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Abstract. We consider a centered random walk with finite variance and investigate the asymptotic behaviour of the probability
that the area under this walk remains positive up to a large time n. Assuming that the moment of order 2 + δ is finite, we show that
the exact asymptotics for this probability is n−1/4. To show this asymptotics we develop a discrete potential theory for integrated
random walks.

Résumé. Nous considérons une marche aléatoire centrée de variance finie et étudions le comportement asymptotique de la pro-
babilité que l’aire sous la marche reste positive jusqu’à un grand temps n. Si le moment d’ordre 2 + δ est fini, nous montrons que
cette probabilité décroit comme n−1/4. Pour prouver ce comportement asymptotique, nous développons une théorie du potentiel
discrète pour des marches aléatoires intégrées.
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1. Introduction, main results and discussion

1.1. Background and motivation

Let X,X1,X2, . . . be independent identically distributed random variables with E[X] = 0. For every starting point
(x, y) define

Sn = y + X1 + X2 + · · · + Xn, n ≥ 0

and

S(2)
n = x + S1 + S2 + · · · + Sn = x + ny + nX1 + (n − 1)X2 + · · · + Xn.

Sinai [13] initiated the study of asymptotics of the probability of the event

An := {
S

(2)
k > 0 for all k ≤ n|S0 = S

(2)
0 = 0

}
.

Assuming that Sn is a simple symmetric random walk he showed that

C1n
−1/4 ≤ P(An) ≤ C2n

−1/4. (1)
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The same bounds were obtained for some other special cases in [14].
Aurzada and Dereich [2] have shown that if Eeβ|X| < ∞ for some positive β then

C∗n−1/4 log−4 n ≤ P(An) ≤ C∗n−1/4 log4 n (2)

with some positive constants C∗ and C∗. The bounds in (2) are just a special case of the results in [2] for q-times
integrated random walks and Levy processes. Dembo, Ding and Gao [5] have recently shown that (1) is valid for all
random walks with finite second moment.

Exact asymptotics for P(An) are known only in some special cases. Vysotsky [15] has shown that if, in addition to
the second moment assumption, Sn is either right-continuous or right-exponential then

P(An) ∼ Cn−1/4. (3)

(Here and throughout an ∼ bn means that an

bn
→ 1 as n → ∞.)

It is natural to expect that (3) holds for all driftless random walks with finite variance.
If the second moment condition is replaced by the assumption that X belongs to the domain of normal attraction

of the spectrally positive α-stable law with some α ∈ (1,2], then (1) and (3) remain valid with n−(α−1)/2α instead of
n−1/4, see [5] and [15].

The methods used in the above mentioned papers are quite different. It is not clear what the most natural tool is for
this problem. Here we propose another approach to this problem. More precisely, we develop a potential theory for
integrated random walks, which allows one to determine the exact asymptotic behaviour of P(An). It can be seen as a
continuation of our studies of exit times of multi-dimensional random walks, see [6,7].

It is clear that the sequence {S(2)
n }n≥1 is non-Markovian. This fact complicates the analysis of the integrated random

walk. However, it is possible to obtain the Markovian property by increasing the dimension of the process. More
precisely, we consider the process

Zn := (
S(2)

n , Sn

)
.

Then, the first time when S
(2)
n is not positive coincides with the following exit time of Zn

τ := min{k ≥ 1: Zk /∈R+ ×R}.
In our recent paper [7] we suggested a method of studying random walks conditioned to stay in a cone. Similarly in

the case of the integrated random walks we have a (quite simple) cone R+ ×R, but the process Zn is “really” Markov,
i.e. the increments are not independent. We show that the method from [7] can be adapted to the case of Markov chain
Zn, and this adaptation allows one to find asymptotics of Pz(τ > n) for every starting point z = (x, y).

1.2. Main result

We start with results and notation for the integrated Brownian motion. This process is also known as the Kolmogorov
diffusion.

Let Bt be a standard Brownian motion and consider a two-dimensional process (
∫ t

0 Bs ds,Bt ). Since this process
is Gaussian, one can obtain, by computing correlations, that the transition density of (

∫ t

0 Bs ds,Bt ) is given by

pt (x, y;u,v) =
√

3

πt2
exp

{
−6(u − x − ty)2

t3
+ 6(u − x − ty)(v − y)

t2
− 2(v − y)2

t

}
.

Let

τbm := min

{
t > 0: x + yt +

∫ t

0
Bs ds ≤ 0

}
.

The behaviour of (
∫ t

0 Bs ds,Bt ) killed upon R+ × R was studied by many authors. Here we will follow a paper
by Groeneboom, Jongbloed and Wellner [9], where one can also find a history of the subject and corresponding
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references. In particular they found the positive harmonic function for this process, which is given by the following
relations:

h(x, y) =
{

( 2
9 )1/6 y

x1/6 U( 1
6 , 4

3 ,
2y3

9x
), y ≥ 0,

−( 2
9 )1/6 1

6
y

x1/6 e2y3/9xU( 7
6 , 4

3 ,− 2y3

9x
), y < 0,

(4)

where U is the confluent hypergeometric function:

U(a,b,w) = �(1 − b)

�(a − b + 1)
M(a, b,w) + �(b − 1)

�(a)
w1−bM(a − b + 1,2 − b,w)

with

M(a,b,w) =
∞∑

n=0

wn

n!
n−1∏
j=0

(
a + j

b + j

)
.

Function h(x, y) is harmonic in the sense that Dh = 0 on R+ × R, where D = y ∂
∂x

+ 1
2

∂2

∂y2 is the generator of

(
∫ t

0 Bs ds,Bt ). Using the explicit density of P(0,1)(τ
bm > t) found in [12], they derived asymptotics

P(x,y)

(
τbm > t

)∼ κ
h(x, y)

t1/4
, t → ∞, (5)

where κ = 3�(1/4)

23/4π3/2 .
The function h defined in (4) is harmonic for the killed integrated Brownian motion, that is,

E(x,y)

[
h

(∫ t

0
Bs ds,Bt

)
; τbm > t

]
= h(x, y), x ∈ R+, y ∈ R, t > 0.

In other words, h(
∫ t

0 Bs ds,Bt )1{τbm > t} is a non-negative martingale.
Our approach relies on the construction of a harmonic function for the killed integrated random walk. More pre-

cisely, we are looking for a positive function V such that the sequence V (Zn)1{τ > n} is a martingale or, equivalently,

V (z) = Ez

[
V (Z1); τ > 1

]
, z ∈R+ ×R. (6)

Our main result is the following theorem.

Theorem 1. Assume that EX = 0, E[X2] = 1 and E|X|2+δ < ∞ for some δ > 0. Then the function

V (z) := lim
n→∞ Ez

[
h(Zn); τ > n

]
is well-defined, strictly positive on

K+ := {
z ∈R+ ×R: Pz(Zn ∈R+ ×R+, τ > n) > 0 for some n ≥ 0

}
and satisfies (6), i.e. it is harmonic for the killed integrated random walk. Moreover,

Pz(τ > n) ∼ κ
V (z)

n1/4
as n → ∞ (7)

and

Pz

((
S

(2)
n

n3/2
,

Sn

n1/2

)
∈ ·

∣∣∣τ > n

)
→ μ weakly, (8)
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where μ has density

h(x, y) = 29/4√π√
3�(1/4)

∫ 1

0

∫ ∞

0
w3/2s−1/2 exp

{−2w2/s
}
q1−s(x,−y;0,−w)ds dw

and

qt (x, y;u,v) = pt (x, y;u,v) − pt(x, y;u,−v).

Remark 2. One should notice that h(x, y) = κ
−1h(1, x,−y), where h(t, x, y) is defined in (2.24) of [9].

From (7) and the total probability formula we obtain

Corollary 3. For every random walk satisfying the conditions of Theorem 1

P(An) ∼ C

n1/4

with

C = κE
[
V
(
(X,X)

)
,X > 0

]
.

It should be noted that the function V constructed in Theorem 1 is very hard to compute. We did not find any
example, where one can give an explicit expression for V . For numerical calculations, e.g. Monte-Carlo simulations,
the definition in Theorem 1 is not very helpful, since it contains a limit. For that reason we derive an alternative
representation for the harmonic function.

As the function h is defined only for z ∈R+ ×R, we extend it to R
2 by putting h = 0 outside R+ ×R and introduce

a corrector function

f (z) = Ezh
(
Z(1)

)− h(z), z ∈ R
2. (9)

This function is well defined since we have extended h to the whole plane.

