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Abstract. The purpose of the present paper is to establish explicit upper and lower bounds on moderate deviation probabilities
for a rather general class of geometric functionals enjoying the stabilization property, under Poisson input and the assumption of
a certain control over the growth of the moments of the functional and its radius of stabilization. Our proof techniques rely on
cumulant expansions and cluster measures. In addition, we establish a new criterion for the limiting variance to be non-degenerate.
Moreover, our main result provides a new central limit theorem, which, though stated under strong moment assumptions, does not
require bounded support of the intensity of the Poisson input. We apply our results to three groups of examples: random packing
models, geometric functionals based on Euclidean nearest neighbors and the sphere of influence graphs.

Résumé. L’objectif de cet article est d’établir une majoration et une minoration explicite pour les probabilités des déviations
modérées d’une classe assez générale de fonctionnelles géométriques possédant une propriété de stabilisation pour des données
de Poisson et sous l’hypothèse d’un contrôle de la croissance des moments de la fonctionnelle et de son rayon de stabilisation.
Les techniques utilisées dans les preuves reposent sur des développements de cumulants et des mesures de clusters. En outre, nous
proposons un nouveau critère pour que la variance limite soit non-dégénérée. De plus, notre résultat principal fournit un nouveau
théorème central limite, qui, bien que formulé sous une hypothèse assez forte sur les moments, ne nécessite pas que l’intensité
des données de Poisson ait un support borné. Nous appliquons nos résultats à trois groupes d’exemples: les modèles de pavages
aléatoires, les fonctionnelles géométriques dépendantes des voisins les plus proches en distance euclidienne et les graphes des
sphères d’influence.
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1. Introduction, main results

1.1. Introduction

Stabilization is an important concept expressing in natural geometric terms mixing properties of a broad class of func-
tionals of point processes arising in geometric probability, see [3,27,28]. Even though these processes are presumably
also tractable using more traditional mixing concepts, stabilization-based techniques proved extremely convenient in
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studying the asymptotic behavior of large random geometric systems. This is due to the geometric nature of these
methods which makes them compatible with many stochastic geometric set-ups in which the target functionals arise.
In particular, stabilization is often helpful in establishing a direct connection between the microscopic (local) and
macroscopic properties of the processes studied, see ibidem for further details. Stabilization has been successfully
used to establish laws of large numbers for many functionals [24,28,29] and it has also been employed in a general
setting to establish Gaussian limits for re-normalized functionals as well as re-normalized spatial point measures [3,
22,25–27]. The functionals to which the afore-mentioned theory applies include those defined by percolation models
[22], random graphs in computational geometry [3,27], random packing models [2,28], and the germ–grain models
[3]. Large deviation principles for stabilizing functionals have also been established, see [34]. Finally, the correspond-
ing moderate deviation principle, interpolating between the central limit theorem and law of large numbers, has been
obtained in [1] and [13], for a rather limited sub-class of the above examples though, namely for empirical functionals
of random sequential packing, nearest neighbor graphs and germ–grain models.

In this paper, we use stabilization combined with cumulant expansion techniques in the spirit of [3] to prove
moderate deviation bounds for three groups of geometric functionals: random sequential packing along with birth–
growth models, functionals based on nearest neighbors and sphere of influence graphs. In each case, we consider a
much more general class of geometric functionals, based on a newly introduced concept of confinement. In particular,
in the birth–growth models, we lift the unnatural lower bound on grain sizes. Moreover, our deviation probability
estimates are much more explicit than those established in [1]. In addition, we derive moderate deviation principles in
the τ -topology, which is stronger than the weak topology, which is used in [1].

We assume Poisson input with a density, which is assumed to be bounded and integrable, but need not have bounded
support. This fact adds to existing central limit theorems, which, to the best of our knowledge, all require the latter
assumption: see Remark 1.13. In particular, bounded support is not needed in the first group of applications, random
packing models. On the other hand, in the other two groups, nearest neighbors and sphere of influence graphs, bounded
support is required in order to ensure stabilization.

On the other hand though, for the applications considered in [1], our approach provides a much narrower range of
scaling regimes to which moderate deviation results apply. In particular, our results in the current form do not seem
to provide moderate deviation principles in the full range. However, in [1], it is assumed that the random measures
associated to the functionals and the Poisson point process can be suitably coupled with their exponential (Gibbs)
modifications. In the present paper, we assume no such structure; as a result, the application of our main results is much
more straightforward. Moreover, future refinements might actually yield full range moderate deviation principles in
some cases: see Remark 1.14.

However, it is well known that many natural multidimensional stochastic systems exhibiting various types of expo-
nential mixing often satisfy the Gaussian moderate deviation principle only up to a certain point beyond the CLT scale,
whereafter the Gaussian behavior breaks down and gets replaced by phenomena of a different nature. As a spectacular
example, consider the phase separation, condensation and droplet creation as established for many statistical mechan-
ical models in phase transition regime, see the seminal monograph [11] as well as the survey [5]. Consequently, we
believe that the Gaussian moderate deviation principle may well be violated by geometric stabilizing functionals for
ranges far enough from the CLT regime. Even though we are definitely not in a position to claim that the ranges of
Gaussian behavior for deviation probabilities established in this paper are optimal, we should most likely not hope to
get a full range Gaussian moderate deviation principle at the level of generality considered here.

1.2. Terminology and notation

We begin with some common notation. First, denote N = {1,2,3, . . .} and N0 = {0,1,2, . . .}. Next, for a set A,
denote by |A| its cardinality. Throughout this paper, fix d ∈ N. For x ∈ R

d , denote by ‖x‖ its Euclidean norm and,
furthermore, for A⊆R

d , denote by dist(x,A) the Euclidean distance from x to A. Next, denote by 0 the origin in R
d .

Unless specified otherwise, the expression ‘measurable’ will mean ‘Borel-measurable’ when applied to subsets of
R

d . For a measurable set A⊆ R
d , denote by vol(K) its Lebesgue measure. Throughout this paper, the letter Ω will

denote a measurable subset of Rd , which will be called a domain. Next, the letter κ will denote a probability density
function on R

d , vanishing on R
d \Ω . Abusing the notation slightly, κ will sometimes also denote the corresponding

probability measure, i.e., κ(x)dx. In particular, ‘κ-almost everywhere’ will mean ‘for κ(x)dx-almost all x’.
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Furthermore, we let 〈f,μ〉 denote the integral with respect to a signed finite variation Borel measure μ of a μ-
integrable function f . For a measurable set W ⊆ R

d , we write B(W) for the collection of bounded measurable
f :W → R. Finally, we shall assume that 0/0 = 0 (and a/0 = +∞ for a > 0 and −∞ for a < 0). The essential
supremum of f with respect to a measure μ will be denoted by ess supμ(dx) f (x). In particular, for a non-negative
function g, ess supg(x)dx f (x) will denote the essential supremum of f with respect to the Lebesgue measure restricted
to the set {x;g(x) > 0}.

Next, we introduce marked points. Let (M,FM,PM) be a probability space (mark space). Marked points will be
the elements of R̆d :=R

d ×M and will be usually denoted by a breve accent. We shall use the following convention:
if a letter with a breve accent denotes a marked point and the same letter without the accent appears in the same
context, both will refer to the same location. More formally, when x̆ ∈ R̆d and x appear in the same context, we shall
always assume that x̆ = (x, t) for some t ∈M. Similarly, for a set X̆ ⊆ R̆

d , X in the same context will denote the set
{x; (∃t ∈M) (x, t) ∈ X̆ }. A subset Ă⊆ R̆

d will be called measurable if it is measurable with respect to the product
of the Borel σ -algebra on R

d and the σ -algebra FM.

Common Conventions. Let z ∈ Rd and a ∈ R. For x̆ = (x, t) ∈ R̆d , put x̆ + z := (x + z, t) and ax̆ := (ax, t). For a
set X̆ ⊆ R̆

d , put X̆ + z := {x̆ + z; x̆ ∈ X̆ } and λX̆ := {λx̆; x̆ ∈ X̆ }. For sets Ă ⊆ R̆
d and B ∈ R

d , define Ă ∩ B :=
Ă∩ (B ×M) and Ă \B := Ă \ (B ×M).

We shall often integrate over R̆d . For that purpose, we extend the meaning of differential to integration with respect
to the product of the Lebesgue measure and PM. More formally, we define:∫

R̆d

f (x̆)dx̆ :=
∫
Rd

Ef (x,T )dx, (1.1)

where T is a generic random mark with distribution PM.
For x ∈ R

d and r > 0, Br(x) denotes the closed Euclidean ball of radius r centered at x. A set X̆ ⊆ R̆
d will

be called configuration if it is locally finite with respect to the product of the Euclidean topology on R
d and the

indiscrete topology on M, i.e., if for each x ∈Rd , the set X̆ ∩Br(x) is finite for some r > 0 (recall from the Common
Conventions that X̆ ∩ Br(x) is interpreted as X̆ ∩ (Br(x) ×M)). A configuration which is also a subset of Ω̆ :=
Ω ×M will be called a configuration on Ω . We shall keep the meaning of Ω̆ throughout the paper.

On the set of all configurations, we shall consider the standard σ -algebra defined as the smallest σ -algebra, such
that the map X̆ �→ |X̆ ∩ Ă| is measurable for all measurable sets Ă⊆ R̆

d . Thus, a subset of the set of all configurations
will be called measurable if it is measurable with respect to the latter σ -algebra.

Now we turn to our main object, geometric functionals and the associated random measures. We first refine the
definition of a geometric functional from [3,29].

Definition 1.1. A geometric functional defined on a measurable class C of configurations is a measurable map defined
for all pairs (x̆, X̆ ), where X̆ ∈ C and x̆ ∈ X̆ . If the class C is not specified, we shall take the class of all finite
configurations. Another example of a class that we shall frequently consider are all configurations on a domain Ω .

Although the main object of our paper will be real-valued functionals, we shall also need [0,∞]-valued as well as
even set-valued functionals.

Now we turn to stabilization, which plays an essential role in all that follows.

Definition 1.2. A geometric functional ξ stabilizes at x̆ with respect to a configuration X̆ ⊆ Ω̆ inside a domain Ω , if
there exists a finite ρ ≥ 0, such that:

ξ(x̆, Y̆)= ξ
(
x̆, X̆ ∩Bρ(x)

)
(1.2)

for all finite configurations Y̆ ⊆ Ω̆ with Y̆ ∩ Bρ(x) = X̆ ∩ Bρ(x). In other words, the interaction between x̆ and a
point set is unaffected by changes outside Bρ(x). In particular, for r ≥ ρ, ξ(x̆, X̆ ∩ Br(x)) does not depend on r . If
(1.2) holds, we shall say that ξ stabilizes at x̆ within radius ρ with respect to X̆ inside Ω . If Ω is not specified, we
shall take Ω =R

d .
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We shall say that ξ is stabilizing with respect to configuration X̆ if it stabilizes with respect to X̆ at each x̆ ∈ X̆
(all inside a domain Ω).

A radius of stabilization for a geometric functional ξ inside Ω is a [0,∞]-valued geometric functional R defined
on configurations on Ω̆ , such that for all suitable X̆ and all x̆ ∈ X̆ , ξ stabilizes at x̆ within radius R(x̆, X̆ ), provided
that R(x̆, X̆ ) is finite.

Geometric functionals, which are initially defined on finite configurations, can be extended to all configurations
(i.e., locally finite sets) with respect to which they stabilize. More precisely, if a geometric functional ξ stabilizes at x̆

with respect to configuration X̆ , we can define:

ξ(x̆, X̆ ) := lim
r→∞ ξ

(
x̆, X̆ ∩Br(x)

)
. (1.3)

Clearly, the extended functional stabilizes within the same radius.
Among others, this extension allows us to consider geometric functionals on Poisson point processes. For a locally

integrable function f :Rd → [0,∞), denote by P̆f a Poisson point process with intensity f ⊗ PM (sometimes,
we shall abuse the notation slightly and identify f with the corresponding measure f (x)dx). By locally integrable
function, we mean that f ∈ L1

loc(R
d), i.e., for each x ∈Rd , there exists some neighborhood U , such that f ∈ L1(U).

Remark 1.1. It would also be desirable extend the results to the case when the Poisson input is replaced by bi-
nomial (i.e., a point process consisting of independent and identically distributed random points) – so-called de-
Poissonization. However, this is beyond the scope of the present paper. In particular, the crucial construction (3.16)
seems not to work. Instead, one can either attempt to find a more sophisticated construction or refer to suitable con-
vergence of binomial point processes to Poisson. In this context, coupling can be used to advantage: see Lemma 4.2
of [27] and Lemma 3.2 of [24].

Throughout this paper, the letter ξ will be reserved for geometric functionals (but we shall also consider geometric
functionals denoted by other letters). For a geometric functional denoted by ξ , define its scaled versions by:

ξλ(x̆, X̆ )= ξ
(
λ1/d x̆, λ1/dX̆

)
(recalling that the λ1/d scaling only modifies the spatial component, not the mark). Our principal objects of interest
are the following random point measures on R

d :

μλ :=
∑

x̆∈P̆λκ

ξλ(x̆, P̆λκ)δx; λ > 0, (1.4)

or, equivalently,

〈f,μλ〉 :=
∫
R̆d

f (x)ξλ(x̆, P̆λκ)P̆λκ(dx̆),

along with μ̄λ := μλ − Eμλ, the centered versions of μλ. Thus, in μλ and μ̄λ, we shall always refer to an R-valued
geometric functional denoted by ξ and a probability density function on R

d denoted by κ , which will be suppressed
in the notation.

Throughout this paper, unless specified otherwise, the letter R will denote a radius of stabilization for a geometric
functional denoted by ξ . Moreover, for λ > 0, denote by Rλ a non-negative geometric functional defined on locally
finite sets, such that λ−1/dRλ is a radius of stabilization for ξλ inside a domain denoted by Ω , or, equivalently, such that
the functional (x̆, X̆ ) �→ Rλ(λ

−1/d x̆, λ−1/dX̆ ) is a radius of stabilization for ξ inside λ1/dΩ . Of course, if Ω = R
d ,

one can simply put Rλ(x,X ) :=R(λ1/d x̆, λ1/dX̆ ).
In most of our results, we restrict attention to translation invariant functionals.

Definition 1.3. A geometric functional ξ is translation invariant if ξ(x̆ + z, X̆ + z)= ξ(x̆, X̆ ) for all x̆ ∈ R̆d , all finite
configurations X̆ ⊂ R̆

d and all z ∈ R̆d .
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Remark 1.2. Though most of our main results are formulated under the assumption of translation invariance, the
latter is not crucial. In particular, it is not required in our key Lemma 3.1. However, our main results are derived by
combining Lemma 3.1 with (1.7), which is known to hold under either translation invariance or more complicated
assumptions (see [25]). Anyway, translation invariance is the case in all our applications.

1.3. Known results

From [25] (see also earlier papers [3,29]), we know that under relatively mild assumptions (compared to those stated in
Section 1.5), the one and two point correlation functions for ξλ(x̆, P̆λκ) converge in the large λ limit, which establishes
the corresponding asymptotics for integrals E〈f,μλ〉 and σ 2

λ [f ] := Var(〈f,μλ〉) (we shall always take σλ[f ] ≥ 0).
Moreover, under additional assumption that κ has bounded support, it is known that the limit of the re-normalized
measures λ−1/2μ̄λ is a generalized mean zero Gaussian field in the sense that the finite-dimensional distributions of
λ−1/2μ̄λ over f ∈ B(Rd) converge to those of a Gaussian field (for test functions, we may take all f ∈ B(Rd), but
only the ones with support coinciding with the support of κ really matter).

To state the results in formal terms, we introduce various assumptions. The first one will be imposed on the den-
sity κ .

Assumption D (Density). κ is bounded and Lebesgue-almost everywhere continuous.

Next, we list two assumptions imposed on a family (gλ)λ>λ0 of geometric functionals either taking values in R or
in [0,∞].

Assumption M(p, κ) (pth Moment).

lim sup
λ→∞

ess sup
κ(x)dx̆

E
∣∣gλ(x̆, P̆λκ)

∣∣p <∞.

Assumption M1(p, κ) (pth Moment with One additional point). (gλ)λ satisfies Assumption M(p, κ) and

lim sup
λ→∞

ess sup
κ(x)dx̆⊗κ(y)dy̆

E
∣∣gλ

(
x̆, P̆λκ ∪ {y̆}

)∣∣p <∞.

Now recall our conventions on R and Rλ from the preceding subsection. In most of our results, we shall need
that R satisfies Assumption M1(p, κ) for some q . This is analogous, but not entirely equivalent to the power-law
stabilization of order q as defined in [23,25,30].

Below we state an assumption formally imposed on R, a radius of stabilization for ξ . Throughout this subsection,
let T denote a generic random mark with distribution PM, independent of all other random objects we consider.

Assumption FH(τ ) (Finiteness with respect to Homogeneous process). R is translation invariant and P(R((0, T ),

P̆τ ) <∞) = 1. Here, τ denotes a positive real number, not a function. Notice that if R is not a priori translation
invariant, it can always be replaced by an appropriate translation invariant radius of stabilization.

Remark 1.3. Under translation invariance, Assumption FH(τ ) is essentially equivalent to what is called τ -
homogeneous stabilization in [23,25]. More precisely, a translation invariant geometric functional ξ is τ -homoge-
neously stabilizing if:

P
(
R
(
(0, T ), P̆τ

)
<∞)= P

(
R
(
(0, T ), P̆τ ∪ {x̆}

)
<∞)= 1 (1.5)

for all x̆ ∈ R̆d . However, if the latter only holds for almost all x̆, say, for all x̆ ∈ R̆d \ ({0}) outside a set N̆ ⊂ R̆
d \ ({0})

of Lebesgue measure zero, one can modify ξ((0, t), X̆ ) to ξ((0, t), X̆ \N̆) and R((0, t), X̆ ) to R((0, t), X̆ \N̆), keeping
translation invariance. Replacing X̆ with a marked Poisson point process P̆f , ξ and R have then only been modified
on a null event.
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Once relaxed to the ‘almost everywhere’ condition, the additional point x̆ can now be left out. This is because for
each r > 0, a Poisson point process can be represented as a union of a set ŬN,r and a Poisson point process on the
complement of B̆r (0) := Br(0)×M, where N is a Poisson random variable and where for each n ∈N0, Ŭn,r denotes
a set of n independent points in B̆r (0). Saying that the first probability in (1.5) equals one is equivalent to saying that
P(R((0, T ), Ŭn,r ∪ (P̆τ \ B̆r (0))) <∞)= 1 for all r > 0 and all n ∈N0, while for the second probability, this reduces
to the statement that the latter holds for all r > 0 and all n ∈ N. Therefore, the second probability in (1.5) is in fact
redundant. To summarize, any statement on the distributions of the random measures μλ which holds under (1.5) still
holds under Assumption FH(τ ) only.

Definition 1.4. A family (gλ)λ>λ0 of geometric functionals enjoys κ-almost exponential decay if there exist a ≥ 0 and
b > 0, such that ess supκ(x)dx̆ P(|gλ(x̆, P̆λκ)|> t)≤ ae−bt for all t ≥ 0. If this is satisfied for gλ = Rλ, where, by our
convention, λ−1/dRλ is a radius of stabilization for ξλ, we shall say that ξ is κ-almost exponentially stabilizing inside
the upscaled domain Ω . If Ω is not specified, we shall take Ω =R

d .

Next, we list three further assumptions imposed on ξ . Recall that ξλ(x̆, X̆ )= ξ(λ1/d x̆, λ1/dX̆ ).

Assumption CWLLN(p, κ) (Convergence in the sense of WLLN). κ satisfies Assumption D, ξ is translation in-
variant and the family (ξλ)λ>0 satisfies Assumption M1(p′, κ) for some p′ > p. Moreover, there exists a radius of
stabilization R for ξ satisfying Assumption FH(κ(x)) for κ-almost all x ∈Rd .

Assumption CV(κ) (Convergence of Variance). κ satisfies Assumption D and ξ is translation invariant. Moreover,
there exists a radius of stabilization R for ξ satisfying Assumption FH(κ(x)) for κ-almost all x ∈ Rd . Finally, there
exist p,q > 0 with 2/p + d/q < 1, such that the family (ξλ)λ>0 satisfies Assumption M1(p, κ) and such that there
exists a family (Rλ)λ>λ0 of appropriate radii of stabilization satisfying Assumption M(q, κ).

Assumption CCLT(κ) (Convergence in the sense of multivariate CLT). κ satisfies Assumption D and has bounded
support, and ξ is translation invariant. Moreover, there exists a radius of stabilization R for ξ satisfying Assump-
tion FH(κ(x)) for κ-almost all x ∈ R

d . Finally, there exists a family (Rλ)λ>λ0 of appropriate radii of stabilization,
such that either (ξλ)λ>0 satisfies Assumption M1(p, κ) for some p > 2 and (Rλ)λ>λ0 enjoys almost uniform ex-
ponential decay for κ , or such that (ξλ)λ>0 satisfies Assumption M1(p, κ) for some p > 3 and (Rλ)λ>λ0 satisfies
Assumption M(q, κ) for some q > d(150+ 6/p).

