges
Let us start with the mapping from Q•n,σ onto Fn

σ ×Bσ . Let (q, v•) ∈ Q•n,σ . We label the vertices of q as follows:

for every vertex v ∈ V (q), we set l̃(v)= dq(v
•, v). Because q is bipartite, the labels of both ends of any edge differ

by exactly 1. As a result, the internal faces can be of two types: the labels around the face are either d , d + 1, d + 2,
d + 1, or d , d + 1, d , d + 1 for some d . We add a new edge to every internal face as shown on the left part of Fig. 2.

The operation regarding the external face is a little more intricate. We denote by v0, v1, . . . , v2σ−1 its vertices read
in counterclockwise order,3 starting at the origin of the root, v0 = e−∗ (and we use the convention v2σ = v0). We only
consider the vertices vi such that l̃(vi+1)= l̃(vi)− 1. Note that, because l̃(vi+1)− l̃(vi) ∈ {−1,+1}, there are exactly

Fig. 2. Left. Adding the new edge to an internal face. Right. Example of the operation on the external face. In this example, b = (0,−1,−1,

−2,−2,−1).

3Recall that the external face is drawn as the unbounded face of the plane, so that the counterclockwise order on the plane is actually the clockwise
order around the face.
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Fig. 3. The mapping from Q•n,σ onto Fn
σ ×Bσ . In this picture, n= 10 and σ = 4.

σ such vertices. We denote them by vi1 , vi2, . . . , viσ , with 0≤ i1 < i2 < · · ·< iσ < 2σ . Finally, we add a new vertex
v◦ inside the external face, and draw extra edges linking vik to vik+1 for all 1≤ k ≤ σ − 1, and viσ to v◦. See the right
part of Fig. 2.

We then only keep the new edges we added and the vertices in (V (q) \ {v•}) ∪ {v◦}. This happens to make up a
forest f whose floor is drawn in the external face: (k) = vik for 1 ≤ k ≤ σ , and (σ + 1) = v◦. To obtain the labels
of f, we shift the labels tree by tree, in such a way that the floor labels are 0: we define l(u) := l̃(u)− l̃(a(u)), and
l(v◦)= 0. Finally, the bridge b records the labels of the floor before the shifting operation: for 0≤ k ≤ σ − 1, we let
b(k) := l̃(vik+1)− l̃(vi1), and b(σ )= l̃(v0)− l̃(vi1) (so that b(σ ) keeps track of the position of the root).

The pointed quadrangulation (q, v•) corresponds to the pair ((f, l),b). See Figure 3.

2.3.2. From forests and bridges to quadrangulations
Let us now describe the mapping from Fn

σ ×Bσ onto Q•n,σ . Let (f, l) ∈ Fn
σ be a well-labeled forest and b ∈Bσ be

a bridge. As above, we write f(0), f(1), . . . , f(2n+ σ) the facial sequence of f. The pointed quadrangulation (q, v•)
corresponding to ((f, l),b) is then constructed as follows. First, we shift all the labels of f tree by tree according to the
bridge b: precisely, we define l̂(u) := l(u)+ b(a(u)− 1). Then, we shift all the labels in such a way that the minimal
label is equal to 1: let us set l̃ := l̂−min l̂+ 1 as this shifted labeling function. We add an extra vertex v• carrying
the label l̃(v•) := 0 inside the only face of f. Finally, following the facial sequence, for every 0≤ i ≤ 2n+ σ − 1, we
draw an arc – without intersecting any edge of f or arc already drawn – between f(i) and f(succ(i)), where succ(i) is
the successor of i, defined by

succ(i) :=
{

infS≥ if S≥ �=∅,

infS≤ otherwise
with

S≥ :=
{
k ∈ �i,2n+ σ − 1�: l̃

(
f(k)

)= l̃
(
f(i)

)− 1
}
,

S≤ :=
{
k ∈ �0, i − 1�: l̃

(
f(k)

)= l̃
(
f(i)

)− 1
} (2)

with the conventions inf∅=∞, and f(∞)= v•.
Because there may be more that one arc linking f(i) to f(succ(i)), we will speak of the arc linking i to succ(i) to

avoid any confusion, and we will write it

i � succ(i) or succ(i) � i.

When we need an orientation, we will write i � succ(i) the arc oriented from i toward succ(i) and i � succ(i)
the arc oriented from succ(i) toward i. The quadrangulation q is then defined as the map whose set of vertices is
(f \ {(σ + 1)}) ∪ {v•}, whose edges are the arcs we drew, and whose root is either succ−b(σ )(0) � succ−b(σ )+1(0) if
b(σ ) > b(σ − 1)− 1, or 2n+ σ − 1 � succ(2n+ σ − 1) if b(σ )= b(σ − 1)− 1.

2.3.3. Some remarks

1. Because of the way we drew the arcs of q in Section 2.3.2, it is easy to see that for any vertex v ∈ V (q),
l̃(v)= dq(v

•, v), so that both functions l̃ of Sections 2.3.1 and 2.3.2 coincide.
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2. Note that the sequence b̃ from the proof of Lemma 6 reads the increments of the labels around the boundary:
b̃j = l̃(vj )− l̃(vj−1) for 1≤ j ≤ 2σ .

3. Using Lemma 6, Eq. (1), and the fact that every quadrangulation in Qn,σ has exactly n+ σ + 1 vertices, we
recover the following formula (see e.g. [4,12,39] for other proofs)

|Qn,σ | = |F
n
σ ||Bσ |

n+ σ + 1
= 3n(2σ)!(2n+ σ − 1)!

σ !(σ − 1)!n!(n+ σ + 1)! .

4. If (C,L) is the contour pair of (f, l), then we may retrieve the oldest ancestor of f(i) thanks to C by the relation

a
(
f(i)

)− 1= σ −C(i),

where we use the notation

Xs := inf[0,s]X

for any process (Xs)s≥0. The function

L := (
L(s)+ b

(
σ −C(s)

))
0≤s≤2n+σ

then records the labels of the forest, once shifted tree by tree according to the bridge b. As a result, we see that
L(i)−minL+ 1 represents the distance in q between v• and the point corresponding to f(i).

5. This gives a natural way to explore the vertices of q: we denote by q(i) the vertex corresponding to f(i). In
particular, {q(i),0 ≤ i ≤ 2n+ σ − 1} = V (q) \ {v•}. We end this section by giving an upper bound for the distance
between two vertices q(i) and q(j), in terms of the function L:

dq
(
q(i),q(j)

)≤ L(i)+L(j)− 2 max
(

min
k∈−−−→�i, j �

L(k), min
k∈−−−→�j, i�

L(k)
)
+ 2, (3)

where we define

−−→�i, j � :=
{ �i, j � if ‖i‖ ≤ j,

�i,2n+ σ − 1�∪ �0, j � if j < i.
(4)

This kind of bounds is often used in these problems (see e.g. [8,27,35]). We refer the reader to [35], Lemma 3, for a
detailed proof.

3. Proof of Theorem 1

3.1. Convergence of the coding functions

Let (σn)n≥1 be a sequence of positive integers such that

σ(n) :=
∑ σn√

2n
−−−−→
n→∞ σ ∈ [0,∞].

Until further notice, we suppose that σ ∈ (0,∞). The remaining cases σ = 0 and σ =∞ will be treated separately
in Section 6. Let qn be uniformly distributed over the set Qn,σn of quadrangulation with n internal faces and 2σn

half-edges on the boundary. Conditionally given qn, we let v•n be uniformly distributed over the set V (qn). Because
every quadrangulation in Qn,σn has exactly n+ σn + 1 vertices (by Euler characteristic formula), we see that (qn, v

•
n)

is uniformly distributed over Q•n,σn
, and thus corresponds through the Bouttier–Di Francesco–Guitter bijection to a

pair ((fn, ln),bn) uniformly distributed over the set Fn
σn
×Bσn .
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3.1.1. Brownian bridges, first-passage Brownian bridges, and Brownian snake
Let us define the space

K :=
⋃

x∈R+
C
([0, x],R)

of continuous real-valued functions on R+ killed after some time. For an element f ∈K, let ζ(f ) denote its lifetime,
that is, the only x such that f ∈ C([0, x],R). We endow this space with the following metric:

dK(f, g) := ∣∣ζ(f )− ζ(g)
∣∣+ sup

y≥0

∣∣f (y ∧ ζ(f )
)− g

(
y ∧ ζ(g)

)∣∣.
We write B0→0

[0,σ ] a Brownian bridge on [0, σ ] from 0 to 0, defined as a standard Brownian motion on [0, σ ] started at

0, conditioned on being at 0 at time σ (see for example [6,7,9,38]). We also denote by Fσ→0
[0,1] a first-passage Brownian

bridge on [0,1] from σ to 0, defined as a standard Brownian motion on [0,1] started at σ , and conditioned on hitting
0 for the first time at time 1. We refer the reader to [7] for a proper definition of this conditioning, as well as for some
convergence results of the discrete analogs.

The so-called Brownian snake’s head may then be defined as the process (F σ→0
[0,1] ,Z[0,1]), where, conditionally

given Fσ→0
[0,1] , the process (Z[0,1](s))0≤s≤1 is a centered Gaussian process with covariance function

cov
(
Z[0,1](s),Z[0,1]

(
s′
))= inf

[s∧s′,s∨s′]
(
Fσ→0
[0,1] − Fσ→0

[0,1]
)
. (5)

We refer to [7,19,25] for more details.

3.1.2. Convergence of the bridge and the contour pair of the well-labeled forest
We let (Cn,Ln) be the contour pair of (fn, ln), and we define the scaled versions of Cn, Ln, and bn by

C(n) :=
(

Cn((2n+ σn − 1)s)√
2n

)
0≤s≤1

, L(n) :=
(

Ln((2n+ σn − 1)s)

γ n1/4

)
0≤s≤1

,

b(n) :=
(
bn(
√

2ns)

γ n1/4

)
0≤s≤σ(n)

,

where the constant γ was defined during the statement of Theorem 1.

Remark. Following [7,8], the notation with a parenthesized n will always refer to suitably rescaled objects, as in the
definitions above.

The aim of this section is the following proposition.

Proposition 7. The triple (C(n),L(n),b(n)) converges in distribution in the space (K, dK)3 toward a triple
(C∞,L∞,b∞) whose law is defined as follows:

� the processes (C∞,L∞) and b∞ are independent,
� the process (C∞,L∞) has the law of a Brownian snake’s head on [0,1] going from σ to 0:

(C∞,L∞)
(d)= (

Fσ→0
[0,1] ,Z[0,1]

)
,

� the process b∞ has the law of a Brownian bridge on [0, σ ] from 0 to 0, scaled by the factor
√

3:

b∞
(d)= √3B0→0

[0,σ ].
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Proof. By [7], Corollary 16, the pair (C(n),L(n)) converges in distribution4 toward the pair (F σ→0
[0,1] ,Z[0,1]), in the

space (K, dK)2. Moreover, (Cn,Ln) and bn are independent, so that it only remains to show that b(n) converges in
distribution toward

√
3B0→0
[0,σ ] . To that end, we will use [7], Lemma 10.

Let (Xi)i≥1 be a sequence of i.i.d. random variables with distribution given by

P(Xi = p)= 2−p−2, p ≥−1.

We set Σ0 := 0 and, for j ≥ 1, Σj :=∑j

i=1 Xi . For k ≥ 0 fixed, and n such that σn ≥ k, we also define a process
(Sk

n(i))0≤i≤σn distributed as (Σi)0≤i≤σn conditioned on the event {Σσn =−k}. We extend its definition to [0, σn] by
linear interpolation between integer values. Because X1 is centered, has moments of any order, and has variance 2,
we may apply [7], Lemma 10, and we see that the process(

Sk
n(
√

2ns)

γ n1/4

)
0≤s≤σ(n)

(d)−−−−→
n→∞

√
3B0→0
[0,σ ]. (6)

Moreover, it is easy to see that the bridge Sk
n is uniform over the set {b ∈Bσn : b(σn) = −k}. Indeed, for any

b ∈Bσn such that b(σn)=−k, we have

P
(
Sk

n = b
)= P(∀i ∈ �1, σn�,Xi = b(i)− b(i − 1))

P(Σσn =−k)
= 2−2σn+k

P(Σσn =−k)
,

which does not depend on b but only on n and k. For such a b, we set

cn,k := P(bn = b)

P(Sk
n = b)

=
(

2σn

σn

)−1 (
2σn − k− 1

σn − 1

)
.

(We may use the bijection of Lemma 6 to compute the denominator.) We have that

cn,k = 1

2

(2σn − k − 1)!
(2σn − 1)!

σn!
(σn − k)! ≤

1

2

k−1∏
i=0

σn − i

σn − i + σn − 1
≤ 2−k,

and that cn,k→ 2−k−1 as n→∞. Now, let ϕ :K→R be a bounded measurable function. Using (6) and the fact that
cn,k = P(bn(σn)=−k), we obtain by dominated convergence that

E
[
ϕ(b(n))

]= σn∑
k=0

cn,kE

[
ϕ

((
Sk

n(
√

2ns)

γ n1/4

)
0≤s≤σ(n)

)]
−−−−→
n→∞ E

[
ϕ
(√

3B0→0
[0,σ ]

)]
.

This completes the proof. �

Recall the notation qn(i) introduced at the end of Section 2 for the vertex corresponding to fn(i) through the
Bouttier–Di Francesco–Guitter bijection. Remember that dqn(v

•
n,qn(i))= Ln(i)−minLn + 1, where

Ln :=
(
Ln(s)+ bn

(
σn −Cn(s)

))
0≤s≤2n+σn

. (7)

The rescaled version of Ln is then given by

L(n) :=
(
Ln((2n+ σn − 1)s)

γ n1/4

)
0≤s≤1

= (
L(n)(s)+ b(n)

(
σ(n) −C(n)(s)

))
0≤s≤1.

4In [7], the processes considered were the same except that the term (2n+ σn− 1) was replaced with 2n. The fact that σn/2n→ 0 and the uniform

continuity of the process (Fσ→0[0,1] ,Z[0,1]) yield the result as stated here.
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Corollary 8. The process (C(n),L(n)) converges in distribution in the space (K, dK)2 toward the process (C∞,L∞),
where

L∞ :=
(
L∞(s)+ b∞

(
σ −C∞(s)

))
0≤s≤1. (8)

3.2. Proof of Theorem 1

The proof of Theorem 1 is very similar to [7], Section 6, so that we only sketch it. Our approach is adapted from Le
Gall [27] for the first assertion, and from Le Gall and Miermont [30] for the Hausdorff dimension. In addition, we use
this occasion to introduce some notation that will be useful later.

We define on �0,2n+ σn − 1� the pseudo-metric dn by

dn(i, j) := dqn

(
qn(i),qn(j)

)
,

we extend its definition to non integer values by linear interpolation: for s, t in [0,2n+ σn − 1],
dn(s, t) := stdn

(�s� + 1, �t� + 1
)+ stdn

(�s� + 1, �t�)+ stdn

(�s�, �t� + 1
)+ stdn

(�s�, �t�),
where �s� := sup{k ∈ Z, k ≤ s}, s := s −�s� and s := �s�+ 1− s, and we define its rescaled version: for s, t ∈ [0,1],
we let

d(n)(s, t) := 1

γ n1/4
dn

(
(2n+ σn − 1)s, (2n+ σn − 1)t

)
.

We also define the equivalence relation ∼n on �0,2n+ σn − 1� by declaring that i ∼n j when qn(i)= qn(j), which
is equivalent to dn(i, j)= 0. The function d(n) may then be seen as a metric on

Qn := (2n+ σn − 1)−1 �0,2n+ σn − 1�/∼n ,

and, as v•n is the only point of qn that does not lie in {qn(i): 0≤ i ≤ 2n+ σn − 1}, we have

dGH

(
(Qn, d(n)),

(
V (qn),

1

γ n1/4
dqn

))
≤ 1

γ n1/4
. (9)

The bound (3) gives us a control on the metric d(n), from which we can derive the following lemma (see [7],
Lemma 19).

Lemma 9. The distributions of the quadruples of processes(
C(n),L(n),b(n),

(
d(n)(s, t)

)
0≤s,t≤1

)
, n≥ 1

form a relatively compact family of probability distributions.

As a result of Lemma 9, from any increasing sequence of integers, we may extract a (deterministic) subsequence
(nk)k≥0 such that there exists a random function dσ∞ ∈ C([0,1]2,R) satisfying(

d(nk)(s, t)
)

0≤s,t≤1
(d)−−−−→

k→∞
(
dσ∞(s, t)

)
0≤s,t≤1, (10)

and such that this convergence holds jointly with the convergence of Proposition 7 and Corollary 8. From now on, we
fix such a subsequence (nk)k≥0. We will generally focus on this particular subsequence in the following, and we will
often assume convergences when n→∞ to hold along this particular subsequence. By Skorokhod’s representation
theorem, we may and will moreover assume that this joint convergence holds almost surely. In the limit, the bound (3)
becomes

dσ∞(s, t)≤ d◦∞(s, t) := L∞(s)+L∞(t)− 2 max
(

min
x∈−−→[s, t]

L∞(x), min
x∈−−→[t, s]

L∞(x)
)
, 0≤ s, t ≤ 1, (11)
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where

−−→[s, t] :=
{ [s, t] if s ≤ t,

[s,1] ∪ [0, t] if t < s.
(12)

Note. Beware not to confuse d◦∞ with d0∞. In fact, we will never use the latter symbol so there should not be any
confusion.

Adding to this the fact that the functions d(n) obey the triangle inequality, we see that the function dσ∞ is a pseudo-
metric. We define the equivalence relation associated with it by saying that s ∼∞ t if dσ∞(s, t)= 0, and we set qσ∞ :=
[0,1]/∼∞ . The convergence claimed in Theorem 1 holds along the same subsequence (nk)k≥0.

To see this, we use the characterization of the Gromov–Hausdorff distance via correspondences. Recall that a
correspondence between two metric spaces (X , δ) and (X ′, δ′) is a subset R⊆X ×X ′ such that for all x ∈X , there
is at least one x′ ∈X ′ for which (x, x′) ∈R and vice versa. The distortion of the correspondence R is defined by

dis(R) := sup
{∣∣δ(x, y)− δ

(
x′, y′

)∣∣: (x, x′
)
,
(
y, y′

) ∈R}
.