Proposition 4. Under the assumptions of Theorem 1,

V (z) = h(z) + Ez

τ−1∑
k=0

f (Zk), z ∈R+ ×R. (10)

1.3. Local asymptotics for integrated random walks

Caravenna and Deuschel [4] have proven a local limit theorem for Zn under the assumption that the distribution of X

is absolutely continuous. Using similar arguments one can show that if X is Z-valued and aperiodic then

sup
z̃

∣∣∣∣n2Pz(Zn = z̃) − p1

(
0,0; x̃

n3/2
,

ỹ

n1/2

)∣∣∣∣→ 0. (11)

Combining this unconditioned local limit theorem with (8) one can derive a conditional local limit theorem:

sup
z̃

∣∣∣∣n2+1/4Pz(Zn = z̃, τ > n) −κV (z)h

(
x̃

n3/2
,

ỹ

n1/2

)
p1

(
0,0; x̃

n3/2
,

ỹ

n1/2

)∣∣∣∣→ 0. (12)

Furthermore, for every fixed z̃ ∈ K+,

lim
n→∞n2+1/2Pz(Zn = z̃, τ > n) = V (z)V ′(z) (13)
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with some positive function V ′.
The proof of (12) and (13) repeats virtually word by word the proof of local asymptotics in [7], see Section 1.4 and

Section 6 there. For this reason we do not give a proof of these statements.
Having (13) one can easily show that

P0(An|Zn+2 = 0) ∼ C

n1/2

with some positive constant C. A slightly weaker form of this relation was conjectured by Caravenna and Deuschel
[4], Eq. (1.22).

Aurzada, Dereich and Lifshits [3] have recently obtained lower and upper bounds for the integrated simple random
walk,

cn−1/2 ≤ P0
(
S

(2)
1 ≥ 0, . . . , S

(2)
4n ≥ 0|S4n = 0, S

(2)
4n = 0

)≤ Cn−1/2.

1.4. Organisation of the paper

In [7] we have suggested a method of investigating exit times from cones for random walks. In the present paper
we have a Markov chain instead of a random walk with independent increments. But it turns out that this fact is not
important, and the method from [7] works also for Markov processes.

The first step consists in construction of a harmonic function V (z). As in [7] we start from the harmonic function
for the corresponding limiting process. Obviously,

(
S

(2)
[nt]

n3/2
,
S[nt]
n1/2

)
⇒

(∫ t

0
Bs ds,Bt

)
.

We then define for every z ∈R+ ×R

V (z) = lim
n→∞ Ez

[
h(Zn), τ > n

]
. (14)

The justification of this formal definition is the most technical part of our approach. It is worth mentioning that we
cannot just repeat the proof from [7]. There we used a certain a-priori information on the behaviour of first exit times.
(It was some moment inequalities, which were already known in the literature.) For integrated random walks we do
not have such information and, therefore, should find an alternative way of justification of (14). Here we perform the
following steps:

(1) We show that if Zn stays in R+ × R for a long time, then its first coordinate becomes large quite quickly, see
Lemma 12.

(2) Furthermore, for starting points z with big first coordinate we derive recursive upper and lower estimates for
Ez[h(Zn), τ > n], see Lemma 11. This step requires estimates for h(x, y) and its derivatives, and for the corrector
function f (x, y). These bounds are obtained in Section 2.1.

(3) Finally, using recursion we show the existence of limn→∞ Ez[h(Zn), τ > n], see Proposition 14.

Having constructed V (x) we follow our approach in [6,7]. More precisely, we apply the KMT-coupling to obtain
the asymptotics for τ . (This explains our moment condition in Theorem 1.) It is worth mentioning that we apply
this strong approximation at a stopping time, where the first coordinate of Zn becomes sufficiently large. Note that,
according to Lemma 12, this stopping time is relatively small. The harmonic function is required to come from this
stopping time back to the origin. This final step is performed in Lemmas 20 and 21.

For integrated random walks a strong approximation was used in Aurzada and Dereich [2]. They apply KMT-
coupling at a deterministic moment to obtain (2). This formula shows that a direct, without use of potential theory,
application of coupling produces superfluous logarithmic terms even under the exponential moment assumption.
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1.5. Conclusion

In our previous works [6,7] we showed that Brownian asymptotics for exit times can be transferred to exit times for
multidimensional random walks. In the present work we consider an integrated random walk which can be viewed as
a two-dimensional Markov chain. We study exit times from a half-space and transfer the corresponding results for the
Kolmogorov diffusion. These examples make plausible the following hypothesis.

Let Xn be a Markov chain, D be an unbounded domain and τD := min{n ≥ 1: Xn /∈ D}. Assume that this Markov
chain, properly scaled, converges as a process to a diffusion Yt , t ≥ 0. Assume also that the exit time of this diffusion
TD := min{t ≥ 0: Yt /∈ D} has the following asymptotics

Py(TD > t) ∼ h(y)

tp
, t → ∞,

where h(y) is the corresponding harmonic function of the killed diffusion Yt∧TD
. Then, there exists a positive harmonic

function V (x) for the killed Markov chain Xn∧τD
such that

Px(τD > n) ∼ V (x)

np
, n → ∞.

Naturally, this general theorem will require some moment assumptions and some assumptions on the smoothness
of the unbounded domain D. Since we have convergence of processes the domain D should have certain scaling
properties. Hence it seems natural for the domain D to be a cone, at least asymptotically.

2. Construction of harmonic function

2.1. Preliminary estimates for h(x, y) and f (x, y)

The main result of this subsection is an upper bound for f which is stated in Lemma 7. In the proof we use the Taylor
formula, and for that reason we need information on h and its derivatives which are proven in following two lemmas.

Lemma 5. Function h has the following partial derivatives,

∂ih(x, y)

∂xi
=
{

Ci(
2
9 )1/6 y

x1/6+i U( 1
6 + i, 4

3 ,
2y3

9x
), x ≥ 0, y ≥ 0,

−( 2
9 )1/6 1

6
y

x1/6+i e2y3/9xU( 7
6 − i, 4

3 ,− 2y3

9x
), x ≥ 0, y < 0

(15)

for i ≥ 0 and

∂i+1h(x, y)

∂xi ∂y
=
⎧⎨
⎩

−3
i−1/6Ci(

2
9 )1/6 1

x1/6+i U( 1
6 + i, 1

3 ,
2y3

9x
), x ≥ 0, y ≥ 0,

( 2
9 )1/6 1

2
1

x1/6+i e2y3/9xU( 7
6 − i − 1, 1

3 ,− 2y3

9x
), x ≥ 0, y < 0.

(16)

Here, C0 = 1 and Ci+1 = −Ci(i + 1/6)(i − 1/6) for i ≥ 0.

Proof. We will prove (15) by induction. The base of induction i = 0 corresponds to the definition of h. Now suppose
that (15) is true for i and prove it for i + 1.

Consider first y ≥ 0. By the induction hypothesis,

∂i+1h(x, y)

∂xi+1
= Ci

(
2

9

)1/6
∂

∂x

[
y

x1/6+i
U

(
1

6
+ i,

4

3
,

2y3

9x

)]

= −Ci

(
2

9

)1/6
y

x1/6+i+1

((
1

6
+ i

)
U

(
1

6
+ i,

4

3
,

2y3

9x

)
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+ 2y3

9x
U ′
(

1

6
+ i,

4

3
,

2y3

9x

))

= −Ci

(
2

9

)1/6
y

x1/6+i+1

(
i + 1

6

)(
i − 1

6

)
U

(
1

6
+ i + 1,

4

3
,

2y3

9x

)
,

where we applied (13.4.23) of [1] in the last step. Recalling the definition of Ci+1 we see that (15) holds for i + 1 and
positive y.

Consider second the case y < 0. By the induction hypothesis,

∂i+1h(x, y)

∂xi+1
= −

(
2

9

)1/6 1

6

∂

∂x

[
e2y3/9x y

x1/6+i
U

(
7

6
− i,

4

3
,−2y3

9x

)]

= −
(

2

9

)1/6 1

6

y

x1/6+i+1
e2y3/9x

(
−
(

1

6
+ i

)
U

(
7

6
− i,

4

3
,−2y3

9x

)

− 2y3

9x
U

(
7

6
− i,

4

3
,−2y3

9x

)
+ 2y3

9x
U ′
(

7

6
− i,

4

3
,−2y3

9x

))

= −
(

2

9

)1/6 1

6

y

x1/6+i+1
e2y3/9xU

(
7

6
− i − 1,

4

3
,−2y3

9x

)
,

where we applied (13.4.26) of [1] in the final step. This proves (15) for negative values of y.