Now we are ready to list the following known results:

• Take p = 1 or p = 2. If ξ satisfies Assumption CWLLN(p, κ), we have for all f ∈ B(Rd):

〈f,μλ〉
λ

Lp−→
λ→∞

∫
Rd

f (x)E
[
ξ
(
(0, T ), P̆κ(x)

)]
κ(x)dx, (1.6)

where T is a generic random mark with distribution PM, independent of P̆κ(x).
• If ξ satisfies Assumption CV(κ), there exists a measurable function V : [0,∞)→ [0,∞), depending on ξ but not

on κ , such that for all f ∈ B(Rd), the variance σ 2
λ [f ] =Var(〈f,μλ〉) satisfies:

lim
λ→∞

σ 2
λ [f ]
λ
= σ 2[f ] :=

∫
Rd

f 2(x)V
(
κ(x)

)
κ(x)dx (1.7)

(like for σλ[f ], we shall always take σ [f ] ≥ 0). The function V is defined by:

V (τ) := E
[
ξ
(
(0, T ), P̆τ

)2]
+ τ

∫
Rd

{
E
[
ξ
(
(0, T ), P̆τ ∪

{(
z,T ′

)})
ξ
((

z,T ′
)
, P̆τ ∪

{
(0, T )

})]− [
Eξ

(
(0, T ), P̆τ

)]2}dz (1.8)

for τ > 0; for convenience, we set V (0) := 0. Similarly as before, T and T ′ are generic random marks with distri-
bution PM, independent of each other as well as of P̆τ .
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• If ξ satisfies Assumption CCLT(κ), the finite-dimensional distributions of λ−1/2μ̄λ converge in distribution as
λ→∞ to those of a generalized mean-zero Gaussian field with covariance kernel

(f1, f2) �→
∫
Rd

f1(x)f2(x)V
(
κ(x)

)
κ(x)dx. (1.9)

The above results capture the weak law of large numbers and the Gaussian limit behavior of the re-normalized
measures λ−1/2μ̄λ. For a special case (special mainly with respect to test functions), which is actually a good starting
point, they are all proved in [3] (Theorem 2.1). For the general case (in fact, much more general that we consider),
see [23] (Theorems 2.1–2.3), noting that we may relax the supremum over λ ≥ 1 along with the supremum over the
measure-theoretic support of κ stated in the conditions given ibidem to lim supλ→∞ and the κ-essential supremum.
Furthermore, we can relax τ -homogeneous stabilization to Assumption FH(τ ): see Remark 1.3. The convergence of
the variance (1.7) and the central limit theorem are also proved in [25] (Theorems 2.1 and 2.2, but see also the remarks
below Theorem 2.3).

The above-mentioned central limit theorem is based on Theorems 2.3 and 2.5 of [30], where also the curious
condition q > d(150+ 6/p) arises from. The latter results also provide explicit univariate bounds. An extension to
multivariate bounds is derived in [26]. Under a different set-up, a multivatiate CLT is also proved in [22].

As to Theorem 2.2 of [23] and its counterpart, Theorem 2.1 of [25], it is worth mentioning that a factor d has been
accidentally dropped from their statement, so that there should be q > dp/(p−2) rather than q > p/(p−2), just like
in Assumption CV(κ): see Lemma 5.2 of [23] and Lemma 4.2 of [25].

1.4. Non-degeneracy of the limiting variance

In view of (1.7), it is important to distinguish between degenerate and non-degenerate limiting variance, i.e., σ [f ] = 0
and σ [f ]> 0. This issue is heavily discussed in [3,27,28]. A further fruitful general result is derived in [26]. However,
the verification of the conditions guaranteeing non-degeneracy given in the latter paper might be somewhat involved.
Therefore, we take one step forward and establish a new criterion for the non-degeneracy, which seems to be easier to
verify. Moreover, the result of [26] is not supported by an example where earlier results do not apply. We here provide
one: see Example 2.2.

Like the earlier result from [27], Theorem 2.2 of [26] is based on the add-one cost of the total mass functional.
The total mass functional of a geometric functional ξ is defined by H(X̆ ) :=∑

x̆∈X̆ ξ(x̆, X̆ ), while its add-one cost

is defined by 
(x̆, X̆ ) := H(X̆ )− H(X̆ \ {x̆}), provided that x̆ ∈ X̆ . Notice that 
 is also a geometric functional.
Extending it by our convention from Section 1.2, we have 
(x̆, X̆ ) = H(X̆ ∪ {x̆}) − H(X̆ ) for x̆ /∈ X̆ . The name
‘add-one cost’ is due to the latter case.

In order to derive non-degeneracy, a new concept of stabilization, called external stabilization, is introduced in
[26]. We here rewrite the corresponding definition for marked configurations and, in addition, introduce the concept
of basic external stabilization.

Definition 1.5. Let ρ > 0. A configuration X̆ is said to be basically ρ-externally stable at a point x̆ ∈ R̆d with respect
to a geometric functional ξ if

ξ
(
z̆, Y̆ ∪ {x̆})= ξ

(
z̆, Y̆ \ {x̆}) (1.10)

for all finite Y̆ with Y̆ ∩Bρ(x̆)= X̆ ∩Bρ(x̆) and all z̆ ∈ Y̆ \Bρ(x̆).
The configuration X̆ is said to be ρ-externally stable at x̆ with respect to ξ if the following three conditions hold:

first, X̆ is ρ-externally stable at x̆ with respect to ξ . Second, ξ stabilizes at x̆ within radius ρ with respect to X̆ . Third,

ξ
(
y̆, Y̆ ∪ {x̆})− ξ

(
y̆, Y̆ \ {x̆})= ξ

(
y̆,

(
X̆ ∩Bρ(x̆)

)∪ {x̆})− ξ
(
y̆,

(
X̆ ∩Bρ(x̆)

) \ {x̆}) (1.11)

for all finite Y̆ with Y̆ ∩Bρ(x̆)= X̆ ∩Bρ(x̆) and all y̆ ∈ Y̆ ∩Bρ(x̆).
We shall say that X̆ is externally stable at x̆ with respect to ξ if it is ρ-externally stable at x̆ for some finite ρ.

Remark 1.4. If X̆ is ρ-externally stable at x̆ with respect to ξ , then 
 stabilizes at x̆ within radius ρ.
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Remark 1.5. If X̆ is ρ-externally stable and r ≥ ρ, then X̆ is also r-externally stable.

Remark 1.6. If X̆ is ρ-externally stable at x̆ and Y̆ ∩Bρ(x̆)= X̆ ∩Bρ(x̆), then Y̆ is also ρ-externally stable at x̆.

Remark 1.7. Condition (1.11) holds provided that ξ stabilizes at y̆ with respect to X̆ ∪ {x̆} and to X̆ ∪ {x̆} within
radius ρ−‖y−x‖. On the other hand, condition (1.10) cannot be simply derived from the usual radius of stabilization.
Therefore it is referred to as basic external stabilization.

In view of the preceding remark, the following construction of the external radius of stabilization is now immediate.

Proposition 1.1. Let ξ be a geometric functional with radius of stabilization R. Take ρ > 0, x̆ ∈ R̆d and a configura-
tion X̆ . If X̆ is basically ρ-externally stable at x̆ with respect to ξ , it is also r-externally stable at x̆ with respect to ξ ,
where:

r := ρ +max
{
R
(
y̆, X̆ ∪ {x̆}),R(

y̆, X̆ \ {x̆}); y̆ ∈ (
X̆ ∪ {x̆})∩Bρ(x̆)

}
.

In particular, if X̆ is basically ρ-externally stable at x̆ with respect to ξ and ξ stabilizes with respect to X̆ ∪ {x̆} and
X̆ \ {x̆} at all y̆ ∈ (X̆ ∪ {x̆})∩Bρ(x̆), then X̆ is externally stable at x̆ with respect to ξ .

In the rest of this subsection as well as in Section 3.5, we fix a translation invariant geometric functional ξ ,
let H be the total mass functional of ξ and let 
 be its add-one cost. We also recall the convention ξλ(x̆, X̆ ) :=
ξλ(λ

1/dx,λ1/dX ); set also 
λ(x̆, X̆ ) := 
λ(λ
1/dx,λ1/dX ). Let R denote a radius of stabilization for ξ and let

λ−1/dRλ be a radius of stabilization for ξλ. Finally, let T denote a generic random mark with distribution PM,
independent of all other random variables.

Now we state the version of Theorem 2.2 of [26] for marked configurations. One can easily check that the proof
given ibidem still carries through.

Theorem 1.1. Suppose that ξ is translation invariant and that there exists ρ > 0, such that with strictly pos-
itive probability, the marked homogeneous Poisson process P̆1 is ρ-externally stable at (0, T ) and 
((0, T ),

P̆1 ∩ Bρ(0)) �= 0. Next, take a probability density function κ on R
d and a function f ∈ B(Rd), which is Lebesgue-

almost everywhere continuous. Suppose that f κ is not Lebesgue-almost everywhere zero. Let X be a random variable
with density κ . Suppose that for some s > 2, we have:

lim sup
λ→∞

E

∣∣∣∣ ∑
x̆∈P̆λκ∪{(X,T )}

f (x)ξ
(
x̆, P̆λκ ∪

{
(X,T )

})− ∑
x̆∈P̆λκ\{(X,T )}

f (x)ξ
(
x̆, P̆λκ \

{
(X,T )

})∣∣∣∣s <∞. (1.12)

In addition, suppose either that f is an indicator function of a measurable subset of Rd with vanishing boundary (i.e.,
the Lebesgue measure of the boundary equals zero) or that for all K > 0 and κ-almost all x, we have:∫

BK(0)

E
∣∣ξ(y̆, P̆κ(x) ∪

{
(0, T )

})− ξ(y̆, P̆κ(x))
∣∣dy̆ <∞. (1.13)

Then lim infλ→∞ σ 2
λ [f ]/λ > 0.

As already mentioned, the verification of the conditions required in the preceding result might be somewhat in-
volved. In particular, this holds for the moment conditions (1.12) and (1.13). The main goal of this subsection is to
show that these conditions can be simply replaced by Assumption CV(κ) introduced in Section 1.3, taking κ to be
the uniform density on a suitable domain and restricting attention to the case f ≡ 1. Observe first that in this case, the
moment condition (1.13) can be left out, while the moment condition (1.12) reduces to:

lim sup
λ→∞

E
∣∣
λ

(
(X,T ), P̆λκ

)∣∣s <∞. (1.14)
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Considering only the case f ≡ 1 is not a big restriction: under Assumption CV(κ), formula (1.7) allows us to derive
the limiting variance from the function V ; notice that for each τ > 0, V (τ) is precisely the limiting variance for f ≡ 1,
taking κ to be a suitable uniform density (see also Remark 1.8).

For convenience, we list two additional assumptions imposed on a family (gλ)λ>λ0 of geometric functionals. Below
we show that they are essentially equivalent to Assumptions M and M1; moreover, with proper parameters and one
additional assumption, they are also equivalent to Assumption CV(κ).

Assumption MH(p, τ,Ω) (pth Moment with respect to Homogeneous process restricted to Ω).

lim sup
λ→∞

ess sup
1(x∈Ω)dx̆

E
∣∣gλ(x̆, P̆λτ ∩Ω)

∣∣p <∞.

Assumption MH1(p, τ,Ω) (pth Moment with respect to Homogeneous process restricted to Ω with One additional
point). (gλ)λ>λ0 satisfies Assumption MH(p, τ,Ω) and

lim sup
λ→∞

ess sup
1(x,y∈Ω)dx̆⊗dy̆

E
∣∣gλ

(
x̆, (P̆λτ ∩Ω)∪ {y̆})∣∣p <∞.

Remark 1.8. Letting v := vol(Ω), Ω∗ := (τv)−1/dΩ , g∗λ∗(x̆∗, X̆ ∗) := gλ((τv)1/d x̆∗, (τv)1/d X̆ ∗), where λ =
λ∗/(τv), the family (gλ)λ≥λ0 satisfies Assumption MH(p, τ,Ω) if and only if the family (g∗λ∗)λ∗≥λ∗0 satisfies As-
sumption M(p, κ), taking κ to be the uniform density on Ω∗ and λ∗0 := τvλ0. This is true because:

gλ(x̆, P̆λτ ∩Ω) = gλ∗/(τv)

(
(τv)1/d x̆∗, P̆λ∗/v ∩ (τv)1/dΩ∗

)= g∗λ∗
(
x̆∗, (τv)−1/d P̆λ∗/v ∩Ω∗

)
D= g∗λ∗

(
x̆∗, P̆λ∗τ ∩Ω∗

)= g∗λ∗
(
x̆∗, P̆λ∗κ

)
,

where x̆∗ := (τv)−1/d x̆ and where
D= denotes equivalence in distribution. Similarly, the family (gλ)λ≥λ0 satisfies

Assumption MH1(p, τ,Ω) if and only if the family (g∗λ∗)λ∗≥λ∗0 satisfies Assumption M1(p, κ). Notice also that the
family (ξλ)λ>0 satisfies Assumption MH(p, τ,Ω), respectively Assumption MH1(p, τ,Ω), if and only if it satisfies
Assumption M(p, κ), respectively Assumption M1(p, κ).

Moreover, keeping the relationship between λ and λ∗, λ−1/dRλ is a radius of stabilization for ξλ inside
domain Ω if and only if (λ∗)−1/dR∗λ∗ is a radius of stabilization for ξλ∗ inside Ω∗, where R∗λ∗(x̆∗, X̆ ∗) :=
Rλ((τv)1/d x̆∗, (τv)1/d X̆ ∗). As a result, if the family (ξλ)λ>0 satisfies Assumption MH1(p, τ,Ω) and if there ex-
ists a radius R of stabilization for ξ satisfying Assumption FH(τ ) and a suitable family (Rλ)λ>λ0 of scaled radii of
stabilization satisfying Assumption MH(p, τ,Ω), where 2/p+ d/q < 1, then ξ satisfies Assumption CV(κ).

As mentioned above, the main goal of this subsection is to show that the moment condition (1.14) can be replaced
by Assumption CV(κ). In addition, we also simplify the condition on non-vanishing 
. In order to do this, we state
the following definition.

Definition 1.6. A predicate P defined on pairs (t, X̆ ), where t ∈M and X̆ is a finite configuration, is said to
hold for notably many pairs (t, X̆ ) if there exists n ∈ N0 and a PM(dt) ⊗ dx̆1 ⊗ · · · ⊗ dx̆n-nonnull set, such that
P(t, {x̆1, . . . , x̆n}) holds for all (t, x̆1, . . . , x̆n) in that set.

Remark 1.9. In particular, for P(t, X̆ ) to hold for notably many pairs (t, X̆ ), it suffices that P(t,∅) holds on a
PM(dt)-nonnull set.

Now we are ready to formulate our result on non-degeneracy. We defer the proof to Section 3.5.

Theorem 1.2. Let ξ be translation invariant, let 0 < τ <∞ and suppose that there exists a radius of stabilization R

for ξ satisfying Assumption FH(τ ). Let Ω be a domain with 0 < vol(Ω) <∞ and with vol(∂Ω)= 0. Take p,q > 0
with 2/p+ d/q < 1 and λ0 > 0. Suppose that the family (ξλ)λ>λ0 satisfies Assumption MH1(p, τ,Ω) and that there
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exists a family (Rλ)λ>λ0 satisfying Assumption MH(q, τ,Ω), such that for each λ > λ0, λ−1/dRλ is a radius of
stabilization for ξλ. Finally, suppose that for notably many pairs (t, X̆ ), 
((0, t), X̆ ) �= 0 and X̆ is externally stable
at (0, t) with respect to ξ . With V as in (1.8), we then have V (τ) > 0.

1.5. Estimates on deviation probabilities

Starting from the known results it is natural to investigate the asymptotics of deviation probabilities on a scale larger
than that of the central limit theorem. To this end we consider a fixed test-function f ∈ B(Rd) and strive to get precise
information on bounds of the relative error

P(〈f, μ̄λ〉 ≥ x)

1−�(x/σλ[f ]) , as well as
P(〈f, μ̄λ〉 ≤ −x)

�(−x/σλ[f ]) , x > 0, (1.15)

where, as in the preceding Section 1.3, σ 2
λ [f ] denotes the variance and where, as usual,

�(x)= 1√
2π

∫ x

−∞
e−t2/2 dt

is the distribution function of the standard normal. In particular, we are interested in conditions under which the
relative error (1.15) converges to 1 uniformly in the interval 0 ≤ x ≤ F(λ), where F(λ) is a nondecreasing function
such that F(λ)→∞. Of course F(λ) will depend not only on λ but also on other characteristics of our models, in
particular their dimensionality. For the sake of readability, the dependence on other quantities is suppressed in all of
our notation.

Since we will refine the cumulant expansion method of [3] to establish more precise rates of growth on the cu-
mulants, in both their scale parameter and their order, we will be able to apply a powerful and general lemma on
deviation probabilities due to Rudzkis, Saulis and Statulevičius [32], whose version specialized for our purposes is
stated as Lemma 3.8 in the sequel for the convenience of the reader.

Before formulating the results, we list the following two key assumptions imposed on a family (gλ)λ≥λ0 of geo-
metric functionals:

Assumption MGP(α, κ),α ≥ 0 (Moment Growth with additional Points). There exist A≥ 0 and q > 0, such that for
all λ≥ λ0, all k ∈N and all r ≤ qk,

ess sup
κ(x1)dx̆1⊗···⊗κ(xr )dx̆r

E
∣∣gλ

(
x̆1, P̆λκ ∪ {x1, . . . , xr}

)∣∣kκ(x1)dx̆1 ≤Ak(k!)α (1.16)

(recall that ess supf (x)dx g(x) denotes the essential supremum of g with respect to the Lebesgue measure restricted to
the set {x;f (x) > 0}).

Assumption MGI(α, κ),α ≥ 0 (Moment Growth with respect to Integral). There exists A ≥ 0, such that for all
λ≥ λ0 and all k ∈N,∫

Rd

E
∣∣gλ(x̆, P̆λκ)

∣∣kκ(x)dx̆ ≤Ak(k!)α. (1.17)

Remark 1.10. Clearly, Assumption MGI(α, κ) is weaker than Assumption MGP(α, κ).

Remark 1.11. If there exists a family (Rλ)λ≥λ0 according to our convention from Section 1.2, satisfying Assump-
tion MGI(α, κ) for some α ≥ 0, then ξ is almost surely stabilizing with respect to Pλκ for all λ≥ λ0. As a result, the
random measures μλ are almost surely defined.

It is worth to point out two special cases. First, observe that if the functionals |gλ| are uniformly bounded, then
the corresponding family satisfies Assumptions MGP(0, κ) and MGI(0, κ). When this is true for gλ = Rλ, we shall
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say that ξ is uniformly stabilizing inside the upscaled domain Ω . The second special case is when the family enjoys
κ-almost exponential decay (Definition 1.4). In this case, we can estimate:

E
∣∣gλ(x̆, P̆λκ)

∣∣k = ∫ ∞
0

ktk−1
P
(∣∣gλ(x̆, P̆λκ)

∣∣ > t
)

dt ≤ ak!
bk

. (1.18)

As a result, the family (gλ)λ≥λ0 satisfies Assumption MGI(1, κ).
Now we state our central assumption, which is imposed on and will be used exclusively for ξ :

Assumption G(γ, κ) (General conditions for our main results). κ satisfies Assumption D and there exist α,β ≥ 0,
λ0 > 0 and a family (Rλ)λ≥λ0 according to our convention from Section 1.2, satisfying Assumption MGI(β, κ) along
with at least one of the following two conditions fulfilled:

• (ξλ)λ≥λ0 satisfies Assumption MGI(α, κ) and 1+ α + βd = γ .
• (ξλ)λ≥λ0 satisfies Assumption MGP(α, κ) and max{α,1} + βd = γ .

The following result concerns deviation probabilities.

Theorem 1.3. Suppose that ξ satisfies Assumption G(γ, κ) and take f ∈ B(Rd). Let σ−[f ] := lim infλ→∞ λ−1/2 ×
σλ[f ].
(1) Suppose that, in addition, σ−[f ]> 0. Then, for all λ≥ λ1 and 0≤ x ≤C1σ−[f ]λ(1+γ )/(1+2γ ), we have:∣∣∣∣log

P(〈f, μ̄λ〉 ≥ x)

1−�(x/σλ[f ])
∣∣∣∣≤ C2

(
1

λ1/(2+4γ )
+ x3

λ(2+3γ )/(1+2γ )σ 3−[f ]
)

, (1.19)

∣∣∣∣log
P(〈f, μ̄λ〉 ≤ −x)

�(−x/σλ[f ])
∣∣∣∣≤ C2

(
1

λ1/(2+4γ )
+ x3

λ(2+3γ )/(1+2γ )σ 3−[f ]
)

, (1.20)

where λ1 only depends on f , κ , ξ and R, whereas C1 and C2 only depend on the ratio ‖f ‖∞/σ−[f ] along with
κ , ξ and R.

(2) Suppose that 0 < σλ[f ] ≤C3λ
1/2. Then, for all x ≥ 0, we have:

P
(±〈f, μ̄λ〉 ≥ x

)≤ exp

(
−min

{
C4

x2

σ 2
λ [f ]

,C5x
1/(1+γ ),C6

(
x3

λ

)1/(2+γ )})
, (1.21)

where C3–C6 only depend on f , κ , ξ and R.

