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Abstract. We consider a class of parabolic semi-linear stochastic partial differential equations driven by space–time white noise
on a compact space interval. Our aim is to obtain precise asymptotics of the transition times between metastable states. A version of
the so-called Eyring–Kramers formula is proven in an infinite dimensional setting. The proof is based on a spatial finite difference
discretization of the stochastic partial differential equation. The expected transition time is computed for the finite dimensional
approximation and controlled uniformly in the dimension.

Résumé. Nous nous intéressons à une famille d’équations aux dérivées partielles stochastiques paraboliques et semi-linéaires,
perturbées par un bruit blanc en espace-temps, définies sur un intervalle réel compact. Nous cherchons à calculer les asymptotiques
précises des espérances des temps de transitions entre les états métastables. Nous démontrons dans ce cadre une version en dimen-
sion infinie de la formule dite d’Eyring–Kramers. La preuve repose sur l’approximation par un schéma aux différences finies de
l’équation aux dérivées partielles stochastique. L’espérance du temps de transition est calculée pour l’approximation puis contrôlée
uniformément quelque soit la dimension.
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Keywords: Metastability; Metastable transition time; Parabolic stochastic partial differential equations; Reaction-diffusion equations; Stochastic
Allen–Cahn equations; Eyring–Kramers formula

1. Introduction

Metastability is a phenomenon which concerns systems with several stable states. Due to perturbations (either de-
terministic or stochastic) the system undergoes a shift of regime and reaches a new stable state (see, e.g., [16] by
Cassandro, Galves, Olivieri and Vares, [27] by Galves, Olivieri and Vares, the book [37] by Olivieri and Vares and the
lecture notes [7] by Bovier). Typical examples of metastable behavior can be found in chemistry, physics (for models
of phase transition) and ecology.

In this article, our aim is to understand metastability for a class of stochastic partial differential equations. We
consider the Allen–Cahn (or Ginzburg–Landau) model which represents the behavior of an elastic string in a viscous
stochastic environment submitted to a potential (see, e.g., Funaki [26]). This model has other interpretations in quan-
tum field theory (see [17,22] and the references therein) and in statistical mechanics as a reaction diffusion equation
modeling phase transitions and evolution of interfaces (see Brassesco and Buttà [13,14]).
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More precisely, we deal with the following equation, for (x, t) ∈ [0,1] ×R
+

∂tu(x, t) = γ ∂xxu(x, t) − V ′(u(x, t)
)+ √

2εW, (1.1)

where γ > 0. W is a space–time white noise on [0,1] × R
+ in the sense of Walsh [39] and ε > 0 is the intensity of

the noise. V is a smooth real valued function on R called a local potential. We consider two boundary conditions:
Dirichlet boundary conditions (for all t ∈ R

+, u(0, t) = u(1, t) = 0) and Neumann boundary conditions (∂xu(0, t) =
∂xu(1, t) = 0). The initial condition is given by a continuous function u0 which satisfies the given boundary conditions.
Existence and uniqueness of a Hölder-continuous solution in the mild sense have been proved by Gyöngy and Pardoux
in [30].

Faris and Jona-Lasinio in [22] were among the first ones to analyze Eq. (1.1) for a double well potential

V (x) = x4

4
− x2

2
. (1.2)

In this case, V has only two minima which are +1 and −1. One expects that the model (1.1) has several stable states
and that a metastable behavior occurs. The authors introduced a functional potential S and interpreted (1.1) as the
stochastic perturbation of an infinite dimensional gradient system:

∂tu = − δS

δφ
+ √

2εW, (1.3)

where for φ a differentiable function,

S(φ) =
∫ 1

0

γ

2

∣∣φ′(x)
∣∣2 + V

(
φ(x)

)
dx. (1.4)

S represents the free energy. δS
δφ

is the Fréchet derivative of S, i.e., the infinite dimensional gradient of S.

For more general functions V (real valued C3 functions), we can define a similar potential S as in (1.4) which
determines a potential landscape. Under the stochastic perturbation, this potential landscape is explored by the process
u defined in (1.1). While the system without noise (i.e., ε = 0) has several stable fixed points (which are the minima of
S), for ε > 0 transitions between these fixed points will occur at a suitable timescale. The transition paths go through
the lowest saddle points. Thus, minima and saddle points of S have a key role to understand metastability but it is
often a hard task, given a potential V (and thus S), to completely compute and comprehend the geometrical structure
of the energy landscape. However, some elegant methods exist (see, e.g., [23,40]).

The model (1.3) is an infinite dimensional generalization of the finite dimensional systems investigated by Freidlin
and Wentzell [25] and by Bovier, Eckhoff, Gayrard and Klein in [10,11]. Moreover, we will see that (1.1) is rigorously
the limit of a gradient finite dimensional system (via a spatial finite difference approximation).

Our aim is to derive precise asymptotics of the expected transition time, i.e., the time needed, starting from a
minimum φ0 of S, to hit a set of lower minima. We define the hitting time τε(B) by τε(B) = inf{t > 0, u(t) ∈ B}
where B is a disjoint union of small ball around some minima of S lower than φ0. We prove that the expected time,
Eφ0[τε(B)], has a very distinctive form known as the Arrhenius equation (Theorem 2.6). This expectation reads

Eφ0

[
τε(B)

]= AeE/ε
(
1 + O

(√
ε
∣∣ln(ε)

∣∣3/2))
(ε → 0), (1.5)

where E is the activation energy and A is the prefactor. E was computed by Faris and Jona-Lasinio for the double
well potential (1.2) using a large deviation approach (Theorem 1.1 [22]). E is exactly the minimum height of potential
that a pathway has to overcome to reach B starting from φ0. The prefactor A is a constant (for our set of hypotheses)
and depends only on the local geometry of the potential S near the minimum φ0 and near the passes (or saddle points)
from φ0 to the set B . The order O(

√
ε|ln(ε)|3/2) of the error term comes directly from the local approximation of the

potential S by its quadratic part.
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For the double well potential (1.2) with Dirichlet boundary conditions, Faris and Jona-Lasinio proved that S has
only two global minima, denoted m and −m (which away from the boundary, correspond roughly to the constant
functions 1 and −1 resp.). For some γ , this model has a unique saddle point σ = 0 (the constant function 0). We
deduce from Theorem 2.6 that E−m[τε(B

+)], for a small ball B+ in the suitable norm around m, takes the form (1.5)
with E = S(σ ) − S(−m) and

A = 2π

|λ−(σ )|

√√√√+∞∏
k=1

|λk(σ )|
|λk(−m)| , (1.6)

where (λk(φ))k≥1 are the eigenvalues of the second Fréchet derivative of the potential S at a point φ and λ−(σ ) is the
unique negative eigenvalue at the saddle point σ . Using asymptotic expansion of the eigenvalues, we prove that the
infinite product converges. This quantity is similar to the ratio of the determinants of the Hessian matrices obtained in
the finite dimensional case (see [10]). We also mention the fact that this infinite product has a nice expression in terms
of solutions of linear differential equations (see, e.g., Levit and Smilansky [33]).

Kramers in [32] investigated the case of a one dimensional diffusion as a model for chemical reactions and ex-
presses rates instead of expectations. Previous computations leading to similar rates were made by Eyring in [21].
Their formula is known as the Eyring–Kramers formula. It takes the form (1.5) with the prefactor given by a formula
similar to (1.6) but with a single factor in the product (there is only one eigenvalue).

Similar Eyring–Kramers formulas exist through a wide range of reversible Markovian models from Markov chains,
stochastic differential equations. For finite dimensional diffusions, Freidlin and Wentzell in [25], proving that these
systems obey a large deviation principle, obtained the activation energy in terms of the rate function. In recent years,
the potential theory approach initiated by Bovier, Eckhoff, Gayrard and Klein in [10,11] allowed to give very precise
results and led to a proof of the Eyring–Kramers formula for gradient drift diffusions in finite dimension. Moreover,
the potential approach was originated from Markov chains (see [7–9]) and have been refined to obtain metastable
transition times for specific models (see, e.g., [6,12]).

Formula (1.6) is then the extension of the Eyring–Kramers formula to a class of one-dimensional SPDEs (1.1).
Maier and Stein in [34] obtained heuristically this formula and Vanden-Eijnden and Westdickenberg in [38] conducted
similar computations.

Specifically, the system (1.1) and its metastable behavior have been studied for at least thirty years using mainly
large deviation principle and comparison estimates between the deterministic process ((1.1) with ε = 0) and the
stochastic process defined by (1.1). Cassandro, Olivieri, Picco [17] obtained asymptotics similar to those obtained
by Faris and Jona-Lasinio [22] when the size of the space interval is not fixed and goes to infinity as ε goes to 0
sufficiently slowly. These results first prove the existence of a suitable exponential timescale in which the process
undergoes a transition.

In the same case as (1.2), Martinelli, Olivieri and Scoppola [35] obtained the asymptotic exponentiality of the tran-
sition times (Theorem 4.1 [35]). Also, Brassesco [13] proved that the trajectories of this system exhibit characteristics
of a metastable behavior: the escape from the basin of attraction of the minimum −m occurs through the lowest saddle
points (Theorem 2.1 [13]) and the process starting from −m spends most of its time before the transition near −m

(Theorem 2.2 [13]).
In this paper, we consider a local potential V (satisfying Assumptions 2.1 and 2.4) and we rigorously prove an

infinite dimensional version of the Eyring–Kramers formula. Our method relies on a spatial finite difference approxi-
mation of Eq. (1.1) introduced by Berglund, Fernandez and Gentz in [4,5] as a model of coupled particles submitted
to a potential. The computation of the expected transition time for the approximated system gives us the prefactor, the
activation energy and some error terms. We need to control the behavior of these error terms as the step of discretiza-
tion goes to 0 (or equivalently as the dimension N of the approximated system goes to +∞). To this aim, we adapt
results from [3] by Bovier, Méléard and the author.