To prove (16) we differentiate expressions for ∂ih
∂xi we just obtained. First we consider the case y ≥ 0. Using (15),

∂i+1h(x, y)

∂xi ∂y
= Ci

(
2

9

)1/6
∂

∂y

[
y

x1/6+i
U

(
1

6
+ i,

4

3
,

2y3

9x

)]

= Ci

(
2

9

)1/6 −3

x1/6+i

(
−1

3
U

(
1

6
+ i,

4

3
,

2y3

9x

)

− 2y3

9x
U ′
(

1

6
+ i,

4

3
,

2y3

9x

))

= Ci

(
2

9

)1/6 −3

(i − 1/6)x1/6+i
U

(
1

6
+ i,

1

3
,

2y3

9x

)
,

this time we used (13.4.24) of [1]. Finally, for y < 0,

∂i+1h(x, y)

∂xi ∂y
= −

(
2

9

)1/6 1

6

∂

∂y

[
y

x1/6+i
e2y3/9xU

(
7

6
− i,

4

3
,−2y3

9x

)]

= −
(

2

9

)1/6 1

6

−3

x1/6+i
e2y3/9x

((
−1

3
− 2y3

9x

)
U

(
7

6
− i,

4

3
,−2y3

9x

)

+ 2y3

9x
U ′
(

7

6
− i,

4

3
,−2y3

9x

))

=
(

2

9

)1/6 1

2

1

x1/6+i
e2y3/9xU

(
7

6
− i − 1,

1

3
,−2y3

9x

)
,

where we used (13.4.27) of [1] in the last line. �

Let

α(x, y) = max
(|x|1/3, |y|). (17)
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Lemma 6. There exist positive constants c and C such that

c
√

α(z) ≤ h(z) ≤ C
√

α(z), z ∈ R
2+. (18)

Furthermore, the upper bound is valid for all z. Function h is at least C3 continuous except the half-line {z: x =
0, y ≥ 0}. Furthermore, for all i + j ≤ 3 and all (x, y) ∈R

2 \ {z: x = 0, y ≥ 0},∣∣∣∣ ∂i+j h

∂xi ∂yj
(x, y)

∣∣∣∣≤ Cα(x, y)1/2−3i−j .

Here and throughout the text we denote as C,c some generic constants.

Proof of Lemma 6. The estimates will follow from Lemma 5 and the following properties of the confluent hyperge-
ometric function, see (13.1.8), (13.5.8) and (13.5.10) of [1],

U(a,b, s) ∼ s−a, s → ∞, (19)

U(a,b, s) ∼ �(b − 1)

�(a)
s1−b, s → 0, b ∈ (1,2), (20)

U(a,b, s) ∼ �(1 − b)

�(1 + a − b)
, s → 0, b ∈ (0,1). (21)

Asymptotics (19), (20) and the definition of h immediately imply (18).
Function h is obviously infinitely differentiable when x < 0 or x > 0. The only problematic zone is x = 0, y ≤ 0.

(Recall that we extend h through this half-line.) Since h(x, y) = 0 for x < 0, y < 0 all derivatives are equal to 0. Using
the expressions for derivatives found in Lemma 5 one can immediately see that derivatives of h(x, y) go to 0 as x → 0
for y < 0 thanks to the exponent e2y3/9x .

We continue with partial derivatives with respect to x, that is, j = 0, i = 1,2,3. First, using (15) and (19) for
sufficiently large A > 0 and y3/x > A,

∣∣∣∣∂ih(x, y)

∂xi

∣∣∣∣≤ C
y

x1/6+i

(
2y3

9x

)−1/6−i

≤ Cy1/2−3i , i ≥ 0.

For y < 0, sufficiently large A and −y3/9x > A, the same inequality hold since e2y3/9x is decreasing much faster
than any power function as y3/x → −∞. Next, using (15) and (20) for sufficiently small ε > 0 and y: |y|3/x ≤ ε,

∣∣∣∣∂ih(x, y)

∂xi

∣∣∣∣≤ C
y

x1/6+i

(
2y3

9x

)−1/3

≤ Cx1/6−i .

Finally, when y3/x ∈ (ε,A),∣∣∣∣∂ih(x, y)

∂xi

∣∣∣∣≤ C.

We can summarise this in one formula∣∣∣∣∂ih(x, y)

∂xi

∣∣∣∣≤ Cα(x, y)1/2−3i ,

where α(x, y) is defined in (17). This proves the statement.
The proof for j = 1, i = 0,1,2 goes the same line and we omit it.
For j = 2 and j = 3 we shall use the fact that hyy + 2yhx = 0 (recall that h solves Dh = 0). Hence,∣∣hyy(x, y)

∣∣≤ C|y|∣∣hx(x, y)
∣∣≤ Cα(x, y)α(x, y)−2.5 ≤ Cα(x, y)−1.5.
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Next, ∣∣hyyx(x, y)
∣∣≤ C|y|∣∣hxx(x, y)

∣∣≤ Cα(x, y)α(x, y)−5.5 ≤ Cα(x, y)−4.5.

Finally,∣∣hyyy(x, y)
∣∣ ≤ C

∣∣hx(x, y)
∣∣+ C|y|∣∣hxy(x, y)

∣∣
≤ Cα(x, y)−2.5 + Cα(x, y)α(x, y)−3.5 ≤ Cα(x, y)−2.5.

The proof is complete. �

Next we derive an upper bound for f (x, y).

Lemma 7. Assume that EX = 0, EX2 = 1 and E|X|2+δ < ∞. Then∣∣f (x, y)
∣∣≤ C min

(
1, α(x, y)−3/2−δ

)
, (x, y) ∈R+ ×R.

Proof. Let A ≥ 2 be fixed. Then for (x, y) such that α(x, y) ≤ A using the fact that function h is bounded on any
compact we have |f (x, y)| ≤ C. In the rest of the proof we consider the case α(x, y) > A.

According to Lemma 6 function h is at least C3 smooth except the line (x = 0, y ≥ 0). Then, for t : |t | ≤ 1
2α(x, y),

by the Taylor formula,∣∣∣∣h(x + y + t, y + t) − h(x, y)

−
(

(y + t)hx(x, y) + thy(x, y) + 1

2
hxx(x, y)(y + t)2 + hxy(x, y)(y + t)t + 1

2
hyy(x, y)t2

)∣∣∣∣
≤

∑
i+j=3

max
θ :|θ |≤(1/2)α(x,y)

∣∣∣∣∂i+j h(x + y + θ, y + θ)

∂xi ∂yj
(y + t)i tj

∣∣∣∣ := r(x, y, t).

To ensure that the Taylor formula is applicable we need to check that the set {(x + y + t, y + t): |t | ≤ 1
2α(x, y)} does

not intersect with the half-line {x = 0, y > 0}, where the derivatives of the function h(x, y) are discontinuous. First, if
y < 0 and α(x, y) = |y|, then y + t ≤ − 1

2 |y| for any t with |t | ≤ 1
2 |y|. Therefore |y + t | ≥ 1

2A in this case. Second, if
y > 0 and α(x, y) = y, then x +y + t ≥ x +y/2 > 1

2A. Third, if α(x, y) = x1/3, then |x +y + t | ≥ |x|− 3
2 |x|1/3 ≥ 1

2A

for all A ≥ 2. This shows that the Taylor formula is valid.
Then,∣∣Eh(x + y + X,y + X) − h(x, y)

∣∣
≤
∣∣∣∣E
[
h(x + y + X,y + X) − h(x, y); |X| > 1

2
α(x, y)

]∣∣∣∣
+
∣∣∣∣E
[
h(x + y + X,y + X) − h(x, y); |X| ≤ 1

2
α(x, y)

]∣∣∣∣.
We can estimate the second term in the right-hand side using the Taylor formula above,∣∣∣∣E

[
h(x + y + X,y + X) − h(x, y); |X| ≤ 1

2
α(x, y)

]∣∣∣∣
≤
∣∣∣∣E
[
(y + X)hx(x, y) + Xhy(x, y) + 1

2
hxx(x, y)(y + X)2

+ hxy(x, y)(y + X)X + 1

2
hyy(x, y)X2

]∣∣∣∣
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+
∣∣∣∣E
[
(y + X)hx(x, y) + Xhy(x, y) + 1

2
hxx(x, y)(y + X)2

+ hxy(x, y)(y + X)X + 1

2
hyy(x, y)X2; |X| > 1

2
α(x, y)

]∣∣∣∣
+ E

[
r(x, y,X); |X| ≤ 1

2
α(x, y)

]
:= E1(x, y) + E2(x, y) + E3(x, y).