Remark 1.12. The second part of the theorem above is especially useful for degenerate cases, i.e., σ [f ] = 0. As an
example, one can consider the total number of edges in the Voronoi graph: see Section 8.2 of [27].

Remark 1.13. In particular, under Assumption G(γ, κ) and provided that σ−[f ]> 0, Theorem 1.3 provides a central
limit theorem. Comparing to Assumption CCLT(κ), none of them implies the others. Assumption G(γ, κ) roughly
include much stronger moments conditions, but do not require boundedness of the support of κ . Similarly, to the
best of our knowledge, none of the existing central limit theorems has been proved under conditions weaker than
Assumption G(γ, κ). Thus, Theorem 1.3 also adds to existing CLT’s.

Remark 1.14. At least in certain cases, there appears scope for improvement. Some related results indicate that
if ξ satisfies Assumption MGI(0, κ) and R satisfies Assumption MGP(0, κ) (i.e., both are almost surely uniformly
bounded), Theorem 1.3 should actually hold for γ = 0 (full range large deviation principles, see next subsection)
rather than γ = 1. Results leading to full range large deviation principles are derived in [14] for sums of locally
dependent random variables (provided that the random variables as well as the vertex degrees in the dependence
graph are uniformly bounded), in [16] for germ–grain models and in [17] for a more general case, where germs are
affine subspaces instead of points. Notice that in the latter case, the corresponding geometric functional is even not
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stabilizing in the sense of the present paper. However, it is uniformly stabilizing if we replace balls by direct sums of
(d − k)-dimensional balls and k-dimensional subspaces. This is due to different behavior of the variance.

Indeed, clever modification and application of Lemma 1 of [14] might relax the expression max{α,1} + βd in
Assumption G(γ, κ) to some continuous function ψ(α,β) with ψ(0,0)= 0 and limα,β→∞(α + βd − ψ(α,β))= 0.
Details may appear in forthcoming work.

1.6. Moderate deviation principles

It is natural to investigate the asymptotics of (μ̄λ)λ on intermediate scales between those appearing in Gaussian and
law of large numbers behavior. This leads us to moderate deviation principles (MDPs). In this paper we are able to
deduce moderate deviation principles from Theorem 1.3 for a typically partial intermediate regime for stabilizing ξ

(for the full scale, we have to assume α = β = 0; see Theorem 1.4 below for a formal statement). We remark that in
[1], moderate deviation principles were obtained for an essentially smaller set of examples, including the prototypical
random sequential packing and some spatial birth-and-growth models as well as for empirical functionals of nearest
neighbor graphs, but they were obtained on every intermediate scale.

We say that a family of probability measures (νλ)λ on T , which is a measurable as well as a topological space,
obeys a large deviation principle (LDP) with speed aλ and good rate function I (·) :T →[0,∞] as λ→ λ0 if

• I is lower semi-continuous and has compact level sets NL := {x ∈ T : I (x)≤ L}, for every L ∈ [0,∞).
• For every measurable set Γ , we have:

− inf
x∈ ◦Γ

I (x)≤ lim inf
λ→λ0

1

aλ

logνλ(Γ )≤ lim sup
λ→λ0

1

aλ

logνλ(Γ )≤− inf
x∈Γ

I (x), (1.22)

where
◦
Γ denotes the topological interior of Γ and Γ denotes its closure.

Notice that we do not assume that the measures are Borel. In other words, open sets are not necessarily measurable.
Similarly we will say that a family of T -valued random variables (Yλ)λ obeys a large deviation principle with

speed aλ and good rate function I (·) :T → [0,∞] if the sequence of their distributions does. Formally a moderate
deviation principle is nothing but an LDP. However, we will speak about a moderate deviation principle for a sequence
of random variables whenever the scaling of the corresponding random variables is between that of an ordinary Law
of Large Numbers and that of a Central Limit Theorem.

Take γ ≥ 0 (arising from Assumption G(γ, κ)) and consider λ ∈ (0,∞), λ→∞. Let (aλ)λ>0 be such that

lim
λ→∞aλ =∞ and lim

λ→∞
aλ

λ1/(2+4γ )
= 0. (1.23)

Under these assumptions, we first state the following MDP for μ̄λ:

Theorem 1.4. Suppose that ξ satisfies Assumptions G(γ, κ) and CV(κ), and take f ∈ B(Rd). Then, for each (aλ)λ>0

satifying (1.23), the family of random variables (a−1
λ λ−1/2〈f, μ̄λ〉)λ satisfies on R the moderate deviation principle

with speed a2
λ and good rate function

If (t) := t2

2σ 2[f ] , (1.24)

where σ is as in (1.7) and where possible division by zero is handled according to our convention at the end of
Section 1.2.

The next result is a MDP on the level of measures. Denote by Meas(Rd) the real vector space of finite signed
measures on R

d . Equip Meas(Rd) with the τ -topology generated by the sets:

Uf,x,δ :=
{
ν ∈Meas

(
R

d
); ∣∣〈f, ν〉 − x

∣∣ < δ
}
,
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where f ∈ B(Rd), x ∈ R and δ > 0. It is well known that since the collection of linear functionals {ν �→ 〈f, ν〉;f ∈
B(Rd)} is separating in Meas(Rd), this topology makes Meas(Rd) into a locally convex, Hausdorff topological vector
space, whose topological dual is the preceding collection, hereafter identified with B(Rd). With this notation we
establish the following measure-level MDP for μ̄λ:

Theorem 1.5. Suppose that ξ satisfies Assumptions G(γ, κ) and CV(κ). Then for any family (aλ)λ>0 satisfying
(1.23), the family (a−1

λ λ−1/2μ̄λ)λ satisfies the MDP on Meas(Rd), endowed with the τ -topology, with speed a2
λ and

the convex, good rate function given by

I (ν) := 1

2
σ 2

[
dν

V (κ(x))κ(x)dx

]
(1.25)

if ν ∈Meas(Rd) is absolutely continuous with respect to V (κ(x))κ(x)dx, and by I (ν) := +∞ otherwise. Again, σ is
as in (1.7).

Remark 1.15. Theorem 1.5 provides a MDP with respect to the τ -topology, which is based on measurable bounded
test functions. Therefore, this result has a stronger nature than the corresponding Theorem 2.2 of [1], which is stated
in the weak topology, based on continuous bounded test functions.

2. Applications

We here provide three groups of applications of our deviation bounds and moderate deviation principles: models
related to random sequential packing, functionals related to k nearest neighbors and sphere of influence graphs. These
applications have been considered in detail in the context of central limit theorems [3,27,30] and in the context of
laws of large numbers in [28,29]. In the context of moderate deviation principles, packing and nearest neighbors were
considered in [1]. For all groups of applications, we establish results of a relatively universal nature: to the best of
our knowledge, they are more general than those stated in the literature. We show where our large deviation results
improve and generalize over [1].

To set up the framework under which our results are stated, we here introduce a new concept, which we shall
call confinement. Similarly as in stabilization, the idea is that the value of a functional at x̆ depends only on some
‘neighborhood’ of x̆. The concept of stabilization is based on metric neighborhoods, while the concept of confinement
is entirely based on sets. In precise terms, it goes as follows.

Definition 2.1. Let h be a set-valued geometric functional, such that h(x̆, X̆ ) ⊆ X̆ for all X̆ and all x̆ ∈ X̆ . A geo-
metric functional ξ is confined to h if ξ(x̆, X̆ )= ξ(x̆, h(x̆, X̆ )) for all X̆ and all x̆ ∈ X̆ .

Remark 2.1. Let ξ be confined to h. Then any radius of stabilization for h is also a radius of stabilization for ξ .
Similarly, if X̆ is basically ρ-externally stable at x̆ with respect to h, it is also basically ρ-externally stable at x̆ with
respect to ξ .

Remark 2.2. Let h1 and h2 are set-valued geometric functionals, such that h1(x̆, X̆ )⊆ h2(x̆, X̆ )⊆ X̆ for all relevant
x̆ and X̆ . Suppose that h1 is stable in the sense that h1(x̆, Y̆)= h1(x̆, X̆ ) if h1(x̆, X̆ )⊆ Y̆ ⊆ X̆ . Then any geometric
functional confined to h1 is also confined to h2.

Now we are ready to focus on each group of applications separately.

2.1. Random sequential packing and related models

The following prototypical random sequential packing/adsorption (RSA) model arises in diverse disciplines, including
physical, chemical, and biological processes. See [28] for a discussion of the many applications, the many references,
and also a discussion of previous mathematical analysis. In one dimension, this model is often referred to as the Rényi
car parking model [31].
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Consider a finite set X ⊂R
d and to each x ∈X attach a ball with some fixed diameter ρ centered at x. Moreover,

to all points in X attach i.i.d. uniform time marks taking values in some finite time interval, say, [0,1]. This establishes
a chronological order on the points of X . As usual, denote by X̆ the configuration of points of X along with their time
marks. Declare the first point in the chronological ordering accepted and proceed recursively, each time accepting the
next point if the ball it carries does not overlap the previously accepted (packed) balls and rejecting it otherwise. The
functional ξ(x̆, X̆ ) is defined to be 1 if the ball centered at x has been accepted and 0 otherwise. This defines the
prototypical random sequential packing/adsorption (RSA) process.

One can also consider infinite periods of packing, i.e., input point processes on R̆
d =R

d × [0,∞). Take a Poisson
point process with density κ(x)dx⊗dt , where κ is a probability density function with bounded support. Then, clearly,
only finitely many points can be accepted, so that all points that appear after a certain time are rejected. Moreover,
almost surely, there is actually no more available space for packing. This is called jamming: see [20]. This setting
allows to define the random measures μλ in just the same way as in (1.4), although the measure on the mark space is
infinite. However, the latter fact prevents us from applying our results directly. Although one might use truncation of
time, jamming will not be considered in this paper.

The RSA model can be extended in numerous other ways: see [25,28]. In particular, the decision whether to accept
or reject a particle can depend on additional characteristics attached to the particle (e.g., mass), it can depend on time
(in particular, after a certain time, a particle may be desorbed) and it can even be random. As an example, we consider
the spatial birth–growth model: the balls attached to subsequent independently time-marked points, i.e., particles,
are allowed to have their initial radii bounded random i.i.d. rather than fixed. Moreover, at the moment of its birth
each particle begins to grow radially with constant speed v until it hits another particle or reaches a certain maximal
admissible size ρ – in both these cases it stops growing. In analogy to the basic RSA, a particle is accepted if it does
not overlap any previously accepted one and is rejected otherwise.

The mark of a point now consists of the time stamp plus the initial radius of the corresponding ball. The functional
of interest is again given by ξ(x̆, X̆ )= 1 if the particle centered at x has been accepted and 0 otherwise. This model,
going also under the name of the Johnson–Mehl growth process in the particular case where the initial radii are 0, has
attracted a lot of interest in the literature, see [3,28] and the references therein.

Let X̆ be a configuration of marked particles, where a random mark consists of a pair (t, s), where t is the time
stamp and where s is some additional feature of the point. As suggested in [28], consider an oriented graph with vertex
set X̆ , where an edge from x̆ to y̆ exists if the particle x has arrived before y and if ‖x− y‖ ≤ ρ. Given x̆ ∈ X̆ , denote
by Ăin

ρ (x̆, X̆ ) the set of all particles in X̆ from which x̆ can be reached by a directed path in this graph, along with x̆

itself.
Some thought shows that the functional ξ considered in the basic RSA model as well as in the spatial birth–growth

model is confined to the functional Ăin
ρ according to Definition 2.1. Moreover, this is true for all examples considered

in [28]: the key point is that particles are only influenced by the configuration at their arrival, but not by the particles
arriving later.

Now let ξ be any geometric functional confined to Ăin
ρ . Denoting D(x̆, X̆ ) := sup{‖y − x‖};y ∈ X }, observe that

the functional:

R(x̆, X̆ ) :=D
(
x̆, Ăin

ρ (x̆, X̆ )
)+ ρ

is a radius of stabilization for Ăin
ρ and, according to Remark 2.1, also for ξ . Moreover, letting Rλ(x̆, X̆ ) :=

R(λ1/d x̆, λ1/dX̆ ), observe that λ−1/dRλ is a radius of stabilization for ξλ.
Now let P̆f be a marked Poisson process with bounded intensity f ; for the random marks (i.e., the probability

measure PM), assume that the time stamp is continuously distributed (without loss of generality, we may then assume
that it is uniform over [0,1]). Percolation estimates (Section 4 of [28]) then yield the bound:

P
(
D
(
x̆, Ăin

ρ (x̆, P̆f )
)≥ t

)≤ ae−bt (2.1)

for all x̆ ∈ R̆d and all t ≥ 0, where the constants a ≥ 0 and b > 0 depend only on ‖f ‖ and ρ. As a result, ξ is κ-almost
exponentially stabilizing for any bounded density κ .

This puts us into the position to formulate the following result:
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Theorem 2.1. Let ρ > 0 and let ξ be a geometric functional on marked points, where the marks along with PM are
as described above. Suppose that ξ is confined to Ăin

ρ and that κ satisfies Assumption D. Take λ0 > 0.

(1) If the family (ξλ)λ>λ0 satisfies Assumption M1(p, κ) for some p > 2, then ξ satisfies Assumption CV(κ). Conse-
quently, (1.7) holds.

(2) Let 0 < τ < ∞. Suppose that the family (ξλ)λ>λ0 satisfies Assumption MH1(p, τ,Ω) for some p > 2 and
some convex domain Ω with 0 < vol(Ω) <∞. Next, suppose that for notably many triples (t, s, X̆ ), we have
ξ((0, t, s), X̆ ) �= 0 and t > max{t ′; (x′, t ′, s′) ∈ X̆ }. Then, with V as in (1.8), we have V (τ) > 0.

(3) Let α ≥ 0. If ξ satisfies Assumption MGI(α, κ), then it satisfies Assumption G(1+α+d, κ); if ξ satisfies Assump-
tion MGP(α, κ), it satisfies Assumption G(max{α,1} + d, κ). Consequently, the conclusions of Theorems 1.3, 1.4
and 1.5 hold with suitable γ .

Proof.

(1) From the exponential bound (2.1), it follows that the family (Rλ)λ>λ0 satisfies Assumption M(q, κ) for all q ≥ 0.
Similarly, R satisfies Assumption FH(τ ) for all τ > 0. As a result, ξ satisfies Assumption CV(κ).

(2) Again from bound (2.1), it follows that the family (Rλ)λ>λ0 satisfies Assumption MH(q, τ,Ω) for all q ≥ 0. Thus,
by Theorem 1.2, it suffices to show that 
((0, t, s), X̆ ) �= 0 and that X̆ is externally stable at (0, t, s) with respect
to ξ provided that X̆ is finite, ξ((0, t, s), X̆ ) �= 0, t > max{t ′; (x′, t ′, s′) ∈ X̆ } and, in addition, without loss of
generality, (0, t, s) /∈ X̆ . Since the time stamp t is the largest of all, we have Ăin

ρ (x̆, X̆ )= Ăin
ρ (x̆, X̆ ∪ {(0, t, s)}).

As ξ is confined to Ăin
ρ , we also have ξ(x̆, X̆ ) = ξ(x̆, X̆ ∪ {(0, t, s)}) for all x̆ ∈ X̆ , so that 
((0, t, s), X̆ ) =

ξ((0, t, s), X̆ ) �= 0. Moreover, letting r :=max
x̆∈X̆ ‖x‖ + ρ, observe that X̆ is r-externally stable at (0, t, s) with

respect to ξ . This proves the desired assertion.
(3) It suffices to observe that κ-uniform exponential decay of the family (Rλ)λ>λ0 implies Assumption MGI(d, κ). �

Now we return to our two examples, the RSA and the spatial birth–growth model. As ξ is then bounded, the family
(ξλ)λ>λ0 satisfies Assumptions M1(p, κ) and MH1(p, τ,Ω) for all p ≥ 0, all 0 < τ <∞ and all suitable domains Ω .
Since the first particle is always accepted, we have ξ((0, s, t),∅) = 1 �= 0. As a result, the limiting variance is non-
degenerate, i.e., V (τ) > 0 for all τ > 0. Finally, the family (ξλ)λ≥λ0 satisfies Assumption MGP(0, κ) and therefore
Assumption G(d + 1). Thus, the conclusions of Theorems 1.3, 1.4 and 1.5 hold with γ = d + 1.

Compared to the results in [1], there are three general novelties: first, we provide more explicit bounds in Theo-
rem 1.3. Second, we consider a much more general class of geometric functionals. Third, we consider a broader class
of intensities κ : in particular, they need not have bounded support (in contrast to Theorem 2.2 where bounded support
is required because the density has to be bounded away from zero). Thus, in the basic RSA model, our present results
add to existing central limit theorems [2,3,12,28], weak laws of large numbers [7,28,29] and large deviations [1,34]
for random packing functionals.

Regarding the spatial birth–growth model, note that the paper [1] only succeeds to treat this model under an
unnatural positive lower bound for initial particle sizes, which excludes for instance the crucial Johnson–Mehl set-up.
Here this condition is no longer required. Our present results add to existing central limit theorems [3,6,25,28] as well
as to the large deviation principle [34].

2.2. Nearest neighbors

Let X̆ be a locally finite point configuration in R̆
d . Take x̆ ∈ X̆ and k ∈N. We define the set of k nearest neighbors of

x̆ in X̆ to be the set of all y̆ ∈ X̆ \ {x̆}, such that ‖z− x‖< ‖y − x‖ for strictly less than k points z̆ ∈ X̆ \ {x̆}. Thus, if
X̆ consists of a point x̆, a point y̆ with ‖y − x‖ = 1, two more points z̆, w̆ with ‖z− x‖ = ‖w− x‖ = 2 and possibly
some more points with the distance to x strictly larger than 2, the set of two nearest neighbors of x̆ in X̆ actually
consists of three points: y̆, z̆ and w̆.

Let k ∈N. Define the two set-valued geometric functional NNk,→ and NNk as follows: let NNk,→(x̆, X̆ ) be the set
consisting of x̆ and the set of k nearest points of x̆ in X̆ ; let NNk(x̆, X̆ ) be the union of NNk,→(x̆, X̆ ) plus the set of
all y̆ ∈ X̆ , such that x̆ is among the k nearest neighbors of y̆ in X̆ . We shall consider geometric functionals confined to
NNk,→ or NNk according to Definition 2.1. Notice that by Remark 2.2, any geometric functional confined to NNk,→
is also confined to NNk .
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Fix a domain Ω ⊆ R
d . The construction of a radius of stabilization for NNk inside Ω is well-known. Following

[25], consider a collection C1, . . . ,Cs of infinite open cones with angular radius π/12 and apex at 0, with union
R

d \{0}. Let C+i be the open cone concentric to Ci and with angular radius π/6. For a configuration X̆ ⊂ Ω̆ =Ω×M
and x̆ ∈ X̆ , define Rk,Ω,i(x̆, X̆ ) to be the distance from x to its kth nearest point in X̆ ∩ (C+i +x) if such a point exists
and this distance is less than diam((Ci + x)∩Ω); otherwise, set Rk,Ω,i(x̆, X̆ ) := diam((Ci + x)∩Ω).

Let Rk,Ω(x̆, X̆ ) := maxi R
k,Ω,i(x̆, X̆ ). From elementary geometry (see [25]), it follows that if X̆ ⊂ Ω̆ , x̆ ∈ X̆

and ‖y − x‖ > Rk,Ω(x̆, X̆ ), then neither y̆ ∈ NNk,→(x̆, X̆ ) nor x̆ ∈ NNk,→(y̆, X̆ ). As a result, Rk,Ω is a radius of
stabilization inside Ω for NNk as well as for any geometric functional confined to NNk .

If 0 < τ <∞, then the homogeneous Poisson process Pτ almost surely contains infinitely many points in every
cone Ci . Therefore, for Ω =R

d , Rk,Ω satisfies Assumption FH(τ ).
Now assume that Ω is bounded and convex with vol(Ω) > 0. Take λ > 0 and let κ be a probability density function

vanishing outside Ω , but with infx∈Ω κ(x) > 0. We will show that Rk,Ω enjoys super-exponential tail decay. Basically,
we follow [25], but it turns out that one has to be a bit more careful. Take x̆ ∈ Ω̆ and i = 1, . . . , s. It is easy to see
that if Rk,Ω,i(x̆, P̆λκ) > ρ, then there are less than k points in P̆λκ ∩ Bρ(x) ∩ (C+i + x), but also at least one point
y ∈Ω ∩ (Ci + x) with ‖y − x‖> ρ. By convexity, there also exists a point z ∈Ω ∩ (Ci + x) with ‖z− x‖ = ρ/2.
Setting η := sin π

12 , we have Bηρ/2(z)⊆ Bρ(x)∩ (C+i + x).
The continuation of the argument in [25] works provided that Bηρ/2(z) ⊆ Ω , but this is not necessarily true.