Then we have [13], Theorem 7.3.25,

dGH
(
X ,X ′

)= 1

2
inf
R

dis(R), (13)

where the infimum is taken over all correspondences between X and X ′.
We denote by pn the canonical projection from �0,2n+ σn − 1� to �0,2n+ σn − 1�/∼n . For t ∈ [0,1], we define

p(n)(t) := (2n+ σn − 1)−1pn(�(2n+ σn − 1)t�), and we denote by qσ∞(t) the equivalence class of t in qσ∞. We then
define the correspondence Rn between the spaces (Qn, d(n)) and (qσ∞, dσ∞) as the set

Rn :=
{(

p(n)(t),q
σ∞(t)

)
, t ∈ [0,1]}.

Its distortion is

dis(Rn)= sup
0≤s,t≤1

∣∣∣∣d(n)

(�(2n+ σn − 1)s�
2n+ σn − 1

,
�(2n+ σn − 1)t�

2n+ σn − 1

)
− dσ∞(s, t)

∣∣∣∣,
and, thanks to (10),

dGH
(
(Qnk

, d(nk)),
(
qσ∞, dσ∞

))≤ 1

2
dis(Rnk

)−−−−→
k→∞ 0.

Combining this with (9), we obtain the first assertion of Theorem 1.
The Hausdorff dimension of the limit may be computed by the technique we used in [7]. Because the proof is

very similar, and is not really related to our purpose here, we leave it to the reader. The idea is roughly the following.
To prove that the Hausdorff dimension is less than 4, we use the fact that L∞ is almost surely α-Hölder for all
α ∈ (0,1/4), yielding that the canonical projection from ([0,1], | · |) to (qσ∞, dσ∞) is also α-Hölder for the same values
of α. To prove that it is greater than 4, we show that the size of the balls of diameter δ is of order δ4. To see this, we
first bound from below the distances in terms of label variation along the branches of the forest, and then use twice the
law of the iterated logarithm: this tells us that, for a fixed s ∈ [0,1], the points outside of the set [s − δ4, s + δ4] code
points that are at distance at least δ2 from qσ∞(s) in the forest, so that their distance from qσ∞(s) is at least δ in the map.
See [7], Section 6.4, for a complete proof. We will also use a similar approach to show Theorem 3 in Section 5.4.

4. Maps seen as quotients of real forests

In the discrete setting, the metric space (V (qn), dqn) may either be seen as a quotient of �0,2n+ σn − 1�, as in last
section, or directly as the space fn endowed with the proper metric. In the continuous setting, we defined qσ∞ as a
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Fig. 4. Left. On this picture, we can see the root ∂ , the floor fl, an example of tree τa (coded by [l, r]), and an example of tree τ to the left of
[[ρb, b]] rooted at ρ (coded by [l′, r ′]). Right. On this picture, a is an ancestor of b and c, and we can see the sets [[b, c]], [α,β], and [[α,β]].

quotient of [0,1], but it will also be useful to see it as a quotient of a continuous analog to fn. We obtain a quotient,
because some points may be very close in the discrete forest, and become identified in the limit. Finding a criterion
telling which points are identified in the limit will be the object of Section 4.3. In a first time, we define the continuous
analog to forests.

4.1. Real forests

We define here real forests in a way convenient to our purpose, by adapting the notions used in [8], Section 3. We will
also need basic facts on real trees (see for example [26]). We consider a continuous function h : [0,1]→R+ such that
h(1)= 0, and we define on [0,1] the relation � as the coarsest equivalence relation such that 0� 1, and s � t if

h(s)= h(t)= inf[s∧t,s∨t]h. (14)

In other words, the second relation identifies the points “facing each other under the graph of h.” We call real forest
any set F := [0,1]/� obtained by such a construction. It is possible to endow it with a natural metric, but we will
not use it in this work. We now define the notions we will use throughout this work (see Fig. 4). For s ∈ [0,1], we
write F (s) its equivalence class in the quotient F = [0,1]/�. In a way, we see (F (s))0≤s≤1 as the continuous facial
sequence of F . We call root of F the point ∂ :=F (0)=F (1).

Definition 4. The floor of F is the set fl :=F ({s: h(s)= h(s)}).

For a =F (s) ∈F \ fl, let l := inf{t ≤ s: h(t)= h(s)} and r := sup{t ≥ s: h(t)= h(s)}. Note that, once endowed
with the natural metric, the set τa :=F ([l, r]) is a real tree rooted at ρa :=F (l)=F (r) ∈ fl. In the following, we
will not need metric properties about real trees, we will only see them as topological spaces.

Definition 5. We call tree of F a set of the form τa for any a ∈F \ fl.

If a ∈ fl, we simply set ρa := a. Let τ be a tree of F rooted at ρ, and a, b ∈ τ . We let [[a, b]] bet the range of the
unique injective path linking a to b. In particular, the set [[ρ,a]] represents the ancestral lineage of a in the tree τ . We
say that a is an ancestor of b, and we write a � b, if a ∈ [[ρ,b]]. We write a ≺ b if a � b and a �= b.

Let a, b ∈ F be two points. There is a natural way to explore the forest F from a to b. If infF−1(a) ≤
supF−1(b), then let t := inf{r ≥ infF−1(a): b = F (r)} and s := sup{r ≤ t : a = F (r)}. If supF−1(b) <

infF−1(a), then let t := infF−1(b) and s := supF−1(a). We define

[a, b] :=F
(−−→[s, t]), (15)

where
−−→[s, t] is defined by (12). We may now extend the definition of [[a, b]] to any two points in F . First, for a, b ∈ fl,

we let [[a, b]] := [a, b] ∩ fl. Then, for any points a, b ∈F such that ρa �= ρb, we define

[[a, b]] := [[a,ρa]] ∪ [[ρa,ρb]] ∪ [[ρb, b]],
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so that it is the range of the unique injective path from a to b that stays inside [a, b].

Definition 6. Let b =F (t) ∈F \ fl and ρ ∈ [[ρb, b]] \ {ρb, b}. Let l′ := inf{s ≤ t : F (s)= ρ} and r ′ := sup{s ≤ t :
F (s)= ρ}. Then, provided l′ �= r ′, we call tree to the left of [[ρb, b]] rooted at ρ the set F ([l′, r ′]).

We define the tree to the right of [[ρb, b]] rooted at ρ in a similar way, by replacing “≤” with “≥” in the definitions
of l′ and r ′.

Definition 7. We call subtree of F any tree of F , or any tree to the left or right of [[ρb, b]] for some b ∈F \ fl.

Note that subtrees of F are real trees, and that trees of F are also subtrees of F . The maximal interval [s, t] such
that τ =F ([s, t]) is called the interval coding the subtree τ .

We denote by Fn the real forest obtained from the function s ∈ [0,1] �→ Cn((2n+ σn)s), as well as F∞ the real
forest obtained from the function C∞. We also denote by �(n) and �∞ the corresponding equivalence relations. We
write ∂∞ the root of F∞, and fl∞ its floor. It is more natural to use fn rather than Fn in the discrete setting. As fn may
be viewed as a subset of Fn (when identifying (σn + 1) with (1)), we will use for fn the formalism we defined above
simply by restriction. Note that the notions of floor and trees are consistent with the definitions we gave in Section 2.1
in this case.

Remark that, because the function C∞ is a first-passage Brownian bridge, there are almost surely no trees rooted
at the root ∂∞ of F∞, and all the points of F∞ are of order less than 3, in the sense that for all a ∈F∞ and every
connected subset C ⊆F∞, the number of connected components of C \ {a} is less than 3. We will not use this remark
in the following, so that we do not go into further details.

4.2. Quotient of real forests

Similarly to the notation fn(i) and qn(i) in the discrete setting, we denote by F∞(s) (resp. qσ∞(s)) the equivalence
class of s ∈ [0,1] in F∞ = [0,1]/�∞ (resp. in qσ∞ = [0,1]/∼∞ ).

Lemma 10. The equivalence relation �∞ is coarser than ∼∞.

Proof. First, notice that, by (11), we have dσ∞(0,1)≤ d◦∞(0,1)= 0, so that 0∼∞ 1. The remaining is then identical
to the first part of the proof of [8], Lemma 6. �

This allows us to define a pseudo-metric and an equivalence relation on F∞, still denoted by dσ∞ and ∼∞, by
setting dσ∞(F∞(s),F∞(t)) := dσ∞(s, t) and declaring F∞(s) ∼∞ F∞(t) if s ∼∞ t . The metric space (qσ∞, dσ∞) is
thus isometric to (F∞/∼∞, dσ∞). We also define d◦∞ on F∞ by letting

d◦∞(a, b) := inf
{
d◦∞(s, t): a =F∞(s), b=F∞(t)

}
.

We will see in Lemma 11 that there is a.s. only one point where the function L∞ reaches its minimum. If s• ∈ [0,1]
denotes this point, then it is not hard (see [8], Lemma 7) to see from the fourth remark of Section 2.3.3 that

dσ∞
(
s, s•

)= L∞(s)−L∞
(
s•
)
.

By the triangle inequality, we obtain that s ∼∞ t implies L∞(s) = L∞(t), so that, in particular, s �∞ t implies
L∞(s)= L∞(t), by Lemma 10. It is then licit to see L∞ as a function on F∞ by setting L∞(F∞(s)) := L∞(s). This
yields a more explicit expression for d◦∞:

d◦∞(a, b)= L∞(a)+L∞(b)− 2 max
(

min
x∈[a,b]L∞(x), min

x∈[b,a]L∞(x)
)
, (16)

where [a, b]was defined by (15). Similarly, for a ∈ fn, we set Ln(a) := ln(a)+bn(a(a)−1), so that Ln(fn(i))= Ln(i)

for all 0≤ i ≤ 2n+ σn − 1.
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4.3. Point identifications

4.3.1. Criterion telling which points are identified
Our analysis starts with the following two observations on the process (C∞(s),L∞(s))0≤s≤1.

Lemma 11. The set of points where L∞ reaches its minimum is a.s. a singleton.

Let f : [0, �] → R be a continuous function. We say that s ∈ [0, �) is a right-increase point of f if there exists
t ∈ (s, �] such that f (r) ≥ f (s) for all s ≤ r ≤ t . A left-increase point is defined in a symmetric way. We denote by
IP(f ) the set of all (left or right) increase points of f .

Lemma 12. Almost surely, IP(C∞) and IP(L∞) are disjoint sets.

The proofs of these lemmas make intensive use of the so-called Brownian snake, so that we postpone them to
Section 7. We have the following criterion:

Theorem 13. Almost surely, for every a, b ∈F∞, a ∼∞ b is equivalent to d◦∞(a, b)= 0. In other words,

dσ∞(a, b)= 0 ⇔ d◦∞(a, b)= 0.

We call leaves the points of F∞ whose equivalence class for �∞ is trivial. It will be important in what follows to
observe that, by Lemma 12 and Theorem 13, only leaves of F∞ can be identified by ∼∞.

The proof of Theorem 13 is based on Lemma 11, Lemma 12, and Lemma 15 below, which we will prove in
Section 7. Once we have these lemmas, the arguments of the proof of [8], Theorem 8 (which uses the ideas of [27]),
may readily be adapted to our case. For the sake of self-containment, we give here the main ingredients. By the bound
(11), we already have one implication:

d◦∞(a, b)= 0 ⇒ dσ∞(a, b)= 0.

The converse is shown in three steps. First, we show that the floor points are not identified (by ∼∞) with any other
points, then that points are not identified with their strict ancestors, and finally the general case. As an example, we
will treat here the first step mentioned above. As we will see, the adaptation is almost verbatim, and is a little easier.
The other steps use the same ideas and are even more straightforwardly adaptable, so that we leave them to the reader.
Precisely, we are going to show the following lemma:

Lemma 14. Almost surely, for every b ∈F∞ and every a ∈ fl∞ \ {ρb}, we have a �∞ b.

4.3.2. Set overflown by a path and paths passing through subtrees
We give in this section the two notions we will need for discrete paths. In the following, we will never consider paths
using the edges of the forest, but always paths using the edges of the map, and we will always use the letter “℘” to
denote these paths.

The first notion is the notion of a set overflown by a path: roughly speaking, imagine a squirrel jumping from tree
to tree in the forest along the edges of a path ℘ in the map. Then the set overflown by ℘ is the ground covered by the
squirrel along its journey. Let us denote by fln the floor of fn. Let i ∈ �0,2n+ σn− 1�, and let succ(i) be its successor
in (fn, ln), defined by (2). We moreover suppose that succ(i) �= ∞. We say that the arc i � succ(i) linking fn(i) to
fn(succ(i)) overflies the set

fn
(−−−−−−−→�

i, succ(i)
�)∩ fln,

where
−−−−−−−→�i, succ(i)� was defined by (4). We define the set overflown by a path ℘ in qn that avoids the base point v•n

as the union of the sets its arcs overfly. Beware that, in this definition, the orientations of the edges is not taken into
account. In particular, the reverse of a path ℘ overflies the same set as the path ℘ itself. See Figure 5.
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Fig. 5. The set overflown by the path ℘ is the set of (blue) large dots. Note that the middle tree is overflown although it is not visited. The arrows
on the arcs of ℘ point from corners to their successors in the Bouttier–Di Francesco–Guitter bijection.

Remark. Note that, by the Bouttier–Di Francesco–Guitter construction, all the labels of the set overflown by a path
are larger than or equal to the minimum label on the path. Note also that the set overflown by a path is a connected
subset of fln.

The second notion is the notion of path passing through a subtree: here again, imagine a squirrel moving along
the path ℘. The path ℘ passes through a subtree τ if the squirrel visits τ , and moreover enters it when going in one
direction (from left to right or from right to left) and exits it while going in the same direction. Let τ be a subtree of
fn and ℘ = (℘ (0),℘ (1), . . . ,℘ (r)) a path in qn that avoids the base point v•n. We say that the path ℘ passes through
the subtree τ between times i and j , where 0 < i ≤ j < r , if

� ℘(i − 1) /∈ τ ; ℘(�i, j �)⊆ τ ; ℘(j + 1) /∈ τ ,
� Ln(℘ (i))−Ln(℘ (i − 1))= Ln(℘ (j + 1))−Ln(℘ (j)).

We say that a sequence of vertices an ∈ fn converges toward a point a ∈F∞ if there exists a sequence of integers
sn ∈ �0,2n+ σn − 1� coding an (i.e. an = fn(sn)) such that sn/(2n+ σn − 1) admits a limit s coding a, i.e. such that
a =F∞(s). Let �ln, rn� be the intervals coding subtrees τn ⊆ fn. We say that the subtree τn converges toward a subtree
τ ⊆F∞ if the sequences ln/(2n+ σn − 1) and rn/(2n+ σn − 1) admit limits l and r such that the interval coding τ

is [l, r]. The key lemma of our approach is the following. It is adapted from Le Gall [27], end of Proposition 4.2, and
will be proved in Section 7.

Lemma 15. With full probability, the following occurs. Let a, b ∈F∞ be such that L∞(a) = L∞(b). We suppose
that there exists a subtree τ rooted at ρ such that infτ L∞ < L∞(a) < L∞(ρ). We further suppose that we can find
vertices an, bn ∈ fn and subtrees τn in fn converging respectively toward a, b, τ and satisfying the following property:
for infinitely many n’s, there exists a geodesic path ℘n in qn from an to bn that avoids the base point v•n and passes
through the subtree τn.

Then, a �∞ b.

4.3.3. Proof of Lemma 14
We argue by contradiction and suppose that we can find b ∈F∞ and a ∈ fl∞ \ {ρb} such that a ∼∞ b. It is easy
to find an ∈ fln and bn ∈ fn converging respectively toward a and b. Let ℘n be a geodesic path (in qn, for dqn )
from an to bn. For n large, ℘n avoids the base-point, because otherwise, a and b would have the minimal label and
this would contradict Lemma 11. For such an n, ℘n has to overfly at least [[ρbn, an]] or [[an,ρbn ]]. To see this, let
(x, y) ∈ [[ρbn, an]]×[[an,ρbn ]]. When we remove from fn all the edges incident to x and all the edges incident to y, we
obtain several connected components, and the points an and bn do not belong to the same of these components. There
has to be an arc of ℘n that links a point belonging to the component containing an to one of the other components.
Such an arc overflies x or y.

Let us suppose that, for infinitely many n’s, ℘n overflies [[ρbn, an]]. By the remark concerning the labels on the set
overflown by a path in the previous section, a simple argument (see [8], Lemma 14) shows that L∞(c) ≥ L∞(a) =
L∞(b) for all c ∈ [[ρb, a]]. The labels on fl∞ are given by the process b∞, defined during Proposition 7: for x ∈ [0, σ ],
we define Tx := inf{r ≥ 0: C∞(r)= σ − x}, so that fl∞ =F∞({Tx,0≤ x ≤ σ }), and(

L∞(Tx)
)

0≤x≤σ
= (

b∞(x)
)

0≤x≤σ
.
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Fig. 6. The tree τ1.

Fig. 7. The path ℘n passing through the tree τ1
n .

As b∞ has the law of a certain Brownian bridge (scaled by
√

3), and as local minimums of Brownian motion are
distinct, we can find d ∈ [[ρb, a]] \ {a,ρb} such that L∞(c) > L∞(a) for all c ∈ [[d, a]] \ {a}.

Because a ∈ fl∞, every number coding it is an increase point of C∞ and thus is not an increase point of L∞, by
Lemma 12. As a result, there exists a tree τ 1 rooted at ρ1 ∈ [[d, a]] \ {a} satisfying infτ 1 L∞ < L∞(a) < L∞(ρ1) (see
Fig. 6).

Similarly, if for infinitely many n’s, ℘n overflies [[an,ρbn]], then we can find a tree τ 2 rooted at ρ2 ∈ [[a,ρb]] \
{a,ρb} satisfying infτ 2 L∞ < L∞(a) < L∞(ρ2). Three cases may occur:

(i) for n large enough, ℘n does not overfly [[an,ρbn ]] (and therefore overflies [[ρbn, an]]),
(ii) for n large enough, ℘n does not overfly [[ρbn, an]] (and therefore overflies [[an,ρbn]]),

(iii) ℘n overflies [[ρbn, an]] for infinitely many n’s, and [[an,ρbn ]] also for infinitely many n’s.

In case (i), the tree τ 1 is well defined. Let τ 1
n ⊆ fn be a tree rooted at ρ1

n ∈ [[ρbn, an]] converging to τ 1. We claim
that, for n sufficiently large, ℘n passes through τ 1

n . First, notice that by continuity, for n large enough, infτ 1
n
Ln <

inf℘n Ln. The idea is that, at some point, ℘n has to go from a tree located at the right of τ 1
n to a tree located at its left,

and, because it does not overfly [[an,ρbn]], it has no other choice than passing through τ 1
n (see Fig. 7).