First, we can simplify the first term E1(x, y) using the assumption EX = 0,EX2 = 1. Then,

E1(x, y) =
∣∣∣∣yhx(x, y) + 1

2
hyy(x, y) + 1

2
hxx(x, y)

(
y2 + 1

)+ hxy(x, y)

∣∣∣∣.
Recalling that yhx + 1

2hyy = 0, we obtain

E1(x, y) =
∣∣∣∣12hxx(x, y)

(
y2 + 1

)+ hxy(x, y)

∣∣∣∣.
Applying Lemma 6, we finally get

E1(x, y) ≤ Cα(x, y)−5.5α(x, y)2 + Cα(x, y)−3.5 ≤ Cα(x, y)−3.5. (22)

Second, noting that |X| > |y|/2 on the event |X| > 1
2α(x, y) and applying the Chebyshev inequality, we obtain

E2(x, y) ≤ CE
[
|X|(hx(x, y) + hy(x, y)

)+ X2(hxx(x, y) + hxy(x, y) + hyy(x, y)
); |X| > 1

2
α(x, y)

]

≤ C
|hx(x, y)| + |hy(x, y)|

α(x, y)1+δ
+ C

|hxx(x, y)| + |hxy(x, y)| + |hyy(x, y)|
α(x, y)δ

.

Applying Lemma 6, we obtain

E2(x, y) ≤ Cα(x, y)−1.5−δ. (23)

Third, applying Lemma 6 once again,

E3(x, y) ≤ C max
θ :|θ |≤(1/2)α(x,y)

∣∣hxxx(x + y + θ, y + θ)
∣∣E[|y + X|3; |X| ≤ 1

2
α(x, y)

]

+ C max
θ :|θ |≤(1/2)α(x,y)

∣∣hxxy(x + y + θ, y + θ)
∣∣E[|y + X|2|X|; |X| ≤ 1

2
α(x, y)

]

+ C max
θ :|θ |≤(1/2)α(x,y)

∣∣hxyy(x + y + θ, y + θ)
∣∣E[|y + X||X|2; |X| ≤ 1

2
α(x, y)

]

+ C max
θ :|θ |≤(1/2)α(x,y)

∣∣hyyy(x + y + θ, y + θ)
∣∣E[|X|3; |X| ≤ 1

2
α(x, y)

]

≤ Cα(x, y)−8.5α(x, y)EX2 + Cα(x, y)−6.5α(x, y)EX2

+ Cα(x, y)−4.5α(x, y)EX2 + Cα(x, y)−2.5α(x, y)1−δE|X|2+δ

≤ Cα(x, y)−1.5−δ.
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We are left to estimate∣∣∣∣E
[
h(x + y + X,y + X) − h(x, y); |X| > 1

2
α(x, y)

]∣∣∣∣
≤ CE

[
α
(|x + y + X|, |y + X|)0.5; |X| > 1

2
α(x, y)

]

+ h(x, y)P
(

|X| > 1

2
α(x, y)

)

≤ CE
[
|X|0.5; |X| > 1

2
α(x, y)

]
+ Cα(x, y)0.5P

(
|X| > 1

2
α(x, y)

)

≤ Cα(x, y)−1.5−δE|X|2+δ,

where we applied the Chebyshev inequality in the last step and Lemma 6 in the first step. This proves the statement
of the lemma. �

2.2. Concentration bounds for Zn

In this paragraph we are going to derive a concentration bound for the two-dimensional process Zn which will play a
crucial role in the proof of our main results.

We start with a simple arithmetical estimate which is required to apply a concentration result by Friedland and
Sodin [8].

Lemma 8. There exist absolute positive constants a, b such that

Σn := min
m1,m2,...,mn∈Z

n∑
k=1

(η1k + η2 − mk)
2 ≥ (an − b)+

for all η = (η1, η2) satisfying |ηi | ≤ 1/10 and maxk≤n |η1k + η2| ≥ 1/2.

Proof. In view of the symmetry we may assume that η1 > 0. Then the condition maxk≤n |η1k + η2| ≥ 1/2 simplifies
to η1n + η2 ≥ 1/2.

For every j ≥ 0 we define

kj := min{k: η1k + η2 ≥ j + 1/2}.
First we note that k2 > n means that η1n + η2 < 5/2. Therefore, η1 < (5/2 + 1/10)/n = 26/10n. If k is such that
η1k + η2 ∈ [1/4,1/2], then minmk∈Z(η1k + η − mk)

2 = (η1k + η2)
2 ≥ 1/16. Summing over these special values of k

only, we obtain the following lower bound:

Σn ≥ 1

16

([
1/2 − η2

η1

]
−
[

1/4 − η2

η1

])
≥ 1

16

(
1

4η1
− 1

)
≥ 1

16

(
5

52
n − 1

)
.

Assume now that k2 ≤ n. If k is such that η1k + η2 ∈ [j + 1/2, j + 3/4], then we have minmk∈Z(η1k + η −mk)
2 =

(η1k + η2 − j − 1)2 ≥ 1/16. The sum over these indices is the greater than 1
16 (1/4η1 − 1) = 1

64η1
(1 − 4η1) ≥ 3

320η1
.

Consequently,

Σn ≥ 3

320η1
max{j : kj ≤ n}.

Noting that max{j : kj ≤ n} = [η1n + η2 − 1/2] ≥ 2 implies that max{j : kj ≤ n} ≥ η1n, we obtain

Σn ≥ 3

320
n.
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Thus, the proof is completed. �

Lemma 9. There exists a constant C such that

sup
x,y

P
(∣∣S(2)

n − x
∣∣≤ 1, |Sn − y| ≤ 1

)≤ C

n2
, n ≥ 1

and

sup
x

P
(∣∣S(2)

n − x
∣∣≤ 1

)≤ C

n3/2
, n ≥ 1.

Proof. In order to prove the first statement we apply Theorem 1.2 from Friedland and Sodin [8] with ak = (k,1):

sup
x,y

P
(∣∣S(2)

n − x
∣∣≤ 1, |Sn − y| ≤ 1

)≤ C

(
exp

{−cα2}+
(

det

[
n∑

k=1

ak ⊗ ak

])−1/2)
,

where α2 is such that
∑n

k=1(η1k + η2 − mk)
2 ≥ α2 for all mk ∈ Z, η = (η1, η2) with |ηi | ≤ 1/10 and maxk≤n |η1k +

η2| ≥ 1/2.
According to Lemma 8, we may take α2 = (an − b)+. Furthermore, one can easily check that

det

[
n∑

k=1

ak ⊗ ak

]
∼ n4

12
as n → ∞.

Thus, the first bound is proved.
The second inequality follows from Theorem 1.1 of [8]. �

2.3. Construction of harmonic function

Let

Y0 = h(z),

Yn+1 = h(Zn+1) −
n∑

k=0

f (Zk), n ≥ 0. (24)

Lemma 10. The sequence Yn defined in (24) is a martingale.

Proof. Clearly,

Ez[Yn+1 − Yn|Fn] = Ez

[(
h(Zn+1) − h(Zn) − f (Zn)

)|Fn

]
= −f

(
Z(n)

)+ Ez

[(
h(Zn+1) − h(Zn)

)|Zn

]
= −f (Zn) + f (Zn) = 0,

where we used the definition of the function f in (9). �

Let

Kn,ε = {
(x, y): y > 0, x ≥ n3/2−3ε

}
.

The next lemma gives us a possibility to control Ez[h(Zk); τ > k] for z sufficiently far from the boundary.
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Lemma 11. For any sufficiently small ε > 0 there exists γ > 0 such that for k ≤ n the following inequalities hold

Ez

[
h(Zk); τ > k

]≤
(

1 + C

nγ

)
h(z), z ∈ Kn,ε, (25)

Ez

[
h(Zk); τ > k

]≥
(

1 − C

nγ

)
h(z), z ∈ Kn,ε. (26)

Proof. First, using (24) we obtain,

Ez

[
h(Zk); τ > k

] = Ez[Yk; τ > k] +
k−1∑
l=0

Ez

[
f (Zl); τ > k

]

= Ez[Yk] − Ez[Yk; τ ≤ k] +
k−1∑
l=0

Ez

[
f (Zl); τ > k

]
. (27)

Since Yk is a martingale and τ ∧ k is a bounded stopping time,

Ez[Yk] = Ez[Yτ∧k] = Ez[Y0] = h(z). (28)

From the first equality in this chain and Ez[Yτ∧k] = Ez[Yτ ; τ ≤ k] + Ez[Yk; τ > k] we infer that

Ez[Yk; τ ≤ k] = Ez[Yτ ; τ ≤ k]. (29)

Applying (28) and (29) to the corresponding terms in (27) and using the definition of Yk once again, we arrive at

Ez

[
h(Zk); τ > k

] = h(z) − Ez

[
h(Zτ ), τ ≤ k

]
+ Ez

[
τ−1∑
l=0

f (Zl); τ ≤ k

]
+

k−1∑
l=0

Ez

[
f (Zl); τ > k

]