However, letting D := diam(Ω), we have Ω ′ := {(1− ηρ
2D

)z+ ηρ
2D

w;w ∈Ω} ⊆Ω as well as Ω ′ ⊆ Bηρ/2(z)⊆ Bρ(x)∩
(C+i + x). Therefore, the set Ω ′ ×M contains less than k points in P̆λκ . Since vol(Ω ′)= (

ηρ
2D

)d vol(Ω) and Ω ′ ⊆Ω ,

the probability that Ω ′ ×M contains less than k points in P̆λκ is bounded from above by:

k−1∑
l=0

1

l!
[
λm

(
ηρ

2D

)d

vol(Ω)

]l

exp

[
−λm

(
ηρ

2D

)d

vol(Ω)

]
,

where m= infx∈Ω κ(x). This is also an upper bound on P(Rk,Ω,i(x̆, P̆λκ) > ρ). Consequently, there exist a ≥ 0 and
b > 0 depending only on Ω , κ and k, such that P(Rk,Ω(x̆, P̆λκ)≥ ρ)≤ ae−bλρd

for all ρ ≥ 0, all λ > 0 and all x̆ ∈ Ω̆ .
Recalling that ξλ(x̆, X̆ )= ξ(λ1/d x̆, λ1/d X̆ ), observe that if ξ is confined to NNk , then ξλ is also confined to NNk .

Therefore, Rk,Ω is a radius of stabilization for ξλ inside Ω , so that we can set Rλ(x̆, X̆ ) := λ1/dRk,Ω(x̆, X̆ ). Then we
have P(Rλ(x̆, P̆λκ) > ρ)≤ ae−bρd

, with a and b uniform in x̆, λ and ρ. Consequently,

E
(
Rλ(x̆, P̆λκ)

)j = ∫ ∞
0

jρj−1
P
(
Rλ(x̆, P̆λκ) > ρ

)
dρ ≤ aj

∫ ∞
0

ρj−1e−bρd

dρ

= aj

d

∫ ∞
0

tj/d−1e−bt dt = aj

bj/dd
�

(
j

d

)
≤ Bj (j !)1/d (2.2)

for some B depending only on a and b. Thus, the family (Rλ)λ>0 satisfies Assumption MGI(1/d, κ) (and, since
Rλ(x̆, Y̆) ≤ Rλ(x̆, X̆ ) for Y̆ ⊇ X̆ , even Assumption MGP(1/d, κ)). This puts us into the position to formulate the
following result:

Theorem 2.2. Let k ∈N and let ξ be a geometric functional confined to NNk . Take a convex bounded domain Ω and
κ satisfying Assumption D and with infx∈Ω κ(x) > 0. Let λ0 > 0 and let the cones Ci be as above.

(1) If the family (ξλ)λ>λ0 satisfies Assumption M1(p, κ) for some p > 2, then ξ satisfies Assumption CV(κ). Conse-
quently, (1.7) holds.

(2) Let 0 < τ <∞. Suppose that the family (ξλ)λ>λ0 satisfies Assumption MH1(p, τ,Ω) for some p > 2. Next,
suppose that notably many pairs (t, X̆ ) satisfy the following two conditions: first, 
((0, t), X̆ ) �= 0 (recalling the
definition of the add-one cost from Section 1.4); second, there exists ρ > 0, such that for each cone Ci , each of
the sets X̆ ∩ Ci ∩ Bρ(0) and (X̆ ∩ Ci) \ Bρ/η(0) contains at least k points; here, η = sin π

12 . Then, with V as in
(1.8), we have V (τ) > 0.

(3) Let 0 < τ < ∞. Suppose that ξ is confined to NNk,→ and that the family (ξλ)λ>λ0 satisfies Assump-
tion MH1(p, τ,Ω) for some p > 2. Next, suppose that notably many pairs (t, X̆ ) satisfy the following two
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conditions: first, ξ((0, t), X̆ ) �= 0; second, there exists ρ > 0, such that X̆ ∩Bρ(0)=∅ and such that each inter-
section X̆ ∩Bρ

√
3(0)∩Ci contains at least k + 1 points. Then we have V (τ) > 0.

(4) Let α ≥ 0. If ξ satisfies Assumption MGI(α), then it satisfies Assumption G(2 + α); if ξ satisfies Assump-
tion MGP(α), it satisfies Assumption G(max{α,1} + 1). Consequently, the conclusions of Theorems 1.3, 1.4
and 1.5 hold with suitable γ .

Proof.

(1) From (2.2), it follows that the family (Rλ)λ>λ0 satisfies Assumption M(q, κ) for all q ≥ 0. As a result, ξ satisfies
Assumption CV(κ).

(2) Similarly as before, we find that the family (Rλ)λ>λ0 satisfies Assumption MH(q, τ,Ω) for all q ≥ 0. By The-
orem 1.2, it remains to show that for each t ∈M, any finite configuration X̆ ⊂ R̆

d \ {(0, t)} satisfying the
specified conditions is externally stable at (0, t) with respect to ξ . First, take a finite configuration Y̆ with
Y̆ ∩ Bρ(0) = X̆ ∩ Bρ(0) and observe first that no point in Y̆ \ Bρ(0) is among the k nearest neighbors of (0, t)

in Y̆ ∪ {(0, t)}; similarly, (0, t) is not among the k nearest neighbors of any point in Y̆ \ Bρ(0). Therefore, X̆ is
basically ρ-externally stable at (0, t) with respect to ξ .

Next, let x ∈ Bρ(0), y ∈ Ci \ Bρ/η(0) and take u on the axis of Ci , inside Ci . Then the angle between y

and u is smaller than π/12. By elementary geometry, the angle between y and y − x is also smaller than π/12,
for ‖x‖/‖y‖ < η. Consequently, the angle between y − x and u is smaller than π/6. As a result, we have Ci \
Bρ/η(0)⊆ (C+i +x) for all x ∈Ci ∩Bρ(0). Thus, taking x̆ ∈ (X̆ ∩Bρ(0))∪{(0, t)}, each of the sets (C+i +x)∩ X̆
contains at least k points, so that ξ stabilizes with respect to X̆ and X̆ ∪ {(0, t)} at all x̆ ∈ (X̆ ∩Bρ(0))∪ {(0, t)}.
By Proposition 1.1, X̆ is externally stable at (0, t) with respect to ξ . This proves the desired assertion.

(3) Set A := Bρ
√

3(0) \ Bρ(0). Similarly as in the preceding point, it suffices to show that for each pair (t, X̆ )

satisfying the specified conditions, we have 
((0, t), X̆ ) �= 0 and X̆ is externally stable at (0, t) with respect
to ξ . First, by elementary geometry, we have diam(Ci ∩A) = ρ. Therefore, (0, t) /∈ NNk,→(y̆, X̆ ∪ {(0, t)}) for
all y̆ ∈ (Ci ∩ A) ×M and therefore for all y̆ ∈ A ×M. However, this is also true if y̆ /∈ B

ρ
√

3(0) ×M and

therefore for all y̆ ∈ X̆ . Since ξ is confined to NNk,→, we then have ξ(y̆, X̆ ∪ {(0, t)}) = ξ(y̆, X̆ ). As a result,

((0, t), X̆ )= ξ((0, t), X̆ ) �= 0.

Now take a finite configuration Y̆ with Y̆ ∩ B
ρ
√

3(0)= X̆ ∩ B
ρ
√

3(0). Similarly as above, we find that for all

z̆ ∈ Y̆ \ B
ρ
√

3(0), we have (0, t) /∈ NNk,→(y̆, Y̆ ∪ {(0, t)}). Therefore, X̆ is basically ρ
√

3-externally stable at

(0, t) with respect to ξ . Moreover, since Ci ∩A∩ X̆ contains at least k+ 1 points and since diam(Ci ∩A)= ρ for
all i, we have NNk,→(y̆, X̆ ∪ {(0, t)})⊆ Bρ(y)×M for all y̆ ∈ X̆ ∩B

ρ
√

3(0)= X̆ ∩A. Therefore, ξ stabilizes at

y̆ within radius ρ with respect to X̆ as well as to X̆ ∪ {(0, t)}. By Proposition 1.1, X̆ is externally stable at (0, t)

with respect to ξ . This proves the desired assertion.
(4) This follows immediately from the fact that the family (Rλ)λ>0 satisfies Assumption MGI(1/d, κ). �

Theorem 2.2 adds to the existing results on non-degeneracy of the limiting variance (see [27]), central limit theo-
rems (see Chapter 4 of [21] as well as [3]) and, of course, large deviation results. For the latter, observe that the paper
[1] was only able to deal with the empirical functionals of nearest neighbors graphs, where ξ(x,X ) is the indicator
of the event that the total edge length exceeds a certain threshold, or of some event involving the degree of the graph
at x and possibly also the edge length, such as ‘the total length of edges incident to x exceeds a certain multiplicity of
the graph degree of x’ etc. No marks have been considered in [1]. Our result includes a broader class of intensities κ

and a much more general collection of geometric functionals. The following example serves as a classical one.

Example 2.1. Define ξ(x,X ) to be the sum of the distances from x to its k nearest neighbors (there are no marks).
Then ξ is obviously confined to NNk,→. Recalling that Ω is a bounded convex domain with vol(Ω) > 0, that infΩ κ >

0 and that κ vanishes outside Ω , a similar argument as the one used for the radius of stabilization shows that
the family (ξλ)λ>λ0 satisfies Assumption MGP(1/d, κ), as well as Assumptions M1(p, κ) and MH1(p, τ,Ω) for
all p, τ > 0. Therefore, ξ satisfies Assumption CV(κ) and, more importantly, Assumption G(2, κ). This means that
the range where moderate deviation results apply is independent of the dimension. Finally, it is obvious that for all
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non-empty configurations X , we have ξ(0,X ) �= 0. As a result, the limiting variance is non-degenerate, i.e., V (τ) > 0
for all τ > 0.

With a little extra effort, one can prove the same results for the ‘undirected’ case, that is, for the sum of all
distances from x to the points in NN1(x,X ) (this is twice the total edge length of the undirected k nearest neighbors
graph). However, for the non-degeneracy of the limiting variance, one has to refer to part (2) rather than to part (3) of
Theorem 2.2. This requires a bit more involved argument, which we shall not provide here because the non-degeneracy
is proved explicitly in [26]; it can also be deduced from the earlier paper [27].

Curiously, the paper [26] provides no explicit application of its general result on non-degeneracy of the limiting
variance, i.e., Theorem 2.2 ibidem. For the k nearest neighbors, the limiting variance is computed explicitly. Therefore,
we give another example, where we prove non-degeneracy, but the construction from the earlier paper [27] does not
work.

Example 2.2. Define ξ(x,X ) := exp(−∑
y∈NNk(x,X ) ‖y − x‖). Turning first to large deviations, observe that ξ is

bounded. Therefore, taking Ω and κ as before, ξ satisfies Assumption CV(κ) as well as Assumption G(2, κ). Thus,
we obtain just the same range of moderate deviation results as in the previous example.

Now we turn to the limiting variance. Consider first a configuration X containing some point y �= 0 and no point
in B‖y‖(0) \ {y}. Letting Aρ := B

ρ
√

3(0) \Bρ(0), assume also that each intersection X ∩Ci ∩A‖y‖ contains at least
two points. Then y is the nearest neighbor of 0. Moreover, similarly as in the proof of Theorem 2.2(3), we find that 0
is not the nearest neighbor of any point in X . Therefore, we have 
(0,X )= e−‖y‖ − (1− e−‖y‖)ξ(y,X ).

Now take a finite configuration X , which satisfies the condition from the preceding paragraph. If, in addition, ‖y‖<

log 2, then, clearly, 
(0,X ) > 0. Moreover, taking r := ‖y‖√3/ sin π
12 , assume that each of the sets (X ∩Ci) \Br(0)

is non-empty. One can easily check that notably many configurations X satisfy this condition. From Theorem 2.2(2),
it then follows that V (τ) > 0 for all τ > 0.

In [27], the argument used to show non-degeneracy of the limiting variance requires, among others, that 
 is
stabilizing. A relatively simple construction of a radius of stabilization for 
, much similar to the above-mentioned
construction of radius of stabilization for ξ , is provided for the total edge length of the nearest neighbor graph
(considered also in Example 2.1) in the plane (d = 2); a much more complicated construction is used for the number
of components. Here, we demonstrate that the construction used in [27] for the total edge length does not work here.

In [27], the radius of stabilization at the origin is obtained by means of six disjoint equilateral triangles, such that
the origin is a vertex of each triangle. If this construction works for some geometric functional, one can also take a
covering of R2 \ {0} by a family of open angles. Clearly, one can assume that their measures are at most π/6. Now
take any family C′1, . . . ,C′m of open cones with angular radii at most π/3, k ≥ 2, a > 1+√3/3 and define R
(x,X )

to be a times the minimal ρ, such that any set X ∩ (C′i + x) contains at least k points. Below we show that for any
τ > 0, the probability that R
 is not a radius of stabilization for 
 is strictly positive.

Take a configuration X containing a point y ∈ C′1, no point in B‖y‖(0) \ {y}, some point z ∈ C1 with ‖z‖/‖y‖>

a
√

3, no point in B‖z−y‖(z) \ {y} and no point in B
a‖y‖√3(0) \ B‖y‖√3(0). Defining Aρ as before, assume also that

each of the sets X ∩A‖y‖ ∩ Ci contains at least k + 1 points. Some thought shows that such a configuration occurs
with non-zero probability in any homogeneous Poisson point process Pτ .

Letting Y := X ∩ B
a‖y‖√3(0), observe that for any point in Y , there exists another point in the same set within

distance ‖y‖. Moreover, since a > 1+√3/3 and since X ∩ (B
a‖y‖√3(0) \ B‖y‖√3(0))=∅, there exists no point in

X \ B
a‖y‖√3(0) within distance ‖y‖. Therefore, the nearest neighbor in X ∪ {0} of any point in Y also lies in Y . As

a result, NN1(y,X ) ⊇ NN1(y,Y). Moreover, the inclusion is proper because y is the nearest neighbor of z in X .
Therefore, NN1(y,X ) < NN1(y,Y). Since 
(0,X )= e−‖y‖ − (1− e−‖y‖)ξ(y,X ) and analogously for Y , we have

(0,X ) > 
(0,Y). Therefore, 
 does not stabilize at 0 within radius a‖y‖√3, nor does it stabilize within radius
R
(0,X ) because R
(0,X )≤ a‖y‖√3.

Thus, we can conclude that the construction from [27] does not work in this case. However, this does not mean
that 
 does not stabilize. In fact, it almost surely stabilizes at 0 with respect to Pτ : examining the proof of Theo-
rem 2.2(2) and using the basic properties of homogeneous Poisson point processes, we find that it provides an explicit
construction of an external radius of stabilization, which is almost surely finite. By Remark 1.4, this is also a radius
of stabilization for 
.
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2.3. Sphere of Influence Graphs

Given a locally finite set X̆ ⊂ R̆
d , the sphere of influence graph SIG(X̆ ) is a graph with vertex set X̆ constructed as

follows: for each x̆ ∈ X̆ , let B(x̆, X̆ ) be a ball around x with radius equal to min
y̆∈X̆ \{x̆}{‖y − x‖} (in particular, the

ball is degenerate if two points with different marks share the same location). Then B(x̆, X̆ ) is called the sphere of
influence of x̆. Draw an edge between x̆ and y̆ iff the balls B(x̆, X̆ ) and B(y̆, X̆ ) overlap. The collection of such edges
is the sphere of influence graph (SIG) on X̆ and is denoted by SIG(X̆ ).

In [27], non-degeneracy of the limiting variance and central limit theorems are derived for a variety of functionals,
i.e., the total number of edges, the total edge length, the number of vertices of fixed degree and, most remarkably, for
the number of components. Except for the latter functional, these results are extended in [3] to random measures.

Here we shall only consider functionals confined to the functional NSIG, where NSIG(x̆, X̆ ) denotes the set of
points which are adjacent to x̆ in SIG(X̆ ) (including x̆). Notice that the total number of edges, the total edge length
and the number of vertices of fixed degree can all be expressed in terms of suitable functionals ξ confined to NSIG,
while for the number of components, this seems not to be possible.

First, we turn to stabilization. A construction of a radius of stabilization is given in [27] and is also used in [3].
However, the results ibidem do not entirely fit the concept of stabilization and external stabilization used here. In
particular, they do not include a domain Ω . Therefore, we here refine the construction in a similar way as in the case
of nearest neighbors. First, we rewrite the stabilization result from p. 1030 of [27].

Proposition 2.1. Let X̆ ⊂ R
d be a finite configuration. Take x̆ ∈ X̆ , ρ > 0 and an open cone C in R

d with angular
radius π/12 and apex at x. Assume that the intersection (X̆ \ {x̆}) ∩ Bρ(x) is non-empty and that there also exists a
marked point y̆ ∈ X̆ ∩ (C \B3ρ(x)). Let r = ‖y − x‖. Then no point in X̆ ∩ (C \Br(x)) is adjacent to x̆ in SIG(X̆ ).
Moreover, for any finite configuration Y̆ with Y̆ ∩B2r (x)= X̆ ∩B2r (x), we have NSIG(x̆, Y̆)∩C =NSIG(x̆, X̆ )∩C.

Proof. Take z̆ ∈ X̆ ∩ (C \ Br(x)) and let z′ := x + r
‖z−x‖ (z − x). Since y, z′ ∈ C, we have ‖z′ − y‖ < 2ηr , where

η= sin π
12 (but not necessarily ‖z′ − y‖< r/2, as estimated in display (7.4) of [27]). Therefore, ‖z− y‖ ≤ ‖z− z′‖ +

‖z′ −y‖< ‖z−x‖− (1−2η)r , so that B(z̆, X̆ ) does not overlap with B(1−2η)r (x̆). Since (1−2η)r > 3(1−2η)ρ > ρ,
it does not overlap with B(x̆, X̆ ) either.

Finally, if X̆ ∩B2r (x̆)= Y̆ ∩B2r (x̆), then any two points in X̆ ∩Br(x̆)= Y̆ ∩Br(x̆) are adjacent in SIG(X̆ ) if and
only if they are adjacent in SIG(Y̆). Combined with the above, this proves the result. �

This allows us to construct a radius of stabilization inside a domain Ω ⊆ R
d in a similar way as in the case of

nearest neighbors. Consider a collection C1, . . . ,Cs of infinite open cones with angular radius π/24 and apex at 0,
with union R

d \ {0}. Let C+i be the open cone concentric to Ci and with angular radius π/12. Take a configuration
X̆ ⊂ Ω̆ =Ω ×M and x̆ ∈ X̆ . Suppose that X̆ contains at least one more point and denote by ρ the distance from
x to the nearest neighbor of x̆ in X̆ (which equals zero if there is another marked point at the same location). Next,
suppose that the set (X̆ ∩ (C+i +x))\B3ρ(x) is non-empty and denote by r the distance from x to its nearest neighbor
in (X̆ ∩ (C+i +x))\B3ρ(x). Set RΩ,i(x̆, X̆ ) := 2r if this construction works and 2r < diam((Ci+x)∩Ω); otherwise,
set RΩ,i(x̆, X̆ ) := diam((Ci + x) ∩Ω). Let RΩ(x̆, X̆ ) :=maxi R

Ω,i(x̆, X̆ ). Proposition 2.1 and some thought show
that RΩ is a radius of stabilization inside Ω for the functional NSIG.

If 0 < τ <∞, then the homogeneous Poisson process Pτ almost surely contains a point in every cone Ci arbitrarily
far from the origin. Therefore, for Ω =R

d , RΩ satisfies Assumption FH(τ ).
Now assume that Ω is bounded and convex with vol(Ω) > 0. Take λ > 0 and let κ be a probability density function

vanishing outside Ω , but with infx∈Ω κ(x) > 0. Again, we will show that RΩ enjoys super-exponential tail decay. Take
x̆ ∈ Ω̆ and i = 1, . . . , s. It is easy to see that if RΩ,i(x̆, P̆λκ) > u, then, first, either the set (Bu/9(x)∩ (C+i + x))×M
or the set ((Bu/2(x) \ Bu/3(x)) ∩ (C+i + x)))×M contains no point in P̆λκ , and, second there is at least one point
in y ∈Ω ∩ (Ci + x) with ‖y − x‖> u. Now let 0≤ θ ≤ 1. By convexity, there also exists a point zθ ∈Ω ∩ (Ci + x)

with ‖zθ − x‖ = θu. Setting ε := sin π
24 , we have Bθεu(zθ )⊆ (Bθ(1+ε)u(x) \ ◦

Bθ(1−ε)u(x)) ∩ (C+i + x), where
◦
Br(x)

denotes the open ball of radius r centered at x.
Letting D := diam(Ω), we have Ωθ := {(1 − θεu

D
)zθ + θεu

D
w;w ∈ Ω} ⊆ Ω as well as Ωθ ⊆ Bθεu(zθ ) ⊆

(Bθ(1+ε)u(x) \ ◦
Bθ(1−ε)u(x)) ∩ (C+i + x). In particular, routine calculation shows that Ω1/11 ⊆ Bu/9(x) and Ω2/5 ⊆
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Bu/2(x) \ Bu/3(x). Therefore, either Ω1/11 ×M or Ω2/5 ×M contains no points in P̆λκ . Since vol(Ωθ ) =
( θεu

D
)d vol(Ω) and Ωθ ⊆ Ω , the probability that Ωθ ×M contains no point in P̆λκ is bounded from above by

exp[−λm(θεu
D

)d vol(Ω)], where m= infx∈Ω κ(x). Consequently,

P
(
RΩ,i(x̆, P̆λκ) > u

)≤ exp

[
−λm

(
εu

11D

)d

vol(Ω)

]
+ exp

[
−λm

(
2εu

5D

)d

vol(Ω)

]
≤ 2e−bλud

, (2.3)

where b=m(ε/(11D))d vol(Ω). Thus, the radius of stabilization satisfies P(RΩ(x̆, P̆λκ) > u)≤ 2se−bλud
.