More precisely, we denote by �s1
n, t1

n � the set coding the subtree τ 1
n , and we let ωn = fn(pn) ∈ [[an,ρbn]] be a point

that is not overflown by ℘n. Then, we define

An := fn
(−−−−−−−−→�

t1
n + 1,pn

�)
.

We denote by ℘n(i− 1) the last point of ℘n belonging to An. Such a point exists because an ∈An and bn /∈An. For n

large, because ℘n does not overfly ωn, and because infτ 1
n
Ln < inf℘n Ln, we see that ℘n(i) ∈ τ 1

n . Let ℘n(j + 1) be the

first point after ℘n(i) not belonging to τ 1
n . It exists because bn /∈ τ 1

n . Using the facts that ℘n does not overfly ωn, and
that ℘n(j + 1) /∈An, we see that ℘n passes through τ 1

n between times i and j .
In case (ii), we apply the same reasoning with τ 2 instead of τ 1. In case (iii), both trees τ 1 and τ 2 are well defined

and we obtain that ℘n has to pass through one of their discrete approximations. We then conclude by Lemma 15 that
a �∞ b, which contradicts our hypothesis. �

5. Regularity of quadrangulations

Recently, the notion of regularity has been used to identify the topology of the scaling limit of random uniform planar
quadrangulations in [34], and then positive genus quadrangulations in [8]. In both these references, it is the notion of
1-regularity that is used, roughly stating that there are no small loops separating the surface into large components.
In the case of surfaces with a boundary, a new problem arises, and we also need the notion of 0-regularity for the
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boundary. In this section, we present both these notions, which were introduced in a slightly different context (see the
discussion in [34], Section 2) by Whyburn [43,44], and then use them to prove Theorem 2.

5.1. 0-regularity and 1-regularity

Recall that we wrote (M, dGH) for the set of isometry classes of compact metric spaces, endowed with the Gromov–
Hausdorff metric. A metric space (X , δ) is called a path metric space if any two points x, y ∈ X can be joined by a
path isometric to the segment [0, δ(x, y)]. We let PM be the set of isometry classes of path metric spaces, which is a
closed subset of M, by [13], Theorem 7.5.1.

Definition 8. We say that a sequence (Xn)n≥1 of compact metric spaces is 1-regular if for every ε > 0, there exists
η > 0 such that for n large enough, every loop of diameter less than η in Xn is homotopic to 0 in its ε-neighborhood.

The theorem (derived from [3], Theorem 7) that was used in [8,34] states that the limit of a converging 1-regular
sequence of path metric spaces all homeomorphic to the g-torus is either reduced to a singleton (this can only happen
when g = 0), or homeomorphic to the g-torus as well. In other words, this gives a sufficient condition for the limit to
be homeomorphic to the surface we started with. In the case of the 2-dimensional disc D2, this condition is no longer
sufficient. For example, take for the space Xn the union of two unit discs whose centers are at distance 2− 1/n. This
peanut-shaped space is homeomorphic to D2, and it is easy to see that (Xn)n is 1-regular and converges to the wedge
sum (or bouquet) of two discs. The following definition discards this kind of degeneracy.

Definition 9. We say that a sequence (Xn)n≥1 of compact metric spaces is 0-regular if for every ε > 0, there exists
η > 0 such that for n large enough, every pair of points in Xn lying at a distance less than η from each other belong
to a connected subset of Xn of diameter less than ε.

We will rely on the following theorem, which is a simple consequence of [43], Theorem 6.4. Recall that the
boundary of a path metric space (X , δ) is the set ∂X ⊆X of points having no neighborhood homeomorphic to a disc,
equipped with the restriction of the metric δ.

Proposition 16 (Whyburn). Let (Xn)n≥1 be a sequence of path metric spaces all homeomorphic to the 2-dimensional
disc D2, converging for the Gromov–Hausdorff topology toward a metric space X not reduced to a single point.
Suppose that the sequence (Xn)n≥1 is 1-regular, and that the sequence (∂Xn)n is 0-regular.

Then X is homeomorphic to D2 as well.

In [43], Whyburn actually considered convergence in the sense of the Hausdorff topology, and made the extra
hypothesis that ∂Xn converges to a set B . He concluded that X was homeomorphic to D2 and that ∂X was equal to B .
To derive the version that we state here, we proceed as follows. First, by [21], Lemma A.1, we can find a compact
metric space Z , and isometric embeddings ϕ, ϕ1, ϕ2, . . . of X , X1, X2, . . . into Z such that ϕn(Xn) converges toward
ϕ(X ) for the Hausdorff topology in Z . Then, by [13], Theorem 7.3.8, the family {∂(ϕn(Xn))} is relatively compact
for the Hausdorff topology. Let us consider a subsequence along which ∂(ϕn(Xn)) converges to a set B . Applying
Whyburn’s original theorem along this subsequence, we obtain that ϕ(X ) is homeomorphic to D2, so that X is
homeomorphic to D2 as well. We moreover obtain that ∂(ϕ(X ))= B , and, using the same argument, we see that any
accumulation point of the sequence (∂(ϕn(Xn)))n has to be ∂(ϕ(X )), so that ∂(ϕn(Xn))= ϕn(∂Xn) actually converges
toward ∂(ϕ(X ))= ϕ(∂X ) for the Hausdorff topology. This last observation will be used in Section 5.4 to identify the
boundary of qσ∞.

5.2. Representation as metric surfaces

As the space (V (qn), dqn) is not a surface, we cannot directly apply Proposition 16. In a first time, we will construct
a path metric space (Sn, δn) homeomorphic to D2, and an embedded graph that is a representative of the map qn,
such that the restriction of (Sn, δn) to the embedded graph is isometric to (V (qn), dqn). We use the same method as
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Miermont in [34], Section 3.1 (see also [8], Section 5.2), roughly consisting in gluing hollow boxes together according
to the structure of qn.

Let us be a little more specific. Let f∗ be the external face of qn, F(qn) its set of internal faces, and F∗(qn) :=
F(qn) ∪ {f∗} the set of all its faces. Let also G be a regular 2σn-gon with unit length edges embedded in R

2, and let
us denote by zk , 0≤ k ≤ 2σn, its vertices (with z0 = z2σn ). With every quadrangle f ∈ F(qn), we associate a copy of
the “hollow bottomless unit cube,” and with f∗, we associate a “hollow bottomless 2σn-sided prism”: we define

Xf := [0,1]3 \ ((0,1)2 × [0,1)
)
, f ∈ F(qn), and Xf∗ :=

(
G × [0,1]) \ (G × [0,1)

)
,

where G denotes the interior of G, and we endow these spaces with the intrinsic metric Df inherited from the Euclidean
metric. This means that the distance between two points x and y is the Euclidean length of a minimal path in Xf

linking x to y. Note in particular that if x and y are on the boundary, this path is entirely contained in the boundary.
This will ensure that, when we will glue these spaces together, we will not alter the graph metric. Note also that, so
far, the external face is not really treated differently from the other faces (except for the fact that it has a different
number of edges). In the end, we will remove the “top” G × {1} from Xf∗ .

Now, we associate with every half-edge e ∈ �E(qn) a path ce parameterizing the corresponding edge of the polygon
∂Xf , where f is the face incident to e. We denote by e1, e2, . . . , e2σn the half-edges bordering f∗ ordered in the
clockwise order (recall that, by convention, f∗ is the infinite face of qn, so that the order is reversed), and define

cek
(t) := (

(1− t)zk−1 + tzk,0
) ∈Xf∗ , t ∈ [0,1],1≤ k ≤ 2σn.

In a similar way, for every internal face f ∈ F(qn), and every half-edge e incident to it, we define a function
ce : [0,1] → ∂Xf parameterizing an edge of ∂Xf . We do this in such a way that the parameterization of ∂Xf is
coherent with the counterclockwise order around f (see [34], Section 3.1, or [8], Section 5.2).

We may now glue these spaces together along their boundaries: we define the relation≈ as the coarsest equivalence
relation for which ce(t)≈ cē(1− t) for all e ∈ �E(qn) and t ∈ [0,1], where ē denotes the reverse of e. The topological
quotient Ŝn := (

⊔
f∈F∗(qn) Xf )/≈ is then a 2-dimensional CW-complex satisfying the following properties. Its 1-

skeleton En = (
⊔

f∈F∗(qn) ∂Xf )/≈ is an embedding of qn with faces Xf \ ∂Xf . The edge {e, ē} ∈E(qn) corresponds

to the edge of Ŝn made of the equivalence classes of the points in ce([0,1]). Its 0-skeleton Vn is in one-to-one
correspondence with V (qn), and its vertices are the equivalence classes of the vertices of the polygons ∂Xf ’s.

We endow the space
⊔

f∈F∗(qn) Xf with the largest pseudo-metric δn compatible with Df , f ∈ F∗(qn) and ≈,
in the sense that δn(x, y) ≤ Df (x, y) for x, y ∈ Xf and δn(x, y) = 0 whenever x ≈ y. Its quotient, which we still
denote by δn, then defines a pseudo-metric on Ŝn (which is actually a true metric, as we will see in Proposition 17).
We also define δ(n) := δn/(γ n1/4) its rescaled version. Finally, we set Sn := (

⊔
f∈F∗(qn) Yf )/≈ ⊆ Ŝn, where Yf∗ :=

Xf∗ \ (G × {1}) and Yf :=Xf when f �= f∗.

Proposition 17 ([34], Proposition 1). The space (Ŝn, δn) is a path metric space homeomorphic to S2. Moreover, the

metric space (Vn, δn) is isometric to (V (qn), dqn), and any geodesic path in Ŝn between points in Vn is a concatenation
of edges of Ŝn.

We readily obtain the following corollary.

Corollary 18. The space (Sn, δn) is a path metric space homeomorphic to D2. Moreover, the metric space (Vn, δn)

is isometric to (V (qn), dqn), and any geodesic path in Sn between points in Vn is a concatenation of edges of Sn.
Finally, dGH((V (qn), dqn), (Sn, δn))≤ 3, so that, by Theorem 1,

(Snk
, δ(nk))

(d)−−−−→
k→∞

(
qσ∞, dσ∞

)
in the sense of the Gromov–Hausdorff topology.

Note that, although the boundary of qn is not topologically a circle in general, ∂Sn (which corresponds to ∂G×{1}
in Yf∗ ) always is. In what follows, we will see V (qn) as a subset of Sn. In other words, we identify Vn with V (qn).
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5.3. Proof of Theorem 2

We now prove that (qσ∞, dσ∞) is a.s. homeomorphic to D2 thanks to Proposition 16 and Corollary 18. As (qσ∞, dσ∞) is
a.s. not reduced to a point,5 it is enough to show that the sequence (∂Snk

)k is 0-regular, and that the sequence (Snk
)k is

1-regular. The 1-regularity of (Snk
)k is readily adaptable from [8], Section 5.3, so that we begin with the 0-regularity

of the boundary. We denote by π∞ :F∞→ qσ∞ the canonical projection.

5.3.1. 0-regularity of the boundary
Lemma 19. The sequence (∂Snk

)k is 0-regular.

Proof. The idea is that fl∞ has no cut points in F∞, and because the points in fl∞ are not identified with any other
points, π∞(fl∞) does not have any cut points either.

We argue by contradiction and assume that, with positive probability, along some (random) subsequence of the
sequence (nk)k≥0, there exist ε > 0, xn, yn ∈ ∂Sn such that δ(n)(xn, yn)→ 0, and xn and yn do not belong to the same
connected component of B(n)(xn, ε)∩ ∂Sn, where B(n)(xn, ε) denotes the open ball of radius ε centered at xn for the
metric δ(n). We reason on this event.

As xn and yn do not belong to the same connected component of B(n)(xn, ε) ∩ ∂Sn, we can find x′n, y′n ∈ ∂Sn \
B(n)(xn, ε) such that x′n belongs to one of the two arcs joining xn to yn in ∂Sn, and such that y′n belongs to the other
one. We are going to approach these four points with points of fln.

We denote by ∂qn ⊆ �E(qn) the set of half-edges incident to the external face of qn. With every point x ∈ ∂Sn

naturally corresponds a half-edge e(x) ∈ ∂qn: if x corresponds to ((1 − t)zk−1 + tzk,1) ∈ Xf∗ for some t ∈ [0,1),
then e(x) is the half-edge ek . We consider the first half-edge e ∈ ∂qn after e(xn) (e(xn) included) in the clockwise order
such that Ln(e

+)= Ln(e
−)+ 1, and we set an := e+. By definition of the Bouttier–Di Francesco–Guitter bijection,

an ∈ fln. Moreover, an is “close” to xn, in the sense that δn(an, xn)≤ 1+ sup0≤i<2σn
|bn(i + 1)− bn(i)+ 2|, so that

δ(n)(an, xn)≤ 3

γ n1/4
+ sup

x

∣∣∣∣b(n)

(
x + 1√

2n

)
− b(n)(x)

∣∣∣∣≤ 3

γ n1/4
+ωb(n)

(η),

as soon as n ≥ 1/2η2. Here, ωb(n)
denotes the modulus of continuity of b(n). Hence, we obtain that lim sup δ(n)(an,

xn)≤ ωb∞(η), for all η > 0, so that δ(n)(an, xn)→ 0. See Figure 8.
We define in a similar way points bn, a′n, and b′n in fln corresponding to yn, x′n, and y′n. Exchanging x′n and

y′n if necessary, we may suppose that the points an, a′n, bn, b′n are encountered in this order when traveling in the
counterclockwise order around ∂qn. Up to further extraction, we may suppose that (an, a

′
n, bn, b

′
n)→ (a, a′, b, b′) ∈

fl4∞, so that a′ ∈ [[a, b]] and b′ ∈ [[b, a]]. Moreover, because δ(n)(xn, x
′
n) ≥ ε, we see that dσ∞(a, a′) ≥ ε. Similarly,

we obtain that dσ∞(b, a′)≥ ε, dσ∞(a, b′)≥ ε, and dσ∞(b, b′)≥ ε, so that a �= b. Finally, the fact that δ(n)(xn, yn)→ 0
implies that dσ∞(a, b)= 0, so that a ∼∞ b. This contradicts Lemma 14. �

Fig. 8. Approaching a point xn ∈ ∂Sn with a point an ∈ fln.

5It is for example a.s. of Hausdorff dimension 4 by Theorem 1.
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5.3.2. 1-regularity of Sn

In order to show that the sequence (Snk
)k is 1-regular, we first only consider simple loops made of edges in Sn.

A simple loop ℘ splits Sn into two domains. By the Jordan curve theorem, one of these is homeomorphic to a disc.
We call it the inner domain of ℘. The other domain contains ∂Sn in its closure, and we call it the outer domain of ℘.

Lemma 20. A.s., for all ε > 0, there exists 0 < η < ε such that for all k sufficiently large, the inner domain of any
simple loop made of edges in Snk

with diameter less than η has diameter less than ε.

The proof of this Lemma is readily adaptable from the proof of [8], Lemma 22, which uses the method employed
by Miermont in [34]. The general idea is that a loop separates some part of the map from the base point. As a result,
the labels in one of the two domains are larger than the labels on the loop. In the forest, this corresponds to having a
part with labels larger than the labels on the “border.” In the continuous limit, this creates an increase point for both
C∞ and L∞. We recall now the main steps.

Proof of Lemma 20. We argue by contradiction and suppose that, with positive probability, there exists ε > 0 for
which, along some (random) subsequence of the sequence (nk)k≥0, there exist simple loops ℘n made of edges in
Sn with diameter tending to 0 (with respect to the rescaled metric δ(n)) and whose inner domains are of diameter
larger than ε. We reason on this event. We will show in the proof of Proposition 21 that ∂Snk

tends, for the Gromov–
Hausdorff topology, toward π∞(fl∞). Because fl∞ is not reduced to a singleton, we see by Lemma 14 that π∞(fl∞) is
not a singleton either, so that diam(π∞(fl∞)) > 0. To avoid trivialities, we moreover suppose that ε < diam(π∞(fl∞)).
Because ∂Sn is entirely contained in the outer domain of ℘n, we obtain that, for n large enough, the outer domain of
℘n is also of diameter larger than ε.

Let s•n be an integer where Ln reaches its minimum, and w•n := fn(s
•
n) the corresponding point in the forest. Let

us suppose for the moment that w•n /∈ ℘n. We take xn as far as possible from ℘n in the connected component of the
complement of ℘n that does not contain w•n, and we denote by yn the first vertex of the path [[xn,w

•
n]] that belongs to

℘n. Up to further extraction, we suppose that s•n/(2n+ σn − 1)→ s• := arg minL∞, xn→ x, and yn→ y. Because
of the way xn and yn were chosen, it is not hard to see that x �= y.

Let us first suppose that y �=w• :=F∞(s•). In particular, w•n /∈ ℘n for n large, so that xn and yn are well defined.
In this case, y ∈ [[x,w•]] \ {x,w•}, so that the points in F−1∞ (y) are increase points of C∞. By Lemma 12, we
can find a subtree τ , not containing y, satisfying infτ L∞ < L∞(y) and rooted on [[x, y]]. We consider a discrete
approximation τn of this subtree, rooted on [[xn, yn]]. As the labels on ℘n differ by o(n1/4), when n is sufficiently
large, we thus have infτn Ln < inf℘n Ln.

As the labels of the forest represent the distances in qn to the base point (up to some additive constant), we see that
all the labels of the points in the same domain as xn are larger than inf℘n Ln. As a consequence, τn cannot be entirely
included in this domain, so that the set ℘n ∩ τn is not empty. We take zn ∈ ℘n ∩ τn, and, up to further extraction, we
suppose that zn→ z. On the one hand, δ(n)(yn, zn)≤ diam(℘n), so that y ∼∞ z. On the other hand, z ∈ τ and y /∈ τ ,
so that y �= z. Because y is not a leaf, this contradicts Theorem 13.

The case y =w• is treated with a slightly different argument. As the argument is exactly the same as in [8], we do
not treat it here. �

We now turn to general loops that are not necessarily made of edges. Here again, we use an argument similar to the
one used in [8,34], with some minor changes. We fix ε > 0, and we let η be as in Lemma 20. For k sufficiently large,
the conclusion of Lemma 20 holds, together with the inequality ηγ n

1/4
k ≥ 12.