= h(z) + Ez

[
τ−1∑
l=0

f (Zl); τ ≤ k

]
+

k−1∑
l=0

Ez

[
f (Zl); τ > k

]
, (30)

since h(Zτ ) = 0.
For k ≤ n we have

Ez

[
τ−1∑
l=0

f (Zl); τ ≤ k

]
+

k−1∑
l=0

Ez

[
f (Zl); τ > k

]≤
n−1∑
l=0

Ez

[∣∣f (Zl)
∣∣]. (31)

We split the sum in (31) into three parts,

n−1∑
l=0

Ez

[∣∣f (Zl)
∣∣] = f (z) + Ez

n−1∑
l=1

[∣∣f (Zl)
∣∣;max

(∣∣S(2)
l

∣∣, |Sl |
)≤ 1

]

+ Ez

n−1∑
l=1

[∣∣f (Zl)
∣∣; ∣∣S(2)

l

∣∣1/3
> |Sl |,max

(∣∣S(2)
l

∣∣, |Sl |
)
> 1

]

+ Ez

n−1∑
l=1

[∣∣f (Zl)
∣∣; ∣∣S(2)

l

∣∣1/3 ≤ |Sl |,max
(∣∣S(2)

l

∣∣, |Sl |
)
> 1

]
=: f (z) + Σ1 + Σ2 + Σ3.
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First, using the fact that |f (x, y)| ≤ C for |x|, |y| ≤ 1 and Lemma 9, we obtain

Σ1 ≤ C

∞∑
l=1

Pz

(∣∣S(2)
l

∣∣, |Sl | ≤ 1
)≤ C

∞∑
l=1

l−2 < C.

Second, by Lemma 7,

Σ2 ≤ C

n−1∑
l=1

Ez

[∣∣S(2)
l

∣∣−1/2−δ/3]

≤ C

n−1∑
l=1

∞∑
j=1

Ez

[∣∣S(2)
l

∣∣−1/2−δ/3; j ≤ ∣∣S(2)
l

∣∣≤ j + 1
]

≤ C

n−1∑
l=1

(
l3/2(−1/2−δ/3)Pz

(∣∣S(2)
l

∣∣> l3/2)+
l3/2∑
j=1

j−1/2−δ/3Pz

(
j ≤ ∣∣S(2)

l

∣∣≤ j + 1
))

.

Now we use the second concentration inequality from Lemma 9 to get an estimate

Pz

(
j ≤ ∣∣S(2)

l

∣∣≤ j + 1
)≤ Cl−3/2.

Then,

Σ2 ≤ C

n−1∑
l=1

(
l−3/4−δ/2 + l−3/2

l3/2∑
j=1

j−1/2−δ/3

)
≤ C

n−1∑
l=1

l−3/4−δ/2 ≤ Cn1/4−δ/2.

Similarly,

Σ3 ≤ C

n−1∑
l=1

Ez

[|Sl |−3/2−δ; |Sl | ≥ 1; |Sl| ≥
∣∣S(2)

l

∣∣1/3]

≤ C

n−1∑
l=1

∞∑
j=1

Ez

[|Sl |−3/2−δ; j ≤ |Sl | ≤ j + 1; ∣∣S(2)
l

∣∣≤ (j + 1)3]

≤ C

n−1∑
l=1

(
l−3/4−δ/2Pz

(|Sl | > l1/2)+
l1/2∑
j=1

j−3/2−δPz

(
j ≤ |Sl | ≤ j + 1; ∣∣S(2)

l

∣∣≤ (j + 1)3)).

Using Lemma 9 once again, we get an estimate

Pz

(
j ≤ |Sl | ≤ j + 1; ∣∣S(2)

l

∣∣≤ (j + 1)3) ≤ C

(j+1)3∑
i=1

Pz

(
j ≤ |Sl | ≤ j + 1; ∣∣S(2)

l

∣∣ ∈ (i, i + 1)
)

≤ Cl−2j3.

Then,

Σ3 ≤ C

n−1∑
l=1

(
l−3/4−δ/2 +

l1/2∑
j=1

j−3/2−δl−2j3

)

≤ C

n−1∑
l=1

(
l−2l5/4−δ/2 + l−3/4−δ/2)≤ Cn1/4−δ/2.
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Therefore,

n−1∑
l=0

Ez

[∣∣f (Zl)
∣∣]≤ f (z) + Cn1/4−δ/2

and, consequently,∣∣E[h(Zn); τ > n
]− h(z)

∣∣≤ f (z) + Cn1/4−δ/2, z ∈R+ ×R. (32)

Now we use the assumption that z ∈ Kn,ε . Combining Lemma 6 and Lemma 7, we get

∣∣f (z)
∣∣≤ C max

(
1, α(z)

)−3/2−δ ≤ C
h(z)

(α(z))2+δ
.

Applying now the lower bound from Lemma 6, we see that

h(z) ≥ c
(
α(z)

)1/2 ≥ cn1/4−ε/2, z ∈ Kn,ε.

From these estimates we infer that

f (z) + Cn1/4−δ/2 ≤ C
h(z)

n1−2ε+δ(1/2−ε)
+ Ch(z)

n1/4−δ/2

n1/4−ε/2

≤ Ch(z)n−γ , (33)

where γ is positive for sufficiently small ε. Combining (32) and (33), we complete the proof. �

We now prove a result which shows that Zn confined to R+ ×R cannot stay near the boundary. As we mentioned
in the Introduction this is one of the crucial steps in our construction.

Lemma 12. There exist a positive constant r such that for

sup
z∈R+×R

Pz

(
νn ≥ n1−ε, τ > n1−ε

)≤ exp
{−rnε

}
,

where

νn := min{k ≥ 0: Zk ∈ Kn,ε}.

Proof. Fix some integer A > 0 and put bn := A[n1−2ε]. Define also Rn := [n1−ε/bn]. It is clear that

Pz

(
νn > n1−ε, τ > n1−ε

)≤ Pz

(
S

(2)
jbn

∈ [
0, n3/2−3ε

]
for all j ≤ Rn

)
.

It follows from the definition of S
(2)
n that

S
(2)
(j+1)bn

= S
(2)
jbn

+ bnSjbn + S̃
(2)
bn

,

where S̃
(2)
n is an independent copy of S

(2)
n with starting point (0,0). From this representation and the Markov property

we conclude that

Pz

(
S

(2)
jbn

∈ [
0, n3/2−3ε

]
for all j ≤ Rn

)
≤ Pz

(
S

(2)
jbn

∈ [
0, n3/2−3ε

]
for all j ≤ Rn − 1

)
Qbn

(
n3/2−3ε

)≤ · · ·
≤ (

Qbn

(
n3/2−3ε

))Rn,
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where

Qk(λ) := sup
x∈R

P(0,0)

(
S

(2)
k ∈ [x, x + λ]).

Using the second inequality in Lemma 9, we get

Qbn

(
n3/2−3ε

)≤ Cn3/2−3ε

A3/2(n1−2ε)3/2
= C

A3/2
.

Choosing A so large that C

A3/2 ≤ 1
2 , we obtain

Pz

(
νn > n1−ε, τ > n1−ε

)≤
(

1

2

)Rn

.

Thus, the proof is finished. �

Lemma 13. There exist a constant C such that for k ≥ n1−ε ,

Ez

[
h(Zn), νn ≥ k, τ > n1−ε

]≤ Cn1/4(1 + α(z)
)1/2 exp

{−rnε/2
}
.

Proof. Using the Cauchy–Schwarz inequality, we obtain

Ez

[
h(Zn), τ > n1−ε, νn ≥ k

]
≤ (

Ez

[
h2(Zn), τ > n1−ε

])1/2(Pz

(
νn ≥ k, τ > n1−ε

))1/2

≤ (
Ez

[
h2(Zn), τ > n1−ε

])1/2(Pz

(
νn ≥ n1−ε, τ > n1−ε

))1/2
.

Recalling that h(z) ≤ C(α(z))1/2 for all z ∈ R+ ×R, one can easy obtain the inequality

Ez

[
h2(Zn), τ > n1−ε

] ≤ CEz

[
α(Zn)

]≤ C
(
α(z) + E0 max

{(
(Mn + y)n

)1/3
,Mn

})
≤ C

(
1 + α(z)

)
n1/2,

where Mn = max0≤i≤n Si . Combining this with Lemma 12, we complete the proof. �

We are now in position to state the main result of the present section. Its proof uses a recursion procedure and
estimates from Lemmas 11 and 12.

Proposition 14. For any starting point z there exists a limit

V (z) = lim
n→∞ Ez

[
h(Zn); τ > n

]
. (34)

Moreover, this limit is harmonic and strictly positive on K+.