As proved by Funaki [26] and Gyöngy [29], the solution of the approximated system converges to the solution of
the SPDE. By combining different results from SPDE theory, large deviation theory (from Chenal and Millet [18])
and Sturm–Liouville theory we are able to take the limit of the finite dimensional model in order to retrieve the SPDE
(1.1). We also need to adapt estimates on the loss of the memory of the initial condition (from Martinelli, Scoppola
and Sbano [35,36]) uniformly in the dimension.
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The use of spatial finite difference approximation is quite natural since we consider our SPDEs in the sense of Walsh
[39], limited to the case of space–time white noise. Other approximations could be possible, notably the Galerkin
approximation should lead to similar results for a different class of SPDEs in the framework of Da Prato and Zabczyk
(see the book [20]).

The article is organized as follows. In Section 2, we present the equation, the assumptions, the main theorem
(Theorem 2.6) and a sketch of its proof. Then in Section 3, we adapt the convergence of the approximations and prove
convergence of the approximated transition times. In Section 4, we state large deviations estimates by Chenal and
Millet [18], contraction results by Martinelli, Olivieri, Scoppola and Sbano [35,36] and prove a uniform control in
the initial condition uniformly in the dimension. In Section 5, we recall results about eigenvalues and eigenvectors of
Sturm–Liouville problems and prove the convergence of the prefactor. In the last section, we compute the expected
transition times uniformly in the dimension.

We will use the following notations henceforth. For a functional space C, equipped with a norm ‖·‖C , we denote by
Cbc the closed subspace in the C topology of the functions in C satisfying the suitable boundary conditions (Dirichlet
or Neumann). For f ∈ L∞([0,1] × [0, T ]) we set the norm of this space ‖f ‖∞,T or simply ‖f ‖∞ when T = +∞.

2. Results

2.1. The equation

The assumptions are of two kinds: some on the local potential V , others on the functional potential S. We first start
with the hypotheses on V .

Assumption 2.1. We suppose that:

• V is C3 on R.
• V is convex at infinity: there exist R,c > 0 such that for |u| > R

V ′′(u) > c > 0. (2.1)

• V grows at infinity at most polynomially: there exist p,C > 0 such that

V (u) < C
(
1 + |u|p). (2.2)

These hypotheses are made to avoid complications for the definition of the solution u of (1.1) and to allow the
computations of the derivatives of S. Note that Eq. (2.1) implies in particular that the drift −V ′ satisfies a one sided
linear growth condition: there exists C > 0 such that for all u ∈R

−uV ′(u) < C
(
1 + u2). (2.3)

Let (Ω,F ,P) be a probability space on which we define a space–time white noise W as defined in [39] equipped
with a filtration (Ft )t≥0 with the usual properties. The integrable processes for the white noise are the predictable
measurable processes in L2(Ω × R+ × [0,1]). We denote by gt (x, y) the density of the semi-group generated by
γ ∂xx on [0,1] with the suitable boundary conditions.

Let us recall that a random field u is a mild solution of (1.1) if

(1) u is almost surely continuous on [0,1] ×R
+ and predictable

(2) for all (x, t) ∈ [0,1] ×R
+

u(x, t) =
∫ 1

0
gt (x, y)u0(y)dy −

∫ t

0

∫ 1

0
gt−s(x, y)V ′(u(y, s)

)
dy ds

+ √
2ε

∫ t

0

∫ 1

0
gt−s(x, y)W(dy,ds). (2.4)
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We state from [30] the following result on the existence, uniqueness and regularity of the solution (valid under the
one sided linear growth condition (2.3)) for Dirichlet and Neumann boundary conditions.

Proposition 2.2 ([30]). For every initial condition u0 ∈ Cbc([0,1]), the stochastic partial differential Eq. (1.1) has a
unique mild solution. Moreover for all T > 0 and p ≥ 1,

E

[
sup

[0,T ]×[0,1]
∣∣u(x, t)

∣∣p]≤ C(T ,p). (2.5)

The random field u is essentially 1
2 -Hölder in space and 1

4 -Hölder in time.

The proof of Proposition 2.2 is standard and uses mainly estimates on the density gt (x, y). The estimate (2.5) is
straightforward if the drift is globally Lipschitz and bounded. For our case, it holds via a localization argument and
the use of a comparison theorem from [30]. Details can be found in the Ph.D. thesis of the author [2] (Lemma A.3.9).

Remark 1. The definition of the stochastic convolution (the last expression of the right-hand side of (2.4)) requires
the density of the semi-group to be in L2([0,1]× [0, T ]) for every T > 0. Unfortunately, that is only true in dimension
one. For higher dimensions, the stochastic convolution does not define a classical function but a distribution in a
Sobolev space of negative index [39].

2.2. Stationary points

As for the finite dimensional case, the minima and saddle points of S play a crucial role. To this end, we first specify
what is the “gradient” (or the Fréchet derivative) of the functional S. Let us recall that S is defined, for φ ∈ H 1

bc , by

S(φ) =
∫ 1

0

γ

2

∣∣φ′(x)
∣∣2 + V

(
φ(x)

)
dx. (2.6)

For φ,h in C2
bc([0,1]) we have a Taylor expansion of S at the second order in h

S(φ + h) = S(φ) + DφS(h) + 1

2
D2

φS(h,h) + O
(‖h‖2

C2

)
, (2.7)

where ‖h‖C2 = ‖h‖∞ + ‖h′‖∞ + ‖h′′‖∞. By integration by parts we compute the differentials DφS and D2
φS. The

first order differential is a linear functional which takes the form

DφS(h) =
∫ 1

0

[−γφ′′(x) + V ′(φ(x)
)]

h(x)dx. (2.8)

The Fréchet derivative is δS
δφ

= −γφ′′(x) + V ′(φ(x)). The second order derivative (the Hessian operator) takes the
form

D2
φS(h,h) =

∫ 1

0
h(x)

[−γ h′′(x) + V ′′(φ(x)
)
h(x)

]
dx. (2.9)

We denote by HφS the Hessian operator at φ:

HφSh(x) = −γ h′′(x) + V ′′(φ(x)
)
h(x). (2.10)

The Hessian operator is a Sturm–Liouville operator.
We say that φ is a stationary point of S if φ is solution of the non-linear differential equation

δS

δφ
= −γφ′′ + V ′(φ) = 0. (2.11)
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Let us now fix two points φ,ψ ∈ Cbc([0,1]) and define some quantities.

Γ (φ → ψ) = {f,f (0) = φ,f (1) = ψ,f ∈ C
([0,1],Cbc

([0,1]))} (2.12)

is the set of continuous paths from φ to ψ . For f ∈ Γ (φ → ψ), f̂ denotes the set of maxima of the path f ,

f̂ =
{
f (t0), t0 ∈ arg max

t∈[0,1]
S
(
f (t)

)}
. (2.13)

The saddle points are passes from a valley to another one. The definition uses this idea.

Definition 2.3 (Saddles). For any φ,ψ ∈ Cbc([0,1]), we define Ŝ(φ,ψ), the minimum height needed to go from φ to
ψ

Ŝ(φ,ψ) = Ŝ(ψ,φ) = inf
{
S(x), x ∈ f̂ , f ∈ Γ (φ → ψ)

}
. (2.14)

For a finite subset A of Cbc([0,1]), we also define Ŝ(φ,A) = minψ∈A Ŝ(φ,ψ). It is the minimum height attained to
reach a point in A from φ.

For φ,ψ such that Ŝ(φ,ψ) < ∞, we denote S (φ,ψ) the set of admissible saddles: the points which realize the
maximum along a minimal pathway

S (φ,ψ) = {σ ∈ Cbc

([0,1]), S(σ ) = Ŝ(φ,ψ),∃f ∈ Γ (φ → ψ),σ ∈ f̂
}
. (2.15)

Accordingly, for a finite subset A of Cbc([0,1]), we define S (φ,A)

S (φ,A) = {σ ∈ Cbc

([0,1]), S(σ ) = Ŝ(φ,A),∃ψ ∈A,∃f ∈ Γ (φ → ψ),σ ∈ f̂
}
. (2.16)

The set of admissible saddle points is very important to compute the prefactor of the mean transition times. Near
these points the process spends the most crucial time as it passes from a basin of attraction to another one.

We now present the assumptions on S.

Assumption 2.4. We suppose that:

• S has a finite number of minima and saddle points.
• All the minima and saddle points of S are non-degenerate (i.e., hyperbolic): at each point, the Hessian operator

has non-zero eigenvalues.

Assumption 2.4 is structural. The finite number of stationary points provides a simple generalization of the case
where there is only one saddle point. It also implies that the stationary points are isolated, e.g., we do not consider
the case of periodic stable orbits. The non-degeneracy condition is necessary in order to approximate locally at the
minima and saddle points the potential by its quadratic part. If this is not the case the prefactor in (1.5) is not a constant
but should have a dependence in ε.

Connections between Assumptions 2.1 and 2.4 are not straightforward. Proving that a given potential S satisfies
Assumption 2.4 is not easy, a precise analysis is often needed. Moreover if we want to investigate the dependence
of the potential S on the parameter γ , bifurcations can occur and the landscape do not satisfy Assumption 2.4 for
some critical values of γ . See Berglund, Fernandez and Gentz [4,5] for the finite and infinite dimensional cases for
the double well potential. However, results exist (see [1] and references therein) on the generality of Assumption 2.4.

In addition, under Assumptions 2.4 and 2.1, the deterministic dynamical system (i.e., (1.1) without the white
noise) satisfies a Morse–Smale structure (see [15,23] and the references therein). This means that the attractor of the
dynamical system consists of equilibria and heteroclinic orbits connecting these equilibria. Methods were developed
by Fiedler and Rocha in [23], by Wolfrum in [40] to compute the global attractor of the deterministic system.