Recalling that ξλ(x̆, X̆ ) = ξ(λ1/d x̆, λ1/dX̆ ), observe that if ξ is confined to NSIG, then ξλ is also confined to
NSIG. Therefore, RΩ is a radius of stabilization for ξλ inside Ω , so that we can set Rλ(x̆, X̆ ) := λ1/dRΩ(x̆, X̆ ). Then
we have P(Rλ(x̆, P̆λκ) > u) ≤ 2se−bud

. Similarly as in (2.2), it follows that the family (Rλ)λ>0 satisfies Assump-
tion MGP(1/d, κ). This puts us into the position to formulate the following result:

Theorem 2.3. Let k ∈ N and let ξ be a geometric functional confined to NSIG. Take a convex bounded domain Ω

and κ satisfying Assumption D and with infx∈Ω κ(x) > 0. Let λ0 > 0 and let the cones Ci be as above.

(1) If the family (ξλ)λ>λ0 satisfies Assumption M1(p, κ) for some p > 2, then ξ satisfies Assumption CV(κ). Conse-
quently, (1.7) holds.

(2) Let 0 < τ <∞ and suppose that the family (ξλ)λ>λ0 satisfies Assumption MH1(p, τ,Ω) for some p > 2. Next,
suppose that notably many pairs (t, X̆ ) satisfy the following two conditions: first, 
((0, t), X̆ ) �= 0; second,
there exist ρ > 0 and r > 4ρ, such that none of the sets X̆ ∩ Ci ∩ Bρ(0), X̆ ∩ Ci ∩ (Br(0) \ B4ρ(0)) and X̆ ∩
(Ci \B4(r+ρ)(0)) is empty. Then, with V as in (1.8), we have V (τ) > 0.

(3) Let α ≥ 0. If ξ satisfies Assumption MGI(α), then it satisfies Assumption G(2 + α); if ξ satisfies Assump-
tion MGP(α), it satisfies Assumption G(max{α,1} + 1). Consequently, the conclusions of Theorems 1.3, 1.4
and 1.5 hold with suitable γ .

Proof. Parts (1) and (3) follow exactly in the same way as parts (1) and (4) of Theorem 2.2. Now we turn to part (2).
Clearly, the family (Rλ)λ>λ0 satisfies Assumption MH(q, τ,Ω) for all q ≥ 0. By Theorem 1.2, it remains to show
that for each t ∈M, any finite configuration X̆ ⊂ R̆

d \ {(0, t)} satisfying the specified conditions is externally stable
at (0, t) with respect to ξ .

First, we claim that X̆ is basically (r+ρ)-externally stable at (0, t) with respect to NSIG. Take a finite configuration
Y̆ with Y̆ ∩ Br+ρ(0)= X̆ ∩ Br+ρ(0) and z̆ ∈ Y̆ \ Br+ρ(0). What we have to show is that inserting a marked point at
the origin into Y does not affect the set of marked points adjacent to z̆ in the sphere of influence graph.

Inserting (0, t) into Y̆ can affect the set of points adjacent to z̆ in two ways: either it can make a new edge between
(0, t) and z̆, or it can make some other point x̆ no longer adjacent to z̆. The latter can happen if x̆ is adjacent to
z̆ in SIG(Y̆) and 0 ∈ B(x̆, Y̆). Therefore, it suffices to show that 0 ∈ B(x̆, Y̆) for no x̆ ∈ Y̆ \ Bρ(0), that no point
x̆ ∈ Y̆ ∩Bρ(0) is adjacent to z̆ in SIG(Y̆) and that (0, t) is not adjacent to z̆ in SIG(Y̆ ∪ {(0, t)}).

Take x̆ ∈ Y̆ \Bρ(0). Recall that x ∈Ci for some i and that Y̆ ∩Ci ∩Bρ(0)= X̆ ∩Ci ∩Bρ(0) contains at least one
point, say, y̆. By elementary geometry, ‖x − y‖< ‖x‖. Therefore, 0 /∈ B(x̆, Y̆).

Now take x̆ ∈ Y̆ ∩ (Bρ(0) \ {0}). Again, choose i with x ∈ Ci . In addition, choose v ∈ R
d \ {0}, such that the

angle between x and v equals π/4. Clearly, v /∈ Ci , but v ∈ Cj for some j . There exists w̆ ∈ Y̆ ∩ Cj ∩ Bρ(0).
Then w̆ �= x̆, but the angle between w and x is less than π/3, so that ‖w − x‖< ρ. In other words, the intersection
(Y̆ \ {x̆}) ∩ Bρ(x̆) is non-empty. Now choose k, such that z ∈ Ck , and choose y̆ ∈ Y̆ ∩ Ck ∩ (Br(0) \ B4ρ(0)). By
elementary geometry, we have Ck \ B4ρ(0)⊆ C+k + x, so that y ∈ (C+k + x) \ B3ρ(x). Observe that z ∈ C+k + x, but
also ‖z − x‖ ≥ ‖z‖ − ‖x‖ > r ≥ ‖y − x‖, so that z ∈ (C+k + x) \ B‖y−x‖(x). By Proposition 2.1, x̆ and z̆ are not
adjacent in SIG(Y̆).

Finally, take x̆ = (0, t ′) ∈ Y̆ ∪ {(0, t)}. Again, let z ∈ Ck . As none of the sets (Y̆ \ {x̆, (0, t)}) ∩ Bρ(0) and Y̆ ∩
Ck ∩ (Br(0) \B4ρ(0)) is empty, the conditions of Proposition 2.1 are fulfilled, so that x̆ and z̆ are adjacent neither in
SIG(Y̆) nor in SIG(Y̆ ∪ {(0, t)}). Thus, we conclude that X̆ is basically (r +ρ)-externally stable at (0, t) with respect
to NSIG.
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By Proposition 1.1 and confinement, it remains to show that NSIG stabilizes with respect to X̆ and X̆ ∪ {(0, t)}
at all x̆ ∈ (X̆ ∪ {(0, t)}) ∩ Br+ρ(0). Clearly, for all such x̆, the intersection (X̆ \ {x̆}) ∩ Br+ρ(x̆) is non-empty. Take
i = 1,2, . . . , s and recall that there exists y̆ ∈ X̆ ∩(Ci \B4(r+ρ)(0)). However, we then have y ∈ (C+i +x)\B3(r+ρ)(x).
By Proposition 2.1, we then have NSIG(x̆, Y̆) ∩ (C+i + x) = NSIG(x̆, X̆ ) ∩ (C+i + x) and NSIG(x̆, Y̆ ∪ {(0, t)}) ∩
(C+i + x)= NSIG(x̆, X̆ ∪ {(0, t)}) ∩ (C+i + x) for all Y̆ with Y̆ ∩ B2‖y−x‖(x)= X̆ ∩ B2‖y−x‖(x). Since this can be
deduced for all i = 1, . . . , s, NSIG stabilizes at x̆ with respect to X̆ and X̆ ∪{(0, t)}. As a result, X̆ is externally stable
at (0, t) with respect to ξ . The proof is now completed by Theorem 1.2. �

Theorem 2.3 adds to the existing results on non-degeneracy of the limiting variance (see [27]), central limit theo-
rems (see Chapter 4 of [21] as well as [3]) and, of course, large deviation results. The sphere of influence graphs were
not considered in [1].

Example 2.3 (Total number of edges). Define ξ(x,X ) to be half the degree of x in SIG(X ) (assume that there are no
marks). Then 〈1,μλ〉 is precisely the total number of edges in SIG(X ).

First, we turn to moment bounds. Take a bounded convex domain Ω with vol(Ω) > 0 and a probability density
function κ with infΩ κ > 0, but vanishing outside Ω . From the construction of the radius of stabilization, it follows
that for all X ⊆Ω , we have:∣∣ξλ(x,X )

∣∣= ∣∣ξ(x,X )
∣∣≤ ∣∣X ∩BRΩ(x,X )(x)

∣∣=∑
y∈X

1
(
RΩ(x,X )≥ ‖y − x‖).

Let k ∈N. Applying Lemma 3.12 with a = k and b= 2k combined with (2.3) (notice that b in Lemma 3.12 is different
from b in (2.3)), we find that for some A1 and A2 not depending on k, we have:

(
E
∣∣ξλ(x,Pλκ)

∣∣k)1/k ≤ A1k

{[
λ

∫
Rd

e−bλ‖y−x‖d κ(y)dy

]1/(2k)

+ λ

∫
Rd

e−bλ‖y−x‖d /(2k)κ(y)dy

}
≤ A2k

2. (2.4)

Combining this estimate with the observation |ξλ(x,X ∪ Y)| ≤ |ξλ(x,X )| + |Y| and Stirling’s formula, we find that
the family (ξλ)λ>0 satisfies Assumption MGP(2, κ). By part (3) of Theorem 2.3, it then satisfies Assumption G(3, κ).
Again, the range where moderate deviation results apply is independent of the dimension.

Although non-degeneracy of the limiting variance is already proved in [27], we here demonstrate that it also follows
from part (2) of Theorem 2.3: choose any ρ > 0 and r > 4ρ. Letting c= cos π

12 , observe that if X ∩Bρ/(2c)(0) is empty,
but each of the sets X ∩ Ci ∩ (Bρ(0) \ Bρ/(2c)(0)) contains at least two points, then 0 is the nearest neighbor of no
point in X . Therefore, insertion of the origin cannot remove any edges in SIG, but it adds at least the edge between
0 and its nearest neighbor in X , so that 
(0,X ) �= 0. Clearly, this condition along with non-emptiness of the sets
X ∩Ci ∩ (Br(0) \B4ρ(0)) and X ∩ (Ci \B4(r+ρ)(0)) is fulfilled for notably many configurations X .

Next, from (2.4) and again the fact that |ξλ(x,X ∪Y)| ≤ |ξλ(x,X )|+|Y|, it follows that the family (ξλ)λ>0 satisfies
Assumption MH1(p, τ,Ω) for all p, τ > 0. By part (2) of Theorem 2.3, V (τ) > 0 for all τ > 0.

3. Proofs of the results

3.1. Moment measures and Palm distributions

For a random measure μ taking values in the space of Borel measures over Rd , define its kth moment measure Mk(μ)

as the one characterized by:〈
f1 ⊗ · · · ⊗ fk,M

k(μ)
〉= E

[〈f1,μ〉 · · · 〈fk,μ〉
]

(3.1)

for all f1, . . . , fk ∈ B(Rd), where f1⊗· · ·⊗fk : (Rd)k→R is given by f1⊗· · ·⊗fk(v1, . . . , vk)= f1(v1) · · ·fk(vk)

(formula (5.4.3) on p. 133 of [8]); the kth moment measure exists if the mixed moments in the right-hand side of (3.1)
exist for all f1, . . . , fk ∈ B(Rd).
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It will be helpful to consider products of R
d and R̆

d indexed by arbitrary finite sets: for a finite index set L

consisting of distinct elements i1, . . . , il , denote by (Rd)L (resp. (R̆d)L) the product of l copies of Rd (resp. R̆d ). Thus,
for functions fi :Rd →R, i ∈L,

⊗
i∈L fi : (Rd)L→R is the counterpart of the function fi1 ⊗ · · · ⊗ fil : (Rd)l→R.

In the special case where all functions are equal, define f⊗l := f ⊗ · · · ⊗ f︸ ︷︷ ︸
l

and its counterpart f⊗L :=⊗
i∈L f .

For a random measure μ on R
d , let ML(μ) be the measure on (Rd)L, which is the counterpart of Ml(μ), i.e.,

〈⊗i∈L fi,M
L(μ)〉 = E[∏i∈L〈fi,μ〉].

For the random measures which are the subject of the present paper, write Mk
λ :=Mk(μλ) for k ∈ N and ML

λ :=
ML(μλ) for a finite set L. These moment measures can be expressed in terms of singular measures, see (3.5). That
formula, also stated in [8], p. 143, is a special case of the Palm disintegration formula for a product of k copies of P̆λκ .
First, recall the Palm formula for P̆λκ : for each functional G, such that the integral and the expectation below exist,
we have:

E

∫
R̆d

G(x̆, P̆λκ)P̆λκ(dx̆)= λ

∫
R̆d

EG
(
x̆, P̆λκ ∪ {x̆}

)
κ(x)dx̆ (3.2)

(for the unmarked case, see [9], pp. 280–281; the extension to marked Poisson processes can be achived by condi-
tioning on the marks; see Section 6.4 of [8]). To generalize this disintegration formula to k-fold integrals, we need
singular measures. First, recall (1.1) and for a measurable function g :Rd → R, define the singular differential d̄[g]v̆
of a (R̆d)k-valued variable as being characterized by the relation:∫

(R̆d )k
F (v̆1, v̆2, . . . , v̆k) d̄[g](v̆1, . . . , v̆k)=

∫
R̆d

F (x̆, x̆, . . . , x̆)g(x)dx̆

for all measurable F : (R̆d)k→R. Next, for v̆ = (v̆1, . . . , v̆k) running over (R̆d)k , put:

d̃[g]v̆ :=
∑

L1,...,Lp�{1,...,k}
d̄[g]v̆L1 · · · d̄[g]v̆Lp ,

where v̆L := (v̆l)l∈L; by
∑

L1,...,Lp�L, we shall denote the sum of all unordered partitions of a set L. Below we
prove the following assertion, which generalizes the disintegration formula (3.2) to the k-fold integral (see also p. 83
of [18]):

Proposition 3.1. For each functional G, such that the integral and the expectation below exist, we have:

E

∫
(R̆d )k

G(v̆, P̆λκ)P̆λκ(dv̆1) · · · P̆λκ(dv̆k)=
∫

(R̆d )k
EG

(
v̆, P̆λκ ∪ {v̆1, . . . , v̆k}

)
d̃[λκ]v̆, (3.3)

where v̆ = (v̆1, . . . , v̆k).

Proof. As a first step, we prove (3.3) for the case where G(v̆, X̆ ) vanishes if any two components vi and vj are
equal. This can be proved by induction. For k = 1, this is merely the formula (3.2). For the induction step from k to
k+ 1, use (3.2) with

∫
(R̆d )k

G(v̆, P̆λκ)P̆λκ(dv̆1) · · · P̆λκ(dv̆k) in place of G(v̆, P̆λκ) and notice that the integration over
Pλκ ∪ {vk+1} coincides with the integration over Pλκ .

Next, observe the following straightforward extension. Let L1, . . . ,Lp be a partition of {1, . . . , k}. We say that a
point v̆ = (v̆1, . . . , v̆k) follows this partition if any two components vi and vj are equal if and only if the indices i and
j lie in the same set Lr . Now take arbitrary G, and define GL1,...,Lp (v̆, X̆ ) to be G(v̆, X̆ ) if v̆ follows L1, . . . ,Lp and
zero otherwise. Then we have:

E

∫
(R̆d )k

GL1,...,Lp (v̆, P̆λκ)P̆λκ(dv̆1) · · · P̆λκ(dv̆k)

=
∫

(R̆d )k
EGL1,...,Lp

(
v̆, P̆λκ ∪ {v̆1, . . . , v̆k}

)
d̄[λκ]v̆L1 · · · d̄[λκ]v̆Lp

=
∫

(R̆d )k
EG

(
v̆, P̆λκ ∪ {v̆1, . . . , v̆k}

)
d̄[λκ]v̆L1 · · · d̄[λκ]v̆Lp .
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Now write G=∑
L1,...,Lp�{1,...,k}GL1,...,Lp , sum up over all non-trivial partitions of {1, . . . , k} and the proof is com-

plete. �

Now take a geometric functional ξ and recall the definition (1.4) of its associated random measure μλ. From
Proposition 3.1, we deduce that the corresponding moment measures Mk

λ =Mk(μλ) can be expressed as:∫
(Rd )k

F (v)Mk
λ(dv)=

∫
(R̆d )k

F (v)mλ(v̆) d̃[λκ]v̆, (3.4)

where v = (v1, . . . , vk) and again v̆ = (v̆1, . . . , v̆k), and where the Radon–Nikodým derivative mλ is given by:

mλ(v̆1, . . . , v̆k) := E

[
k∏

i=1

ξλ

(
v̆i , P̆λκ ∪ {v̆1, . . . , v̆k}

)]
. (3.5)

Analogously, we define mλ on products indexed by arbitrary index sets, i.e., RL.

3.2. The method of cumulants

We will refine the method of cumulants and cluster measures as developed in [3] in the context of the central limit
theorem. We recall the formal definition of cumulants in the context specified for our purposes. For a random variable
Y with all moments, expanding the logarithm of the Laplace transform in a formal power series in t gives

log

[
1+

∞∑
k=1

EY k

k! tk

]
=
∞∑

k=1

ck(Y )

k! tk, (3.6)

where ck(Y ) denotes the kth cumulant of Y . As the series (3.6) is considered as formal, no additional condition on
convergence is required for the cumulants to exist. Defining differentiation, evaluation at zero, and the exponential
and the logarithmic function of a formal power series in the obvious way, one may also write:

ck(Y )= dk

dtk

∣∣∣∣
t=0

logE exp(tY ).

Similarly as mixed moments, one can also consider mixed cumulants. In the spirit of the above, one can define it by
means of formal power series of several variables:

c(Y1, . . . , Yk)= ∂k

∂t1 ∂t2 · · · ∂tk

∣∣∣∣
t1=t2=···=tk=0

logE exp(t1Y1 + · · · + tkYk). (3.7)

In other words, the mixed cumulant of random variables Y1, . . . , Yk is the coefficient in the formal power series
expansion of logE exp(t1Y1 + · · · + tkYk) at t1t2 · · · tk . Notice also that ck(Y )= c(Y, . . . , Y︸ ︷︷ ︸

k

).

To define the mixed cumulant of random variables Y1, . . . , Yk , we do not even need all the moments to exist. All
we need is the existence of the expectations of the products

∏
i∈L Yi , where L⊆ {1, . . . , k}. This is because one can

replace the exponential function exp(t1Y1+· · ·+ tkYk) by the polynomial g(t1, . . . , tk)=∑
L⊆{1,...,k}E

∏
i∈L Yiti : the

mixed cumulant c(Y1, . . . , Yl) is then also the coefficient in the formal power series expansion of logg(t1, . . . , tk) at
t1t2 · · · tk .

In view of the above, mixed cumulants can be expressed in terms of mixed moments. This can be made explicit by
means of the following extension of the celebrated Faà di Bruno’s formula to functions of several variables:

∂k

∂t1 · · · ∂tk
f
(
g(t1, . . . , tk)

)= ∑
L1,...,Lp�{1,...,k}

f (p)
(
g(t1, . . . , tk)

) ∂ |L1|g∏
i∈L1

∂ti
· · · ∂ |Lp |g∏

i∈Lp
∂ti

(3.8)
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(see [15] and notice that although the result ibidem is stated for real functions, the extension to formal power series is
straightforward: once we know the chain and the product rule, Faà di Bruno’s formula is a matter of combinatorics,
no longer analysis). Combining (3.7) and (3.8), we obtain the formula for mixed cumulants:

c(Y1, . . . , Yk)=
∑

L1,...,Lp�{1,...,k}
(−1)p−1(p− 1)!E

[∏
i∈L1

Yi

]
· · ·E

[ ∏
i∈Lp

Yi

]
(3.9)

(see p. 12 of [33]). For a random measure μ, its kth cumulant measure ck(μ) is defined analogously as its kth moment
measure, i.e., 〈f1 ⊗ · · · ⊗ fk, c

k(μ)〉 = c(〈f1,μ〉, . . . , 〈fk,μ〉). In particular, for equal functions, we have:〈
f⊗k, ck(μ)

〉= ck
(〈f,μ〉). (3.10)

In view of (3.9), cumulant measures can be expressed in terms of moment measures in the following way:

ck(μ)=
∑

L1,...,Lp�{1,...,k}
(−1)p−1(p− 1)!ML1(μ) · · ·MLp(μ), (3.11)

where the multiplication denotes the usual product of measures: for disjoint finite sets G and H , and for measurable
sets A⊆ (Rd)G and B ⊆ (Rd)H , we have MN(A×B)=M(A)N(B), identifying (Rd)G∪H ≡ (Rd)G × (Rd)H (see
p. 30 of [19]).

Although we use the same notation for cumulants as well as for cumulant measures, this should not lead to a
confusion: for a real-valued random variable Y , ck(Y ) denotes a cumulant, while for a random measure μ, ck(μ)

denotes a cumulant measure. Observe also that the first cumulant measure coincides with the expectation measure and
the second cumulant measure coincides with the covariance measure.

Throughout this subsection, ξ will (as usual) denote a geometric functional and R its radius of stabilization. Recall
the random measures μλ defined in (1.4) and the corresponding moment measures Mk

λ :=Mk(μλ). Similarly, consider
the cumulant measures ck

λ := ck(μλ). Recalling the notation μ̄λ = μλ − Eμλ, observe that ck(μ̄λ) = ck
λ for k ≥ 2.