Proof. Fix a large integer n0 > 0 and put, for m ≥ 1,

nm = [
n

((1−ε)−m)
0

]
,

where [r] denotes the integer part of r . Let n be any integer. There exists unique m such that n ∈ (nm,nm+1]. We first
split the expectation into 2 parts,

Ez

[
h(Zn); τ > n

] = E1(z) + E2(z)

:= Ez

[
h(Zn); τ > n,νn ≤ nm

]+ Ez

[
h(Zn); τ > n,νn > nm

]
.
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By Lemma 13, since nm ≥ n1−ε , the second term on the right hand side is bounded by

E2(z) ≤ Ez

[
h(Zn); τ > nm,νn > nm

]≤ C
(
1 + α(z)

)1/2
n

1/4
m exp

{−rnε
m/2

}
.

For the first term we have

E1(z) =
nm∑
i=1

∫
Kn,ε

Pz

{
νn = i, τ > i, S

(2)
i ∈ da,Si ∈ db

}
E(a,b)

[
h(Zn−i ); τ > n − i

]
.

Then, by (25),

E1(z) ≤
(

1 + C

nγ

) nm∑
i=1

∫
Kn,ε

Pz

{
νn = i, τ > i, S

(2)
i ∈ da,Si ∈ db

}
h(a, b).

Now noting that Kn,ε ⊂ Knm,ε , we apply (26) to obtain

E1(z) ≤ (1 + C/nγ )

(1 − C/n
γ
m)

nm∑
i=1

∫
Kn,ε

Pz

{
νn = i, τ > i, S

(2)
i ∈ da,Si ∈ db

}
× E(a,b)

[
h(Znm−i ); τ > nm − i

]
= (1 + C/n

γ
m)

(1 − C/n
γ
m)

Ez

[
h(Znm); τ > nm,νn ≤ nm

]
.

As a result we have

Ez

[
h(Zn); τ > n

]≤ (1 + C/n
γ
m)

(1 − C/n
γ
m)

Ez

[
h(Znm); τ > nm

]+ C
(
1 + α(z)

)1/2
n

1/4
m exp

{−rnε
m/2

}
. (35)

Iterating this procedure m times, we obtain

Ez

[
h(Zn); τ > n

] ≤
m∏

j=0

(1 + C/n
γ (1−ε)j

m )

(1 − C/n
γ (1−ε)j

m )

×
(

Ez

[
h(Zn0); τ > n0

]+ C
(
1 + α(z)

)1/2
m∑

j=0

n
1/4
m−j exp

{−rnε
m−j /2

})
. (36)

First of all we immediately obtain that

sup
n

Ez

[
h(Zn); τ > n

]≤ C(z) < ∞. (37)

An identical procedure gives a lower bound

Ez

[
h(Zn); τ > n

] ≥ E1(z) ≥
m∏

j=0

(1 − C/n
γ (1−ε)j

m )

(1 + C/n
γ (1−ε)j

m )
Ez

[
h(Zn0); τ > n0, νn0 ≤ n0

]

=
m∏

j=0

(1 − C/n
γ (1−ε)j

m )

(1 + C/n
γ (1−ε)j

m )

(
Ez

[
h(Zn0); τ > n0, νn1 ≤ n0

]− Ez

[
h(Zn0); τ > n0, νn1 > n0

])

≥
m∏

j=0

(1 − C/n
γ (1−ε)j

m )

(1 + C/n
γ (1−ε)j

m )

(
Ez

[
h(Zn0); τ > n0

]− C
(
1 + α(z)

)1/2
n

1/4
0 exp

{−rnε
0/2

})
. (38)
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For every positive δ we can choose n0 = n0(δ) such that∣∣∣∣∣
m∏

j=0

(1 − C/n
γ (1−ε)j

m )

(1 + C/n
γ (1−ε)j

m )
− 1

∣∣∣∣∣≤ δ and
m∑

j=0

n
1/4
m−j exp

{−rnε
m−j /2

}≤ δ.

Then, for this value of n0 and all z ∈ R+ ×R,

sup
n>n0

Ez

[
h(Zn); τ > n

]≤ (1 + δ)
(
Ez

[
h(Zn0); τ > n0

]+ C
(
1 + α(z)

)1/2
δ
)

and

inf
n>n0

Ez

[
h(Zn); τ > n

]≥ (1 − δ)
(
Ez

[
h(Zn0); τ > n0

]− C
(
1 + α(z)

)1/2
δ
)
.

Consequently,

sup
n>n0

Ez

[
h(Zn); τ > n

]− inf
n>n0

Ez

[
h(Zn); τ > n

]
≤ δEz

[
h(Zn0); τ > n0

]+ 2C
(
1 + α(z)

)1/2
δ.

Taking into account (37) and that δ can be made arbitrarily small we arrive at the conclusion that the limit in (34)
exists.

To prove harmonicity of V0 note that by the Markov property

Ez

[
h(Zn+1); τ > n + 1

]=
∫
R+×R

P
(
z + Z ∈ dz′)Ez′

[
h(Zn); τ > n

]
.

Letting n to infinity we obtain

V (z) = Ez

[
V (Z1); τ > 1

]
.

The existence of the limit in the right hand side is justified by the dominated convergence theorem and the above
estimates for supn>n0

Ez[h(Zn); τ > n].
Function V has the following monotonicity property: if x′ ≥ x and y′ ≥ y then V (x′, y′) ≥ V (x, y). Indeed, first

the function h satisfies this property since hx ≥ 0, hy ≥ 0, see Lemma 5. Second it clear that the exit time τ ′ ≥ τ ,
where τ ′ is the exit of time the integrated random walk started from (x′, y′) and τ is the exit of time the integrated
random walk started from (x, y). Third,

S̃n = y′ + X1 + X2 + · · · + Xn ≥ y + X1 + X2 + · · · + Xn = Sn,

S̃(2)
n = x′ + S̃1 + S̃2 + · · · + S̃n ≥ S(2)

n .

Therefore, for any n,

E(x′,y′)
[
h(Zn); τ > n

]≥ E(x,y)

[
h(Zn); τ > n

]
.

Letting n go to infinity, we obtain V (x′, y′) ≥ V (x, y).
It remains to show that V is strictly positive on K+. As we have already shown, for every δ > 0 there exists n0

such that

inf
n≥n0

Ez

[
h(Zn); τ > n

]≥ (1 − δ)
(
h(z) − C

(
1 + α(z)

)1/2
δ
)

for all z. Furthermore, for every fixed n we have E(x,y)[h(Zn); τ > n] ∼ h(x, y) as x, y → ∞. Thus there exist x0, y0
such that E(x0,y0)[h(Zn0); τ > n0] > (1 − δ)h(x0, y0). Taking into account (18), we conclude that V (z) is positive for
all z with x > xn0 , y > yn0 . From every starting point z ∈ R

2+ our process visits the set x > xn0 , y > yn0 before τ

with positive probability. Recalling that V (z) = Ez[V (Z1), τ > k] for all k ≥ 1, we conclude that V (z) > 0. The same
argument shows that V is strictly positive on K+. �
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3. Proof of Theorem 1

3.1. On integrated Brownian motion

We first mention some properties of the integrated Brownian motion which we shall use in the proof of our main
theorem.

Lemma 15. There exists a finite constant C such that

P(x,y)

(
τbm > t

)≤ C
h(x, y)

t1/4
, x, y > 0. (39)

Moreover,

P(x,y)

(
τbm > t

)∼ κ
h(x, y)

t1/4
as t → ∞, (40)

uniformly in x, y > 0 satisfying max(x1/6, y1/2) ≤ θt t
1/4 with some θt → 0.

Proof. To prove this lemma we are going to use the scaling property of the Brownian motion, which immediately
gives

P(x,y)

(
τbm > t

)= P(λ3x,λy)

(
τbm > tλ2), λ > 0. (41)

We start with (40). Consider first the case x1/3 ≥ y. Putting λ = x−1/3 in (41) we obtain

P(x,y)

(
τbm > t

)= P(1,yx−1/3)

(
τbm > tx−2/3).

In view of our assumption tx−2/3 ≥ θ
−1/4
t → ∞. We use the continuity of h(1, u) in u ∈ [0,1] and immediately

obtain that the asymptotics

P(1,yx−1/3)

(
τbm > tx−2/3)∼ κ

h(1, yx−1/3)

(tx−2/3)1/4

hold uniformly in yx−1/3 ∈ [0,1]. Then,

P(x,y)

(
τbm > t

)∼ κ
h(1, yx−1/3)

(tx−2/3)1/4
= κ

h(x, y)

t1/4
.

If x1/3 ≤ y then, choosing λ = y−1 in (41), we obtain

P(x,y)

(
τbm > t

)= P(xy−3,1)

(
τbm > ty−2).