We call pane of Sn the projection in Sn of a [zj−1, zj ] × [0,1] ⊆Xf∗ for some 1≤ j ≤ 2σn, with the notation of
Section 5.2. We also call semi-edge the projection in Sn of either {zj } × [0,1] ⊆ Xf∗ or [zj−1, zj ] × {1} ⊆ Xf∗ for
some 1≤ j ≤ 2σn. These correspond to the edges of the prism Xf∗ that are not already edges in Sn. Let us consider a
loop L drawn in Snk

with diameter less than η/2. Consider the union of the closed internal faces6 and panes visited
by L . The boundary of this union consists in simple loops made of edges and semi-edges in Snk

. It should be clear
that one of these loops entirely contains L in the closure of its inner domain. Let us denote this loop by λ.

Let λ̃ be the largest (in the sense of the inclusion of the inner domains) simple loop made of edges contained in
the closure of the inner domain of λ (that is, the loop obtained by removing the semi-edges of the form {zj } × [0,1]

6We call closed face the closure of a face.
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and changing the ones of the form [zj−1, zj ] × {1} by [zj−1, zj ] × {0}). Because every internal face and every pane

of Snk
has diameter less than 3/(γ n

1/4
k ), we see that diam(λ̃)≤ diam(L )+ 6/(γ n

1/4
k )≤ η. Then, by Lemma 20, the

diameter of the inner domain of λ̃ is less than ε. As a result, the diameter of the inner domain of λ is less than 2ε, so
that L is homotopic to 0 in its 2ε-neighborhood.

5.4. Boundary of qσ∞

We use the observation following Proposition 16 to show that the boundary of qσ∞ is (the image in qσ∞ of) the floor
fl∞ of F∞, and then give a lower bound on its Hausdorff dimension. We postpone the proof of the upper bound to
Section 7.4, because we will need the notation of Section 7.

Proposition 21. The boundary of qσ∞ is given by ∂qσ∞ = π∞(fl∞).

Proof. We define a pseudo-metric d̃GH on the set of triples (X , δ,A) where (X , δ) is a compact metric space and
A⊆X is a closed subset of X by

d̃GH
(
(X , δ,A),

(
X ′, δ′,A′

)) := inf
{
δH

(
ϕ(X ), ϕ′

(
X ′

))∨ δH
(
ϕ(A),ϕ′

(
A′
))}

,

where the infimum is taken over all isometric embeddings ϕ :X → X ′′ and ϕ′ :X ′ → X ′′ of X and X ′ into
the same metric space (X ′′, δ′′). By slightly adapting the proof of [13], Theorem 7.3.30, we can show that
d̃GH((X , δ,A), (X ′, δ′,A′)) = 0 if and only if there is an isometry from (X , δ) onto (X ′, δ′) whose restriction to
A maps A onto A′.

We proceed in three steps. First, note that the observation following Proposition 16 implies that

d̃GH
(
(Snk

, δ(nk), ∂Snk
),
(
qσ∞, dσ∞, ∂qσ∞

))−−−−→
k→∞ 0. (17)

Secondly, we show that

d̃GH
(
(Sn, δ(n), ∂Sn),

(
V (qn) \

{
v•n
}
, δ(n),fln \

{
v◦n
}))−−−−→

n→∞ 0, (18)

where v◦n is the extra vertex of the floor added when performing the Bouttier–Di Francesco–Guitter bijection. We
work here in Sn and see V (qn) \ {v•n} as one of its subsets. Because of the way Sn is constructed, we see that
δH(Sn,V (qn) \ {v•n}) ≤ 3/γ n1/4. Using the technique we used in the proof of Lemma 19 to approach the points
of ∂Sn by points lying in fln \ {v◦n}, and the fact that every point in fln \ {v◦n} is at distance at most 1/(γ n1/4) from
∂Sn, we obtain that

δH
(
∂Sn,fln \

{
v◦n
})≤ 3

γ n1/4
+ωb(n)

(η),

as soon as n≥ 1/2η2. As a result, lim sup d̃GH((Sn, δ(n), ∂Sn), (V (qn) \ {v•n}, δ(n),fln \ {v◦n}))≤ ωb∞(η) for all η > 0,
and (18) follows by letting η→ 0.

Finally, we see that

d̃GH
((

V (qnk
) \ {v•nk

}
, δ(nk),flnk

\ {v◦nk

})
,
(
qσ∞, dσ∞,π∞(fl∞)

))−−−−→
k→∞ 0. (19)

Recall that (V (qn) \ {v•n}, δ(n)) is isometric to the space (Qn, d(n)) defined in Section 3.2. We slightly abuse notation
and view fln \ {v◦n} as a subset of Qn. We set rn := dis(Rn)/2, where Rn is the correspondence between Qn and
qσ∞ defined during Section 3.2, and we define the pseudo-metric Δn on the disjoint union Qn # qσ∞ by Δn(x, y) :=
d(n)(x, y) if x, y ∈Qn, Δn(x, y) := dσ∞(x, y) if x, y ∈ qσ∞,

Δn(x, y) := inf
{
d(n)

(
x, x′

)+ rn + dσ∞
(
y′, y

)
:
(
x′, y′

) ∈Rn

}
if x ∈Qn and y ∈ qσ∞, and Δn(x, y) :=Δn(y, x) if x ∈ qσ∞ and y ∈Qn. It is a simple exercise to verify that Δn is
indeed a pseudo-metric and that δH(Qn,q

σ∞) ≤ rn. We showed in Section 3.2 that rnk
→ 0 as k→ 0, so that it is
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sufficient to prove that δH(flnk
,π∞(fl∞))→ 0 as well. Let us argue by contradiction and suppose that this is not the

case. There exists ε > 0 such that one of the following occurs:

(i) for infinitely many n’s, we can find a point tn in the set (2n + σn − 1)−1 �0,2n+ σn − 1� such that p(n)(tn) ∈
fln \ {v◦n}, and Δn(p(n)(tn),π∞(fl∞))≥ ε,

(ii) for infinitely many n’s, there is sn ∈ [0,1] such that F∞(sn) ∈ fl∞, and Δn(q
σ∞(sn),fln \ {v◦n})≥ ε.

In the first case, up to extraction, we may suppose that tn→ t . The fact that p(n)(tn) ∈ fln \ {v◦n} yields that C(n)(tn)=
C(n)(tn), so that C∞(t)= C∞(t) by continuity, and F∞(t) ∈ fl∞. We then have

ε ≤Δn

(
p(n)(tn),π∞(fl∞)

)≤Δn

(
p(n)(tn),q

σ∞(t)
)≤ dσ∞(tn, t)+ rn→ 0

along some subsequence. This is a contradiction. In the second case, we may also suppose that sn→ s, and we have
F∞(s) ∈ fl∞. We set tn := inf{t : C(n)(t) = C(n)(s)}, so that p(n)(tn) ∈ fln \ {v◦n}. Up to further extraction, we have
that tn→ t , and because C∞(t)= C∞(s)= C∞(s), we see that s �∞ t , which yields dσ∞(s, t)= 0. Finally,

ε ≤Δn

(
qσ∞(sn),fln \

{
v◦n
})≤Δn

(
qσ∞(sn),p(n)(tn)

)≤ dσ∞(sn, tn)+ rn→ 0

along some subsequence.
Now, (17), (18), and (19) yield that d̃GH((qσ∞, dσ∞, ∂qσ∞), (qσ∞, dσ∞,π∞(fl∞)))= 0, so that there exists an isometry

ϕ :qσ∞→ qσ∞ such that π∞(fl∞)= ϕ(∂qσ∞)= ∂(ϕ(qσ∞))= ∂qσ∞. �

We are now able to bound from below the Hausdorff dimension of ∂qσ∞. We start with a lemma.

Lemma 22. For a, b ∈ fl∞, we have

dσ∞(a, b)≥ L∞(a)−max
(

min[[a,b]]L∞, min[[b,a]]L∞
)
.

Proof. Let an, bn ∈ fln be points converging to a and b, and let ℘n be a geodesic from an to bn. Reasoning as in the
beginning of the proof of Lemma 14, we see that ℘n either overflies [[an, bn]] for infinitely many n’s, or it overflies
[[bn, an]] for infinitely many n’s.

In the first case, let c ∈ [[a, b]], and let cn ∈ [[an, bn]] be a point converging toward c. For the values of n for which
℘n overflies [[an, bn]], we obtain by the remark of Section 4.3.2, and the triangle inequality, that

Ln(cn)≥ Ln(an)− dqn(an, bn).

Taking the limit after renormalization along these values of n, we obtain that L∞(c)≥ L∞(a)− dσ∞(a, b). Taking the
infimum for c over [[a, b]], we find dσ∞(a, b)≥ L∞(a)−min[[a,b]]L∞. In the second case, a similar reasoning yields
that dσ∞(a, b)≥ L∞(a)−min[[b,a]]L∞. �

Proof of Theorem 3 (Lower bound). Recall that, for x ∈ [0, σ ], we defined Tx := inf{r ≥ 0: C∞(r)= σ − x}. We
also set fl(x) := qσ∞(Tx), so that π∞(fl∞)= {fl(x),0≤ x ≤ σ }.

To obtain the lower bound, we proceed as follows. We define the measure Λfl on qσ∞ supported by π∞(fl∞) as the
image of the Lebesgue measure on [0, σ ] by the map y ∈ [0, σ ] �→ fl(y). Let us fix x ∈ [0, σ ]. Because the process
y ∈ [0, σ ] �→ L∞(Ty)= b∞(y) has the law of a Brownian bridge (up to a factor

√
3), the law of the iterated logarithm

ensures us that, a.s., for η > 0, and δ small enough,

L∞(Tx)− min
y∈−−−−−−−−−→[x − δ2−η, x]

L∞(Ty) > δ and L∞(Tx)− min
y∈−−−−−−−−−→[x, x + δ2−η]

L∞(Ty) > δ. (20)

For a ∈ qσ∞ and r > 0, we denote by B∞(a, r)⊆ qσ∞ the open ball centered at a with radius r for the metric dσ∞. Using
Lemma 22, we see that, whenever (20) holds,

B∞
(
fl(x), δ

)∩ π∞(fl∞)⊆ fl
((

x − δ2−η, x + δ2−η
))

,
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so that Λfl(B∞(fl(x), δ))≤ 2δ2−η. Finally, we obtain that, a.s., for all a ∈ π∞(fl∞),

lim sup
δ→0

Λfl(B∞(a, δ))

δ2−η
≤ 2.

We then conclude that dimH(qσ∞, dσ∞) ≥ 2 − η for all η > 0 by standard density theorems for Hausdorff measures
([20], Theorem 2.10.19). �

6. Singular cases

6.1. Case σ = 0

In the case σ = 0, we could apply a reasoning similar to the one we used in Sections 3 through 5. We would obtain
for the law of (C∞,L∞) the law of a Brownian snake driven by a normalized Brownian excursion, and we would use
a result of Whyburn [43], Corollary 5.21 and Theorem 6.3, treating the case where diam(∂Xn)→ 0. Instead, we use a
more direct approach, roughly consisting in saying that a uniform quadrangulation with “small” boundary is close to a
uniform quadrangulation without boundary. A non-negligible advantage of this method is that it gives a more precise
statement, Theorem 4, and completely identifies the limiting space as the Brownian map.

Let us begin with a lemma giving an upper bound on the Gromov–Hausdorff distance between a quadrangulation
with a boundary and the quadrangulation obtained by applying Schaeffer’s bijection to one of the trees of the forest
that corresponds through the Bouttier–Di Francesco–Guitter bijection.

Lemma 23. Let (f, l) ∈ Fn
σ be a well-labeled forest, b ∈Bσ a bridge, t a tree of f rooted at ρ, and b ∈ {−1,0}.

Then (0,b) ∈ B1, and, up to a trivial transformation, (t, l|t) may be seen as an element of F|t|−1
1 . We denote by

qf ∈Qn,σ (resp. qt ∈Q|t|−1,1) the quadrangulation corresponding to ((f, l),b) [resp. to ((t, l|t), (0,b))] through the
Bouttier–Di Francesco–Guitter bijection (we omit here the distinguished vertices). Then

dGH
(
(qf, dqf), (qt, dqt)

)≤ 2
(

max
f\◦t

l̂−min
f\◦t

l̂+ 1
)
,

where
◦
t := t \ {ρ}, and

l̂(u) := l(u)+ b
(
a(u)− 1

)
, u ∈ f

is the labeling function of f, shifted tree by tree according to the bridge, as in Section 2.3.2.

Proof. Before we begin, let us introduce some useful notation. For arcs i1 � i2, i2 � i3, . . . , ir−1 � ir , we write

i1 � i2 � · · ·� ir

the path obtained by concatenating them. Consistently with Section 2.3.1, let v• be the extra vertex we add when
performing the Bouttier–Di Francesco–Guitter bijection and let v◦ := (σ + 1) ∈ f be the last vertex of f. We will
identify the sets t∪ {v•} with V (qt), as well as (f \ {v◦})∪ {v•} with V (qf). Then the set

R := {
(a, a): a ∈ t∪ {v•}}∪ {(a,ρ): a ∈ f \ (t∪ {v◦})}

is a correspondence between qf and qt. Without loss of generality, we may suppose that t is the first tree of f. This
yields in particular that an integer i ∈ �0,2|t| − 2� codes the same vertex in t and in f, namely t(i) = f(i). Because
we will apply the Bouttier–Di Francesco–Guitter bijection at the same time to both ((f, l),b) and ((t, l|t), (0,b)), we
will write succf(i) the successor of i ∈ �0,2n+ σ − 1� in the forest f, and succt(i) the successor of i ∈ �0,2|t| − 2�
in the tree t, in order to avoid confusion. We also set l2 := max

f\◦t l̂ and l1 := min
f\◦t l̂ for more clarity. Using the



Scaling limit of quadrangulations with a boundary 457

characterization (13) of the Gromov–Hausdorff distance via correspondences, we see that it suffices to show that, for
all (a, a′), (b, b′) ∈R, we have∣∣dqf(a, b)− dqt

(
a′, b′

)∣∣≤ 4(l2 − l1 + 1).

First case: a, b ∈ f \ (
◦
t∪ {v◦}). In this case, either [a, b] or [b, a] entirely lies inside f \ ◦t. As a result, (3) gives∣∣dqf(a, b)− dqt(ρ,ρ)

∣∣≤ l̂(a)+ l̂(b)− 2 min
f\◦t

l̂+ 2≤ 2(l2 − l1 + 1).

Second case: a, b ∈ t∪ {v•}. We may suppose a �= b. We proceed in two steps. We first claim that

dqt(a, b)≤ dqf(a, b).

To see this, let ℘ = (℘ (0),℘ (1), . . . ,℘ (k)) be any path (not necessarily geodesic) between a and b in qf. We will
construct a shorter path from a to b in qt, and our claim will immediately follow. Our construction is based on the
simple observation that, if an arc exists in qf between two points of t ∪ {v•}, then the same arc also exists in qt. We
then only have to replace the portions of ℘ that “exit” t ∪ {v•} with shorter paths in qt. Precisely, we can restrict
ourselves to the case where ℘(r) ∈ f \ (t ∪ {v•}) for 0 < r < k, with k ≥ 2. We will also need to observe that a path
linking two vertices of label l and l′ has length at least |l − l′|.

Let us denote by i the integer such that the arc (℘ (0),℘ (1)) is either i � succf(i) or i � succf(i). We will say
that (℘ (0),℘ (1)) is oriented to the right in the first case, and to the left in the second case. We also define j in a
similar way for the arc (℘ (k),℘ (k − 1)). Four possibilities are then to be considered (see Fig. 9):

� Both (℘ (0),℘ (1)) and (℘ (k),℘ (k − 1)) are oriented to the right. Without loss of generality, we may suppose
i < j . Properties of the Bouttier–Di Francesco–Guitter bijection then show that l̂(f(j))≥ l̂(f(i)), and we have

k ≥ 1+ ∣∣(l̂(f(j)
)− 1

)− (
l̂
(
f(i)

)− 1
)∣∣+ 1= l̂

(
f(j)

)− l̂
(
f(i)

)+ 2.

The following path in qt,

j � succt(j) � · · ·� succl̂(f(j))−l̂(f(i))+1
t (j)︸ ︷︷ ︸
=succt(i)

� i,

links a to b in qt and has length less than k. The equality in the last line is an easy consequence of the Bouttier–
Di Francesco–Guitter construction.

� Both (℘ (0),℘ (1)) and (℘ (k),℘ (k − 1)) are oriented to the left. Here again, we may suppose i < j . In this case,
l̂(f(j)) > l̂(f(i)), and

succf(j) � succt
(
succf(j)

)
� · · ·� succl̂(f(j))−l̂(f(i))

t

(
succf(j)

)︸ ︷︷ ︸
=succf(i)

fulfills our requirements.

Fig. 9. On this picture, t is the only part of f represented. The dashed (red) line represents the path ℘ (in qf) and the (green) solid path is the path
in qt. Both first cases are represented.
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� (℘ (0),℘ (1)) is oriented to the right, and (℘ (k),℘ (k−1)) is oriented to the left. Necessarily, we have succf(j) < i,
or succf(j)=∞. If l̂(f(i))≥ l̂(f(j)), then we take

i � succt(i) � · · ·� succl̂(f(i))−l̂(f(j))+1(i)
t︸ ︷︷ ︸
=succf(j)

,

otherwise, we take

succf(j) � succt
(
succf(j)

)
� · · ·� succl̂(f(j))−l̂(f(i))

t

(
succf(j)

)︸ ︷︷ ︸
=succt(i)

� i.

� (℘ (0),℘ (1)) is oriented to the left, and (℘ (k),℘ (k − 1)) is oriented to the right. By considering the path ℘̄ :=
(℘ (k),℘ (k − 1), . . . ,℘ (0)) instead of ℘, we are back to the previous case.

We now show that

dqf(a, b)≤ dqt(a, b)+ 2(l2 − l1 + 1).