Remark 2. H 1 is the convenient functional space for the process since S(φ) < +∞ if and only if φ is in H 1([0,1]).
In fact from the upper bound (2.2) and lower bound (2.1) on V we get

C1
(‖φ‖2

H 1 − 1
)≤ S(φ) ≤ C′

1

(‖φ‖2
H 1 + ‖φ‖p

H 1 + 1
)
. (2.17)
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Each function in H 1([0,1]) is continuous and even α-Hölder continuous (for 0 < α < 1
2 ).

For each φ ∈ C([0,1]), we define the quantity Det(HφS):

• for Dirichlet boundary conditions, let f be the solution on [0,1] of

HφSf = 0, f (0) = 1, f ′(0) = 0, (2.18)

then Det(HφS) = f (1),
• for Neumann boundary conditions, let f be the solution on [0,1] of

HφSf = 0, f (0) = 0, f ′(0) = 1, (2.19)

then Det(HφS) = f ′(1).

Let us recall that, as a regular Sturm–Liouville operator, HφS has a countable number of eigenvalues, all of them
real. We denote by (λk(φ))k≥1 the sequence of these eigenvalues in the increasing order. The definition of Det(HφS)

is justified by the following lemma.

Lemma 2.5 ([33]). For any φ and ψ with non-degenerate Hessian operator, the infinite product
∏∞

k=1
λk(φ)
λk(ψ)

is con-
vergent and we have

∞∏
k=1

λk(φ)

λk(ψ)
= Det(HφS)

Det(HψS)
. (2.20)

This lemma relates the infinite product of the ratio of eigenvalues to a ratio of terminal values of solutions. We
find an elementary proof in [33] by Levit and Smilansky which relies on two different expressions of the Green
function associated to the problem HφSf = 0 satisfying the boundary conditions. In fact, the Green function could
either be expressed using the spectral decomposition of HφS or expressed as a linear combination of two well-chosen
fundamental solutions (of the second order linear differential equation).

2.3. Main results

Before stating the main result, we describe the set of minima and saddle points. In fact, the prefactor depends greatly
on the geometry of a graph connecting the minima to each other through the saddle points (so-called the 1-skeleton
connection graph by Fiedler and Rocha in [24]). We define this graph and express the prefactor partly as an equivalent
conductance on this graph.

We denote by M the set of minima of S. Since by Assumption 2.4, there is a finite number of stationary points,
we order the minima by increasing energy. We denote by φ1, φ2, . . . , φm, m = |M|, the different minima indexed by
increasing energy

S(φ1) ≤ S(φ2) ≤ · · · ≤ S(φm). (2.21)

We denote by Ml , the subset of minima Ml = {φ1, φ2, . . . , φl} for 1 ≤ l ≤ m.
Recall that from the Freidlin–Wentzell theory (see [25], Theorem 3.1, Chapter 4 and Theorem 5.3, Chapter 6),

since the systems considered are gradient with additive noise, the quasi-potential defined by Freidlin–Wentzell is the
potential. The variation of the rate function takes a very simple form and depends on the variation of the potential
S (and the noise parameter ε). This is only due to the simple form of the rate function for the large deviation of the
infinite dimensional process (see Chenal and Millet [18], and Section 4).
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We consider the transitions from a minimum φl0 to Ml for l < l0. These are the only visible metastable transitions.
We will see from large deviations estimates, that to go from a minimum φ to another ψ , it requires a time of order
exp([Ŝ(φ,ψ) − S(φ)]/ε). The time required to make the reverse transition is also of order exp([Ŝ(ψ,φ) − S(ψ)]/ε).
Therefore if S(ψ) > S(φ), we get

Ŝ(φ,ψ) − S(φ) > Ŝ(ψ,φ) − S(ψ) (2.22)

and the time required to go from φ to ψ is much larger than for the reverse transition. So we cannot see the reverse
transitions since there are absorbed by the direct ones. If some minima have the same potential, we can suitably order
them to consider a transition from one minimum to another one at a same height.

Note that the simple rates we obtain come from two important considerations: the system we investigate is gradient
(the rate function for the large deviation and then the quasi-potential is expressed as a variation of the potential S), and
we consider only the “relevant” transitions that allow this simple expression of the transition rates (i.e., the ordering
of the minima and the hitting set Ml containing any minima below a fixed level). This last ordering prevents any
trajectories to get stuck at an intermediate minimum at a potential below our targets because we do not allow such
traps. We stop the process when it reaches (the neighborhood of) a minimum below a defined potential. This could also
be seen in Freidlin and Wentzell [25] when we apply Theorem 5.3 of Chapter 6 to our carefully chosen transitions.

Let us now construct the weighted graph of paths from φl0 to Ml . We denote Ŝ = Ŝ(φl0 ,Ml) the common potential
of the saddles (Definition 2.3). For two minima φi,φj in M, we define the following equivalence relation: we say that
φi and φj are equivalent if Ŝ > Ŝ(φi, φj ) (note that Ŝ is symmetric by Definition 2.3 thus our relation is symmetric).
φi and φj are equivalent if there is a pathway from one to the other which stays below the value Ŝ. Then the vertices
of the graph are the equivalence classes (Ki) of M. Note that, by definition, φl0 and Ml are in different equivalence
classes.

The saddle points in S (φl0 ,Ml ) are the edges. We connect an edge σ̂ between two vertices K,J if the saddle σ̂

is a pass between the valleys of K and J : there exists φ ∈ K , ψ ∈ J and f ∈ Γ (φ → ψ) such that f̂ has a unique
element and f̂ = σ̂ . Note that by connecting the different paths, the definition of the edges does not depend on the
specific minima considered in an equivalence class. Let us remark also that by definition, the class of φl0 is connected
to at least one class containing a point of Ml but the graph can have disconnected components.

Existence of this graph is ensured by Assumption 2.4 (see [24] and references therein).
Each saddle point in S (φl0 ,Ml) has a unique negative eigenvalue from the Morse–Smale property and the hyper-

bolicity of the stationary points. The weight associated to an edge σ̂ is defined as

w(̂σ ) = |λ−(̂σ )|√|DetHσ̂ S| , (2.23)

where λ−(̂σ ) is the unique negative eigenvalue of Hσ̂ S.
K+(̂σ ) and K−(̂σ ) denote the two equivalence classes connected by a given edge σ̂ (which could be identical).

For a real valued vector a indexed by the equivalence classes, we consider the following quadratic form

Q(a) =
∑

σ̂∈S (φl0 ,Ml )

w(̂σ )
(
a
(
K+(̂σ )

)− a
(
K−(̂σ )

))2
. (2.24)

Let us distinguish K0 the class containing φl0 . We define C∗(φl0 ,Ml) the equivalent conductance of the graph
between the classes containing φl0 and Ml as

C∗(φl0 ,Ml ) = inf
{
Q(a), a(K0) = 1, a(J ) = 0, for all J such that J ∩Ml =∅

}
. (2.25)

Remark 3. This conductance is an approximation of the capacity between neighborhoods of φl0 and Ml . In some
sense, we replace the continuous landscape defined by S by a graph containing the relevant geometric structure of
the landscape. Note that the disconnected components from K0 of the graph (if there exist) do not play any role in the
Eq. (2.25) since we only impose the condition that a must be 0 on some of their vertices or no condition is imposed.
On both cases, the minimum is 0 and attained for a = 0 on the disconnected components from K0.
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Let us denote by Bρ(φ), for φ ∈ H 1
bc[0,1], the ball of center φ and radius ρ in H 1

bc

Bρ(φ) = {σ ∈ H 1
bc,‖σ − φ‖L2 ≤ ρ,‖σ‖H 1 < A1

}
, (2.26)

where A1 is a sufficiently large constant. We also define Bρ(Ml ) =⋃φ∈Ml
Bρ(φ). We choose this kind of neigh-

borhood because in the following we need to control the norm in the uniform norm and in the α-Hölder norm (for
α < 1

2 ).
We now state our main result describing the dependence in ε of the mean of the hitting time of a union of balls

around the points of Ml starting from φl0 .

Theorem 2.6. Under the Assumptions 2.1, 2.4, for any minimum φl0 , and a set of minima Ml with l0 > l, there exists
ρ0 such that for any ρ0 > ρ > 0

Eφl0

[
τε

(
Bρ(Ml)

)]= 2πe(Ŝ(φl0 ,Ml )−S(φl0 ))/ε

C∗(φl0 ,Ml )
√

DetHφl0
S

(
1 + Ψ (ε)

)
, (2.27)

where the error term satisfies Ψ (ε) = O(
√

ε|ln(ε)|3/2).

For the simple case where we have only three stationary points, two minima and one saddle we have the following
corollary.

Corollary 2.7. Let φ+ and φ− be the two minima with S(φ−) ≥ S(φ+) and σ̂ the unique saddle point. There exists
ρ0 such that for any ρ0 > ρ > 0

Eφ−
[
τε

(
Bρ

(
φ+))]= 2π

|λ−(̂σ )|

√
|DetHσ̂ S|
DetHφ−S

e(S(̂σ )−S(φ−))/ε
(
1 + Ψ (ε)

)
, (2.28)

where the error term is Ψ (ε) = O(
√

ε|ln(ε)|3/2).