The rest of the proof goes exactly the same way.
To prove (39) first notice that the above proof showed that for sufficiently small ε > 0 and t1/2 > ε−1 max(x1/3, y)

the bound (39) holds. Hence, it is sufficient to consider t1/2 ≤ ε−1 max(x1/3, y). Using the lower bound in (18), we
see that

h(x, y)

t1/4
≥ c max(x1/6, y1/2)

(ε−1 max(x1/3, y))1/2
= cε2 > 0

for t1/2 ≤ ε−1 max(x1/3, y). Therefore,

P(x,y)

(
τbm > t

)≤ 1 ≤ 1

cε2

h(x, y)

t1/4
.

This proves (39). �
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Lemma 16. Let pt (x, y;u,v) denote the transition density of (
∫ t

0 Bs ds,Bt ) killed at leaving R+ × R. Then, for
x, y → 0,

p1(x, y;u,v)

h(x, y)
→ κh(u, v).

The proof of this lemma for x = 0 is given in [9], see the proof of Theorem 4.1. For a general starting point (x, y)

one can obtain the statement from the equalities

pt(x, y;u,v) = pt(x, y;u,v) −
∫ t

0

∫ ∞

0
pt−s(0,−w;u,v)P(x,y)

(
τbm ∈ ds,Bτbm ∈ −dw

)
,

pt (x, y;u,v) = pt(u,−v, y;x,−y),

see relations (3) and (4) in Lachal [10].

3.2. Coupling

In this paragraph we derive some asymptotical results for integrated random walks from the corresponding statements
for the integrated Brownian motion. For that we use the following classical result (see, for example, [11]) on the
quality of the normal approximation.

Lemma 17. If E|X|2+δ < ∞ for some δ ∈ (0,1), then for every n ≥ 1 one can define a Brownian motion Bt on the
same probability space such that, for any γ satisfying 0 < γ < δ

2(2+δ)
,

P
(

sup
u≤n

|S[u] − Bu| ≥ n1/2−γ
)

= o
(
n2γ+γ δ−δ/2). (42)

As a first consequence of this coupling we derive asymptotics for Pz(τ > n) with sufficiently large z.

Lemma 18. For all sufficiently small ε > 0,

Pz(τ > n) = κh(z)n−1/4(1 + o(1)
)

as n → ∞ (43)

uniformly in z ∈ Kn,ε such that max{x1/3, y} ≤ θn

√
n for some θn → 0. Moreover, there exists a constant C such that

Pz(τ > n) ≤ C
h(z)

n1/4
, (44)

uniformly in z ∈ Kn,ε, n ≥ 1.

Proof. For every z = (x, y) ∈ Kn,ε denote

z± = (
x ± n3/2−γ , y

)
.

Define

An =
{

sup
u≤n

|S[u] − Bu| ≤ n1/2−γ
}
,

where B is the Brownian motion constructed in Lemma 17. Then, using (42), we obtain

Pz(τ > n) = Pz(τ > n,An) + o
(
n−r

)
≤ Pz+

(
τbm > n,An

)+ o
(
n−r

)
= Pz+

(
τbm > n

)+ o
(
n−r

)
, (45)
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where r = r(δ, γ ) = δ/2 − 2γ − γ δ. In the same way one can get

Pz−
(
τbm > n

)≤ Pz(τ > n) + o
(
n−r

)
. (46)

Note that if we take γ > 3ε, then z± ∈ Kn,ε′ for any ε′ > ε and all sufficiently large n. Therefore, we may apply
Lemma 15:

Pz±
(
τbm > n

)∼ κh
(
z±)n−1/4.

It follows from the Taylor formula and Lemma 6 that

∣∣h(z±)− h(z)
∣∣≤ Cn3/2−γ

(
α
(
x ± n3/2−γ , y

))−5/2 ≤ Cn1/4+5ε/6−γ . (47)

Furthermore, in view of (18),

h(z) > cn1/4−ε/2, z ∈ Kn,ε. (48)

From this bound and (47) we infer that

h
(
z±)= h(z)

(
1 + o(1)

)
, z ∈ Kn,ε. (49)

Therefore, we have

Pz±
(
τbm > n

)= κh(z)n−1/4(1 + o(1)
)
.

From this relation and bounds (45) and (46) we obtain

Pz(τ > n) = κh(z)n−1/4(1 + o(1)
)+ o

(
n−r

)
.

Using (48), we see that n−r = o(h(z)n−1/4) for all ε satisfying r = δ/2 − 2γ − 2γ δ > ε/6. This proves (43). To prove
(44) it is sufficient to substitute (39) into (45). �

Lemma 19. For all sufficiently small ε > 0 and all rectangles D = [a, b] × [c, d] with positive a,

Pz

((
S

(2)
n

n3/2
,

Sn√
n

)
∈ D,τ > n

)
= κh(z)n−1/4

∫
D

h(u, v)dudv
(
1 + o(1)

)
as n → ∞ (50)

uniformly in z ∈ Kn,ε such that max{x1/3, y} ≤ θn

√
n for some θn → 0.

Proof. Define two sets,

D+ = [
a − n−γ , b + n−γ

]× [c, d],
D− = [

a + n−γ , b − n−γ
]× [c, d].

Clearly D− ⊂ D ⊂ D+. Then, arguing as in the proof of the previous lemma, we get

Pz

((
S

(2)
n

n3/2
,

Sn√
n

)
∈ D,τ > n

)
≤ Pz

((
S

(2)
n

n3/2
,

Sn√
n

)
∈ D,τ > n,An

)
+ o

(
n−r

)

≤ Pz+
((∫ n

0 Bs ds

n3/2
,

Bn√
n

)
∈ D,τbm > n,An

)
+ o

(
n−r

)

≤ Pz+
((∫ n

0 Bs ds

n3/2
,

Bn√
n

)
∈ D,τbm > n

)
+ o

(
n−r

)
. (51)
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Similarly,

Pz

((
S

(2)
n

n3/2
,

Sn√
n

)
∈ D,τ > n

)
≥ Pz−

((∫ n

0 Bs ds

n3/2
,

Bn√
n

)
∈ D,τbm > n

)
+ o

(
n−r

)
. (52)

Using the scaling property of the Brownian motion and applying Lemma 16, we obtain

Pz±
((∫ n

0 Bs ds

n3/2
,

Bn√
n

)
∈ D,τbm > n

)
∼ κh

(
x±

n3/2
,

y

n1/2

)∫
D±

h(u, v)dudv.

It is sufficient to note now that

h

(
x±

n3/2
,

y

n1/2

)
∼ h

(
x

n3/2
,

y

n1/2

)
and

∫
D±

h(u, v)dudv →
∫

D

h(u, v)dudv

as n → ∞. Thus, from bounds (51), (52) and relations (48), (49) we obtain the desired conclusion. �

3.3. Asymptotic behaviour of τ : Proof of (7)

Applying Lemma 12, we obtain

Pz(τ > n) = Pz

(
τ > n,νn < n1−ε

)+ Pz

(
τ > n,νn ≥ n1−ε

)
= Pz

(
τ > n,νn < n1−ε

)+ O
(
e−rnε)

. (53)

Using the strong Markov property, we get for the first term the following estimates∫
Kn,ε

Pz

(
Zνn ∈ dz̃, τ > νn, νn < n1−ε

)
Pz̃(τ > n)

≤ Pz

(
τ > n,νn < n1−ε

)
≤
∫

Kn,ε

Pz

(
Zνn ∈ dz̃, τ > νn, νn < n1−ε

)
Pz̃

(
τ > n − n1−ε

)
. (54)

Applying now Lemma 18, we obtain

Pz

(
τ > n;νn < n1−ε

)
= κ + o(1)

n1/4
Ez

[
h(Zνn); τ > νn,Mνn ≤ θn

√
n, νn < n1−ε

]
+ O

(
1

n1/4
Ez

[
h(Zνn); τ > νn,Mνn > θn

√
n, νn < n1−ε

])

= κ + o(1)

n1/4
Ez

[
h(Zνn); τ > νn, νn < n1−ε

]
+ O

(
1

n1/4
Ez

[
h(Zνn); τx > νn,Mνn > θn

√
n, νn < n1−ε

])
, (55)

where Mk := maxj≤k |Sj |.
We now show that the first expectation converges to V (z) and that the second expectation is negligibly small.

Lemma 20. Under the assumptions of Theorem 1,

lim
n→∞ Ez

[
h(Zνn); τ > νn, νn < n1−ε

]= V (z).
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Proof. Put T = τ ∧ n1−ε . Since T is a bounded stopping time and Yk is a martingale,

Ez[YT ] = Ez[Yνn∧T ] = Ez[Yνn, νn < T ] + Ez[YT , νn ≥ T ]
and, consequently,

Ez[Yνn, νn < T ] = Ez[YT , νn < T ].
Using the definition of Yk , we infer from the last equality that

Ez

[
h(Zνn), νn < T

]= Ez

[
h(ZT ), νn < T

]− Ez

[
T −1∑
k=νn

f (Zk), νn < T

]
.