Let us consider a path ℘ of length k in qt from a to b. We are going to construct a path in qf from a to b, with length
less than k + 2(l2 − l1 + 1). The only arcs present is qt but not in qf are of the form i � succt(i) with succt(i) < i or
succt(i)=∞, and l1 + 1≤ l̂(f(i)) ≤ l2 + 1. For convenience, let us call pathological such arcs. For all pathological
arcs i � succt(i) and j � succt(j) with i < j , we can construct the path

j � succf(j) � · · ·� succl̂(f(j))−l̂(f(i))+1
f

(j)︸ ︷︷ ︸
=succf (i)

� i (21)

linking f(i) to f(j) in qf, its length being l̂(f(j))− l̂(f(i))+ 2. We can also construct the path

j � succf(j) � · · ·� succl̂(f(j))−l1+1
f

(j)︸ ︷︷ ︸
=succ

l̂(f(j))−l1
f

(succt(j))

� · · ·� succt(j) (22)

linking f(j) to f(succt(j)) in qf, its length being 2(l̂(f(j)) − l1) + 1 ≤ 2(l2 − l1 + 1) + 1. Using these paths, we
construct our path in qf as follows. If ℘ does not use any pathological arcs, then ℘ can be seen as a path in qf. If ℘

uses exactly one pathological arc, we construct our new path by changing this arc into a path of the form (22). By
doing so, we obtain a path from a to b in qf with length smaller than k− 1+ 2(l2 − l1 + 1)+ 1. Now, if ℘ uses more
than two pathological arcs, let i � succt(i) be the first one it uses, and j � succt(j) the last one. Let us denote by i1
and i2 the indices at which ℘ uses them: (℘ (i1),℘ (i1+ 1))= i � succt(i) or i � succt(i) and (℘ (i2),℘ (i2+ 1))=
j � succt(j) or j � succt(j). Changing ℘ into its reverse ℘̄ if needed, we may suppose that (℘ (i1),℘ (i1 + 1))=
i � succt(i). If (℘ (i2),℘ (i2+ 1))= j � succt(j), we change the portion (℘ (i1),℘ (i1+ 1), . . . ,℘ (i2+ 1)) into the
path (21), and obtain a new path shorter than ℘. Finally, if (℘ (i2),℘ (i2+ 1))= j � succt(j), we change the portion
(℘ (i1),℘ (i1+ 1), . . . ,℘ (i2+ 1)) into the path (21) concatenated with the path (22), and obtain a new path satisfying
our requirements.

Third case: a ∈ t∪ {v•}, b ∈ f \ (t∪ {v◦}). We can write∣∣dqf(a, b)− dqt(a,ρ)
∣∣ ≤ ∣∣dqf(a, b)− dqf(a,ρ)

∣∣+ ∣∣dqf(a,ρ)− dqt(a,ρ)
∣∣

≤ dqf(b,ρ)+ ∣∣dqf(a,ρ)− dqt(a,ρ)
∣∣

≤ 4(l2 − l1 + 1),

by applying the first case to (b,ρ) and the second case to (a,ρ). This ends the proof. �
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We may now proceed to the proof of Theorem 4. We use the same notation as in Section 3.1, and Corollary 8
remains true, if the process (C∞,L∞) has the law of a Brownian snake driven by a normalized Brownian excursion.
As we will not need the explicit law of the process (C∞,L∞) in what follows, we do not prove this, and refer the reader
to [7], in particular to Proposition 15 for similar results. By Skorokhod’s representation theorem, we still assume that
this convergence holds almost surely.

Proof of Theorem 4. We define tn as the largest tree of fn (if there are more than one largest tree, we take tn according
to some convention, for example the first one), and we consider a random variable bn uniformly distributed over
{−1,0}, independent of qn. We denote by q̂n the quadrangulation corresponding, as in the statement of Lemma 23, to
((tn, ln|tn), (0,bn)) through the Bouttier–Di Francesco–Guitter bijection. Then, conditionally given |tn| = k + 1, the
quadrangulation q̂n is uniformly distributed over the set Qk,1.

From now on, we work on the set of full probability where the convergence C(n)→ C∞ holds. Let ε ∈ (0,1/4),
and 2η :=min[ε,1−ε]C∞ > 0. As C(n) tends to C∞, for n large enough, we have min[ε,1−ε]C(n) ≥ η and σ(n) < η. As
a result,

sn := inf

{
r ≤ 1

2
: C(n)(r)= C(n)

(
1

2

)}
≤ ε,

tn := sup

{
r ≥ 1

2
: C(n)(r)= C(n)

(
1

2

)}
≥ 1− ε,

so that tn is coded by [(2n+ σn − 1)sn, (2n+ σn − 1)tn]. Note that, in particular, this implies that |tn| ≥ n(1− 2ε).
This fact will be used later. By Lemma 23,

lim sup
n→∞

dGH
((

V (qn), dqn/
(
γ n1/4)), (V (q̂n), dĝn

/
(
γ n1/4)))

≤ 2 lim sup
n→∞

(
sup
−−−−−→[1− ε, ε]

L(n) − inf−−−−−→[1− ε, ε]
L(n) + 1

γ n1/4

)
= 2

(
sup
−−−−−→[1− ε, ε]

L∞ − inf−−−−−→[1− ε, ε]
L∞

)
−−−−→

ε→0
0.

Let us set δ̂(n,k) := dq̂n
/(γ k1/4). We then have to see that (V (ĝn), δ̂(n,n)) converges toward the Brownian map

(m∞,D∗). Let f :M→ R be uniformly continuous and bounded. By the Portmanteau theorem [9], Theorem 2.1,
we only need to show that

E
[
f
(
V (ĝn), δ̂(n,n)

)]−−−−→
n→∞ E

[
f
(
m∞,D∗

)]
.

Let ε > 0. If we delete from ĝn the only edge on the boundary that is not the root, we obtain a quadrangulation
without boundary, which, conditionally given |tn| = k + 1, is uniformly distributed over the set of planar quadran-
gulations with k faces. As this operation does not affect the underlying metric space, by [36], Theorem 1, or [29],
Theorem 1.1, we obtain that the distribution of (V (q̂n), δ̂(n,k)) conditioned on |tn| = k + 1 converges toward the dis-
tribution of (m∞,D∗) as k→∞. As (m∞,D∗) is a compact metric space, we can find large n0 and M such that, for
all k ≥ n0/2 and n for which P(|tn| = k+ 1) > 0,

P
(
diam

(
V (ĝn), δ̂(n,k)

)≥M
∣∣|tn| = k+ 1

)
<

ε

2 supf
, (23)

and ∣∣E[f (V (ĝn), δ̂(n,k)

)∣∣|tn| = k+ 1
]−E

[
f
(
m∞,D∗

)]∣∣< ε. (24)
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We then choose η ∈ (0,1/2) such that, for all (X , δ), (X ′, δ′),

dGH
(
(X , δ),

(
X ′, δ′

))≤ 1

2
M
(
1− (1− η)1/4) ⇒ ∣∣f ((X , δ)

)− f
((
X ′, δ′

))∣∣< ε. (25)

For n≥ n0, we then have∣∣E[f (V (ĝn), δ̂(n,n)

)]−E
[
f
(
m∞,D∗

)]∣∣
≤ 2 supfP

(|tn| ≤ n(1− η)
)

+
n∑

k=$n(1−η)%
P
(|tn| = k + 1

)∣∣E[f (V (ĝn), δ̂(n,n)

)∣∣|tn| = k + 1
]−E

[
f
(
m∞,D∗

)]∣∣.
By the observation we previously made, we see that the first term in the right-hand side tends to 0 as n→∞. To
conclude, it will be sufficient to show that the term between vertical bars in the sum is smaller than 3ε. Using (23),
(24), and the fact that n(1− η)≥ n0/2, we obtain that it is smaller than

2ε+E
[(

f
(
V (ĝn), δ̂(n,n)

)− f
(
V (ĝn), δ̂(n,k)

))
1{diam(V (q̂n),δ̂(n,k))<M}

∣∣|tn| = k + 1
]
.

By taking a trivial correspondence between (V (ĝn), δ̂(n,n)) and (V (ĝn), δ̂(n,k)), it is not hard to see that the Gromov–
Hausdorff distance between these two spaces is smaller than

1

2
diam

(
V (ĝn), δ̂(n,k)

)(
1− (k/n)1/4).

We finally obtain the desired bound thanks to (25). �

6.2. Case σ =∞

In this case, the scaling factor changes. We use the same formalism as in the beginning of Section 3.1, except that we
now suppose that the sequence (σn)n≥1 satisfies σn/

√
2n→∞ as n→∞. By [7], Lemma 10, the process(

bn(σns)

(2σn)1/2

)
0≤s≤1

(26)

converges in distribution toward a standard Brownian bridge B= B0→0
[0,1] . By Skorokhod’s representation theorem, we

will assume that this convergence holds almost surely. We define on [0,1] the pseudo-metric

δB(s, t) :=B(s)+B(t)− 2 max
(

min
r∈−−→[s, t]

B(r), min
r∈−−→[t, s]

B(r)
)
, 0≤ s, t ≤ 1.

By Vervaat’s transformation [42], Theorem 1, the metric space (TB := [0,1]/{δB=0}, δB) is isometric to the CRT
(Te, δe). We will show the convergence toward this space, by using correspondences.

Proof of Theorem 5. We denote by pB : [0,1] → TB the canonical projection, and we define the correspondence
Rn between (V (qn) \ {v•n}, (2σn)

−1/2dqn) and (TB, δB) by

Rn :=
{(
qn(i),pB(s)

)
: i ∈ �0,2n+ σn − 1�, s ∈ [0,1], σn −Cn(i)= �σns�

}
.

In terms of forests, this roughly consists in saying that all the vertices of a tree are in correspondence with a small
segment corresponding to the edge of the floor following the root of the tree. It is sufficient to show that the distortion
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of Rn tends to 0 as n→∞. For any two points a and b ∈ fn, we have the following bounds:

Ln(a)+Ln(b)− 2 max
(

min[[a,b]]Ln, min[[b,a]]Ln

)
≤ dqn(a, b)≤ Ln(a)+Ln(b)− 2 max

(
min[a,b]Ln,min[b,a]Ln

)
+ 2.

The second inequality is merely the bound (3), and the first one is easily obtained by a technique similar to the one
we used in the proof of Lemma 22 (see also [7], Lemma 20, or [17]). It is thus easy to see (recall the definition (7) of
Ln) that, for i, j ∈ �0,2n+ σn − 1�,∣∣∣dqn

(
qn(i),qn(j)

)− (
bn(u)+ bn(v)− 2 max

(
min−−−−→

�u, v�

bn, min−−−−→
�v,u�

bn

))∣∣∣≤ 3(sup ln − inf ln)+ 2,

where we wrote u := σn − Cn(i) and v := σn − Cn(j). Using the convergence of the process (26) stated before, we
obtain

lim sup
n→∞

dis(Rn)≤ lim sup
n→∞

3(sup ln − inf ln)

(2σn)1/2
.

It remains to show that the latter quantity is equal to 0 in probability. This is a consequence of Lemma 24, which
follows. �

We still denote by (Cn,Ln) the contour pair of (fn, ln), but we now define the scaled versions of Cn and Ln by

C[n] :=
(

Cn(kns)

σn

)
0≤s≤1

and L[n] :=
(

Ln(kns)√
σn

)
0≤s≤1

,

where we wrote kn := 2n+ σn.

Lemma 24. The pair (C[n],L[n]) converges toward ((1− s)0≤s≤1, (0)0≤s≤1) in distribution in the space (K, dK)2.

Proof. The first step consists in showing the convergence of the first component

C[n] → (1− s)0≤s≤1.

At first, we will consider bridges instead of first-passage bridges.
Step 1. Let (Si)i≥0 be a simple random walk started at 0, and, for all p ∈ [0,1], let (S

(p)
i )i≥0 be a random walk

started at 0 with steps having the distribution pδ2(1−p) + (1− p)δ−2p . It is a simple computation to see that, for any
measurable function f and any k,

E
[
f
(
(Si)0≤i≤k

)]= E

[(
4p(1− p)

)−k/2
(

p

1− p

)−(S
(p)
k +k(2p−1))/2

f
((

S
(p)
i + i(2p− 1)

)
0≤i≤k

)]
.

(Note that (S
(p)
i + i(2p − 1))i≥0 is a random walk whose steps have the distribution pδ1 + (1− p)δ−1.) Let us fix

n ∈N and ε > 0. Applying the latter equality, we obtain that

P

(
sup

0≤i≤kn

∣∣∣∣Si + i
σn

kn

∣∣∣∣> εσn

∣∣∣Skn =−σn

)
= P

(
sup

0≤i≤kn

∣∣S(pn)
i

∣∣> εσn

∣∣∣S(pn)
kn
= 0

)
, (27)

if we choose pn := 1/2− σn/2kn.
For m ∈ Z, it should be clear that, under P(·|S(pn)

kn
= 2m), the path (S

(pn)
i )0≤i≤kn is uniformly distributed among

the paths going from 0 to 2m and having steps with value 2(1−pn) or −2pn. Then, changing uniformly a −2pn-step
into a 2(1− pn)-step, we obtain a path with law P(·|S(pn)

kn
= 2(m+ 1)) that always lies above the previous one. This

observation shows the stochastic domination

P
(·|S(pn)

kn
= 2m

)� P
(·|S(pn)

kn
= 2(m+ 1)

)
,



462 J. Bettinelli

from which we obtain that

P
(
S

(pn)
kn
≥ 0

)
P

(
sup

0≤i≤kn

S
(pn)
i > εσn

∣∣S(pn)
kn
= 0

)
=
∞∑

m=0

P
(
S

(pn)
kn
= 2m

)
P

(
sup

0≤i≤kn

S
(pn)
i > εσn

∣∣S(pn)
kn
= 0

)

≤
∞∑

m=0

P
(
S

(pn)
kn
= 2m

)
P

(
sup

0≤i≤kn

S
(pn)
i > εσn

∣∣S(pn)
kn
= 2m

)
≤ P

(
sup

0≤i≤kn

S
(pn)
i > εσn

)
.

The term P(S
(pn)
kn
≥ 0) is equal to P(B(kn,pn) ≥ knpn), where B(kn,pn) := S

(pn)
kn

/2 + knpn has a binomial distri-
bution with parameters kn and pn. By [23], Theorem 2, this quantity is larger than 1/2. Adding to this the fact that
(S

(pn)
i )i≥0 is a martingale, we obtain, by applying Doob’s inequality, that

P

(
sup

0≤i≤kn

S
(pn)
i > εσn

∣∣S(pn)
kn
= 0

)
≤ 2

ε2σ 2
n

E
[(

S
(pn)
kn

)2]= 8pn(1− pn)kn

ε2σ 2
n

≤ 2kn

ε2σ 2
n

.

Using a similar argument to bound P(inf0≤i≤kn S
(pn)
i <−εσn|S(pn)

kn
= 0), we see that the quantity (27) is smaller than

4kn/ε
2σ 2

n .
Finally, the construction of discrete first-passage bridges from discrete bridges provided in [6], Theorem 1, yields

P

(
sup

0≤s≤1

∣∣C[n](s)− (1− s)
∣∣> ε

)
= P

(
sup

0≤i≤kn

∣∣∣∣Cn(i)− σn + i
σn

kn

∣∣∣∣> εσn

)

≤ P

(
sup

0≤i≤kn

∣∣∣∣Si + i
σn

kn

∣∣∣∣> ε

2
σn

∣∣∣Skn =−σn

)

≤ 16kn

ε2σ 2
n

= 16

ε2

(
2n

σ 2
n

+ 1

σn

)
−−−−→
n→∞ 0.

Step 2. Now that we have the convergence of the first component, let us prove the convergence of the pair
(C[n],L[n]). As explained in the proof of [7], Proposition 15, it is sufficient to show that, for every q ≥ 2, there
exists a constant Kq satisfying, for all n and all 0≤ s ≤ t ≤ 1/2 for which kns and knt are integers,

E
[|Sknt − Skns |q

∣∣Skn =−σn

]≤Kqσ
q
n |t − s|q/2.

Using the same method as above (with the same value of pn), we see that the left-hand side is equal to

E
[∣∣S(pn)

knt − S
(pn)
kns − σn(t − s)

∣∣q |S(pn)
kn
= 0

]
.

We need to bound the quantity

E
[∣∣S(pn)

knt − S
(pn)
kns

∣∣q |S(pn)
kn
= 0

]= E

[∣∣S(pn)
knt − S

(pn)
kns

∣∣q QS(pn)

kn(1−t)(S
(pn)
knt )

QS(pn)

kn
(0)

]
, (28)

where we used the notation QS(pn)

a (b) := P(S
(pn)
a = b) and the Markov property at time knt . Using the simple fact7

that for a binomial variable B(m,p) with parameters m ∈N and p ∈ [0,1), we have

sup
r≥0

P
(
B(m,p)= r

)= P
(
B(m,p)= ⌊

(m+ 1)p
⌋)

,

7Observe that, when p ∈ (0,1), P(B(m,p)= r)≥ P(B(m,p)= r − 1) if and only if r ≤ (m+ 1)p.
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we see that the quotient in the right-hand side of (28) is smaller than

P(B(kn(1− t),pn)= �(kn(1− t)+ 1)pn�)
P(B(kn,pn)= knpn)

∼
n→∞

1√
1− t

≤√2,

so that it is uniformly bounded in n by some finite constant K . Finally, we conclude thanks to Rosenthal’s Inequality
[37], Theorems 2.9 and 2.10, that there exists a constant (depending on q) K ′q such that (28) is smaller than

KE
[∣∣S(pn)

knt − S
(pn)
kns

∣∣q]≤K ′qE
[∣∣S(pn)

1

∣∣q]kq/2
n |t − s|q/2 ≤ (Kq − 1)σ

q
n |t − s|q/2,

with Kq :=K ′q2q supn(kn/σ
2
n )q/2 + 1 <∞. This completes the proof. �

7. Proofs using the Brownian snake

In this section, we prove Lemmas 11, 12, 15, and complete the proof of Theorem 3. To this end, we will need some
notions about the Brownian snake. We refer the reader to [25] for a complete description of this object. Recall that
we denoted by K the space of continuous real-valued functions on R+ killed at some time, and that we wrote ζ(w)

the lifetime of an element w ∈K. We also use the notation ŵ := w(ζ(w)) for the final value of a path w ∈K. From
now on, we will work on the space Ω ′ := C(R+,K) of continuous functions from R+ into K, equipped with the
topology of uniform convergence on every compact subset of R+. We write Ws := ω(s) the canonical process on Ω ′,
and denote by ζs := ζ(Ws) its lifetime.

For w ∈K, we denote the law of the Brownian snake started from w by Pw . This means that, under Pw , the process
(ζs)s≥0 has the law of a reflected Brownian motion on R+ started from ζ(w), and that the conditional distribution of
(Ws)s≥0 knowing (ζs)s≥0, denoted by Θ

ζ
w , is characterized by

� W0 =w, Θ
ζ
w a.s.

� the process (Ws)s≥0 is time-inhomogeneous Markov under Θ
ζ
w and, for 0≤ s ≤ s′,

– Ws′(t)=Ws(t) for all 0≤ t ≤ ζr , Θ
ζ
w a.s., where ζr := infr ′∈[s,s′] ζr ′ ,

– under Θ
ζ
w , the process (Ws′(ζr + t))0≤t≤ζs′−ζr is independent of Ws and distributed as a real Brownian motion

started from Ws(ζr ) and stopped at time ζs′ − ζr .