Remark 4. The double well potential (1.2) (V (x) = x4

4 − x2

2 ) with Neumann boundary conditions and for γ > 1/π2

satisfies the hypotheses of the Corollary 2.7. In fact, the stationary points are the functions φ defined on [0,1] such
that φ′(0) = φ′(1) = 0 and which are solutions of

γφ′′(x) − φ3(x) + φ(x) = 0, ∀x ∈ [0,1]. (2.29)

Then, the three constant solutions (φ(x) = 1, φ(x) = −1 or φ(x) = 0) are stationary points. There are the only
stationary points. To prove this, let us define φα for α ∈ R, the unique solution of the differential Eq. (2.29) such that
φ′

α(0) = 0 and φα(0) = α. φα is a stationary point if and only if φ′
α(1) = 0. By symmetry, we can restrict our study to

α > 0. By multiplying (2.29) by φ′
α and by integration we obtain, for all x ∈ [0,1]

γ

2

[
φ′

α(x)
]2 − V

(
φα(x)

)= V (α). (2.30)

Therefore, the trajectory (φα(x),φ′
α(x))x≥0 describes the level set {(y, z),

γ z2

2 − V (y) = V (α)} in R
2. Using this, we

obtain that for α > 1, φ′
α is decreasing and thus φ′

α(1) can not be zero. For α ∈]0,1[, φ′
α(x) = 0 has a unique positive

minimal solution x(α). This first positive solution can be expressed as

x(α) =√2γα

∫ 1

0

du√
V (αu) − V (α)

(2.31)

= 2
√

2γ

∫ 1

0

du√
(1 − u2)(2 − α2(1 + u2))

. (2.32)
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A simple computation shows that x(α) is increasing for α ∈]0,1[ and that x(0+) = limα→0 x(α) = √
γπ. We have

φ′
α(1) = 0 if and only if there exists an integer k > 0 such that kx(α) = 1. Therefore, if x(α) > 1, φα is not a stationary

point. At last, for γ > 1/π2, since x(α) is increasing, we get that x(α) ≥ x(0+) > 1 for all α ∈]0,1[, which proves
that the only possible stationary points are the three constant solutions.

2.4. Example

Let us briefly present, for an illustration, the case of a 3-well potential V (see Fig. 1).
Computing the stationary points of S from V is not straightforward. However several articles give some method to

obtain them at least geometrically. We refer the reader to [1,15,23,40].
For the fictional V given, for sufficiently small γ > 0, we can have the situation described by Fig. 2 for Neummann

boundary conditions.
In the case of Fig. 2 the “complete” graph (where we draw all the saddles and minima and their heteroclinic

Fig. 1. 3 well potential V .

Fig. 2. Example of saddle points (dotted lines), and minima (solid lines), the dashed lines represent the others constant stationary points and are
saddle points with 2 or more negative eigenvalues.
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connections) is given by:

φ+
1

e0 φ−
1 e4

φ−
2 φ−

3

φ+
2 e2 φ+

3 (2.33)

In order to apply the Eyring–Kramers formula given by Theorem 2.6, one has to determine which are the saddle
points of minimum potential S, as well as the ordering of the minima. For the minima, from Fig. 1, we see that

S(e2) = 0 > S(e0) = −2 > S(e4) = −3. (2.34)

The value of the potential at the saddle could be more difficult to compute. Let us suppose that we want to compute
the transition time from e0 to (a small ball, defined by (2.26), around) e4. We make the assumption that S(φ+

1 ) >

S(φ+
2 ) = S(φ+

3 ). Remark that due to the symmetry (x �→ 1 − x), we have S(φ+
i ) = S(φ−

i ) for i = 1,2,3. In this case
the graph constructed in order to apply Theorem 2.6 takes the form:

φ−
2 φ−

3

e0 e2 e4

φ+
2 φ+

3 (2.35)

The capacity can be simply evaluated as the equivalent conductance between e0 and e4 where the individual conduc-
tances (or weights w) at the saddles are given by Eq. (2.23). Due to the symmetry, the conductances are the same for
φ+

i and φ−
i for i = 2,3. Therefore we obtain:

C∗(e0, e4) =
(

1

2w(φ+
2 )

+ 1

2w(φ+
3 )

)−1

= 2

(√|DetHφ+
2
S|

|λ−(φ+
2 )| +

√
|DetHφ+

3
S|

|λ−(φ+
3 )|

)−1

. (2.36)

The expected transition time is

Ee0

[
τε

(
Bρ(e4)

)]= 2πe(S(φ+
2 )−S(e0))/ε

C∗(e0, e4)
√

DetHe0S

(
1 + O

(√
ε
∣∣ln(ε)

∣∣3/2))
. (2.37)
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If we suppose now that S(φ+
1 ) > S(φ+

2 ) > S(φ+
3 ), then Ŝ(e0, e4) = S(φ+

2 ) and we have a graph with two vertices,
since e2 and e4 are in the same equivalence class. The corresponding graph is simply

φ−
2

e0 J = {e2, e4}

φ+
2 (2.38)

Therefore we obtain:

C∗(e0, e4) = 2w
(
φ+

2

)= 2|λ−(φ+
2 )|√

|DetHφ+
2
S|

. (2.39)

The transition time is given by Eq. (2.37) with C∗(e0, e4) defined by (2.39).

2.5. Sketch of proof of Theorem 2.6

We first introduce the discretization we consider. The finite dimensional approximation of the SPDE is constructed as
in the work of Funaki [26] and the work of Gyöngy [29]. The approximation is defined via a spatial finite difference
approximation of Eq. (1.1).

We denote by SN the discretized potential, for y ∈ R
N+2

SN(y) = hN

N∑
i=0

γ

2h2
N

(yi+1 − yi)
2 + V (yi), (2.40)

where hN > 0 is the step of discretization. We set Xi
0 = u0(xi) where u0 ∈ Cbc([0,1]) is the initial condition and

the xi are the discretization points on [0,1]. Let us denote by xi−1/2 the middle point of [xi−1, xi]. We construct an
N -dimensional Brownian motion B from the white noise W . Doing so we will be able to prove the convergence of
uN to u in Lp and almost surely. Thus we define, for 1 ≤ i ≤ N

Bi
t = 1√

hN

W
([xi−1/2, xi+1/2] × [0, t]). (2.41)

The properties of the white noise imply that (Bi) are independent Brownian motions.
The N -dimensional process (Xt )t is the solution of

dXi
t = − 1

hN

∇SN(Xt)
i dt +

√
2ε

hN

dBi
t for i = 1, . . . ,N. (2.42)

X0 and XN+1 are defined by the boundary conditions

• for Dirichlet boundary conditions:

X0
t = XN+1

t = 0, ∀t ≥ 0, (2.43)

• for Neumann boundary conditions:

X0
t = X1

t and XN+1
t = XN

t , ∀t ≥ 0. (2.44)
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The discretized system uN is the linear interpolation between the points (xi,X
i). To simplify, it is easier to adapt

the parameters to the boundary conditions.

• For Dirichlet boundary conditions, we choose

hN = 1

N + 1
, xi = i

N + 1
, ∀0 ≤ i ≤ N + 1. (2.45)

• For Neumann boundary conditions, we choose

hN = 1

N
, xi = i

N
− 1

2N
, ∀0 ≤ i ≤ N + 1. (2.46)

We set τN
ε (B) the hitting time of a set B for the discretized system

τN
ε (B) = inf

{
t > 0, uN

(
N−1t

) ∈ B
}
. (2.47)

We decompose the proof of Theorem 2.6 in several steps:

(1) for a given ε and a sequence of initial conditions φN
l0

, each being a minimum of SN , converging to φl0 (see

Proposition 5.6), we prove that the expectation of τN
ε (Bρ(Ml )) converges to the expectation of the hitting time

for the SPDE:

lim
N→∞EφN

l0

[
τN
ε

(
Bρ(Ml )

)]= Eφl0

[
τε

(
Bρ(Ml )

)]
. (2.48)

To this aim, we use the convergence of uN to the solution u. This is done in Section 3.
(2) For a fixed N , we compute the asymptotics of the transition time uniformly on the dimension. We get a prefactor

aN(ε) such that∣∣∣∣ 1

aN(ε)
EφN

l0

[
τN
ε

(
Bρ(Ml)

)]− 1

∣∣∣∣= ψ(ε,N) < Ψ (ε) = O
(√

ε
∣∣ln(ε)

∣∣3/2)
, (2.49)

where the error term Ψ (ε) does not depend on N . This step is the main estimate and is detailed below.
(3) The limit N → ∞ of aN(ε) gives us the correct asymptotics for the transition time in the infinite dimensional

case:

a(ε) = lim
N→∞aN(ε). (2.50)

This is done in Section 5.

The estimate (2.49) is proved in two steps.

(i) First we start from a probability measure (the equilibrium probability: νN ) on the boundary of a chosen neigh-
borhood of the minimum φN

l0
, which allows us to do the computation of aN(ε):∣∣∣∣ 1

aN(ε)
EνN

[
τε

(
Bρ(M0)

)]− 1

∣∣∣∣= ψ1(ε,N) < Ψ1(ε) = O
(√

ε
∣∣ln(ε)

∣∣3/2)
. (2.51)

This is done in Section 6.
(ii) Then we have to control the error made by starting on the boundary of the minimum and not precisely at the

minimum:

1

aN(ε)

∣∣EνN

[
τε

(
Bρ(M0)

)]−EφN
l0

[
τN
ε

(
Bρ(M0)

)]∣∣= ψ2(ε,N) < Ψ2(ε) (2.52)

with Ψ2(ε) = O(
√

ε|ln(ε)|3/2). This result comes from the loss of memory of the initial condition adapted from
Martinelli in [35]. This is exposed in Section 4.



142 F. Barret

3. Discretization

In this section, we present the convergence of the discretization uN to the solution of the SPDE and prove the conver-
gence of the hitting times.

3.1. Finite dimensional model

We write the discretized system uN in a mild form. We define a function κN , with �x� the integer part of x,

κN(x) = �(N + 1)x + 1/2�
N + 1

, for Dirichlet boundary conditions, (3.1)

κN(x) = �Nx� + 1

N
− 1

2N
, for Neumann boundary conditions. (3.2)

We define gN the semi-group associated with the discretized Laplacian. The discretized Laplacian is an
N -dimensional matrix, denoted by ΔN

d for Dirichlet boundary conditions and by ΔN
n for Neumann boundary condi-

tions:

ΔN
d = 1

h2
N

⎛⎜⎜⎜⎜⎜⎝
−2 1 0 . . . 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 −2

⎞⎟⎟⎟⎟⎟⎠ , ΔN
n = 1

h2
N

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 . . . 0

1 −2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 −1

⎞⎟⎟⎟⎟⎟⎠ . (3.3)

We consider the matrix pN(t) = h−1
N etγΔN

. Therefore pN(t)i,j is the solution of{
d
dt

pN(t)i,j = (γΔNpN(t)
)
i,j

,

pN(0)i,j = 1
hN

δij .
(3.4)

The semi-group gN is the linear interpolation of pN(t) on [0,1] × [0,1] along the discretization points.
Let us now prove the convergence of uN to the solution of Eq. (1.1).