Analogously, define measures ML
λ and cL

λ defined on product spaces indexed finite sets L.
Now we can state our result controlling the growth of 〈f⊗k, ck

λ〉, which is crucial to prove Theorem 1.3.

Lemma 3.1. If ξ satisfies Assumption G(γ, κ), we have:∣∣〈f⊗k, ck
λ

〉∣∣≤ λCk‖f ‖k∞(k!)1+γ

for all bounded measurable functions f :Rd →R, all k = 3,4, . . . and all λ≥ λ0, where the constant C and the lower
endpoint λ0 only depend on κ , ξ and R.

Before proving the preceding lemma, we need a couple of auxiliary results. Following [3], we decompose cumulant
measures into semi-cluster measures, i.e., cluster measures multiplied by moment measures. For non-empty disjoint
finite sets S and T , define the cluster measure by:

U
S,T
λ =MS∪T

λ −MS
λ MT

λ

(where multiplication again means product measure). The following result is a refinement of Lemma 5.1 of [3] in the
sense that we provide control over the number of summands.

Lemma 3.2. For each non-trivial partition G,H of a finite set K , the cumulant measure cK
λ can be decomposed as:

cK
λ =

∑
L1,...,Lp�K

(−1)p−1(p− 1)!WL1,...,Lp

λ ,

where W
L1,...,Lp

λ is a sum of at most p terms of the form U
S,T
λ M

K1
λ M

K2
λ · · ·MKr

λ , where S ⊆ G and T ⊆ H are
non-empty and disjoint, and where S ∪ T ,K1, . . . ,Kr is a refinement of the partition L1, . . . ,Lp .
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Proof. Starting from (3.11), we first note that each moment measure M
Li

λ with S := Li∩G �=∅ and T := Li∩H �=∅

can be expressed as U
S,T
λ +MS

λ MT
λ . Repeating the procedure, we may write:

M
L1
λ · · ·MLp

λ =M
L1∩G
λ M

L1∩H
λ · · ·MLp∩G

λ M
Lp∩H

λ +W
L1,...,Lp

λ , (3.12)

where the measures W
L1,...,Lp

λ are as desired and where we set M
∅

λ := 1. Now consider the measure:

c
K;G,H
λ :=

∑
L1,...,Lp�K

(−1)p−1(p− 1)!ML1∩G
λ M

L1∩H
λ · · ·MLp∩G

λ M
Lp∩H

λ (3.13)

and take functions fi ∈ B(Rd), i ∈K . By Faà di Bruno’s formula (3.8), 〈⊗i∈K fi, c
K;G,H
λ 〉 matches the coefficient in

the formal power series expansion of logg
K;G,H
λ at

∏
i∈K ti , where:

g
K;G,H
λ :=

∑
L⊆K

〈⊗
i∈L

fi,M
L∩G
λ ML∩H

λ

〉∏
i∈L

ti .

However, g
K;G,H
λ = gG

λ gH
λ , where gZ

λ :=
∑

L⊆Z〈
⊗

i∈L fi,M
L
λ 〉

∏
i∈L ti . Since G and H are both non-empty, the

coefficient at
∏

i∈K ti in the formal power series expansion of both loggG
λ and loggH

λ vanishes; clearly, the same

is true for logg
K;G,H
λ = loggG

λ + loggH
λ . Therefore, c

K;G,H
λ = 0. Combining this with (3.12) and (3.13), the result

follows. �

Thus, in order to estimate the cumulants, it suffices to estimate semi-cluster measures. Recalling (3.4) and (3.5),
it makes sense, as the first step towards the latter estimation, to bound the differences mλ(vS∪T )−mλ(vS)mλ(vT );
throughout this subsection, we shall denote:

vL = (vi)i∈L, v̆L = (v̆i)i∈L and VL = {vi; i ∈ L}, V̆L = {v̆i; i ∈ L}
for vectors v = (vi)i∈K ∈ (Rd)K and v̆ = (v̆i)i∈K ∈ (R̆d)K , where L ⊆ K (the letters v and V are fixed, while the
letters K and L can be arbitrary). Next, define the separation between two subsets A and B of a R

d by:

sep(A,B) := inf
{‖a − b‖;a ∈A,b ∈ B

}
.

Now recall the definition of ξλ along with the conventions on R and Rλ from Section 1.2; in particular, recall that
λ−1/dRλ a radius of stabilization for ξλ inside Ω . In addition, recall that κ vanishes outside Ω , so that P̆λκ ⊆ Ω̆

almost surely. For a finite set L, v̆ = (v̆l)l∈L ∈ (R̆d)L, i, j ∈L, λ > 0 and for a function ψ : [0,∞)→[0,∞), define:

aλ,i(v̆) := [
E
∣∣ξλ(v̆i , P̆λκ ∪ V̆L)

∣∣2|L|]1/(2|L|)
, bλ,j,ψ (v̆) := [

E
(
ψ
(
2Rλ(v̆j , P̆λκ ∪ V̆L)

))−2]1/2
. (3.14)

Lemma 3.3. Let S and T be non-empty finite disjoint sets and let ψ : [0,∞)→[0,∞) be a non-increasing function.
Then for each v̆ = v̆S∪T ∈ (R̆d)S∪T , we have:

∣∣mλ(v̆S∪T )−mλ(v̆S)mλ(v̆T )
∣∣ ≤ [ ∏

i∈S∪T

aλ,i(v̆S∪T )+
(∏

i∈S
aλ,i(v̆S)

)(∏
i∈T

aλ,i(v̆T )

)]

×
[∑

j∈S
bλ,j,ψ (v̆S)+

∑
j∈T

bλ,j,ψ (v̆T )

]
ψ
(
λ1/dδ

)
, (3.15)

where δ = sep({vi; i ∈ S}, {vj ; j ∈ T }) denotes the separation with respect to the Euclidean metric.

Remark 3.1. This is a refinement of Lemma 5.2 of [3] in at least two directions: first, we state a more explicit upper
bound, and second, we allow for arbitrary decay of R (described in terms of ψ ), not just exponential. Moreover, a
closer look reveals that the argument used for the proof of that result in fact needs stronger assumptions than just
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exponential stabilization (apart from moment bounds), as claimed ibidem. More precisely, in our notation, one has to
assume suitable stabilization of the functional (x̆, X̆ ) �→ ξ(x̆, X̆ ∪ V̆ ), not ξ , for finite sets V̆ with suitable cardinality.
This is due to a confusion between P̆λκ and P̆λκ ∪ V̆ (see below Eq. (5.4) ibidem). Moreover, in order to derive large
deviation results from appropriately corrected Lemma 5.2 of [3], one also needs certain control over the dependence
of the stabilization of (x̆, X̆ ) �→ ξ(x̆, X̆ ∪ V̆ ) on the cardinality of V̆ . These additional conditions can be tedious to
verify in actual applications. On the other hand, our argument, though much more extensive, works under more or
less standard conditions and leads to a neat result.

Proof of Lemma 3.3. Take independent Poisson point processes P̆λκ and P̆†
λκ (both with intensity λκ × PM) and

define two new point processes:

P̆ ′λκ :=
(
P̆λκ ∩Bδ/2(VS)

)∪ (
P̆†

λκ \Bδ/2(VS)
)
,

P̆ ′′λκ :=
(
P̆λκ \Bδ/2(VS)

)∪ (
P̆†

λκ ∩Bδ/2(VS)
)
,

where, as usual, Br(V ) :=⋃
v∈V Br(v). Observe that P̆ ′λκ and P̆ ′′λκ are independent Poisson point processes with

intensity λκ × PM. Setting:

Xi := ξλ(v̆i , P̆λκ ∪ V̆S∪T ), X′i := ξλ

(
v̆i , P̆ ′λκ ∪ V̆S

)
, X′′i := ξλ

(
v̆i , P̆ ′′λκ ∪ V̆T

)
,

we may write:

mλ(v̆S∪T )−mλ(v̆S)mλ(v̆T )= E

[(∏
i∈S

Xi

)(∏
i∈T

Xi

)
−

(∏
i∈S

X′i
)(∏

i∈T
X′′i

)]
.

Now observe that for i ∈ S, X′i agrees with Xi if ξλ stabilizes at v̆i within radius less than δ/2 with respect to P̆λκ ∪ V̆S .
Similarly, for i ∈ T , X′′i agrees with Xi if ξλ stabilizes at v̆i within radius less than δ/2 with respect to P̆λκ ∪ V̆T .
Letting:

I ′j := 1
(

Rλ

(
v̆j , P̆λκ ∪ V̆S

)≥ λ1/dδ

2

)
, I ′′j := 1

(
Rλ

(
v̆j , P̆λκ ∪ V̆T

)≥ λ1/dδ

2

)
,

we can estimate:

∣∣mλ(v̆S∪T )−mλ(v̆S)mλ(v̆T )
∣∣≤ E

{[ ∏
i∈S∪T

|Xi | +
(∏

i∈S

∣∣X′i∣∣
)(∏

i∈T

∣∣X′′i ∣∣
)][∑

j∈S
I ′j +

∑
j∈T

I ′′j
]}

.

Since ψ is non-increasing, we can estimate:

I ′j ≤
ψ(λ1/dδ)

ψ(2Rλ(v̆j , P̆λκ ∪ V̆S))
and I ′′j ≤

ψ(λ1/dδ)

ψ(2Rλ(v̆j , P̆λκ ∪ V̆S))
. (3.16)

The proof is now completed by application of Hölder’s inequality. �

To estimate the semi-cluster measures, we now need to integrate the estimate (3.15). Before tackling this job, we
introduce some more notation. First, we extend the convention on the breve accents to the products (Rd)K and (R̆d)K :
if v and v̆ appear in the same context and if v̆ denotes a marked K-tuple (v̆i)i∈K ∈ (R̆d)K , then we shall assume that
v = (vi)i∈K ∈ (Rd)K .

Now denote by Δk
d := {(x, x, . . . , x);x ∈ R

d} the diagonal in (Rd)k ; similarly, for a finite set K , denote by ΔK
d

the diagonal in (Rd)K . We also consider the marked diagonal Δ̆K
d = {v̆ ∈ R̆d ;v ∈ΔK

d }. Next, for v ∈ (Rd)K \ΔK
d ,

denote by δ(v) the maximal separation between the sets VG and VH , where (G,H) runs over all non-trivial partitions
of K (i.e., G and H are non-empty with union K). Finally, denote by ω the volume of the unit ball in R

d .
The estimation of suitable integrals in the right-hand side of (3.15) will be based on the following result.
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Lemma 3.4. Let K1,K2, . . . ,Kr be finite disjoint sets with union K . Put kl := |Kl | and k := |K|. Take a
non-increasing function ψ : [0,∞) → [0,∞) with limt→∞ψ(t) = 0 and with finite Riemann–Stieltjes integral∫∞

0 t (k−1)d d(−ψ)(t), λ > 0, a marked Poisson point process P̆λκ , a non-negative geometric functional g and i ∈K1.
Then we have:∫

(R̆d )K\Δ̆K
d

Eg(v̆i , P̆λκ ∪ V̆K1)ψ
(
λ1/dδ(v)

) r∏
l=1

d̃[λκ]v̆Kl

≤ λQ(k, κ,ψ)

[∫
R̆d

E
(
g(x̆, P̆λκ)

)2
κ(x)dx̆

]1/2

,

where Q(k,κ,ψ)= 2k−1k! ∫∞0 (1+ e‖κ‖∞ωtd)k−1 d(−ψ)(t).

Before proving Lemma 3.4, we need one more auxiliary result.

Lemma 3.5. For all k ∈N and all u ∈R, we have:∑
L1,...,Lp�{1,...,k}

p!|L1|!|L2|! · · · |Lp|!up−1 = (1+ u)k−1k!. (3.17)

Proof. Let f (y) = 1/(u(u + 1 − uy)), g(x) = 1/(1 − x) and observe that the kth derivative of f (g(x)) at x = 0
matches the right hand side of (3.17). Then apply Faà di Bruno’s formula (3.8). �

Corollary 3.1. For all k ∈N and α ≥ 0, we have:∑
L1,...,Lp�{1,...,k}

p!(|L1|!
)α(|L2|!

)α · · · (|Lp|!
)α ≤ 2k−1(k!)max{α,1}. (3.18)

Remark 3.2. Clearly, the exponent max{α,1} cannot be reduced.

Proof of Lemma 3.4. Let K ′ := K \ {i}, K ′1 := K1 \ {i} and K ′l := Kl for l = 2,3, . . . , r . Next, take independent

Poisson point processes P̆(1)
λκ , . . . , P̆(r)

λκ (all with intensity λκ × PM). Applying (3.3), we may write:

J :=
∫

(R̆d )K\Δ̆K
d

Eg(v̆i , P̆λκ ∪ V̆K1)ψ
(
λ1/dδ(v)

) r∏
l=1

d̃[λκ]v̆Kl

= E

∫
(R̆d )K\Δ̆K

d

g
(
v̆i , P̆(1)

λκ

)
ψ
(
λ1/dδ(v)

)( r⊗
l=1

(
P̆(l)

λκ

)⊗Kl

)
(dv̆)

(where v̆ = (v̆j )j∈(R̆d )K
). Next, we may asssume without loss of generality that ψ is left continuous, so that we can

write ψ(x)= ∫
[0,∞)

1(x ≤ t)μ(dt) for some positive measure μ. Plugging this into the preceding equation, we obtain:

J =
∫
[0,∞)

E

∫
R̆d

g
(
v̆i , P̆(1)

λκ

)∫
(R̆d )K

′ 1
(
δ(v)≤ λ−1/d t

)( r⊗
l=1

(
P̆(l)

λκ

)⊗K ′l

)
(dv̆K ′)P̆(1)

λκ (dv̆i )μ(dt)

(identifying v ∈ (Rd)K with (vK ′ , vi) ∈ (Rd)K
′ × R

d). Now consider the graph with vertex set K , where vertices j

and l are adjacent if ‖vj − vl‖ ≤ λ−1/d t . Observe that δ(v)≤ λ−1/d t if and only if this graph is connected. Therefore,
if δ(v)≤ λ−1/d t , then ‖vj − vi‖ ≤N(v)λ−1/d t for all j ∈K , where N(v) := |{vj ; j ∈K}| − 1. Next, estimating the
expression under the second integral sign by the Cauchy–Schwarz inequality, we find that:

J ≤√A

∫
[0,∞)

√
B(t)μ(dt), (3.19)
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where:

A= E

∫
R̆d

(
g
(
v̆i , P̆(1)

λκ

))2P̆(1)
λκ (dv̆i )= λ

∫
R̆d

E
(
g(x̆,Pλκ)

)2
κ(x)dx̆,

(3.20)

B(t)= E

∫
R̆d

[∫
(R̆d )K

′

(∏
j∈K

1
(‖vj − vi‖ ≤N(v)λ−1/d t

))(
r⊗

l=1

(
P̆(l)

λκ

)⊗K ′l

)
(dv̆K ′)

]2

P̆(1)
λκ (dv̆i ).

To estimate B(t), let K ′′1 ,K ′′2 , . . . ,K ′′r be copies of the sets K ′1,K ′2, . . . ,K ′r , disjoint with K . Put K† := {i} ∪K ′′1 ∪
K ′′2 ∪ · · · ∪K ′′r , K̂ :=K ∪K† and K̂l :=Kl ∪K ′′l . Then we may write:

B(t) = E

∫
(R̆d )K̂

(∏
j∈K

1
(‖vj − vi‖ ≤N(vK)λ−1/d t

))( ∏
l∈K†

1
(‖vl − vi‖ ≤N(vK†)λ

−1/d t
))

×
(

r⊗
l=1

(
P̆(l)

λκ

)⊗K̂l

)
(dv̆).

Noting that N(vK),N(vK†)≤N(v) and disintegrating by (3.3), we obtain:

B(t) ≤
∫

(R̆d )K̂

(∏
j∈K̂

1
(‖vj − vi‖ ≤N(v)λ−1/d t

))
d̃[λκ]v̆

K̂1
· · · d̃[λκ]v̆

K̂r

≤
∑

L1,...,Lp�K̂

∫
(R̆d )K̂

(∏
j∈K̂

1
(‖vj − vi‖ ≤N(v)λ−1/d t

))
d̄[λκ]v̆L1 · · · d̄[λκ]v̆Lp

≤ λ
∑

L1,...,Lp�K̂

(
(p− 1)‖κ‖∞ωtd

)p−1

(where 00 := 1). Noting that (p− 1)p−1 ≤ p!ep−1 and |K̂| = 2k− 1, application of Lemma 3.5 yields:

B(t)≤ λ(2k− 1)!(1+ e‖κ‖∞ωtd
)2k−2

.

Noting that (2k − 1)! ≤ 4k−1(k!)2 and combining this with (3.19) and (3.20), the proof is complete. �

Lemma 3.6. Let K1, . . . ,Kr be a partition of a non-empty finite set K . Put kl := |Kl | and k := |K|. Take j ∈K1 and
α,β ≥ 0. Suppose that κ satisfies Assumption D, that R satisfies Assumption MGI(β, κ) and that ξ satisfies either
Assumption MGP(α, κ) or Assumption MGI(α, κ). Letting:

Jλ,ψ :=
∫

(R̆d )K\Δ̆K
d

(
r∏

l=1

∏
i∈Kl

aλ,i(v̆Kl
)

)
bλ,j,ψ (v̆K1)ψ

(
λ1/dδ(v)

) r∏
l=1

d̃[λκ]v̆Kl
,

there exists a non-increasing function ψ : [0,∞)→[0,∞), such that for all λ≥ λ0,

Jλ,ψ ≤ λCk(k1!)α(k2!)α · · · (kr !)α(k!)1+βd under Assumption MGP(α, κ), (3.21)

Jλ,ψ ≤ λCk(k!)1+α+βd under Assumption MGI(α, κ). (3.22)

In both estimates, the constant C and the lower endpoint λ0 only depend on κ , ξ and R.
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Proof. Let λ ≥ λ0, where for λ0, we take the maximal corresponding lower endpoint from Assumption MGI(β, κ)

imposed on R and Assumption MGP(α, κ) or Assumption MGI(α, κ), whichever imposed on ξ . If ξ satisfies As-
sumption MGP(α, κ), one can estimate, using Jensen’s inequality:

aλ,i(v̆Kl
)≤ [

E
∣∣ξλ(v̆i , P̆λκ ∪ V̆Kl

)
∣∣pkl

]1/(pkl) ≤A
[
(pkl)!

]α/(pkl) ≤Apα(kl !)α/kl ,

where p :=max{2, �1/q�}, and where A and q are as in Assumption MGP(α, κ). As a result, we have:

Jλ,ψ ≤Akpkα

(
k∏

l=1

(kl !)α
)∫

(R̆d )K\Δ̆K
d

[
E
(
ψ
(
2Rλ(v̆j , P̆λκ ∪ V̆K1)

))−2]1/2
ψ
(
λ1/dδ(v)

) r∏
l=1

d̃[λκ]v̆Kl
.

By the Cauchy–Schwarz inequality and Lemma 3.4, we can estimate:

Jλ,ψ ≤ Akpkα

(
k∏

l=1

(kl !)α
)[∫

(R̆d )K\Δ̆K
d

ψ
(
λ1/dδ(v)

) r∏
l=1

d̃[λκ]v̆Kl

]1/2

×
[∫

(R̆d )K\Δ̆K
d

E
(
ψ
(
2Rλ(v̆j , P̆λκ ∪ V̆K1)

))−2
ψ
(
λ1/dδ(v)

) r∏
l=1

d̃[λκ]v̆Kl

]1/2

≤ λAkpkα

(
k∏

l=1

(kl !)α
)

Q(k,κ,ψ)

[∫
R̆d

E
(
ψ
(
2Rλ(x̆, P̆λκ)

))−4
κ(x)dx̆

]1/4

. (3.23)

Choosing ψ(t) := (1 + e‖κ‖∞ωdtd)−k , a straightforward calculation yields Q(k,κ,ψ) = 2k−1k!k. Writing

(ψ(2r))−4 =∑4k
l=0

(4k
l

)
(2e‖κ‖∞ωd)lrld and recalling that R satisfies Assumption MGI(β, κ), we find that:

∫
R̆d

E
(
ψ
(
2Rλ(x̆, P̆λκ)

))−4
κ(x)dx̆ ≤

4k∑
l=0

(
4k

l

)(
2e‖κ‖∞ωdBd

)l[
(4ld)!]β

≤ (
1+ 2e‖κ‖∞ωdBd

)4k[
(4kd)!]β

≤ (4d)4kβd
(
1+ 2e‖κ‖∞ωdBd

)4k
(k!)4βd ,

where B is the constant A in (1.17). Plugging this into (3.23) and applying k ≤ 3k/3, we obtain (3.21).
Now suppose that ξ satisfies Assumption MGI(α, κ). Then we apply Jensen’s and Hölder’s inequality to estimate:

Jλ,ψ ≤
[

r∏
s=1

∏
i∈Ks

∫
(R̆d )K\Δ̆K

d

E
∣∣ξλ(v̆i , P̆λκ ∪ V̆Ks )

∣∣2k
ψ
(
λ1/dδ(v)

) r∏
l=1

d̃[λκ]v̆Kl

]1/(2k)

×
[∫

(R̆d )K\Δ̆K
d

E
(
ψ
(
2Rλ(v̆j , P̆λκ ∪ V̆K1)

))−2
ψ
(
λ1/dδ(v)

) r∏
l=1

d̃[λκ]v̆Kl

]1/2

.