We suppose here that ζ(w) > 0. Let us set Ia := inf{s: ζs = a} and let us define the probability measure on Ω ′

P
0
w := Pw(·|I0 = 1).

This conditioning may be properly defined by saying that, under P0
w , the law of (ζs)0≤s≤1 is the law of a first-passage

Brownian bridge on [0,1] from ζ(w) to 0, the law of (ζs)s≥1 is the law of a reflected Brownian motion on [1,+∞)

started from 0, and the conditional distribution of (Ws)s≥0 knowing (ζs)s≥0 is Θ
ζ
w .

We denote by 0σ ∈ K the function s ∈ [0, σ ] �→ 0. Under P0
0σ

, the process ((ζs)0≤s≤1, (Ŵs)0≤s≤1) has the same

law as the process (F σ→0
[0,1] ,Z[0,1]) defined during Section 3.1.1. If we denote by B the law on K of a Brownian bridge

on [0, σ ] from 0 to 0, multiplied by the factor
√

3, we then obtain that, under∫
K
B(dw)P0

w(dω),

the process ((ζs)0≤s≤1, (Ŵs)0≤s≤1) has the same law as (C∞,L∞) (under the common probability measure P).
We denote by n(de) the Itô measure of positive Brownian excursions, whose normalization is given by the relation

n(sup e > ε)= 1/2ε, and we set

Nx :=
∫
C(R+,R+)

n(de)Θe
x̄
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the excursion measure of the Brownian snake away from the path x̄ : 0 �→ x. Under Pw , let us denote by (αi, βi), i ∈ I ,
the excursion intervals of s ∈ [0, I0] �→ ζs−ζ s , that is, the connected components of the open set [0, I0]∩{s: ζs > ζ s}.
For i ∈ I , we define W(i) ∈ C(R+,K) by setting, for s ≥ 0,

W(i)
s (t)=W(αi+s)∧βi

(ζαi
+ t), 0≤ t ≤ ζ (i)

s := ζ(αi+s)∧βi
− ζαi

.

One of the main ingredients to our proofs is the following lemma.

Lemma 25 ([25], Lemma V.5). The point measure∑
i∈I

δ(ζαi
,W(i))(dt dω)

is under Pw a Poisson point measure on R+ × C(R+,K) with intensity

Nw(dt dω) := 21[0,ζ(w)](t)dtNw(t)(dω).

We will also need the explicit “law” of the minimum of the Brownian snake’s head under Nx .

Lemma 26 ([32], Lemma 2.1). For all x, y ∈R with y < x,

Nx

(
min
s≥0

Ŵs < y
)
= 3

2(x − y)2
.

With this setting, we have two singular conditionings: one being I0 = 1, and the second one being the fact that w

is under B(dw) a bridge, instead of a Brownian motion. The first step in our proofs will generally be to dispose of the
first of these conditionings (and sometimes the second as well), making us work under Pw instead of P0

w . This will
usually be done by a simple absolute continuity argument, at least for almost sure properties. Another difficulty will
arise from the factor

√
3, and we will sometimes need to take extra care because of it.

7.1. Proof of Lemma 11

Thanks to Lemma 25, we will derive Lemma 11 from the following similar result under Nx , which is due to Le Gall
and Weill [32].

Proposition 27 ([32], Proposition 2.5). There exists Nx a.e. a unique instant where (Ŵs)s≥0 reaches its minimum.

Proof of Lemma 11. From a simple absolute continuity argument, it is sufficient to show that, for every a ∈ [0, ζ(w)],
the process (Ŵs)0≤s≤Ia reaches its minimum only once Pw a.s., for every w belonging to a subset of K of full B-
measure. Without any assumption on w, Lemmas 25 and 26 imply that, Pw a.s., the process (Ŵs)0≤s≤Ia does not
reach its minimum on two different intervals of the form [αi,βi], i ∈ I . Moreover, the probability that it reaches its
minimum more than once on some such interval is smaller than

Pw

(
∃i ∈ I : ∃αi ≤ s < t ≤ βi : Ŵs = Ŵt = min

s∈[αi ,βi ]
Ŵs

)
= 1− exp

(
−2

∫ ζ(w)

0
dtNw(t)

(
∃s < t : Ŵs = Ŵt =min

s≥0
Ŵs

))
= 0,

by Proposition 27.
We will now see that (Ŵs)0≤s≤Ia does not reach its minimum on [0, Ia] \⋃i∈I [αi,βi], which will complete the

proof. It is at this time that we make extra assumptions on w. The so-called snake property shows that{
Ŵs : s ∈ [0, Ia] \

⋃
i∈I

(αi, βi)

}
= {

w(t): a ≤ t ≤ ζ(w)
}
,
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so that it will be enough to see that, Pw a.s., min0≤s≤Ia Ŵs < min[a,ζ(w)]w. Using Lemma 25 then Lemma 26, we
obtain

Pw

(
min

0≤s≤Ia

Ŵs < min[a,ζ(w)]w
)
= 1− exp

(
−2

∫ ζ(w)

a

dtNw(t)

(
min
s≥0

Ŵs < min[a,ζ(w)]w
))

= 1− exp

(
−3

∫ ζ(w)

a

dt
(
w(t)− min[a,ζ(w)]w

)−2
)

.

An easy application of Lévy’s modulus of continuity (see for example [38], Theorem I.2.7) shows that, B(dw) a.s.,
this quantity equals 1. �

7.2. Proof of Lemma 12

For a continuous function f : [0, �] → R, we write IPleft(f ) (resp. IPright(f )) the set of its left-increase points (resp.
right-increase points). Remember that s ∈ (0, �] is a left-increase point of f if there exists t ∈ [0, s) satisfying f (r)≥
f (s) for all t ≤ r ≤ s, and that a right-increase point is defined in a symmetrical way. We also denote by IP(f ) =
IPleft(f )∪ IPright(f ) the set of all its increase points. Due to the fact that the points Ia , a ∈ [0, ζ(w)] are left-increase
points of ζ and do not always lie in

⋃
i∈I (αi, βi], we cannot directly apply the same strategy as in the previous section

and derive Lemma 12 from a similar statement under Nx . Instead, we use a technique of covering intervals inspired
from [5] and a theorem of Shepp [41]. In [5], Bertoin is interested in a similar problem: he characterizes the Lévy
processes X for which the set IPright(X)∩ IPleft(−X) is almost surely empty. Our method gives, in particular, another
proof to [31], Lemma 3.2, which states that the set

IP
(
(ζs)0≤s≤�

)∩ IP
(
(Ŵs)0≤s≤�

)
is Nx a.e. empty. (Recall that we write � := sup{s ≥ 0: ζs > 0}.) This comes very roughly from the fact that, if ζ and
Ŵ do not share any increase points on [0, I0], in particular, they do not share any increase points on any (αi, βi) either,
and, by Lemma 25, the process restricted to (αi, βi) is then “distributed” under Nx .

For y ∈ R, we set Ty := inf{s ≥ 0: w(s)= y}, where w is the canonical process on K, and, for y < a and κ > 0,

we denote by P
(y,∞)
a,κ the law on K of a standard Brownian motion multiplied by κ , started from a and stopped at time

Ty . For x > 0, we also denote by P x
a,κ the law of a standard Brownian motion multiplied by κ , started from a and

stopped at time x. When we omit the value of κ , it will be assumed to be 1.
Although quite long to properly write in full detail, our strategy is pretty simple. One of the main difficulty comes

from the two levels of randomness of the Brownian snake. In contrast to the previous proof where we worked under
Pw for a fixed w ∈ K, we will need here to work under B(dw)P0

w(dω) and see w as random. As a consequence, we
will need to consider the timescale of ζ and W , as well as the timescale of w. Juggling from one to the other may also
cause confusion.

In order to facilitate the reading of our proof, we outline it now. By absolute continuity arguments, we get rid of
the conditionings and work under P x

0,
√

3
(dw)Pw(dω) instead of B(dw)P0

w(dω). Using symmetry and time-reversal,

we mainly need to focus on right-increase points of Ŵ that are also left-increase points of ζ . It should not be too
hard to convince oneself8 that it suffices to look at points s ∈ [0, I0] such that ζs = ζ s . If s is such a point and
also a right-increase point of Ŵ , we will first see that s is not the starting point of an excursion of ζ − ζ , that is,
s /∈ {αi : i ∈ I }. As a result, as moreover s is a right-increase point of Ŵ and ζ is non-increasing, we obtain that ζ s

is a left-increase point of w. By an argument similar as before, we may restrict our attention to points s satisfying
ζs = ζ s = inf{t : w(t)=w(ζs)}. See Fig. 10.

Then, we will consider the excursions of w − w and look at the minimum of Ŵ on the intervals corresponding
in the timescale of Ŵ to these excursions. Using [41], we will see that, as close as we want before ζs , we can find
an excursion of w − w where the corresponding minimum of Ŵ is smaller than w(ζs), prohibiting ζs from being a
left-increase point of w.

We start with a lemma stating that the extremities of any excursion interval (αi, βi) are not increase points of the
process Ŵ restricted to this interval (αi, βi).

8To be more accurate, if s does not satisfy this hypothesis, we apply the Markov property at some (rational) time a close enough before s so that
ζs = inf[a,s] ζ . When doing so, we work under Px

0 (dw)Pw(dω) instead of Px

0,
√

3
(dw)Pw(dω).
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Fig. 10. Visual aid for the proof of Lemma 12. On this picture, the timescale of ζ and W is horizontal, whereas the timescale of w is vertical. The
point s satisfies ζs = ζ s = inf{t : w(t)=w(ζs)}. We represented by (green) solid lines the seven longest excursions of w−w before time ζs , and
the (green) arrows represent the minimum of Ŵ on the intervals that correspond in the timescale of W to these excursions.

Lemma 28. Let w ∈K. Then, Pw(dω) a.s., for all i ∈ I ,

αi /∈ IPright
(
(Ŵs)0≤s≤I0

)
and βi /∈ IPleft

(
(Ŵs)0≤s≤I0

)
.

Proof. It is enough to show that Nx a.e. 0 /∈ IPright((Ŵs)0≤s≤�). Indeed, this entails by Lemma 25 that

Pw

(∃i ∈ I : αi ∈ IPright
(
(Ŵs)0≤s≤I0

))= 1− exp

(
−2

∫ ζ(w)

0
dtNw(t)

(
0 ∈ IPright

(
(Ŵs)0≤s≤�

)))= 0.

Then, by the time-reversal property under Nx (the process (ζ�−s ,W�−s)0≤s≤� has under Nx the same distribution as
(ζs,Ws)0≤s≤�), we see that Nx a.e. � /∈ IPleft((Ŵs)0≤s≤�), and we conclude in the same way.

Let e be an excursion. By definition, under Θe
x̄ , the process(

Ŵ
(
sup{s ≤ �/2: es = y}))0≤y≤e�/2

has the law P
e�/2
x . The desired result follows since n(de) a.e. sup{s ≤ �/2: es = y}→ 0 as y→ 0. �

The following lemma will only be used for κ = 1 or κ =√3 in what follows, but the proof works for any κ ≤√3,
so that we consider all these values.

Lemma 29. Let κ ≤√3 and x > 0. The sets

A := {
s ∈ IPright

(
(Ŵs)0≤s≤I0

)
: ζs = ζ s = inf

{
t : w(t)=w(ζs)

}}
and

B := {
s ∈ IPleft

(
(Ŵs)0≤s≤I0

)
: ζs = ζ s = sup

{
t : w(t)=w(ζs)

}}
are P x

0,κ (dw)Pw(dω) a.s. empty.

Proof. For technical reasons, it will be easier to work with the measure P
(−y,∞)

0,κ (dw) instead of P x
0,κ (dw). Let y > 0.

We are going to show that the set A is P
(−y,∞)

0,κ (dw)Pw(dω) a.s. empty. This will entail in particular that the set{
s ∈ IPright

(
(Ŵs)Ix≤s≤I0

)
: ζs = ζ s = inf

{
t : w(t)=w(ζs)

}}
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is P
(−y,∞)

0,κ (dw|T−y ≥ x)Pw(dω) a.s. empty. By the Markov property of the Brownian snake at time Ix , under the
latter measure, the distribution of((

w(s)
)

0≤s≤x
, (ζIx+s)0≤s≤I0−Ix , (WIx+s)0≤s≤I0−Ix

)
is precisely P x

0,κ (dw|wx ≥−y)Pw(dω). Letting y→∞ yields that A is P x
0,κ (dw)Pw(dω) a.s. empty.

Step 1. Let us denote by (uj , vj ), j ∈ J , the excursion intervals of w−w, and

w(j)(s) :=w
(
(uj + s)∧ vj

)−w(uj ), j ∈ J.

We will need to find the distribution under P
(−y,∞)

0,κ (dw)Pw(dω) of the point measure

P :=
∑
j∈J

δ(−w(uj ),m(j)) where m(j) :=w(uj )− min[Ivj
,Iuj
] Ŵ .

To this end, we adapt a computation of Miermont [36], Lemma 31. By Itô’s excursion theory, the point measure∑
j∈J

δ(−w(uj ),w(j))

is under P
(−y,∞)

0,κ (dw) a Poisson point measure on R+ × K with intensity κ−11[0,y](t)dt2κ∗n(de), where κ∗n(de)

denotes the pushforward of n(de) by e �→ κe. Using Lemma 25, we may see the m(j), j ∈ J , as independent marks on
w(j), j ∈ J , with law Pw(j) (−min Ŵ ∈ dz). The marking theorem of Poisson point measures [24], Marking Theorem,

shows that, under P
(−y,∞)

0,κ (dw)Pw(dω), P is also a Poisson point measure on R+ ×R+ with intensity

κ−11[0,y](t)dt

∫
K

2n(de)Pκe(−min Ŵ ∈ dz).

To compute explicitly this intensity, we use Lemmas 25 and 26, and then Bismut’s description of n [38], Theo-
rem XII.4.7:∫

K
2n(de)Pκe(−min Ŵ ≥ z) =

∫
K

2n(de)

(
1− exp

(
−
∫ �

0

3 ds

(κes + z)2

))
=
∫
K

2n(de)

∫ �

0

3 dt

(κet + z)2
exp

(
−
∫ �

t

3 ds

(κes + z)2

)

= 6
∫ ∞

0

da

(κa + z)2
E(0,∞)

a

[
exp

(
−
∫ T0

0

3 ds

(κw(s)+ z)2

)]

= 6
∫ ∞

0

da

(κa + z)2
E

(0,∞)
a+z/κ

[
exp

(
− 3

κ2

∫ Tz/κ

0

ds

(w(s))2

)]
.

Using the absolute continuity relations between Bessel processes with different indices, which is due to Yor [38],
Exercise XI.1.22, and the fact that reflected Brownian motion is a 1-dimensional Bessel process, we see that

E
(0,∞)
a+z/κ

[
exp

(
− 3

κ2

∫ Tz/κ

0

ds

(w(s))2

)]
= lim

t→∞E
(0,∞)
a+z/κ

[
exp

(
− 3

κ2

∫ Tz/κ∧t

0

ds

(w(s))2

)]

= lim
t→∞E

〈2+2ν〉
a+z/κ

[(
w(Tz/κ ∧ t)

a + z/κ

)−ν−1/2]

=
(

z

κa + z

)−ν−1/2

P
〈2+2ν〉
a+z/κ [Tz/κ <∞]

=
(

z

κa + z

)ν−1/2

,
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where ν := √24+ κ2/2κ and P
〈2+2ν〉
a denotes the distribution of a Bessel process of dimension 2+ 2ν. In the last

line, we used the fact that, for b > c, P
〈2+2ν〉
b [Tc <∞]= (c/b)2ν (see [38], Chapter XI). Putting all this together and

differentiating with respect to z, we obtain that the intensity of P is

1[0,y](t)dt
λ

z2
dz, where λ := 12κ−1

√
24+ κ2 + κ

≥ 1.

Step 2. Let
∑

k∈K δ(tk,zk) be a Poisson random measure with intensity dtλz−2 dz. Then, by the restriction prop-
erty of Poisson random measures, for all ε > 0,

∑
k∈K δ(tk,zk)1{zk≤ε} is a Poisson random measure with intensity

dtλz−21{z≤ε} dz. By a theorem of Shepp [41], we obtain that the random set⋃
k∈K:zk≤ε

(tk, tk + zk) (29)

is a.s. equal to R. We used here the fact that λ≥ 1, ensuring that R is covered with “small” intervals. See in particular
the remark on high frequency coverings in [41], Section 5. As a result, the set⋃

zk≤ε,0≤tk≤y

(tk, tk + zk)

a.s. contains [ε, y]. Because the point measure
∑

k∈K δ(tk,zk)1{0≤tk≤y} has the same law as P under P
(−y,∞)

0,κ (dw)×
Pw(dω), we find that, P

(−y,∞)

0,κ (dw)Pw(dω) a.s., for all rational ε > 0, the set [−y,−ε] is contained in

Covε :=
⋃

j∈J:m(j)≤ε

(
w(uj )−m(j),w(uj )

)
.

Now, let us assume that A is not empty, and let us take s ∈ A. By Lemma 28, s /∈ {αi, i ∈ I }. As a result, there
exists η > 0 such that Ŵr ≥ Ŵs for all r ∈ [s, Iζs−η]. In particular, for all j ∈ J such that [uj , vj ] ⊆ [ζs − η, ζs], we
have w(uj ) − m(j) ≥ Ŵs = w(ζs). As ζs = inf{t : w(t) = w(ζs)}, we can find a rational ε > 0 satisfying w(ζs) ≤
w(ζs − η)− ε ≤−ε.

Let j ∈ J be such that m(j) ≤ ε. If uj ≤ ζs − η, then w(uj ) − m(j) ≥ w(ζs − η) − ε ≥ w(ζs). If uj ∈ [ζs −
η, ζs], we already observed that w(uj )−m(j) ≥w(ζs). Finally, if uj ≥ ζs , then w(uj )≤w(ζs). In all cases, w(ζs) /∈
(w(uj )−m(j),w(uj )). We found a point w(ζs) ∈ [−y,−ε] that does not belong to Covε . This can only happen with
probability 0.