Theorem 3.1. For all initial condition u0 ∈ C3
bc([0,1]), T > 0, and p ≥ 1, we get the convergence

uN −−−−→
N→∞ u on [0,1] × [0, T ] (3.5)

in the following senses:

• in Lp(Ω,C([0,1] × [0, T ])), i.e., E[‖uN − u‖p
∞,T ]1/p −−−−→

N→∞ 0,

• almost surely in C([0,1] × [0, T ]), i.e., for every η ∈]0, 1
2 [, there exists Ξ a random variable almost surely finite

such that∥∥uN − u
∥∥∞,T

≤ Ξ

Nη
. (3.6)

Remark 5. Let us denote

‖u‖q,T = sup
t∈[0,T ]

[∫ 1

0

∣∣u(x, t)
∣∣q dx

]1/q

= sup
t∈[0,T ]

∥∥u(t)
∥∥

Lq . (3.7)

We have ‖u‖q,T ≤ ‖u‖∞,T . As a consequence we get convergence in Theorem 3.1 in the Lq norm instead of the
uniform norm.
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The convergence of the finite discretization was proved in [29] if V ′ is globally Lipschitz. We proved that the result
holds in the case that V ′ satisfies (2.3) via a localization argument. The idea, notably used by Funaki in [26], is to
rewrite the finite dimensional system uN in a “mild for” and prove the convergence of this finite dimensional mild
form to the infinite dimensional mild form (2.4).

Lemma 3.2. For every u0 ∈ Cbc([0,1]) and N > 0, the function uN defined on [0,1] ×R
+ satisfies the equation

uN(x, t) =
∫ 1

0
gN

t

(
x, κN(y)

)
u0
(
κN(y)

)
dy −

∫ t

0

∫ 1

0
gN

t−s

(
x, κN(y)

)
V ′(uN

(
κN(y), s

))
dy ds

+ √
2ε

∫ t

0

∫ 1

0
gN

t−s

(
x, κN(y)

)
W(dy,ds). (3.8)

For all p ≥ 1 and T > 0, we have

sup
N

E

[
sup

[0,T ]×[0,1]

∣∣uN(x, t)
∣∣p]≤ C(T ,p). (3.9)

Proof. This lemma is just a reformulation of the system of stochastic differential equations. We use the variation of
the constant to integrate the linear part and then interpolate linearly the system to obtain a mild formulation of the
function uN (see [26,29]). To obtain the uniform moment bound, we proceed classically using a truncation procedure.
We define uN

R solution of Eq. (3.8) in which we have replaced the function V ′ by bR defined, for R > 0 by

bR(u) = V ′(u)1[−R,R] + V ′(R)1]R,+∞[ + V ′(−R)1]−∞,−R[. (3.10)

bR is continuous, bounded and globally Lipschitz. Firstly, using the uniform estimates of the semi-group and the
boundedness of bR , we prove that for all T , all p > 1, there exists C(p,T ,R) independent of N such that

sup
[0,1]×[0,T ]

E
[∣∣uN

R (x, t)
∣∣p]≤ C(p,T ,R) < +∞. (3.11)

Secondly, there exists C(p,T ,R) independent of N , such that

sup
N

E

[
sup

[0,1]×[0,T ]

∣∣uN
R (x, t)

∣∣p]≤ C(p,T ,R) < +∞. (3.12)

We use regularity of the solution (Kolmogorov’s theorem) to prove (3.12). Thirdly, we use a comparison theorem from
Geiss and Manthey ([28], Theorem 1.2) to obtain uniform bounds on uN from bounds on uN

R0
where R0 is fixed and

sufficiently large. We proceed by using two additional processes u
N,+
R (resp. u

N,−
R ) solutions of Eq. (3.8) in which we

have replaced the function V ′ by b+
R (resp. b−

R ) defined, for R > 0 by

b+
R(u) = V ′(u)1[−R,+∞[ + V ′(−R)1]−∞,−R[, (3.13)

b−
R(u) = V ′(u)1]−∞,R] + V ′(R)1]R,+∞[. (3.14)

We have the following comparison: b+
R(u) ≥ bR(u) ≥ b−

R(u). Using the comparison Theorem 2.1 from [28] and taking
care of the fact that the actual drift coefficients have a minus sign, we obtain that for all (x, t) ∈ [0,1] × [0, T ]

u
N,+
R (x, t) ≤ uN

R (x, t) ≤ u
N,−
R (x, t). (3.15)

Using Assumption 2.1 we have that, for some R0 > 0 sufficiently large |b+
R0

(u)| < A(1 + |u|q1u>0) where A,q > 0
are some constants. Therefore, from Eq. (3.12) and (3.15) we get

sup
N

E

[
sup

[0,1]×[0,T ]
∣∣b+

R0

(
u

N,+
R0

(x, t)
)∣∣p]≤ 2pAp

(
1 + C(pq,T ,R0)

)
< +∞. (3.16)
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This equation allows us to prove the equivalent of Eq. (3.12) for u
N,+
R0

.

The same argument can be applied to obtain Eq. (3.12) for u
N,−
R0

(here we have to use the fact that |b−
R0

(u)| <

A(1 + |u|q1u<0)).
At last, using the comparison theorem for b+

R0
(u) ≥ V ′(u) ≥ b−

R0
(u), we obtain that for all (x, t) ∈ [0,1] × [0, T ]∣∣uN(x, t)

∣∣≤ ∣∣uN,−
R0

(x, t)
∣∣+ ∣∣uN,+

R0
(x, t)

∣∣. (3.17)

We conclude by using the bounds obtained on u
N,−
R0

and u
N,+
R0

to get Eq. (3.9). �

Let us recall that uN
R is the solution of Eq. (3.8) in which we have replaced the function V ′ by bR defined by Eq.

(3.10). Similarly uR is the solution of Eq. (2.4) with bR instead of V ′.

Proposition 3.3 (Propositions 2.3.4 and 2.3.5 from [2]). For all R > 0, T > 0, and 0 < η < 1
2 and u0 in C3

bc[0,1],
there exists a random variable ξR almost surely finite such that

∥∥uN
R − uR

∥∥∞,T
≤ ξR

Nη
. (3.18)

For p > 24, there exists C > 0, such that

E
[∥∥uN

R − uR

∥∥p

∞,T

]≤ C

N1/2−4/p
. (3.19)

The proof is quite technical but follows the same method as in the proof of Theorem 3.1 in [29] since bR is bounded,
continuous and globally Lipschitz. We refer to the author’s thesis ([2]) in which the details are carefully stated. Let
us remark that in particular, by a simple convexity argument, we obtain that E[‖uN

R − uR‖p
∞,T ] converges to 0 for all

p ≥ 1.

Proof of Theorem 3.1. Let R > 0, we define the stopping times

τR = inf
{
t,
∥∥uR(t)

∥∥∞ > R
}= inf

{
t,∃x ∈ [0,1], ∣∣uR(x, t)

∣∣> R
}
, (3.20)

τN
R = inf

{
t,
∥∥uN

R (t)
∥∥∞ > R

}= inf
{
t,∃x ∈ [0,1], ∣∣uN

R (x, t)
∣∣> R

}
. (3.21)

Let us choose 0 < δ < 1. For R > 1, we define

ΩR =
{
τR−δ > T and lim inf

N→∞ τN
R > T

}
. (3.22)

First we show that P[ΩR]−−−−→
R→∞ 1. Let M > 0. For ω ∈ {ξR < M}∩{τR−δ ≥ T }, by Proposition 3.3, for N sufficiently

large, ∥∥uN
R

∥∥∞,T
(ω) < ‖uR‖∞,T (ω) + δ < R (3.23)

which means that lim infN→∞ τN
R (ω) ≥ T . Then by taking the complement relatively to {ξR < M} we get

P

[
lim inf
N→∞ τN

R < T ; ξR < M
]

≤ P[τR−δ < T ; ξR < M] ≤ P[τR−δ < T ]. (3.24)

By definition of the time τR−δ , we have by the Markov inequality for p > 1 and from Eq. (2.5)

P

[
lim inf
N→∞ τN

R < T ; ξR < M
]

≤ P[τR−δ ≤ T ] ≤ P
[‖u‖∞,T ≥ R − δ

]≤ E[‖u‖p
∞,T ]

(R − δ)p
. (3.25)
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Finally we get

P
[
Ωc

R

] = P

[
τR−δ ≤ T or lim inf

N→∞ τN
R ≤ T

]
≤ P[τR−δ ≤ T ] + P

[
lim inf
N→∞ τN

R < T ; ξR < M
]
+ P[ξR ≥ M]

≤ 2E[‖u‖p
∞,T ]

(R − δ)p
+ P[ξR ≥ M]. (3.26)

Since ξR is finite almost surely, we take first the limit M → +∞ then R → +∞.
Let us define Ω̃R = ΩR ∩ {ξR < ∞}. Since τR and τN

R are increasing in R ∈ N, the sets ΩR are also increasing
in R. Then we have

P

[ ∞⋃
R>1

Ω̃R

]
= P

[⋃
R∈N

ΩR

]
= lim

R→∞P[ΩR] = 1. (3.27)

Let ω ∈ Ω̃R . By definition of τN
R , there exists N0(ω) such that for all N ≥ N0(ω), τN

R (ω) > T and τR−δ(ω) > T . By
using Proposition 3.3, for all N ≥ N0(ω),∥∥uN − u

∥∥∞,T
(ω) = ∥∥uN

R − uR

∥∥∞,T
(ω) ≤ ξR(ω)N−η. (3.28)

We define ξ ′
R(ω) by

ξ ′
R(ω) = sup

N≤N0(ω)

Nη
∥∥uN

R − uR

∥∥∞,T
(ω) + ξR(ω). (3.29)

ξ ′
R(ω) is finite on Ω̃R and is such that ‖uN − u‖∞,T ≤ ξ ′

RN−η . Let us define the random variable Ξ by

Ξ(ω) = ξ ′
R(ω) on Ω̃R \ Ω̃R−1 for R ≥ 2,

Ξ(ω) = ξ ′
1(ω) on Ω̃1. (3.30)

Then on
⋃

R≥1 Ω̃R , set of probability 1, Ξ is almost surely finite and ‖uN − u‖∞,T ≤ ΞN−η which finishes the proof
of the almost sure convergence.