Now choose ψ as before and apply Lemma 3.4. The estimate (3.22) follows in more or less the same way that (3.21)
above. �

Now we are ready to state and prove bounds on semi-cluster measures. Let Sep(G,H) be the set of all (G ∪H)-
tuples of points where the maximum is attained, i.e.:

Sep(G,H) := {
v ∈ (

R
d
)G∪H ; δ(v)= sep(VG,VH )

}
, (3.24)

recalling that δ(v) denotes the maximum separation, precisely defined before Lemma 3.4.
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Lemma 3.7. Let G,H and S,T ,K1, . . . ,Kr be two non-trivial partitions of a finite set K with S ⊆G and T ⊆H .
Put s = |S|, t = |T |, kl = |Kl |, k = |K|. Take α,β ≥ 0 and f ∈ B(Rd). Suppose that κ satisfies Assumption D, that R

satisfies Assumption MGI(β, κ), and that ξ satisfies either Assumption MGP(α, κ) or Assumption MGI(α, κ). Letting:

Jλ :=
∫

Sep(G,H)

f⊗K d
(
U

S,T
λ M

K1
λ · · ·MKr

λ

)
,

where the product in the right hand side means the usual product of measures (like in (3.11)), we have:

|Jλ| ≤ λCk‖f ‖k∞
(
(s + t)!)α(k1!)α(k2!)α · · · (kr !)α(k!)1+βd under Assumption MGP(α, κ), (3.25)

|Jλ| ≤ λCk‖f ‖k∞(k!)1+α+βd under Assumption MGI(α, κ) (3.26)

for all λ≥ λ0, where the constant C and the lower endpoint λ0 only depend on κ , ξ and R.

Proof. Applying (3.4), write:

Jλ =
∫

(R̆d )K
1
(
v ∈ Sep(G,H)

)
f⊗K(v)Dλ(v̆)

˜̃dv̆, (3.27)

where:

Dλ(v̆)= [
mλ(v̆S∪T )−mλ(v̆S)mλ(v̆T )

] r∏
l=1

mλ(v̆Kl
),

˜̃dv̆ = d̃[λκ]v̆S∪T d̃[λκ]v̆K1 · · · d̃[λκ]v̆Kr = d̃[λκ]v̆S d̃[λκ]v̆T d̃[λκ]v̆K1 · · · d̃[λκ]v̆Kr .

Observe that since sep(VS,VT ) ≥ sep(VG,VH ) = δ(v) > 0 for all v ∈ Sep(G,H), the product differential
d̃[λκ]v̆S d̃[λκ]v̆T coincides with d̃[λκ]v̆S∪T .

By Lemma 3.3 and the fact that sep(VS,VT ) ≥ δ(v) for v ∈ Sep(G,H), the quantity 1(v ∈ Sep(G,H))|Dλ(v̆)|
can be bounded by a sum of 2(s + t) terms of the form (

∏
i∈K ãi)b̃jψ(λ1/dδ(v)), where either ãi = aλ,i(v̆S) or

ãi = aλ,i(v̆T ) or ãi = aλ,i(v̆S∪T ) or ãi = aλ,i( ˘vKl
) for some l = 1, . . . , r , and where either b̃j = bλ,j,ψ (v̆S) or b̃j =

bλ,j,ψ (v̆T ). Bounding those terms by Lemma 3.6 and applying 2(s + t)≤ 2k ≤ 2k , the result follows. �

Proof of Lemma 3.1. Put K = {1, . . . , k} and write:

〈
f⊗k, ck

λ

〉= ∫
(Rd )k

f⊗k dck
λ =

∫
ΔK

d

f⊗k dcK
λ +

∑
G,H�K

∫
Sep(G,H)

f⊗K dcK
λ , (3.28)

where the sum ranges over all unordered non-trivial partitions of K into two sets. For the first term, we directly apply
(3.11):∫

ΔK
d

f⊗K dcK
λ =

∑
L1,...,Lp�K

(−1)p−1(p− 1)!
∫

ΔK
d

f⊗K d
(
M

L1
λ · · ·MLp

λ

)
.

However, only the partition into one single set gives a non-zero integral. Therefore,∫
ΔK

d

f⊗K dcK
λ =

∫
ΔK

d

f⊗K dMK
λ =

∫
Δ̆K

d

f⊗K(v)mλ(v̆) d̃[λκ]v̆

by (3.4). On the diagonal, d̃[λκ]v̆ reduces to d̄[λκ]v̆, so that:∫
ΔK

d

f⊗K dcK
λ = λ

∫
R̆d

(
f (x)

)k
E
[
ξλ(x̆, P̆λκ)

]k
κ(x)dx̆.
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Now recall that Assumption G(γ, κ) include that ξ satisfies either Assumption MGP(α, κ) or the weaker Assump-
tion MGI(α, κ) for some α ≤ γ . The latter one implies:∣∣∣∣

∫
ΔK

d

f⊗K dcK
λ

∣∣∣∣≤ λAk‖f ‖k∞(k!)α ≤ λAk‖f ‖k∞(k!)γ . (3.29)

Now we turn to the rest of the terms. We shall combine Lemmas 3.2 and 3.7, followed by Corollary 3.1. If ξ satisfies
Assumption MGP(α, κ), we can estimate:∣∣∣∣

∫
Sep(G,H)

f⊗K dcK
λ

∣∣∣∣ ≤ λCk
1‖f ‖k∞

∑
L1,...,Lp�K

p!(|L1|!
)α(|L2|!

)α · · · (|Lp|!
)α

(k!)1+βd

≤ λ2k−1Ck
1‖f ‖k∞(k!)1+max{α,1}+βd

= λ2k−1Ck
1‖f ‖k∞(k!)1+γ ,

where C1 is the constant C from Lemma 3.7. Similarly, if ξ satisfies Assumption MGI(α, κ), we estimate:∣∣∣∣
∫

Sep(G,H)

f⊗K dcK
λ

∣∣∣∣ ≤ λCk
1‖f ‖k∞

∑
L1,...,Lp�K

p!(k!)2+α+βd

≤ λ2k−1Ck
1‖f ‖k∞(k!)2+α+βd

= λ2k−1Ck
1‖f ‖k∞(k!)1+γ .

Plugging the latter bounds along with (3.29) into (3.28), we find that:∣∣〈f⊗k, ck
λ

〉∣∣≤ λ
(
2 max{A,2C1}

)k‖f ‖k∞(k!)1+γ .

This completes the proof. �

3.3. Proof of bounds on deviation probabilities (Theorem 1.3)

As mentioned in Section 1.5, the proof of the result will be based on the estimation of the cumulants, applying the
celebrated lemma of Rudzkis, Saulis and Statulevičius [32]. Consider a general random variable Y with finite absolute
moments of all orders and recall that ck(Y ) stands for the kth cumulant of Y . Below we state a simplified form of the
version of that lemma which appears as Lemma 2.3 on p. 18 of [33]:

Lemma 3.8. Let Y be a random variable as above, with EY = 0 and Var(Y )= 1, and with its cumulants satisfying:

∣∣ck(Y )
∣∣≤ (k!)1+γ

Δk−2
, k = 3,4, . . . (3.30)

for some γ ≥ 0 and Δ > 0. Then the large deviation relations:

P(Y ≥ y)

1−�(y)
= exp

(
Lγ (y)

)(
1+ θ1ψ(y)

y + 1

Δγ

)
, (3.31)

P(Y ≤−y)

�(−y)
= exp

(
Lγ (−y)

)(
1+ θ2ψ(y)

y + 1

Δγ

)
(3.32)

hold true in the interval 0≤ y < Δγ . Here:

Δγ = 1

6

(√
2

6
Δ

)1/(1+2γ )

, (3.33)

ψ(y)= 60[1+ 10Δ2
γ exp(−(1− y/Δγ )

√
Δγ )]

1− y/Δγ

, (3.34)
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the quantities θ1 and θ2 belong to [−1,1] and the function Lγ (y), which is closely related to the Cramér–Petrov
series, satisfies:

∣∣Lγ (y)
∣∣≤ |y|3

3Δγ

(3.35)

for all y with |y| ≤Δγ .

The following weaker form of the preceding result will be used to prove the first part of Theorem 1.3:

Corollary 3.2. Under the conditions of Lemma 3.8, there exist constants C0, C1 and C2 depending only on γ , such
that for Δ≥ C0 and 0≤ y ≤ C1Δ

1/(1+2γ ), we can estimate:∣∣∣∣log
P(Y ≥ y)

1−�(y)

∣∣∣∣≤ C2
1+ y3

Δ1/(1+2γ )
, (3.36)

∣∣∣∣log
P(Y ≤−y)

�(−y)

∣∣∣∣≤ C2
1+ y3

Δ1/(1+2γ )
. (3.37)

Proof. The key observation is that ψ(y) from (3.34) is uniformly bounded in 0≤ y ≤ qΔγ , where q ∈ [0,1) is fixed.
Indeed, for such y, one can estimate ψ(y) ≤ c1 + c2Δ

2
γ exp(−c3

√
Δγ ), where c1, c2 and c3 depend only on q . But

the right-hand side of the last estimate can be bounded uniformly in Δγ .
Boundedness of ψ along with (3.31), (3.33) and (3.35) implies that there exist universal constants D1, D2 and D3,

such that:

exp

(
− D2y

3

Δ1/(1+2γ )

)(
1− D3(1+ y)

Δ1/(1+2γ )

)
≤ P(Y ≥ y)

1−�(y)
≤ exp

(
D2y

3

Δ1/(1+2γ )

)(
1+ D3(1+ y)

Δ1/(1+2γ )

)
(3.38)

for all 0≤ y ≤D1Δ
1/(1+2γ ).

Now take Δ≥ (3D3)
1+2γ and 0≤ y ≤Δ1/(1+2γ )/(3D3), so that D3(1+ y)Δ−1/(1+2γ ) ≤ 2/3. By convexity of the

logarithmic function, we have:

− log

(
1− D3(1+ y)

Δ1/(1+2γ )

)
≤ 3 log 3

2

D3(1+ y)

Δ1/(1+2γ )
. (3.39)

An easy exercise shows that y ≤ (2+ y3)/3, so that:

log

(
1+ D3(1+ y)

Δ1/(1+2γ )

)
≤− log

(
1− D3(1+ y)

Δ1/(1+2γ )

)
≤ log 3

2

D3(5+ y3)

Δ1/(1+2γ )
. (3.40)

The estimate (3.36) now follows from (3.38) and (3.40). Similarly, we obtain (3.37) and the proof is complete. �

For the second part of Theorem 1.3, we shall need another result, which is due to Bentkus and Rudzkis [4] and
appears as Lemma 2.4 on p. 19 of [33]. Like Lemma 3.8, we state it in a simplified form, which appears as a corollary
of the afore-mentioned result.

Lemma 3.9. Let Y be a random variable with EY = 0 and with its cumulants satisfying:

∣∣ck(Y )
∣∣≤ (

k!
2

)1+γ
H

Δk−2
(3.41)

for some γ ≥ 0, H > 0 and Δ > 0. Then for all y ≥ 0, we have:

P(Y ≥ y)≤ exp

(
−1

4
min

{
y2

H
,(Δy)1/(1+γ )

})
.
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Proof of Theorem 1.3. (1) Applying Lemma 3.1 along with (1.7) and (3.10) and recalling that σ−[f ]> 0, we find
that for λ large enough and k ≥ 3, the cumulants of 〈f, μ̄λ〉, i.e., the cumulants of 〈f,μλ〉, i.e., 〈f⊗k, ck

λ〉, satisfy:

|ck(〈f, μ̄λ〉)|
σk

λ [f ]
≤ Ck

1

λ(k−2)/2

‖f ‖k∞
σk−[f ]

(k!)1+γ (3.42)

for some constant C1 ≥ 0 depending only on κ , ξ and R, where we recall from Section 1.3 that σ 2
λ [f ] denotes the

variance of 〈f, μ̄λ〉 (and σk
λ [f ] its (k/2)th power; similarly, σk−[f ] = (σ−[f ])k). To apply Corollary 3.2, rewrite the

right-hand side of (3.42) as:

C2
1
‖f ‖2∞
σ 2−[f ]

(
C1√

λ

‖f ‖∞
σ−[f ]

)k−2

(k!)1+γ ≤
(

max

{
1,C2

1
‖f ‖2∞
σ 2−[f ]

}
C1√

λ

‖f ‖∞
σ−[f ]

)k−2

(k!)1+γ .

Thus, recalling that the first cumulant of the centered measure μ̄λ equals zero whereas its higher order cumulants
coincide with those of μλ, we can apply Corollary 3.2 to Y := 〈f, μ̄λ〉/σλ[f ] with y = x/σλ[f ] and with Δ taken to
be
√

λ multiplied by some constant depending only on κ , ξ , R and the ratio ‖f ‖∞/σ−[f ]. It follows that there exist
constants λ1,D1,D2 ≥ 0, such that for all λ≥ λ1 and all 0≤ x ≤D1σλ[f ]λ1/(2+4γ ),

∣∣∣∣log
P(〈f, μ̄λ〉 ≥ x)

1−�(x/σλ[f ])
∣∣∣∣≤ D2

λ1/(2+4γ )

[
1+

(
x

σλ[f ]
)3]

.

Applying (1.7) once again, we obtain that there exist constants λ2,D3,D4 ≥ 0 such that for all λ≥ λ2 and all 0≤ x ≤
D3σ−[f ]λ(1+γ )/(1+2γ ),∣∣∣∣log

P(〈f, μ̄λ〉 ≥ x)

1−�(x/σλ[f ])
∣∣∣∣≤D4

[
1

λ1/(2+4γ )
+ x3

λ(2+3γ )/(1+2γ )σ 3−[f ]
]
.

An analogous bound holds for the lower tail probabilities and part (1) follows.
(2) Taking C from Lemma 3.1, and letting D5 := 2γ+1C2‖f ‖2∞ and D6 := 1/(C‖f ‖∞), we deduce that the

random variable Y := 〈f, μ̄λ〉 satisfies (3.41) with:

H =D5λ and Δ=D6. (3.43)

Next, if σ 2
λ [f ] ≤D5λ, then Y also satisfies (3.41) with:

H = σ 2
λ [f ] and Δ=D6

σ 2
λ [f ]
D5λ

. (3.44)

Now take arbitrary 0≤ t ≤ 1. Combining (3.43) and (3.44) with the inequality min{a, b} ≤ a1−t bt , we find that (3.41)
is also satisfied with:

H = σ 2t
λ [f ](D5λ)1−t and Δ=D6

(
σ 2

λ [f ]
D5λ

)t

.

Plugging this into Lemma 3.9, we obtain:

P
(±〈f, μ̄λ〉 ≥ x

)≤ min
0≤t≤1

exp

[
−1

4
min

{
x2

σ 2t
λ [f ](D5λ)1−t

, (D6x)1/(1+γ )

(
σ 2

λ [f ]
D5λ

)t/(1+γ )}]
. (3.45)

An easy exercise in optimization shows that for all a1, a2 > 0, b ≥ 1 and c1, c2 ≥ 0, we have max0≤t≤1 min{a1b
c1t ,

a2b
−c2t } =min{a1b

c1, a2, a
c2/(c1+c2)

1 a
c1/(c1+c2)

2 }. Plugging this into (3.45), we obtain (1.21). �
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3.4. Proof of moderate deviations

The results of Section 1.6 will follow from the following consequence of Theorem 1.3.

Lemma 3.10. Let μ̄λ be defined as in Section 1 with ξ satisfying Assumptions G(γ, κ) and CV(κ), let aλ satisfy
(1.23) and take f ∈ B(Rd). Then, recalling (1.7), for σ [f ]> 0 and t ≥ 0, we have:

lim
λ→∞

1

a2
λ

logP
(
a−1
λ λ−1/2〈f, μ̄λ〉 ≥ t

)= lim
λ→∞

1

a2
λ

logP
(
a−1
λ λ−1/2〈f, μ̄λ〉> t

)=− t2

2σ 2[f ] , (3.46)

while for σ [f ] = 0 and t > 0, we have:

lim
λ→∞

1

a2
λ

logP
(
a−1
λ λ−1/2〈f, μ̄λ〉 ≥ t

)= lim
λ→∞

1

a2
λ

logP
(
a−1
λ λ−1/2〈f, μ̄λ〉> t

)=−∞. (3.47)

Proof. Suppose first that σ [f ]> 0. In this case, we plug x = taλλ
1/2 into (1.19) and make use of the fact that for all

y ≥ 0,

1

2+√2πy
≤ ey2/2(1−�(y)

)≤ 1

2
.

Combining both and noting that σ−[f ] = σ [f ] by (1.7), we obtain the bound:∣∣∣∣logP
(
a−1
λ λ−1/2〈f, μ̄λ〉 ≥ t

)+ a2
λλt2

2σ 2
λ [f ]

∣∣∣∣≤ log

(
2+
√

2πtaλλ
1/2

σλ[f ]
)
+C2

1+ a3
λt

3/σ 3[f ]
λ1/(2+4γ )

.

Dividing by a2
λ, making use of (1.7) once again and applying condition (1.23), this implies (3.46) for ‘greater or

equal’. The corresponding result for the strict inequality follows by continuity.
In the case where σ [f ] = 0, plug x = taλλ

1/2 into (1.21) to obtain:

logP(a−1
λ λ−1/2〈f, μ̄λ〉 ≥ t)

a2
λ

≤−t2 min

{
C4

λ

σ 2
λ [f ]

,C5

(
λ

(taλ)2+4γ

)1/(2+2γ )

,C6

(
λ

(taλ)2+4γ

)1/(4+2γ )}

and the desired limiting behavior follows again from (1.7) and (1.23). This completes the proof. �

Proof of Theorem 1.4. We apply the preceding lemma along with Theorem 4.1.11 of [10], which allows us to derive
a LDP from the limiting behavior of probabilities for a basis of topology. For the latter, we choose all open intervals
(u1, u2), where at least one of the endpoints is finite and where none of the endpoints lies at the origin. Denote the
family of all such intervals by U . From Lemma 3.10, it follows that for each U = (u1, u2) ∈ U ,

LU := − lim
λ→∞

1

a2
λ

logP
(
a−1
λ λ−1/2〈f, μ̄λ〉 ∈U

)=
⎧⎨
⎩

u2
2/(2σ 2[f ]); u1 < u2 < 0,

0; u1 < 0 < u2,

u2
1/(2σ 2[f ]); 0 < u1 < u2,

for all U ∈ U , recalling our convention on division by zero from the end of Section 1.2. By Theorem 4.1.11 of [10],
the random variables a−1

λ λ−1/2〈f, μ̄λ〉 satisfy a weak LDP (MDP) as λ→∞ with speed a2
λ and rate function:

t �→ sup
U∈U
t∈U

LU = t2

2σ 2[f ] ,

which matches the function If from (1.24). Here, weak LDP means that the lower bound in (1.22) holds for all mea-
surable sets Γ , while the upper bound holds for all relatively compact measurable Γ . However, from Lemma 3.10, it
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follows that the family a−1
λ λ−1/2〈f, μ̄λ〉 is exponentially tight for speed a2

λ, i.e., for each M <∞, there exists a mea-
surable relatively compact set K , such that lim supλ→∞ a−2

λ logP(a−1
λ λ−1/2〈f, μ̄λ〉 /∈K) ≤ −M . By Lemma 1.2.18

of [10], the family a−1
λ λ−1/2〈f, μ̄λ〉must then satisfy a full LDP with the same speed and the same good rate function.

This completes the proof. �

Now we turn to the proof of Theorem 1.5. We begin with the same argument based on Theorem 4.1.11 of [10],
which requires a certain limiting behavior of probabilities of sets from a basis of topology. The derivation of that
behavior requires a specific shape of the sets. Thus, we have to show that certain sets of that shape form a basis of
topology.

Lemma 3.11. Let F and V be pairwise dual finite-dimensional vector spaces, equipped with the usual topology, and
let Q be a positively semi-definite quadratic form on F . Let U0 be the family of all open subsets of the half-spaces
{ν ∈ V ; 〈f, ν〉> b}, where b > 0 and Q(f )= 0, and denote by U1 the family of all sets of the form{

ν ∈ V ; 〈f0, ν〉> b0, 〈f1, ν〉< b1, 〈f2, ν〉< b2, . . . , 〈fn, ν〉< bn

}
, (3.48)

where either 0 < b0/
√

Q(f0) < bi/
√

Q(fi) for all i = 1,2, . . . , n, or b0 < 0 < bi for all i = 1,2, . . . , n. Then the
family U0 ∪ U1 is a basis of the topology on V .

Proof. Define F0 := {f ∈ F ;Q(f )= 0} and F⊥0 := {ν ∈ V ; 〈f, ν〉 = 0 for all f ∈ F0}. Now take μ ∈ V and its open
neighborhood W . We have to show that there exists U ∈ U0 ∪ U1, such that x ∈U ⊆W . We distinguish three cases.

Case 1: μ /∈ F⊥0 . Then there exist f ∈ F0 and a > 0, such that 〈f,μ〉 > a, so that we can take U :=W ∩ {ν ∈
V ; 〈f,μ〉> a} ∈ U0.