Similar arguments show that the set B is P
(−y,∞)

0,κ (dw)Pw(dω) a.s. empty, where we write P
(−y,∞)

0,κ the pushforward

of P
(−y,∞)

0,κ under w �→w := (w(ζ(w)− s))0≤s≤ζ(w). This entails that B is also P
x

0,κ (dw)Pw(dω) a.s. empty, and, by
time-reversal, w−w(x) has under P x

0,κ (dw) the same distribution as w, so that the result also holds P x
0,κ (dw)Pw(dω)

a.s. We leave the details to the reader. �

Note. We can see from this proof that the value
√

3 is critical. The theorem of Shepp actually entails that the set (29)
is a.s. equal to R if and only if λ≥ 1, that is, κ ≤√3. In the case κ >

√
3, we can thus find an ε > 0 and a point z in

[−y,−ε] that does not belong to Covε . It is then not very hard to see that Iinf{t :w(t)=z} is a right-increase point of Ŵ .
As a result, the set IP((ζs)0≤s≤�)∩ IP((Ŵs)0≤s≤�) is not empty.

We may now proceed to the proof of Lemma 12. We define

I
(a)
b := inf{s ≥ a: ζs = b}.

Proof of Lemma 12. As above, we start by working under P x
0,κ (dw)Pw(dω) with κ ≤√3.

Step 1. The first step consists in treating the left-increase points of ζ . To do so, we will use the Markov property
of the Brownian snake and “insert” rational numbers in order to be able to apply the previous lemmas. Let b ∈ [0, x].



Scaling limit of quadrangulations with a boundary 469

Because the process((
w(b+ r)−w(b)

)
0≤r≤x−b

,
((

Wr(b+ t)
)

0≤t≤ζr−b

)
0≤r≤Ib

)
has under P x

0,κ (dw)Pw(dω) the law P x−b
0,κ (dw)Pw(dω), we see by Lemma 29 that the set

Ab := {
s ∈ IPright

(
(Ŵs)0≤s≤Ib

)
: ζs = ζ s = inf

{
t ≥ b: w(t)=w(ζs)

}}
is P x

0,κ (dw)Pw(dω) a.s. empty. Similarly, for b ∈ [0, x], c > b, and a, the Markov property shows that the process((
Wa(b+ r)−Wa(b)

)
0≤r≤c−b

,
((

W
I

(a)
c +r

(b+ t)
)

0≤t≤ζ
I
(a)
c +r

−b

)
0≤r≤I

(a)
b −I

(a)
c

)
has under P x

0,κ (dw)Pw(dω|a ≤ I0, ζ a < b, c < ζa) the law P c−b
0 (dw)Pw(dω). (Beware that here the factor κ does not

appear.) As a result, Lemmas 28 and 29 successively show that, on the event {a ≤ I0, ζ a < b, c < ζa}, the sets

Cb,c
a :=

{
s ∈ IPright

(
(Ŵs)I (a)

c ≤s≤I
(a)
b

)∩ IPright(ζ ): ζs = inf[a,s] ζ
}

and

Ab,c
a :=

{
s ∈ IPright

(
(Ŵs)I (a)

c ≤s≤I
(a)
b

)
: ζs = inf[a,s] ζ = inf

{
t ≥ b: Wa(t)=Wa(ζs)

}}
are P x

0,κ (dw)Pw(dω) a.s. empty. As a result, we obtain that P x
0,κ (dw)Pw(dω) a.s., for all rational values of a, b, and

c, these sets are empty.
Now, if the set IPleft((ζs)0≤s≤I0)∩ IPright((Ŵs)0≤s≤I0) is not empty, let s be a point lying in it. Let us first suppose

that ζs = ζ s . By Lemma 28, we know that s /∈ {αi, i ∈ I }. This implies that ζs ∈ IPleft(w). As local minimums of
Brownian motion are distinct, we can find a rational b ∈ [0, ζs] such that ζs = inf{t ≥ b: w(t)=w(ζs)}, and s ∈Ab .
Otherwise, ζs > ζ s . As s ∈ IPleft(ζ ), we can find a rational a ∈ [0, s) such that ζa > ζs and ζs = inf[a,s] ζ . If s ∈
IPright(ζ ), we can find rationals b ∈ (ζ a, ζs) and c ∈ (ζs, ζa) so that s ∈ Cb,c

a . If s /∈ IPright(ζ ), then ζs ∈ IPleft(Wa). We

can then find rationals b and c such that s ∈Ab,c
a .

Summing up, we obtain that IPleft((ζs)0≤s≤I0) ∩ IPright((Ŵs)0≤s≤I0) is P x
0,κ (dw)Pw(dω) a.s. empty. By a similar

argument, we show that the set IPleft((ζs)0≤s≤I0)∩ IPleft((Ŵs)0≤s≤I0) is also P x
0,κ (dw)Pw(dω) a.s. empty.

Step 2. We now use a time-reversal argument under Ny to treat the right-increase points of ζ . By translation, the
quantity

Δ :=Ny

(
IPleft

(
(ζs)0≤s≤�

)∩ IP
(
(Ŵs)0≤s≤�

) �=∅
)

does not depend on y. Using the Poissonian decomposition of the excursions of ζ − ζ , we see that, P x
0,κ (dw) a.s.,

0= Pw

(
IPleft

(
(ζs)0≤s≤I0

)∩ IP
(
(Ŵs)0≤s≤I0

) �=∅
)≥ 1− e−2xΔ,

so that Δ = 0. Note that a priori we only have an inequality, because some left-increase points of (ζs)0≤s≤I0 may

well lie outside of the set
⋃

i∈I (αi, βi]. Using time-reversal under Ny , we find that IPright((ζs)0≤s≤�)∩ IP((Ŵs)0≤s≤�)

is also Ny a.e. empty. As announced at the beginning of this section, we re-obtained here [31], Lemma 3.2. It is
then easier to deal with right-increase points of (ζs)0≤s≤I0 , because they all lie in

⋃
i∈I [αi,βi): using once again the

Poissonian decomposition of the excursions of ζ − ζ , we find (for any w ∈K)

Pw

(
IPright

(
(ζs)0≤s≤I0

)∩ IP
(
(Ŵs)0≤s≤I0

) �=∅
)= 1− e−2ζ(w)Δ = 0.

Putting it all together, we showed that IP((ζs)0≤s≤I0) ∩ IP((Ŵs)0≤s≤I0) is P x
0,κ (dw)Pw(dω) a.s. empty. Us-

ing the fact that the distribution of (w(s))0≤s≤σ−ε under B is absolutely continuous with respect to the dis-
tribution of (w(s))0≤s≤σ−ε under P σ−ε

0,
√

3
(dw), we obtain that, B(dw)Pw(dω) a.s., for all rational ε ∈ (0, σ ),
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IP((ζs)Iσ−ε≤s≤I0) ∩ IP((Ŵs)Iσ−ε≤s≤I0) = ∅. Standard properties of Brownian motion show that, Pw a.s. 0 /∈ IP(ζ )

and infε∈(0,σ )∩Q Iσ−ε = 0, so that B(dw)Pw(dω) a.s. IP((ζs)0≤s≤I0) ∩ IP((Ŵs)0≤s≤I0) = ∅. Using another absolute
continuity argument and the fact that 1 /∈ IPleft(Ŵ ) (because 0 /∈ IP(w)), we conclude that

∫
KB(dw)P0

w(dω) a.s.
IP((ζs)0≤s≤1)∩ IP((Ŵs)0≤s≤1)=∅. This completes the proof. �

7.3. Proof of Lemma 15

As explained in the proof of [8], Lemma 11, Lemma 15 is a consequence of the following two lemmas, which we state
here directly in terms of the Brownian snake. We will use a strategy similar to that of Section 7.1 and derive these
lemmas from similar statements under Nx , namely [27], Lemma 5.3, and [28], Lemma 6.1. We denote the Lebesgue
measure on R by L .

Lemma 30. Let w ∈K. P0
w a.s., for every η > 0, for all x ∈ [0,1] and all l < r such that,

� either 0 < l < r < x and ζl = ζr = inf[l,x] ζ ,
� or x < l < r < 1 and ζl = ζr = inf[x,r] ζ ,

the condition inf[l,r] Ŵ < Ŵl − η implies that

lim inf
ε→0

ε−2L

({
s ∈ [l, r]: Ŵs < Ŵl − η+ ε; ∀y ∈ [ζl, ζs], Ŵsup{t≤s:ζt=y} > Ŵl − η+ ε

8

})
> 0.

Lemma 31. For every p ≥ 1 and every δ ∈ (0,1], there exists a constant cp,δ <∞ such that, for every ε > 0,∫
K
B(dw)E0

w

[(∫ 1

0
1{Ŵs≤min0≤r≤1 Ŵr+ε} ds

)p]
≤ cp,δε

4p−δ.

Proof of Lemma 30. By an absolute continuity argument, it is sufficient to show the result under Pw (while replacing
1 with I0). By [27], Lemma 5.3, and the preceding claim in [27], the result holds under N0 (while replacing 1 with �)
and the same result also holds if we replace the hypothesis on l and r by l = 0 and r = �.

Now observe that, under Pw , if the numbers l, r , x, and η satisfy the hypothesis but not the conclusion of our
statement, then there exists an i ∈ I such that, either (l, r) = (αi, βi), in which case 0, βi − αi , and η also satisfy
the hypothesis but not the conclusion for the process (ζ (i),W(i)), or l − αi , r − αi , x − αi , and η also satisfy the
hypothesis but not the conclusion for the process (ζ (i),W(i)). It is then an easy application of Lemma 25 to show that
the probability that there exists such numbers is equal to 0. �

Proof of Lemma 31. We fix p ≥ 1 and δ ∈ (0,1].
Step 1. We use [28], Lemma 6.1, and Bismut’s description of n [38], Theorem XII.4.7, in order to derive a result

similar to the one we seek but without the conditionings.
Let 0 < x < y. Using Bismut’s description of n, we obtain that

N0

(∫ �

0
dt1{x≤ζt≤y}

(∫ �

0
1{Ŵs≤min Ŵ+ε} ds

)p)
=
∫ y

x

daΦε(a), (30)

where

Φε(a) :=
∫
K

P a
0 (dw)

∫
Ω ′×Ω ′

Pw

(
dW 1)

Pw

(
dW 2)( 2∑

k=1

∫ I k
0

0
1{Ŵ k

s ≤m+ε} ds

)p

,

m :=min Ŵ 1∧min Ŵ 2, I 1
0 := inf{s: ζ(W 1

s )= 0} and I 2
0 := inf{s: ζ(W 2

s )= 0}. We now give an expression for Φε(a)

that involves only one Brownian snake instead of two. As the Lebesgue measure of
⋃

i∈I [αi,βi] is Pw a.s. equal to
I0, we see that

2∑
k=1

∫ I k
0

0
1{Ŵ k

s ≤m+ε} ds =
2∑

k=1

∑
i∈I k

∫ βk
i −αk

i

0
1{Ŵ k,(i)

s ≤m+ε} ds,
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where we use an obvious notation for quantities defined in terms of Wk . Using the fact proven during the proof of
Lemma 11 that, under Pw , (Ŵs)0≤s≤I0 reaches its minimum on

⋃
i∈I [αi,βi], we see that

m=min
{
minX: X ∈ {Ŵ 1,(j), j ∈ I 1}∪ {Ŵ 2,(j), j ∈ I 2}}.

Moreover, Lemma 25, together with a small computation, shows that the point process∑
i∈I 1

δ(ζ 1
α1
i

,W 1,(i))(dt dω)+
∑
i∈I 2

δ(ζ 2
α2
i

,W 2,(i))(dt dω)

under Pw(dW 1)Pw(dW 2) has the same distribution as∑
i∈I

δ(ζαi
/2,W(i))(dt dω)

under Pw̃(dW), where w̃ : s ∈ [0,2ζ(w)] �→w(s/2). As a result,

∫
Ω ′×Ω ′

Pw

(
dW 1)

Pw

(
dW 2)( 2∑

k=1

∫ I k
0

0
1{Ŵ k

s ≤m+ε} ds

)p

= Ew̃

[(∫ I0

0
1{Ŵs≤min Ŵ+ε} ds

)p]
.

As w̃ has under P a
0 (dw) the same distribution as w under P 2a

0,1/
√

2
(dw), we obtain that

Φε(a)=
∫
K

P 2a

0,1/
√

2
(dw)Ew

[(∫ I0

0
1{Ŵs≤min Ŵ+ε} ds

)p]
. (31)

Using Eq. (30) and Hölder’s inequality, we obtain that for any k ≥ 2 and A > 0,∫ y

x

daΦε(a)≤N0

((∫ �

0
dt1{0≤ζt≤A}

)k)1/k

N0

((∫ �

0
1{Ŵs≤min Ŵ+ε} ds

)pk/(k−1))1−1/k

.

Noticing that the first term of the right-hand side is finite (this integral may actually easily be computed using [25],
Proposition III.3) and bounding the second term using [28], Lemma 6.1, we see that there exists a finite constant
CA,p,δ such that, for any 0 < x < y < A,∫ y

x

daΦε(a)≤ CA,p,δε
4p−δ.

Let us now dispose of the integration over a. A simple application of the snake’s Markov property shows that, for
any a ∈ [−A/2,A/2], we have Φε(A)≤ 2p(Φε(A/2+ a)+Φε(A/2− a)). Integrating over a and applying the latter
inequality shows that there exists a finite constant C′A,p,δ such that

Φε(A)≤ C′A,p,δε
4p−δ. (32)

Step 2. Combining (31) and (32) almost gives the desired result. There are still two problems we need to address.
First, the diffusion factor in (31) is 1/

√
2 and it will be

√
3 in the process we are interested in. We now turn to this

difficulty. Let us consider a sequence (Xi)i∈I of i.i.d. random Bernoulli variables with mean 1/6, independent from
any other variables. Then, the marking theorem of Poisson point measures entails that the process

∑
i∈I δ(6ζαi

,W(i))

has, under
∫
K P a

0,
√

3
(dw)Pw(dω), the same distribution as the process

∑
i∈I

δ(ζαi
,W(i))1{Xi=1}, under

∫
K

P 6a

0,1/
√

2
(dw)Pw(dω).
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As a result, writing I ′ := {i ∈ I : Xi = 1}, we obtain that∫
K

P a

0,
√

3
(dw)Ew

[(∫ I0

0
1{Ŵs≤ŴI0

+ε} ds

)p]
=
∫
K

P a

0,
√

3
(dw)Ew

[(∑
i∈I

∫ βi−αi

0
1{Ŵ (i)

s ≤min{min Ŵ (j),j∈I }+ε} ds

)p]

=
∫
K

P 6a

0,1/
√

2
(dw)Ew

[(∑
i∈I ′

∫ βi−αi

0
1{Ŵ (i)

s ≤min{min Ŵ (j),j∈I ′}+ε} ds

)p]

≤ 6
∫
K

P 6a

0,1/
√

2
(dw)Ew

[(∫ I0

0
1{Ŵs≤ŴI0

+ε} ds

)p]
= 6Φε(3a).

Step 3. Finally, it remains to treat the two conditionings. We notice that∫ 1

0
1{Ŵs≤Ŵ1+ε} ds =

∫ Iσ/2

0
1{Ŵs≤Ŵ1+ε} ds +

∫ 1

Iσ/2

1{Ŵs≤Ŵ1+ε} ds

≤
∫ Iσ/2

0
1{Ŵs≤ŴIσ/2

+ε} ds +
∫ 1

Iσ/2

1{Ŵs≤minIσ/2≤r≤1 Ŵr+ε} ds.

As both terms in the previous line have the same law under
∫
KB(dw)P0

w(dω) (notice that, under B(dw), the processes
(w(t))0≤t≤σ/2 and (w(σ/2+ t)−w(σ/2))0≤t≤σ/2 have the same law), we obtain∫

K
B(dw)E0

w

[(∫ 1

0
1{Ŵs≤Ŵ1+ε} ds

)p]
≤ 2p+1

∫
K
B(dw)E0

w

[(∫ Iσ/2

0
1{Ŵs≤ŴIσ/2

+ε} ds

)p]
.

A consequence of [7], Eq. (19), is that

E
0
w

[(∫ Iσ/2

0
1{Ŵs≤ŴIσ/2

+ε} ds

)p]
= Ew

[(∫ Iσ/2

0
1{Ŵs≤ŴIσ/2

+ε} ds

)p q1−Iσ/2(σ/2)

q1(σ )
1{Iσ/2<1}

]
,

where

qa(x) := − x√
2πa3

exp

(
−x2

2a

)
.

As a result, we obtain

E
0
w

[(∫ Iσ/2

0
1{Ŵs≤ŴIσ/2

+ε} ds

)p]
≤ cσEw

[(∫ Iσ/2

0
1{Ŵs≤ŴIσ/2

+ε} ds

)p]
,

where

cσ := sup
a>0

qa(σ/2)

q1(σ )
<∞.

We then dispose of the second conditioning. By using [7], Eq. (18), it is not hard to see that∫
K
B(dw)Ew

[(∫ Iσ/2

0
1{Ŵs≤ŴIσ/2

+ε} ds

)p]
≤√2

∫
K

P
σ/2
0,
√

3
(dw)Ew

[(∫ I0

0
1{Ŵs≤ŴI0

+ε} ds

)p]
≤ 6
√

2C′3σ/2,p,δε
4p−δ.

Setting cp,δ := 2p+1cσ 6
√

2C′3σ/2,p,δ concludes the proof. �
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7.4. Upper bound for the Hausdorff dimension of ∂qσ∞

We may now end the proof of Theorem 3.

Proof of Theorem 3 (Upper bound). Under Pw , we set Tx := inf{r ≥ 0: ζr = ζ(w) − x}. For s ∈ [0, I0], we set
s+ := sup{t : ζ t = ζ s}. Using the same kind of reasoning as in the previous sections, we see that it is enough to show
that, for any pseudo-metric d on [0, I0] such that

d(s, t)≤ Ŵs + Ŵt − 2 min
r∈[s+,t]

Ŵr , 0≤ s ≤ t ≤ I0,

we have

Pw

(
dimH

({
Tx,0≤ x ≤ ζ(w)

}
, d
)≤ 2

)= 1, B(dw) a.s.

We fix η ∈ (0,1). We will cover {Tx,0≤ x ≤ ζ(w)} by small open balls. Let us first bound the distance between two
points in {Tx,0≤ x ≤ ζ(w)}. Using [27], Lemma 5.1, and the fact that, B(dw) a.s., w is 1/(2+η)-Hölder continuous,
it is not hard to see that there exists a (random) constant c <∞ such that, B(dw) a.s. Pw a.s.,

|Ŵs − Ŵt | ≤ c
(
dζ (s, t)

)1/(2+η) for all s, t ∈ [0, I0], (33)

where

dζ (s, t) := ζs + ζt − 2 min
r∈[s∧t,s∨t] ζr , s, t ∈ [0, I0].