To conclude, we show that E[‖uN − u‖p
∞,T ] converges to 0. Since ‖uN‖∞,T has moments uniformly bounded in

N (Lemma 3.2), we define

ΩR,N0 =
⋂

N≥N0

{
τR−δ > T and τN

R > T
}
. (3.31)

We have ΩR =⋃N0
ΩR,N0 . For all N ≥ N0, we get by definition∥∥uN − u

∥∥p

∞,T
= 1ΩR,N0

∥∥uN
R − uR

∥∥p

∞,T
+ 1Ωc

R,N0

∥∥uN − u
∥∥p

∞,T
. (3.32)

Thus using Cauchy–Schwarz inequality and the bound (3.9), we get

E
[∥∥uN − u

∥∥p

∞,T

]≤ E
[∥∥uN

R − uR

∥∥p

∞,T

]+ P
[
Ωc

R,N0

]1/2
C(2p,T )1/2. (3.33)

Using the convergence of uN
R to uR (Proposition 3.3), we obtain

lim sup
N→∞

E
[∥∥uN − u

∥∥p

∞,T

]≤ C(2p,T )1/2
P
[
Ωc

R,N0

]1/2
. (3.34)

Let us fix η > 0. Since P[ΩR] tends to 1 and ΩR is increasing, we choose R such that P[Ωc
R] ≤ η. Similarly, ΩR,N0

is increasing in N0, thus P[Ωc
R] = limN0→∞ P[Ωc

R,N0
] ≤ η. Let us choose N0 such that P[Ωc

R,N0
] ≤ 2η. Inserting this

bound in (3.34), we obtain the result. �
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3.2. Convergence of the transition times

We conclude this section by proving the convergence of the transition times.
Let us denote by u0 the initial condition of the solution of Eq. (1.1) and φ a continuous function. We define the

hitting times: for ρ > 0

τε(ρ) = inf
{
t > 0,

∥∥u(t) − φ
∥∥∞ < ρ

}
, (3.35)

τN
ε (ρ) = inf

{
t > 0,

∥∥uN(t) − φN
∥∥∞ < ρ

}
, (3.36)

where φN is the linear approximation of φ.

Proposition 3.4. Suppose that ‖φN − φ‖∞ converges to 0 and that there exists ρ0 such that for every ρ0 > ρ > 0,

Eu0

[
τε(ρ)

]
< ∞. (3.37)

Then for almost every ρ > 0,

τN
ε (ρ)−−−−→

N→∞ τε(ρ) a.s. and EuN
0

[
τN
ε (ρ)

]−−−−→
N→∞ Eu0

[
τε(ρ)

]
. (3.38)

Proof. For the sake of simplicity we omit ε in the proof. First we prove that for all δ > 0, T > 0, we have

τ(ρ + δ) ∧ T ≤ lim inf
N→∞ τN(ρ) ∧ T ≤ lim sup

N→∞
τN(ρ) ∧ T ≤ τ(ρ − δ) ∧ T a.s. (3.39)

From Theorem 3.1, ‖uN − u‖∞,T converges to 0 almost surely. Therefore with probability 1, there exists N0(ω)

such that for all N ≥ N0(ω)

sup
t∈[0,T ]

∥∥uN(t) − u(t)
∥∥∞(ω) <

δ

2
and

∥∥φN − φ
∥∥∞ <

δ

2
. (3.40)

Then for t ≤ τ(ρ + δ) ∧ T and N ≥ N0(ω), using the triangle inequality we get

ρ + δ ≤ ∥∥u(t) − φ
∥∥∞ ≤ ∥∥u(t) − uN(t)

∥∥∞ + ∥∥uN(t) − φN
∥∥∞ + ∥∥φN − φ

∥∥∞
≤ δ + ∥∥uN(t) − φN

∥∥∞ (3.41)

which means that t ≤ τN(ρ) ∧ T . Thus, we obtain τ(ρ + δ) ∧ T ≤ lim infN→∞[τN(ρ) ∧ T ] almost surely. By the
same arguments for t ≤ τN(ρ) ∧ T and N ≥ N0(ω), we get

ρ ≤ ∥∥uN(t) − φN
∥∥∞ ≤ δ + ∥∥u(t) − φ

∥∥∞. (3.42)

Therefore lim supN→∞[τN(ρ) ∧ T ] ≤ τ(ρ − δ) ∧ T which proves the inequality (3.39).
From the definitions of τ(ρ) and τN(ρ), the functions ρ �→ τ(ρ) and ρ �→ τN(ρ) are left continuous and have

right limits. Then using the fact that τ(ρ) is finite almost surely, we get

τ
(
ρ+)≤ lim inf

N→∞ τN(ρ) ≤ lim sup
N→∞

τN(ρ) ≤ τ(ρ) < +∞ a.s., (3.43)

where τ(ρ+) = limδ→0+ τ(ρ + δ).
At a point of continuity of ρ �→ τ(ρ), we obtain τ(ρ) = limN→∞ τN(ρ). Let us fix ρ1 > 0. There exists N ⊂ Ω

a null set such that for ω /∈ N , ρ �→ τ(ρ)(ω) is bounded, decreasing, left continuous on [ρ1,+∞[. We define the set
of discontinuities, P :

P = {(ω,ρ) ∈ N c × [ρ1,+∞[, τ(ρ+)(ω) = τ(ρ)(ω)
}⊂ Ω ×R. (3.44)
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Then we consider the projection ΠR
ω from Ω ×R on R along {ω} ×R. For ω ∈ N c we define

D(ω) = ΠR

ω (P) = {ρ ∈ [ρ1,+∞[, τ(ρ+)(ω) = τ(ρ)(ω)
}⊂R. (3.45)

D(ω) is at most countable since ρ �→ τ(ρ)(ω) is a bounded decreasing function.
We define N (ρ) = ΠΩ

ρ (P) with ΠΩ
ρ the projection from Ω ×R on Ω along Ω × {ρ}. N (ρ) is the set of Ω for

which τ(ρ) is not continuous at ρ. Therefore, we have

P =
⋃
ω∈Ω

{ω} ×D(ω) =
⋃

ρ>ρ1

N (ρ) × {ρ}. (3.46)

Then, using Fubini–Tonelli Theorem∫ +∞

ρ1

P
[
N (ρ)

]
dρ =

∫
Ω

∫ +∞

ρ1

1P (ω,ρ)dρ dP(ω) =
∫

Ω

∫ +∞

ρ1

1D(ω)(ρ)dρ dP(ω) = 0. (3.47)

We get a null set E(ρ1) on [ρ1,+∞[ such that P[N (ρ)] = 0 for all ρ ∈ E(ρ1), i.e., the convergence is almost sure.
To conclude, we consider a sequence (ρn)n≥0 converging to 0, then E =⋃n≥0 E(ρn) is a null set of R on which the
convergence is almost sure.

By using dominated convergence, we obtain the convergence of the expectations. �

4. Initial condition

4.1. Large deviation control

For 0 < α < 1, we set Cα([0,1]) the set of α-Hölder continuous functions on [0,1] equipped with the norm ‖·‖Cα

‖f ‖Cα = ‖f ‖∞ + sup
x,y

|f (x) − f (y)|
|x − y|α . (4.1)

We also define Dα([0,1]) the separable subset of this Hölder space which is the closure of C∞ in Cα .
Let 0 < α < 1

2 and ρ > 0, we consider the neighborhood Bα
ρ (φ) of φ ∈ Dα

bc([0,1])

Bα
ρ (φ) = {ψ ∈ Dα

bc

([0,1]),‖φ − ψ‖Cα < ρ
}
. (4.2)

We also have Bα
ρ (Ml ) =⋃φ∈Ml

Bα
ρ (φ).

With this large deviation principle, Chenal and Millet [18] derived exponential asymptotic estimates for the exit
time of domains with a unique stable stationary point. Using their evaluations and the procedure developed by Freidlin
and Wentzell [25] in the finite dimensional case, we have the following result.

Lemma 4.1. For 0 < α < 1
2 , there exists ρ0 such that for all ρ < ρ0, we have for all φ ∈ Bα

ρ (φl0) and η > 0

lim
ε→0

Pφ

[
exp
(
ε−1(Ŝ − S(φl0) + η

))
> τε

(
Bα

ρ (Ml )
)
> exp

(
ε−1(Ŝ − S(φl0) − η

))]= 1, (4.3)

where Ŝ = Ŝ(φl0 ,Ml). Let τε = τε(B
α
ρ (Ml)). Then

τε

Eφ[τε]
L−−−−→

ε→0
E, (4.4)

where E is an exponential variable of parameter 1. Moreover for all φ ∈ Bα
ρ (φl0)

lim
ε→0

ε logEφ[τε] = Ŝ − S(φl0) and lim
ε→0

ε logEφ

[
τ 2
ε

]= 2
(
Ŝ − S(φl0)

)
. (4.5)
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These estimates are the infinite dimensional version of the Freidlin–Wentzell theory. In our case, the proof is
exactly a generalization of their approach but using estimates in the proof of Theorem 4.1 in [18] which is exactly
the analogous in infinite dimension of Theorem 2.1, Theorem 4.1 and 4.2, Chapter 4 in [25]. We are able to estimate
the transition probabilities (probability to reach the neighborhood of a minima starting from a point) uniformly in the
initial conditions (around a small ball centered on a minima) using the rate function given by Theorem 3.2 in [18].
Then by taking an approximation via a Markov chain, one can proceed as in the finite dimensional case. Note that
in our case, since the deterministic system is gradient, the variation of rate function along the paths can be expressed
simply as a difference of the potential S.