Case 2: μ = 0. Then there exists ε > 0 and elements f0, f1, . . . , fn, such that U :=⋂n
i=0{ν; 〈fi, ν〉 < ε} ⊆W .

Clearly, 0 ∈U . Since we can write U = {ν; 〈−f0, ν〉>−ε} ∩⋂n
i=1{ν; 〈fi, ν〉< ε}, we also have U ∈ U1.

Case 3: μ ∈ F⊥0 \ {0}. Recalling our convention on division by zero from the end of Section 1.2, it follows from
standard linear algebra and topology that the map f �→ 〈f,μ〉/√Q(f ), defined on F\F0, is continuous, bounded and
attains its maximum, say, at f0. Since μ �= 0, we have 〈f0,μ〉> 0 (and remember that Q(f0) > 0).

There exist functions f1, f2, . . . , fn and δ ∈ (0, 〈f0,μ〉), such that U0 := {ν ∈ V ; 〈f0, ν − μ〉>−δ} ∩⋂n
i=0{ν ∈

V ; 〈fi, ν −μ〉< δ} ⊆W . Now consider the sets:

Uε,t :=
{
ν ∈ V ; 〈f0, ν −μ〉>−ε

}∩ n⋂
i=1

{〈f0 + tfi, ν −μ〉< ε
}
.

Clearly, μ ∈Uε,t for all ε, t > 0. Next, for each ν ∈Uε,t , we can estimate:

〈fi, ν −μ〉 = 1

t

[〈f0 + tfi, ν −μ〉 − 〈f0, ν −μ〉] <
2ε

t
.

Therefore, if ε < δ and 2ε/t < δ, then Uε,t ⊆U0.
Now we turn our attention to the question when Uε,t ∈ U . By (3.48), this will be surely true if:

〈f0 + tfi,μ〉 + ε√
Q(f0 + tfi)

>
〈f0,μ〉 − ε√

Q(f0)
. (3.49)

Since 〈f,μ〉/√Q(f ) is maximal at f0, it follows from smoothness that there exist a, t0 > 0, such that for all i =
1,2, . . . , n,

〈f0 + tfi,μ〉√
Q(f0 + tfi)

≥ 〈f0,μ〉√
Q(f0)

− at2

for all 0 ≤ t ≤ t0. Therefore, the condition (3.49) is satisfied if t ≤ t0 and at2 < ε/
√

Q(f0). Collecting everything

together, we conclude after some calculation that if 0 < t < min{t0, δ

2a
√

Q(f )
,
√

δ

a
√

Q(f )
}, then there exists ε > 0, such

that Uε,t ⊆U0 ⊆W and Uε,t ∈ U , so that the desired set U exists in this case, too. This completes the proof. �
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Proof of Theorem 1.5. We split the argument into several steps.
Step 1: Derive a MDP for finite-dimensional restrictions of the measures. Denote by F the set of all finite-

dimensional subspaces of B(Rd), fix F ∈ F and consider the random measures μλ as linear functionals on F . Let
U0∪U1 be the basis of the usual topology on F ′ , the dual of F , where U0 and U1 are defined as in Lemma 3.11, taking
the quadratic form Q := σ 2. For U = {ν ∈ F ′; 〈f0, ν〉> b0, 〈f1, ν〉< b1, . . . , 〈fn, ν〉< bn} ∈ U1, where the numbers
b0, b1, . . . , bn satisfy the conditions below (3.48), we have, by Lemma 3.10:

LU := − lim
λ→∞a−2

λ P
(
a−1
λ λ−1/2μ̄λ ∈U

)= (max{b0,0})2

2σ 2[f0] ;

for U ∈ U0, we have LU =∞. By Theorem 4.1.11 of [10], the random functionals a−1
λ λ−1/2μ̄λ ∈ F ′ satisfy a weak

LDP (MDP) as λ→∞ with speed a2
λ and rate function:

ν �→ sup
U∈U
ν∈U

LU = sup
f∈F

〈f, ν〉2
2σ 2[f ] .

Finally, by Lemma 1.2.18 of [10], these random functionals satisfy a full LDP (MDP) with the same good rate function
because they are exponentially tight for speed a2

λ. To see this, take a basis f1, . . . , fn of F with σ [fi] ≤ 1 for all i and
consider the compact sets KM :=⋂n

i=1{ν ∈ F ′; |〈fi, ν〉| ≤M}. By Lemma 3.10, lim supλ→∞ a−2
λ P(a−1

λ λ−1/2μ̄λ /∈
KM)≤−M2/2 and exponential tightness follows. This completes Step 1.

Step 2: Combine the MDP’s for finite-dimensional restrictions into a MDP for entire random measures. We apply
a version of the Dawson–Gärtner theorem for projective limits, namely Theorem 4.6.9 of [10], naturally embedding
Meas(Rd) into (B(Rd))′, the algebraic dual of B(Rd), and identifying the projections of the functionals to finite-
dimensional spaces with their restrictions to finite-dimensional subspaces of B(Rd). Thus we find that, as λ→∞,
the random measures a−1

λ λ−1/2μ̄λ satisfy the MDP in (B(Rd))′ with speed a2
λ and the good rate function:

J (ν) := sup
F∈F

sup
f∈LinF

〈f, ν〉2
2σ 2[f ] = sup

f∈B(Rd )

〈f, ν〉2
2σ 2[f ] .

Step 3: Compute the rate function. Take ν ∈ (B(Rd))′ and distinguish five separate cases.
Case 1: ν is unbounded with respect to the supremum norm on B(Rd). Since the latter is stronger than the seminorm

σ , we have J (ν)=+∞ in this case.
Case 2: ν is bounded with respect to the supremum norm, but is not a measure. This means that there exists

a sequence of bounded functions fn with fn ↓ 0 pointwise, such that the 〈fn, ν〉 does not converge to 0. We may
assume that |〈fn, ν〉| ≥ 1 for all n. Denoting L2 := {f :Rd → R;σ [f ] <∞} and noting that B(Rd) ⊆ L2, we find
that σ [f ]→ 0 by the dominated convergence theorem. Therefore J (ν)=+∞.

Case 3: ν is a measure, but is not absolutely continuous with respect to V (κ(x))κ(x)dx, where V is as in (1.8). In
this case, there exists a measurable set A with

∫
A

V (κ(x))κ(x)dx = 0, but ν(A) �= 0. In other words, σ [1A] = 0, but
〈1A, ν〉 �= 0, so that again J (ν)=+∞.

Case 4: ν  V (κ(x))κ(x)dx, but σ [ρ] = ∞, where ρ(x) := ν(dx)/(V (κ(x))κ(x)dx). In this case, there exists
a sequence ρ1, ρ2, . . . ∈ L2 which converges pointwise to ρ and satisfies ρρn ≥ 0 and |ρ1| ≤ |ρ2| ≤ · · · . By the
monotone convergence theorem, we have σ [ρn] ↑ ∞; we may assume that σ [ρ1] > 0. Then the functions gn :=
ρn/σ

2[ρn] satisfy σ [gn] = 1/σ [ρn]→ 0 but 〈gn, ν〉 ≥ 1, so that again J (ν)=+∞.
Case 5: ν V (κ(x))κ(x)dx and ρ(x) := ν(dx)/(V (κ(x))κ(x)dx) satisfies σ [ρ]<∞. In this case we may write:

J (ν) = sup
f∈B(Rd )

(
∫
Rd f (x)ρ(x)V (κ(x))κ(x)dx)2

2
∫
Rd f 2(x)V (κ(x))κ(x)dx

= sup
f∈L2

(
∫
Rd f (x)ρ(x)V (κ(x))κ(x)dx)2

2
∫
Rd f 2(x)V (κ(x))κ(x)dx

= 1

2
σ 2[ρ] = I (ν),

where the latter is defined in (1.25). The second equality holds because B(Rd) is dense in L2; the third one is due to
the Cauchy–Schwarz inequality. This completes Step 3.
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Step 4: Restrict the MDP. To see that we may replace (B(Rd))′ and J with Meas(Rd) and I , we apply Lemma 4.1.5
of [10], noting that J agrees with I on Meas(Rd) and is infinite outside Meas(Rd). This completes the proof. �

3.5. Proof of non-degeneracy of the limiting variance

Throughout this subsection, we stick to the conventions on ξ , H , 
, R, ξλ, 
λ, Rλ and Ω specified in Section 1.2.
Before proving Theorem 1.2, we need the following auxiliary result.

Lemma 3.12. Let f be a non-negative locally integrable function. Take 1 < a < b. Then there exists a universal
constant C, such that for every non-negative geometric functional g,[

E

( ∑
x̆∈P̆f

g(x̆, P̆f )

)a]1/a

≤ C

(
(a − 1)b

b− a

)(a−1)/a

×
{

b− 1

b− a

[∫
R̆d

E
(
g(x̆, P̆f )

)b
f (x)dx̆

]1/b

+
∫
R̆d

[
E
(
g(x̆, P̆f )

)b]1/b
f (x)dx̆

}
.

Proof. Let m be a non-negative measurable function on R̆
d , such that for each x̆ with m(x̆) = 0, g(x̆, P̆f ) almost

surely vanishes. For each t ≥ 0, let M̆(t) := {x̆;m(x̆) > t}. Write:

J :=
[
E

( ∑
x̆∈P̆f

g(x̆, P̆f )

)a]1/a

=
[
E

( ∑
x̆∈P̆f∩M̆(0)

g(x̆, P̆f )

m(x̆)

∫ m(x̆)

0
dt

)a]1/a

=
[
E

(∫ ∞
0

∑
x̆∈P̆f ∩M̆(t)

g(x̆, P̆f )

m(x̆)
dt

)a]1/a

.

By Minkowski’s inequality for integrals and then by Jensen’s inequality, we can estimate:

J ≤
∫ ∞

0

[
E

( ∑
x̆∈P̆f∩M̆(t)

g(x̆, P̆f )

m(x̆)

)a]1/a

dt

≤
∫ ∞

0

[
E

( ∑
x̆∈P̆f∩M̆(t)

∣∣P̆f ∩ M̆(t)
∣∣a−1

(
g(x̆, P̆f )

m(x̆)

)a)]1/a

dt.

By the Palm formula (3.2), we can rewrite this estimate as:

J ≤
∫ ∞

0

[∫
M̆(t)

E

{(
1+ ∣∣P̆f ∩ M̆(t)

∣∣)a−1
(

g(x̆, P̆f )

m(x̆)

)a}
f (x)dx̆

]1/a

dt.

Applying Hölder’s inequality, we obtain:

J ≤
∫ ∞

0

[∫
M̆(t)

{
E
(
1+ ∣∣P̆f ∩ M̆(t)

∣∣)(a−1)b/(b−a)}(b−a)/b
{
E

(
g(x̆, P̆f )

m(x̆)

)b}a/b

f (x)dx̆

]1/a

dt.

Now set m(x̆) := [E(g(x̆, P̆f ))b]1/b . In addition, observe that |P̆f ∩ M̆(t)| is Poisson with expectation I (t) :=∫
M̆(t)

f (x)dx̆. If X ∼ Pois(λ), then for any n ∈ N, we may express the nth moment of 1 + X in terms of a con-
tour integral:

E(1+X)n = n!
2πi

∮
K

eλ(ez−1)+z

zn+1
dz.
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Choosing K to be the circle with radius 1/(1+λ) centered at the origin, we can estimate E(1+X)n ≤ n!(1+λ)nf (λ),
where f (λ)= eλ(e1/(λ+1)−1)+1/(λ+1). Noting that f is bounded in λ > 0 and applying Stirling’s formula, we obtain that
there exists a universal constant A, such that E(1+X)γ ≤ (Aγ (1+ λ))γ for all γ > 0. Therefore,

J ≤
(

A(a − 1)b

b− a

)(a−1)/a ∫ ∞
0

[(
1+ I (t)

)a−1
I (t)

]1/a dt ≤A

(
(a − 1)b

b− a

)(a−1)/a ∫ ∞
0

[(
I (t)

)1/a + I (t)
]

dt.

Observe that:∫ ∞
0

I (t)dt =
∫
Rd

m(x̆)f (x)dx.

For the rest, apply Young’s inequality:∫ ∞
0

(
I (t)

)1/a dt ≤ a − 1

a

∫ ∞
0

φ(t)dt + 1

a

∫ ∞
0

(
φ(t)

)1−a
I (t)dt, (3.50)

where we choose φ(t)=min{1, (c/t)(b−1)/(a−1)}; c > 0 will be chosen later. It is easy to see that:∫ ∞
0

φ(t)dt = b− 1

b− a
c. (3.51)

For the second term, we have:∫ ∞
0

(
φ(t)

)1−a
I (t)dt =

∫
R̆d

∫ m(x̆)

0
max

{
1,

(
t

c

)b−1}
dtf (x)dx ≤

∫
R̆d

(
m(x̆)+ (m(x̆))b

bcb−1

)
f (x)dx.

Choosing c := [∫
R̆d (m(x̆))bf (x)dx̆]1/b , combining with (3.51) and plugging into (3.50), we obtain:

∫ ∞
0

(
I (t)

)1/a dt ≤ B

[∫
R̆d

(
m(x̆)

)b
f (x)dx̆

]1/b

+ 1

a

∫
R̆d

m(x̆)f (x)dx̆,

where B = a−1
a

b−1
b−a
+ 1

ab
≤ b−1

b−a
. Collecting all together, the result follows. �

Corollary 3.3. Let (gλ)λ>λ0 and (R∗λ)λ>λ0 be two families of non-negative geometric functionals. Define:

hλ(x̆, X̆ ) :=
∑
y̆∈X̆

gλ(y̆, X̆ )1
(
R∗λ(y̆, X̆ )≥ λ1/d‖y − x‖),

h−λ (x̆, X̆ ) :=
∑
y̆∈X̆

gλ

(
y̆, X̆ \ {x̆})1(R∗λ(y̆, X̆ )≥ λ1/d‖y − x‖)

(assuming x̆ ∈ X̆ ). Next, let 0 < τ <∞ and let p, s, q > 0 with s/p+ d/q < 1. Suppose that the family (R∗λ)λ>λ0 sat-
isfies Assumption MH(q, τ,Ω). Then, if the family (gλ)λ>λ0 satisfies Assumption MH(p, τ,Ω), the family (h−λ )λ>λ0

satisfies Assumption MH(s, τ,Ω); if the family (gλ)λ>λ0 satisfies Assumption MH1(p, τ,Ω), the family (hλ)λ>λ0

satisfies Assumption MH1(s, τ,Ω).

Proof. For arbitrary non-negative geometric functional η and any τ,u > 0, set:

mu,τ (η) := ess sup
1(x∈Ω)dx̆

[
E
(
η(x̆, P̆τ ∩Ω)

)u]1/u
,

m+u,τ (η) := ess sup
1(x,y∈Ω)dx̆⊗dy̆

[
E
(
η
(
x̆,

(
P̆τ ∪ {y̆}

)∩Ω
))u]1/u

.
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Thus, we have to bound ms,λτ (hλ) and ms,λτ (h
−
λ ). We shall apply Lemma 3.12. Observe that one can choose 0 < r < q

and t > s with t/p+ d/r = 1. To bound ms,λτ (h
−
λ ), we first use Hölder’s and Markov’s inequality to estimate:[

E
(
gλ(y̆, P̆λτ ∩Ω)1

(
R∗λ(y̆, P̆λτ ∩ Ω̆)≥ λ1/d‖y − x‖))t]1/t

≤mp,λτ (gλ)
[
P
(
R∗λ(y̆, P̆λτ ∩ Ω̆)≥ λ1/d‖y − x‖)]d/r ≤ mp,λτ (gλ)(mq(1+R∗λ))qd/r

(1+ λ1/d‖y − x‖)qd/r

for almost all x̆, y̆ ∈ Ω̆ . By Lemma 3.12, we have:

ms,λτ

(
x̆, h−λ

) ≤ K1

[∫
Ω

(mp,λτ (gλ))
t (mq(1+R∗λ))qtd/r

(1+ λ1/d‖y − x‖)qtd/r
λτ dy

]1/t

+K2

∫
Ω

mp,λτ (gλ)(mq(1+R∗λ))qd/r

(1+ λ1/d‖y − x‖)qd/r
λτ dy.

Substituting z = λ1/d(y − x), observe that the both integrals converge uniformly in x and λ, leading to the desired
bound on ms,λτ (h

−
λ ). Similarly, we can bound ms,λτ (hλ), using m+p,λτ (gλ) instead of mp,λτ (gλ). This completes the

proof. �

Proof of Theorem 1.2. First, observe that there exists ρ > 0, such that for notably many pairs (t, X̆ ), 
((0, t), X̆ ) �=
0, X̆ is ρ-externally stable at (0, t) and X̆ ⊂ Bρ(0). This also means that with non-zero probability, 
((0, T ),

P̆1 ∩Bρ(0)) �= 0 and P̆1 ∩Bρ(0) is ρ-externally stable at (0, T ), where T is a generic random mark with distribution
PM, independent of P̆1 (see also Lemma 4.2 of [26]). However, from the latter, we can deduce that 
((0, T ), P̆1) �= 0
and P̆1 is ρ-externally stable at (0, T ): see Remarks 1.4 and 1.6.

Now let v := vol(Ω) and Ω∗ := (τv)−1/dΩ . Define κ to be the uniform density on Ω∗ (that is, κ(x∗) := τ1(x∗ ∈
Ω∗)) and let f to be the indicator function of Ω∗. Then condition (1.13) need not be verified, while, by Remark 1.8,
the equivalent conditions (1.12) and (1.14) hold provided that the family (
λ)λ>λ0 satisfies Assumption MH(s, τ,Ω).
To verify the latter, first estimate (assuming that x̆ ∈ X̆ ):∣∣
λ(x̆, X̆ )

∣∣≤ ∣∣ξλ(x̆, X̆ )
∣∣+∑

y̆∈X̆

(∣∣ξλ(y̆, X̆ )
∣∣+ ∣∣ξλ

(
y̆, X̆ \ {x̆})∣∣)1(R(y̆, X̆ )≥ λ1/d‖y − x‖).

Clearly, there exists s > 2 with s/p + d/q < 1. Since p > s, the family (ξλ)λ>λ0 satisfies Assumption MH(s, τ,Ω).
To verify the latter for the remaining sum, apply Corollary 3.3.

We have now verified all the conditions required for Theorem 1.1. To complete the proof, observe that ξ satisfies
Assumption CV(κ) by Remark 1.8. Formula (1.7) applied to our choice of f and κ yields V (τ)= limλ→∞ σ 2

λ [f ]/λ >

0 and the proof is complete. �
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[33] L. Saulis and V. Statulevičius. Limit Theorems on Large Deviations. Kluwer Academic, Dordrecht, 1991. MR1171883
[34] T. Schreiber and J. E. Yukich. Large deviations for functionals of spatial point processes with applications to random packing and spatial

graphs. Stochastic Process. Appl. 115 (2005) 1332–1356. MR2152378

http://www.ams.org/mathscinet-getitem?mr=0575427
http://www.ams.org/mathscinet-getitem?mr=1757951
http://www.ams.org/mathscinet-getitem?mr=1459271
http://www.ams.org/mathscinet-getitem?mr=1701622
http://www.ams.org/mathscinet-getitem?mr=1950431
http://www.ams.org/mathscinet-getitem?mr=2371524
http://www.ams.org/mathscinet-getitem?mr=1619036
http://www.ams.org/mathscinet-getitem?mr=1181197
http://www.ams.org/mathscinet-getitem?mr=0173275
http://www.ams.org/mathscinet-getitem?mr=2640365
http://www.ams.org/mathscinet-getitem?mr=2200529
http://www.ams.org/mathscinet-getitem?mr=2115047
http://www.ams.org/mathscinet-getitem?mr=2591874
http://www.ams.org/mathscinet-getitem?mr=0378095
http://www.ams.org/mathscinet-getitem?mr=1191166
http://www.ams.org/mathscinet-getitem?mr=1824203
http://www.ams.org/mathscinet-getitem?mr=1986198
http://www.ams.org/mathscinet-getitem?mr=2165584
http://arxiv.org/abs/arXiv:math/0508464
http://www.ams.org/mathscinet-getitem?mr=2364229
http://www.ams.org/mathscinet-getitem?mr=2336596
http://www.ams.org/mathscinet-getitem?mr=2524467
http://www.ams.org/mathscinet-getitem?mr=1878288
http://www.ams.org/mathscinet-getitem?mr=1890065
http://www.ams.org/mathscinet-getitem?mr=1952000
http://www.ams.org/mathscinet-getitem?mr=2201885
http://www.ams.org/mathscinet-getitem?mr=0286162
http://www.ams.org/mathscinet-getitem?mr=0501287
http://www.ams.org/mathscinet-getitem?mr=1171883
http://www.ams.org/mathscinet-getitem?mr=2152378

	Introduction, main results
	Introduction
	Terminology and notation
	Known results
	Non-degeneracy of the limiting variance
	Estimates on deviation probabilities
	Moderate deviation principles

	Applications
	Random sequential packing and related models
	Nearest neighbors
	Sphere of Inﬂuence Graphs

	Proofs of the results
	Moment measures and Palm distributions
	The method of cumulants
	Proof of bounds on deviation probabilities (Theorem 1.3)
	Proof of moderate deviations
	Proof of non-degeneracy of the limiting variance

	Acknowledgements
	References