Conditioning on Zνn and applying (33), we obtain∣∣∣∣∣Ez

[
T −1∑
k=νn

f (Zk), νn < T

]∣∣∣∣∣ ≤ Ez

[
1{T > νn}EZνn

[
T −νn∑
k=0

∣∣f (Zk)
∣∣]]

≤ C

nγ (1−ε)
Ez

[
h(Zνn), νn < τ

]
.

From this inequality and Lemma 13 we conclude

Ez

[
h(Zνn), νn < T

]= (
1 + o(1)

)
Ez

[
h(ZT ), νn < T

]
as n → ∞. (56)

Since h(Zτ ) = 0, we have h(ZT ) = h(Zn1−ε )1{τ > n1−ε}. Noting that Lemma 13 remains valid with h(Zn1−ε ) instead
of h(Zn), we get

Ez

[
h(ZT ), νn < T

] = Ez

[
h(Zn1−ε ), νn < n1−ε, τ > n1−ε

]
= Ez

[
h(Zn1−ε ), τ > n1−ε

]+ O
(
n1/4e−rnε/2).

And in view of Proposition 14,

lim
n→∞ Ez

[
h(ZT ), νn < T

]= V (z).

Combining this relation with (56), we get the desired result. �

Lemma 21. As n → ∞,

Ez

[
h(Zνn), τ > νn, νn < n1−ε,Mνn > θn

√
n
]→ 0.

Proof. On the event νn ≤ n1−ε ,

h(Zνn) ≤ Cα(z) + C
(
max

{(
n1−ε(y + Mn1−ε )

)1/3
,Mn1−ε

})1/2

and, consequently,

Ez

[
h(Zνn), τ > νn, νn < n1−ε,Mνn > θn

√
n
]≤ Cα(z)P(Mn1−ε > θn

√
n) + CE

[
M

1/2
n1−ε ,Mn1−ε > θn

√
n
]
. (57)

Here we used the fact that if θn → 0 sufficiently slow, then

max
{(

n1−εMn1−ε

)1/3
,Mn1−ε

}= Mn1−ε

on the set {Mn1−ε > θn

√
n}.

Using now the Kolmogorov inequality, one can easily conclude that both summands on the right hand side of (57)
vanish as n → ∞. �
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3.4. Proof of weak convergence (8)

It suffices to show that, for any rectangle D ⊂R+ ×R,

Pz((S
(2)
n /n3/2, Sn/n1/2) ∈ D,τ > n)

Pz(τ > n)
→

∫
D

h(u, v)dudv. (58)

Take θn which goes to zero slower than any power function. First note that, in view of Lemma 12,

Pz

((
S

(2)
n

n3/2
,

Sn

n1/2

)
∈ D,τ > n

)

= Pz

((
S

(2)
n

n3/2
,

Sn

n1/2

)
∈ D,τ > n,νn ≤ n1−ε

)
+ O

(
e−rnε)

.

Repeating the arguments from the derivation of (55) and applying Lemma 21, we get

Pz

((
S

(2)
n

n3/2
,

Sn

n1/2

)
∈ D,τ > n,νn ≤ n1−ε

)

= Pz

((
S

(2)
n

n3/2
,

Sn

n1/2

)
∈ D,τ > n,νn ≤ n1−ε,Mνn ≤ θn

√
n

)
+ o

(
Pz(τ > n)

)
.

Next,

Pz

((
S

(2)
n

n3/2
,

Sn

n1/2

)
∈ D,τ > n,νn ≤ n1−ε,Mνn ≤ θnn

1/2
)

=
n1−ε∑
k=1

∫
Kn,ε∩{|y|≤θnn1/2}

Pz

(
τ > k,Zk ∈ (dx,dy), νn = k

)

× P(x,y)

(
τ > n − k,

(
S

(2)
n−k

n3/2
,
Sn−k

n1/2

)
∈ D

)
.

Using the coupling and arguing as in Lemma 19, one can show that

P(x,y)

(
τ > n − k,

(
S

(2)
n−k

n3/2
,
Sn−k

n1/2

)
∈ D

)
∼ κh(x, y)n−1/4

∫
D

h(u, v)dudv

uniformly in k ≤ n1−ε and z ∈ Kn,ε . As a result we obtain

Pz

((
S

(2)
n

n3/2
,

Sn

n1/2

)
∈ D,τ > n,νn ≤ n1−ε,Mνn ≤ θn

√
n

)

∼ κn−1/4
(∫

D

h(u, v)dudv

)
Ez

[
h(Zνn); τ > νn,Mνn ≤ θn

√
n, νn < n1−ε

]
.

Using now Lemma 20 and Lemma 21, we get

Pz

((
S

(2)
n

n3/2
,

Sn

n1/2

)
∈ D,τ > n,νn ≤ n1−ε,Mνn ≤ θn

√
n

)

∼ κn−1/4
∫

D

h(u, v)dudvV (z).

This completes the proof of (58).
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3.5. Proof of Proposition 4

The proof follows closely the proof of Lemma 11. Recalling (30), we get

Ez

[
h(Zn); τ > n

]= h(z) + Ez

[
τ−1∑
l=0

f (Zl); τ ≤ n

]
+

n−1∑
l=0

Ez

[
f (Zl); τ > n

]
.

Thus, it is sufficient to prove that

Ez

[
τ−1∑
l=1

∣∣f (Z(l)
)∣∣]< ∞. (59)

Indeed, the dominated convergence theorem then implies that

Ez

[
τ−1∑
l=0

f
(
Z(l)

); τx ≤ n

]
→ Ez

[
τ−1∑
l=0

f
(
Z(l)

)]

and ∣∣∣∣∣
n−1∑
l=0

Ez

[
f
(
Z(l)

); τ > n
]∣∣∣∣∣≤ Ez

[
τ−1∑
l=0

∣∣f (Z(l)
)∣∣; τ > n

]
→ 0

since τ is finite a.s. Then, as n → ∞,

Ez

[
h(Zn); τ > n

]→ h(z) + Ez

τ−1∑
l=0

f (Zl) = V (z),

which proves the desired representation.
To prove (59) we use the fact that we have already proved that

Pz(τ > n) ∼ V (z)n−1/4.

We split (59) into three parts,

Ez

τ−1∑
l=0

∣∣f (Zl)
∣∣ = f (z) +

∞∑
l=1

Ez

[∣∣f (Zl)
∣∣; τ > l

]

= f (z) +
∞∑
l=1

Ez

[∣∣f (Zl)
∣∣; ∣∣S(2)

l

∣∣, |Sl | ≤ 1, τ > l
]

+
∞∑
l=1

Ez

[∣∣f (Zl)
∣∣; ∣∣S(2)

l

∣∣1/3
> |Sl |, τ > l

]

+
∞∑
l=1

Ez

[∣∣f (Zl)
∣∣; ∣∣S(2)

l

∣∣1/3 ≤ |Sl |, τ > l
]

=: f (z) + Σ1 + Σ2 + Σ3.

Repeating the arguments from the proof of Lemma 11, one obtains easily

Σ1 + Σ3 ≤ C(z).
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Further, by Lemma 7,

Σ2 ≤ C

∞∑
l=1

Ez

[∣∣S(2)
l

∣∣−1/2−δ/3
, τ > l

]

≤ C

∞∑
l=1

Pz(τ > l/2) sup
z̃

Ez̃

[∣∣S(2)
l/2

∣∣−1/2−δ/3]

≤ C(z)

∞∑
l=1

l−1/4
∞∑

j=1

sup
z̃

Ez̃

[∣∣S(2)
l/2

∣∣−1/2−δ/3; j ≤ ∣∣S(2)
l/2

∣∣≤ j + 1
]

≤ C(z)

∞∑
l=1

l−1/4

(
l3/2∑
j=1

j−1/2−δ/3 sup
z̃

Pz̃

(
j ≤ ∣∣S(2)

l/2

∣∣≤ j + 1
)

+ l3/2(−1/2−δ/3) sup
z̃

Pz̃

(∣∣S(2)
l/2

∣∣> l3/2)).

Now we use the second concentration inequality from Lemma 9 to get an estimate

sup
z̃

Pz̃

(
j ≤ ∣∣S(2)

l

∣∣≤ j + 1
)≤ Cl−3/2.

Then,

Σ2 ≤ C(z)

∞∑
l=1

l−1/4

(
l−3/2

l3/2∑
j=1

j−1/2−δ/3 + l−3/4−δ/2

)

≤ C(z)

∞∑
l=1

l−1−δ/2 ≤ C(z).

This proves that the sum (59) is finite.
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