4.2. Exponential contractivity

For a given ψN = (ψ1, . . . ,ψN) ∈ R
N , we consider equivalently the point in R

N and the function in C([0,1]) obtained
by the linear interpolation between the points (xi,ψi). Reciprocally, for ψ ∈ Cbc([0,1]), we let ψ̂N be the linear
interpolation of ψ along the discretization. ψ̂N is the linear interpolation between the points (xi,ψ(xi)).

We set

B∞
ρ (φ) = {ψ ∈ Cbc

([0,1]),‖ψ − φ‖∞ < ρ
}
. (4.6)

We adapt trajectorial results of contractivity for the localized process from Martinelli and Scoppola [35]. As usual,
since the proof need a globally Lipschitz drift term, we localize the processes. We denote u(φ),uR(φ) the solutions
of Eq. (1.1) with respectively V ′ and bR , starting from φ. Accordingly, we denote uN(φN),uN

R (φN) the solutions of
Eq. (3.8) with V ′ and bR , starting from φN ∈R

N .

Lemma 4.2. Let φ be a minimum of S and R ≥ R0. There exists m,CR > 0 and ε0, ρ0 > 0, such that for all ρ < ρ0
and every ψ ∈ B∞

ρ (φ) we have, for all ε0 > ε > 0

P

[
sup

N≥N0

∥∥uN
R

(
ψ̂N
)
(t) − uN

R

(
φ̂N
)
(t)
∥∥∞ ≤ e−mt‖ψ − φ‖∞,∀t > 0

]
≥ 1 − e−CR/ε. (4.7)

R0 is just an arbitrary constant large enough such that outside [−R0,R0], V ′ is increasing. Equation (4.7) means
that, uniformly in N , two discretized processes, with the same noise, but starting from two different initial conditions
sufficiently close will be contracting exponentially. In references [36] and [35], since they start from two arbitrary
points, they need to take t > T0 for some T0 large enough. In this statement this is unnecessary since we start from
two close initial conditions.

This result can be proved via an adaptation of the arguments of [36] and [35]. Lemma 4.2 asserts that the solutions
of Eq. (1.1) and (3.8) depend slightly on the initial condition. Martinelli and Scoppola called that the loss of memory
of the initial condition because the specific initial condition is not relevant for the evolution of the process.

4.3. Uniformity in the initial condition

Let us recall that φl0 is a minimum and Ml is a set of lower minima. We denote

τN
ε (φl0) = τN

ε

(
Bα

ρ (φl0)
)= inf

{
t, uN(t) ∈ Bα

ρ (φl0)
}
,

(4.8)
τN
ε (Ml ) = τN

ε

(
Bα

ρ (Ml )
)= inf

{
t, uN(t) ∈ Bα

ρ (Ml )
}
.

Similarly, we denote by τN,R
ε the hitting time associated with the localized process uN

R .

Proposition 4.3. For all ρ0 > ρ > 0, there exists η > 0 such that for a sequence φN
l0

of minima of SN , converging to

φl0 in L2,

sup
N≥N0

sup
‖φN−φN

l0
‖∞<ρ

∣∣EφN

[
τN
ε (Ml )

]−EφN
l0

[
τN
ε (Ml)

]∣∣≤ e(Ŝ−η)/ε. (4.9)
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For any sequence φN
i ∈ H 1 of minima of SN converging to φi ∈ H 1 in L2, we also have

sup
N≥N0

sup
‖φN

i −φN‖∞<ρ

∣∣PφN
i

[
τN
ε (φl0) < τN

ε (Ml )
]− PφN

[
τN
ε (φl0) < τN

ε (Ml )
]∣∣≤ e−η/ε. (4.10)

The proof comes from a comparison between the deterministic process (i.e., ε = 0) and the stochastic process
starting from the moment of the hitting time.

Proof of Proposition 4.3. Since the minima are not degenerate, we can assume ρ small enough to get〈
δS

δφ
φ,φ − φi

〉
L2

≤ −b‖φ − φi‖2
L2, (4.11)

for some b > 0, all 1 < i < l, and all φ ∈ B2ρ(φi).
First, let us prove similar estimates on the expectations of transition times for the localized process uN

R . We denote
by σN(φN) the hitting time τN,R

ε (Ml ) for the process uN
R starting from φN . We set

ΩR =
{

sup
N≥N0

sup
‖u0−φ‖∞<ρ

∥∥uR
N(u0)(t) − uR

N(φ)(t)
∥∥∞ ≤ ρe−mt ,∀t > 0

}
. (4.12)

From Lemma 4.2, we get P(ΩR) > 1 − e−CR/ε .
Let us fix δ1 > 0. We define T (ε) = e(Ŝ−δ1)/ε and we take ε < ε0 such that e−mT (ε) < ρ. On the set

{σN(φl0) > T (ε)}, setting ψ = uR
N(φ)(σN(φl0)), we get∥∥ψ − uR

N(φl0)
(
σN(φl0)

)∥∥∞ < e−mT (ε) < ρ (4.13)

with probability at least 1 − e−CR/ε . Let us suppose that σN(φ) − σN(φl0) ≥ 0 and that uR
N(φl0)(σ

N(φl0)) ∈ Bρ(φi).

The deterministic process u
N,0
R is the solution of (3.8) for the drift bR and ε = 0. φN

i is a minimum of SN , so φN
i

is an equilibrium point of u
N,0
R . Then using Eq. (4.11), we get for t ≥ 0∥∥uN,0

R (ψ)(t) − φi

∥∥2
L2 ≤ e−bt‖ψ − φi‖2

L2 ≤ e−bt
(
e−mtρ + ρ

)2 ≤ 4ρ2e−bt (4.14)

by the triangle inequality. For t > t0 = 1
b

ln(16), we obtain ‖uN,0
R (ψ)(t) − φi‖L2 ≤ ρ

2 .
From the large deviation principle, we can compare the deterministic solution with the perturbed one. We obtain

C > 0 such that

P

[{∥∥uN,0
R

(
ψN
)− uN

R

(
ψN
)∥∥∞,2t0

<
ρ

3

}]
≥ 1 − e−C/ε. (4.15)

Therefore, with probability at least 1 − e−C/ε − e−CR/ε , we get ‖uN
R (ψ)(2t0) − φi‖L2 <

5ρ
6 which implies(

σN(φ) − σN(φl0)
)
+ ≤ 2t0. (4.16)

We proceed similarly if σN(φ) − σN(φl0) ≤ 0. In this case, we stop the process at σN(φ). Finally we get
|σN(φ) − σN(φl0)| ≤ 2t0 with probability at least 1 − e−C′/ε , for some C′ > 0.

We obtain

E
[∣∣σN(φ) − σN(φl0)

∣∣] ≤ E
[∣∣σN(φ) − σN(φl0)

∣∣1ΩR
1{σN (φl0 )>T (ε)}

]
+E

[∣∣σN(φ) − σN(φl0)
∣∣(1Ωc

R
+ 1{σN (φl0 )>T (ε)}c )

]
≤ 2t0

(
1 − e−C′/ε)

P
[
ΩR ∩ {σN(φl0) > T (ε)

}]
+E

[∣∣σN(φ) − σN(φl0)
∣∣2]1/2(

P
[
Ωc

R

]1/2 + P
[{

σN(φl0) ≤ T (ε)
}]1/2)

. (4.17)
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By using Proposition 4.2, we have P[Ωc
R] < e−CR/ε . From Proposition 4.1, we deduce that for ε ≤ ε0

P
[
σN(φl0) ≤ T (ε)

]
< 1 − e−e−δ1/ε

< e−δ1/ε. (4.18)

Moreover, we have for all δ2 > 0

E
[∣∣σN(φ) − σN(φl0)

∣∣2]< e2(Ŝ+δ2)/ε. (4.19)

So we finally get

E
[∣∣σN(φ) − σN(φl0)

∣∣]≤ 2t0
(
1 − e−CR/ε − e−δ1/ε

)+ e(Ŝ+δ2)/ε
(
e−C/2ε + e−δ1/2ε

)≤ e(Ŝ−η)/ε. (4.20)

By choosing δ1, δ2 and η small enough, we prove the proposition for the localized process.
Let us now choose R such that Ŝ(B∞

R (0),B∞
ρ (φl0)) > Ŝ + 1, then from Proposition 4.1, we have

sup
φ∈B∞

ρ (φl0 )

Pφ

[
τε

(
B∞

R (0)
)≤ exp

(
(Ŝ + 1 − δ3)/ε

)= T2(ε)
] ≤ e−C/ε (4.21)

sup
φ∈B∞

ρ (φl0 )

Pφ

[
τN
ε (Ml ) ≥ T2(ε)

] ≤ e−C/ε. (4.22)

We consider the process u starting from φ and φl0 . Before T2(ε), with high probability, the processes are in B∞
R (0)

and coincide with uR up to this time. Moreover T2(ε) is much larger than the transition time, so the transition already
occurs when the processes reach B∞

R (0)c . Therefore, with very high probability, the transition time for the localized
process is exactly the correct transition time.

For Eq. (4.10), we follow a similar method, by using Proposition 4.2 for the localized process and then comparing
the deterministic and stochastic processes in the neighborhood of a minimum. �

5. Approximation of the potential

In this section, we prove (or refer to) results about the convergence of the potential and its related quantities. Let us
consider the norms for y ∈R

N and p ≥ 1

‖y‖p
p,N =

N∑
i=1

|yi |p, ‖y‖∞,N = max
i=1,...,N

|yi |. (5.1)

5.1. Convergence of the potential

Let us recall from Section 4.2 that for a point uN ∈ R
N , we denote also by uN the linear interpolation between the

points (xi, u
N
i ). For a function u ∈ Cbc([0,1]), we denote by ûN the linear interpolation between the points (xi, u(xi)).