Let 0≤ x ≤ y ≤ ζ(w), and m(x,y) ∈ [T +x , Ty] be such that Ŵm(x,y) =mins∈[T +x ,Ty ] Ŵs . When (33) holds, we have

d(Tx, Ty) ≤ ŴTx + ŴTy − 2Ŵm(x,y)

≤ c
((

dζ

(
Tx,m(x, y)

))1/(2+η) + (
dζ

(
Ty,m(x, y)

))1/(2+η))
≤ 2c

(
y − x + 2(ζm(x,y) − ζm(x,y))

)1/(2+η)
. (34)

In order to control the term (ζm(x,y)− ζm(x,y)) in the above inequality, we sort out the excursions going “too high.”
Namely, we fix ε > 0, and set

I (ε) :=
{
i ∈ I : sup

s≥0
ζ (i)
s > ε

}
.

By Lemma 25, the cardinality of I (ε) is under Pw a Poisson random variable with mean

2
∫ ζ(w)

0
dtNw(t)

(
sup
s≥0

ζs > ε
)
= 2ζ(w)n

(
sup
s≥0

es > ε
)
= ζ(w)

ε
.

In particular, |I (ε)| <∞, Pw a.s. We denote by B(s, r) ⊆ [0, I0] the open ball of radius r centered at s, for the
pseudo-metric d , and, for i ∈ I , we set xi := ζ(w)− ζαi

. If δ := 2c(3ε)1/(2+η), we claim that the set

{
B(Txi

, δ), i ∈ I (ε)
}∪ {B(Tkε, δ),0≤ k ≤ ζ(w)

ε

}
is a covering of {Tx,0 ≤ x ≤ ζ(w)}. To see this, let us take a point y ∈ [0, ζ(w)], and let us consider x := max{s ∈
{0} ∪ {xi, i ∈ I (ε)}: s ≤ y}. Observe that, by construction, all the excursions of ζ − ζ with support included in the
interval [T +x , Ty] have a height smaller than ε. Because T +x ≤m(x,y)≤ Ty , we see that ζm(x,y) − ζm(x,y) ≤ ε. Then,
if y−x < ε, by (34), we have Ty ∈ B(Tx, δ). If y−x ≥ ε, then y−�y/ε�ε < ε, and �y/ε�ε ≥ x, so that ζm(�y/ε�ε,y)−
ζm(�y/ε�ε,y) ≤ ε. This yields that Ty ∈ B(T�y/ε�ε, δ), by (34).
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The (2+ η)(1+ η)-value of this covering is less than(∣∣I (ε)
∣∣+ ζ(w)

ε
+ 1

)
(2δ)(2+η)(1+η) ≤ c′

(∣∣I (ε)
∣∣+ ζ(w)

ε
+ 1

)
ε1+η,

for some constant c′, independent of ε. By Chebyshev’s inequality, we see that with Pw-probability at least 1−ε/ζ(w),
we have |I (ε)| ≤ 2ζ(w)/ε. We conclude that, B(dw) a.s., the (2+ η)(1+ η)-Hausdorff content of {Tx,0≤ x ≤ ζ(w)}
is Pw a.s. equal to 0, so that dimH({Tx,0≤ x ≤ ζ(w)}, d)≤ (2+η)(1+η). Finally, letting η→ 0 yields the result. �

8. Developments and open questions

8.1. Quadrangulations with a simple boundary

We considered in this work quadrangulations with a boundary that is not necessarily simple. It is natural to ask
ourselves what happens if we require the boundary to be simple. This translates into a conditioning of the coding
forest from which some technical difficulties arise and our results may not straightforwardly be adapted to this case.
We expect, however, to find the same limit, up to some factor modifying the length of the boundary.

Very roughly, the intuition is that the 0-regularity of the boundary implies that a large quadrangulation with a bound-
ary should typically consist in one large quadrangulation with a simple boundary on which small quadrangulations
with a boundary are grafted. As a result, if we remove these small components on the boundary, the first quadrangu-
lation should not be too far from a quadrangulation with a simple boundary having roughly the same number of faces
but a significantly smaller boundary.

We expect that such results may be rigorously derived from our analysis with a little more work.

8.2. Application to self-avoiding walks

We present here a model of self-avoiding walks on random quadrangulations, which is adapted from [10]. In the latter
reference, Borot, Bouttier and Guitter study a model of loops on quadrangulations. We can easily adapt their model
to the case of self-avoiding walks, and we see that it is directly related to quadrangulations with a boundary. We call
step tile a quadrangle in which two opposite half-edges incident to the quadrangle are distinguished, and half-step tile
a face of degree 2 in which one incident half-edge is distinguished. On the figures, we draw a (red) line linking the
two distinguished edges in the step tiles, as well as a line linking the distinguished edge to the center of the face in the
half-step tiles (see Fig. 11). These lines will constitute the self-avoiding walk of the model.

Let n ≥ 0 and σ ≥ 1 be two integers. A map whose faces consist in two half-step tiles, σ − 1 step tiles, and n

quadrangles is called an (n,σ )-configuration if it satisfies the following:

� the reverse of every distinguished half-edge is also a distinguished half-edge,
� there are no cyclic chains of step tiles,
� the root of the map is the half-edge that is not distinguished in one of the two half-step tiles.

Fig. 11. Borot, Bouttier and Guitter’s model of self-avoiding walks. The distinguished edges are the thin dashed (blue) lines, whereas the other
edges are the thicker black solid lines. The path is drawn in an even thicker solid (red) line. It starts in the root half-step tile and ends in the other
half-step tile. We added an arrowhead on it in the root half-step tile to symbolize this fact.
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Fig. 12. A quadrangulation with a boundary and the corresponding configuration. On this figure, σ = 15.

We claim that the (n,σ )-configurations are in one-to-one correspondence with the quadrangulations with a bound-
ary having n internal faces and 2σ half-edges on the boundary. Indeed, let us take an (n,σ )-configuration. It has
2σ distinguished half-edges forming σ different edges. When removing these σ edges, we obtain a map having n

quadrangles and one other face of degree 1+ 2(σ − 1)+ 1= 2σ , this face being incident to the root. This is thus a
quadrangulation of Qn,σ . Conversely, let us consider a quadrangulation of Qn,σ , and let e1 = e∗, e2, . . . , e2σ be the
half-edges incident to its external face, read in the clockwise order. We add extra edges (that do not cross each other)
linking e

+
2σ−i to e

+
i+1 for 0 ≤ i ≤ σ − 1. We thus create two faces of degree 2 (one incident to e∗ and one incident

to eσ+1) as well as σ − 1 faces of degree 4. These faces are half-step tiles and step tiles when we distinguish the
half-edges composing the extra edges we added. It is then easy to see that this map is an (n,σ )-configuration (see
Fig. 12). Moreover, the composition of the two operations we described here (in an order or the other) is clearly the
identity, so that our claim follows.

We believe that some results may be derived from our work and this bijection. For example, we think possible to
show that, when σn/

√
2n→ σ ∈ (0,∞), a uniform (n,σn)-configuration converges (up to extraction) toward a metric

space with a marked path in some sense. Moreover, the limiting space should be homeomorphic to the 2-dimensional
sphere and have dimension 4 a.s. The marked path should also have dimension 2.

Here again, however, some technical difficulties arise. The main problem is that the gluing operation tremendously
modifies the metric. We may easily define this gluing operation in the continuous setting by considering the quotient
of qσ∞ by the coarsest equivalence relation for which fl(x) ∼ fl(σ − x), x ∈ [0, σ ] (with the notation of the end of
Section 5), but some care is required when dealing with this quotient. In particular, it is not clear that the points
identified in this quotient are solely the one identified by the equivalence relation. Then, it also remains to show that
the convergence still holds after the gluing operation.

Understanding the scaling limit of quadrangulations with a simple boundary and this gluing operation could also
lead to some interesting results on random self-avoiding walks on random quadrangulations, as quadrangulations with
a marked self-avoiding walk are in one-to-one correspondence with quadrangulations with a simple boundary by a
bijection similar to the one described above.

We end this section by mentioning that the model we presented corresponds to the particular case Borot, Bouttier
and Guitter called rigid in [10]. We may also consider the more general case in which the two distinguished half-edges
of a step tile are not required to be opposite. In this model, we also expect to find the same limits.

Acknowledgements

The author wishes to heartily thank Grégory Miermont for the precious advice and careful guidance he constantly
offered during the realization of this work.



476 J. Bettinelli

References

[1] D. Aldous. The continuum random tree. I. Ann. Probab. 19 (1) (1991) 1–28. MR1085326
[2] D. Aldous. The continuum random tree. III. Ann. Probab. 21 (1) (1993) 248–289. MR1207226
[3] E. G. Begle. Regular convergence. Duke Math. J. 11 (1944) 441–450. MR0010964
[4] E. A. Bender and E. R. Canfield. The number of degree-restricted rooted maps on the sphere. SIAM J. Discrete Math. 7 (1) (1994) 9–15.

MR1259005
[5] J. Bertoin. Increase of a Lévy process with no positive jumps. Stochastics Stochastics Rep. 37 (4) (1991) 247–251. MR1149349
[6] J. Bertoin, L. Chaumont and J. Pitman. Path transformations of first passage bridges. Electron. Commun. Probab. 8 (2003) 155–166 (elec-

tronic). MR2042754
[7] J. Bettinelli. Scaling limits for random quadrangulations of positive genus. Electron. J. Probab. 15 (52) (2010) 1594–1644. MR2735376
[8] J. Bettinelli. The topology of scaling limits of positive genus random quadrangulations. Ann. Probab. 40 (5) (2012) 1897–1944. MR3025705
[9] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. MR0233396

[10] G. Borot, J. Bouttier and E. Guitter. A recursive approach to the O(n) model on random maps via nested loops. J. Phys. A 45 (2012) 045002.
MR2874232

[11] J. Bouttier, P. Di Francesco and E. Guitter. Planar maps as labeled mobiles. Electron. J. Combin. 11 (1) (2004) Research Paper 69 (electronic).
MR2097335

[12] J. Bouttier and E. Guitter. Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop. J. Phys. A 42 (46) (2009)
465208. MR2552016

[13] D. Burago, Y. Burago and S. Ivanov. A Course in Metric Geometry. Graduate Studies in Mathematics 33. American Mathematical Society,
Providence, RI, 2001. MR1835418

[14] G. Chapuy, M. Marcus and G. Schaeffer. A bijection for rooted maps on orientable surfaces. SIAM J. Discrete Math. 23 (3) (2009) 1587–1611.
MR2563085

[15] P. Chassaing and G. Schaeffer. Random planar lattices and integrated super-Brownian excursion. Probab. Theory Related Fields 128 (2)
(2004) 161–212. MR2031225

[16] R. Cori and B. Vauquelin. Planar maps are well labeled trees. Canad. J. Math. 33 (5) (1981) 1023–1042. MR0638363
[17] N. Curien, J.-F. Le Gall and G. Miermont. The Brownian cactus I. Scaling limits of discrete cactuses. Ann. Inst. Henri Poincaré Probab. Stat.

49 (2013) 340–373. MR3088373
[18] N. Curien and G. Miermont. Uniform infinite planar quadrangulations with a boundary. Random Structures Algorithms. To appear, 2015.

Available at arXiv:1202.5452.
[19] T. Duquesne and J.-F. Le Gall. Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002) vi+147. MR1954248
[20] H. Federer. Geometric Measure Theory. Die Grundlehren der Mathematischen Wissenschaften 153. Springer, New York, 1969. MR0257325
[21] A. Greven, P. Pfaffelhuber and A. Winter. Convergence in distribution of random metric measure spaces (�-coalescent measure trees).

Probab. Theory Related Fields 145 (1–2) (2009) 285–322. MR2520129
[22] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics 152. Birkhäuser, Boston, MA, 1999.

Based on the 1981 French original [MR0682063], with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean
Michael Bates. MR2307192

[23] K. Hamza. The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions.
Statist. Probab. Lett. 23 (1) (1995) 21–25. MR1333373

[24] J. F. C. Kingman. Poisson Processes. Oxford Studies in Probability 3. Oxford Univ. Press, New York, 1993. MR1207584
[25] J.-F. Le Gall. Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich.

Birkhäuser, Basel, 1999. MR1714707
[26] J.-F. Le Gall. Random trees and applications. Probab. Surv. 2 (2005) 245–311 (electronic). MR2203728
[27] J.-F. Le Gall. The topological structure of scaling limits of large planar maps. Invent. Math. 169 (3) (2007) 621–670. MR2336042
[28] J.-F. Le Gall. Geodesics in large planar maps and in the Brownian map. Acta Math. 205 (2) (2010) 287–360. MR2746349
[29] J.-F. Le Gall. Uniqueness and universality of the Brownian map. Ann. Probab. 41 (2013) 2880–2960. MR3112934
[30] J.-F. Le Gall and G. Miermont. Scaling limits of random planar maps with large faces. Ann. Probab. 39 (1) (2011) 1–69. MR2778796
[31] J.-F. Le Gall and F. Paulin. Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18 (3) (2008)

893–918. MR2438999
[32] J.-F. Le Gall and M. Weill. Conditioned Brownian trees. Ann. Inst. Henri Poincaré Probab. Stat. 42 (4) (2006) 455–489. MR2242956
[33] J.-F. Marckert and A. Mokkadem. Limit of normalized quadrangulations: The Brownian map. Ann. Probab. 34 (6) (2006) 2144–2202.

MR2294979
[34] G. Miermont. On the sphericity of scaling limits of random planar quadrangulations. Electron. Commun. Probab. 13 (2008) 248–257.

MR2399286
[35] G. Miermont. Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4) 42 (5) (2009) 725–781. MR2571957
[36] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 (2013) 319–401.

MR3070569
[37] V. V. Petrov. Limit Theorems of Probability Theory Sequences of Independent Random Variables. Oxford Studies in Probability 4. Oxford

Univ. Press, New York, 1995. MR1353441
[38] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften 293.

Springer, Berlin, 1999. MR1725357
[39] G. Schaeffer. Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees. Electron. J. Combin. 4 (1)

(1997) Research Paper 20 (electronic). MR1465581

http://www.ams.org/mathscinet-getitem?mr=1085326
http://www.ams.org/mathscinet-getitem?mr=1207226
http://www.ams.org/mathscinet-getitem?mr=0010964
http://www.ams.org/mathscinet-getitem?mr=1259005
http://www.ams.org/mathscinet-getitem?mr=1149349
http://www.ams.org/mathscinet-getitem?mr=2042754
http://www.ams.org/mathscinet-getitem?mr=2735376
http://www.ams.org/mathscinet-getitem?mr=3025705
http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=2874232
http://www.ams.org/mathscinet-getitem?mr=2097335
http://www.ams.org/mathscinet-getitem?mr=2552016
http://www.ams.org/mathscinet-getitem?mr=1835418
http://www.ams.org/mathscinet-getitem?mr=2563085
http://www.ams.org/mathscinet-getitem?mr=2031225
http://www.ams.org/mathscinet-getitem?mr=0638363
http://www.ams.org/mathscinet-getitem?mr=3088373
http://arxiv.org/abs/arXiv:1202.5452
http://www.ams.org/mathscinet-getitem?mr=1954248
http://www.ams.org/mathscinet-getitem?mr=0257325
http://www.ams.org/mathscinet-getitem?mr=2520129
http://www.ams.org/mathscinet-getitem?mr=2307192
http://www.ams.org/mathscinet-getitem?mr=1333373
http://www.ams.org/mathscinet-getitem?mr=1207584
http://www.ams.org/mathscinet-getitem?mr=1714707
http://www.ams.org/mathscinet-getitem?mr=2203728
http://www.ams.org/mathscinet-getitem?mr=2336042
http://www.ams.org/mathscinet-getitem?mr=2746349
http://www.ams.org/mathscinet-getitem?mr=3112934
http://www.ams.org/mathscinet-getitem?mr=2778796
http://www.ams.org/mathscinet-getitem?mr=2438999
http://www.ams.org/mathscinet-getitem?mr=2242956
http://www.ams.org/mathscinet-getitem?mr=2294979
http://www.ams.org/mathscinet-getitem?mr=2399286
http://www.ams.org/mathscinet-getitem?mr=2571957
http://www.ams.org/mathscinet-getitem?mr=3070569
http://www.ams.org/mathscinet-getitem?mr=1353441
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=1465581


Scaling limit of quadrangulations with a boundary 477

[40] G. Schaeffer. Conjugaison d’arbres et cartes combinatoires aléatoires. Ph.D. thesis, Univ. Bordeaux 1, 1998.
[41] L. A. Shepp. Covering the line with random intervals. Z. Wahrsch. Verw. Gebiete 23 (1972) 163–170. MR0322923
[42] W. Vervaat. A relation between Brownian bridge and Brownian excursion. Ann. Probab. 7 (1) (1979) 143–149. MR0515820
[43] G. T. Whyburn. On sequences and limiting sets. Fund. Math. 25 (1935) 408–426.
[44] G. T. Whyburn. Regular convergence and monotone transformations. Amer. J. Math. 57 (4) (1935) 902–906. MR1507123

http://www.ams.org/mathscinet-getitem?mr=0322923
http://www.ams.org/mathscinet-getitem?mr=0515820
http://www.ams.org/mathscinet-getitem?mr=1507123

	Introduction
	Motivations
	Main results
	Generic case
	Case sigma=0
	Case sigma=infty

	Organization of this paper and general strategy

	The Bouttier-Di Francesco-Guitter bijection
	Forests
	Bridges
	The bijection
	From quadrangulations to forests and bridges
	From forests and bridges to quadrangulations
	Some remarks


	Proof of Theorem 1
	Convergence of the coding functions
	Brownian bridges, ﬁrst-passage Brownian bridges, and Brownian snake
	Convergence of the bridge and the contour pair of the well-labeled forest

	Proof of Theorem 1

	Maps seen as quotients of real forests
	Real forests
	Quotient of real forests
	Point identiﬁcations
	Criterion telling which points are identiﬁed
	Set overﬂown by a path and paths passing through subtrees
	Proof of Lemma 14


	Regularity of quadrangulations
	0-regularity and 1-regularity
	Representation as metric surfaces
	Proof of Theorem 2
	0-regularity of the boundary
	1-regularity of Sn

	Boundary of qinftysigma

	Singular cases
	Case sigma=0
	Case sigma=infty

	Proofs using the Brownian snake
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 15
	Upper bound for the Hausdorff dimension of qinftysigma

	Developments and open questions
	Quadrangulations with a simple boundary
	Application to self-avoiding walks

	Acknowledgements
	References