We say that the sequence uN ∈R
N converges to u ∈ H 1 if the sequence of linear interpolations associated to uN (also

denoted uN ) converges to u in the H 1 norm.
Let us recall that HSN(uN) is the Hessian matrix of SN at uN and can be interpreted as a bilinear form. We prove

the following proposition.

Proposition 5.1. For any sequence uN ∈R
N converging to u ∈ H 1, we have

• SN(uN)−−−−→
N→∞ S(u) < ∞,

• for any sequence hN converging to h: ∇SN(uN) · hN −−−−→
N→∞ DuS(h),

• for any sequences hN, kN converging to h, k:

HSN
(
uN
)(

hN, kN
)−−−−→

N→∞ D2
uS(h, k).
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If u is twice differentiable DuS(h) = ∫ 1
0

δS
δφ

(u)h and if k is twice differentiable D2
uS(h, k) = ∫ 1

0 hHuSk.

Proof. Let uN ∈ R
N be a sequence converging to u ∈ H 1, then uN converges uniformly on [0,1] to u, so by domi-

nated convergence,

1

N

N∑
i=1

V
(
uN

i

)−−−−→
N→∞

∫ 1

0
V
(
u(x)

)
dx. (5.2)

The convergence in H 1 directly ensures us that

1

N

N∑
i=1

N2(uN
i+1 − uN

i

)2 =
∫ 1

0

∣∣(uN
)′
(x)
∣∣2 dx −−−−→

N→∞

∫ 1

0

∣∣u′(x)
∣∣2 dx. (5.3)

Let hN ∈ R
N be some sequence converging to h ∈ H 1 then we have

∇SN
(
uN
) · hN =

N∑
i=1

∂SN

∂xi

(
uN

i

)
hN

i = 1

N

N∑
i=1

γN2(uN
i+1 − uN

i

)(
hN

i+1 − hN
i

)+ V ′(uN
i

)
hN

i

−−−−→
N→∞

∫ 1

0
γ u′h′ + V ′(u)h (5.4)

by L2 convergence of the derivatives and dominated convergence. Lastly, the convergence of the Hessian is completely
similar. �

5.2. Convergence of the eigenvalues

Let us consider a sequence of points uN ∈ R
N converging to u in H 1. We need to estimate the convergence of the

eigenvalues (Nλk,N )1≤k≤N of N · HSN(uN) to the eigenvalues (λk)1≤k of HuS.
The convergence of a single eigenvalue Nλk,N for k fixed, is obvious from Proposition 5.1. The control of the

convergence for all the eigenvalues is complex because of the higher eigenvalues (e.g., λN,N ). This problem is closely
related to the discrepancy between the eigenvalues of γ

N
ΔN and γΔ, the discrete Laplacian (defined by (3.3)) and the

Laplacian. We denote λ0
N,k, λ

0
k their respective eigenvalues in the increasing order. For Dirichlet boundary conditions,

we have

ek,N = Nλ0
N,k − λ0

k = γ

[
4N2 sin2

(
kπ

2N

)
− π2k2

]
. (5.5)

Then eN,N = γN2(4 − π2) does not converge to 0. The following proposition adapted from [31] gives us a control of
the approximation of the eigenvalues and eigenvectors.

Proposition 5.2. Let us consider a sequence uN ∈ R
N converging to u ∈ C2 and such that ‖uN − u‖∞ = O( 1

N2 ). We
have:

(i) there exist α ∈ [0,1[ and a constant C1 such that for all N and k < αN

|NλN,k − λk − ek,N | ≤ C1

N2
, (5.6)

(ii) there exists a constant C2 such that |eN,k| ≤ C2k
4N−2,

(iii) for a fixed k ≤ N , the normalized (in H 1) eigenvector φk,N of HSN(uN) associated to λk,N converges in H 1 to
the eigenvector φk of HuS associated to λk and we have, for all k

‖φk,N‖∞
‖φk,N‖2,N

≤ C√
N

, (5.7)
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where the norm ‖·‖2,N is defined by (5.1).

Proof. The proposition is an adaptation of the results of [31] in our case since NHSN(uN) is the finite difference
approximation of the Sturm–Liouville operator HuS. The original statement in [31] concerns an approximating se-
quence uN which is precisely the sequence ûN of linear interpolations of u. If we take a sequence uN , then for all
y ∈ R

N

N
∣∣HSN

(
uN
)
(y) − HSN

(̂
uN
)
(y)
∣∣= N∑

i=1

∣∣V ′′(uN
i

)− V ′′(u(xi)
)∣∣y2

i ≤ C
∥∥uN − u

∥∥∞‖y‖2
2. (5.8)

Since ‖uN − u‖∞ = O( 1
N2 ), we deduce that the difference between the eigenvalues of NHSN(uN) and NHSN (̂uN)

is bounded by O( 1
N2 ) which gives us the result. A similar control holds for the convergence of the eigenvectors. The

last result (5.7) comes from the fact that for the eigenvectors of HuS ([19], pp. 334–335), we have a constant C such
that ‖φk‖∞ ≤ C‖φk‖L2 . Then, since φk,N converges in H 1, it converges in L∞ and L2, then the result comes from
the fact that ‖φk,N‖2,N ≥ C

√
N‖φk,N‖L2 . �

Remark 6. The normalized eigenvector eN = φN‖φN‖2,N
satisfies

‖eN‖2∞,N = ‖φN‖2∞,N

‖φN‖2
2,N

≤ ‖φN‖2
L∞

N‖φN‖2
L2

≤ C

N

‖φN‖2
H 1

‖φN‖2
L2

≤ C

N
. (5.9)

Thus, this proves that the coordinates of the normalized eigenvectors in R
N for the Euclidean norm are uniformly

bounded by O( 1√
N

).

The following proposition from [31] states uniform estimates in the function φ of the eigenvalues of the Hessian
operators HφS and HSN(φN).

Proposition 5.3. Let φN
1 , φN

2 be sequences converging in H 1 to φ1, φ2, then for all N,k∣∣λ1
k,N − λ2

k,N

∣∣≤ C,
∣∣λ1

k − λ2
k

∣∣≤ C (5.10)

and λi
k = π2k2 + ∫ 1

0 V ′′(φi(x))dx + O( 1
k2 ) for i = 1,2.

Remark 7. This proposition shows the convergence of the infinite product of the ratio of eigenvalues denoted by
D(φ,ψ)

N∏
k=1

λk(φ)

λk(ψ)
=

N∏
k=1

[
1 + λk(φ) − λk(ψ)

λk(ψ)

]
−−−−→
N→∞

∞∏
k=1

λk(φ)

λk(ψ)
= D(φ,ψ) (5.11)

since ∣∣∣∣λk(φ) − λk(ψ)

λk(ψ)

∣∣∣∣≤ C

k2
. (5.12)

5.3. Product of eigenvalues

We show the convergence of the product ratio of the eigenvalues of HSN(φN) and HSN(ψN) to D(φ,ψ).

Proposition 5.4. For any φN,ψN converging in H 1 to φ,ψ such that HS(ψ) and HS(φ) do not have a zero eigen-
value, and that∥∥φN − φ

∥∥∞ ∨ ∥∥ψN − ψ
∥∥∞ ≤ C

N2
, (5.13)
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we have the convergence

det(HSN(φN))

det(HSN(ψN))
−−−−→
N→∞ D(φ,ψ) =

+∞∏
k=1

λk(φ)

λk(ψ)
. (5.14)

Proof. The proof of the convergence comes from the fact that for small k the approximated eigenvalues are close
to the continuous ones (λk,N ≈ λk) whereas this is not the case for k close to N (Proposition 5.2). The eigenvalues
λk,N (φ), λk,N (ψ) are close at the first order in k uniformly on φ, ψ (Proposition 5.3). Therefore we decompose the
product in two parts for small k (i.e., k < αN from Proposition 5.2) and large k.

Let us denote μk,N(φ) = NλN,k(φ
N) − λk(φ) − ek,N . From Proposition 5.2, there exists 0 < α < 1 such that, for

k ≤ αN , |μk,N(φ)| ≤ c

N2 . The same holds for the sequence ψN . Then, we get,

Nλk,N (φ)

λk(φ)

λk(ψ)

Nλk,N (ψ)
= 1 + θk,N (φ)

1 + θk,N (ψ)
= 1 + θk,N (φ) − θk,N (ψ)

1 + θk,N (ψ)
, (5.15)

where θk,N (φ) = λk(φ)−1(ek,N + μk,N(φ)). Let us remark that for k ≤ αN

∣∣θk,N (ψ)
∣∣≤ C

k2

(
k4

N2
+ 1

N2

)
≤ C

(
α2 + 1

N2

)
(5.16)

thus if we take α small enough and N large enough, we have |θk,N (ψ)| < 1
2 . Hence we obtain∣∣∣∣∣ln

αN∏
k=1

Nλk,N(φ)

λk(φ)

λk(ψ)

Nλk,N (ψ)

∣∣∣∣∣≤ 2
αN∑
k=1

∣∣θk,N (φ) − θk,N (ψ)
∣∣≤ 2Cα

N
(5.17)

since from Proposition 5.3, |θk,N (φ) − θk,N (ψ)| ≤ C

N2 .
For k > αN we proceed similarly. Let us write

Nλk,N (φ)

λk(φ)

λk(ψ)

Nλk,N (ψ)
= 1 + θ ′

k,N

1 + θ ′
k

= 1 + θ ′
k,N − θ ′

k

1 + θ ′
k

, (5.18)

where θ ′
k,N = λk,N (ψ)−1(λk,N (φ) − λk,N (ψ)) and alike for θ ′

k . From Proposition 5.3, we get for all k and N > N0,

that |θ ′
k,N | ∨ |θ ′

k| ≤ C

k2 . Thus we obtain∣∣∣∣∣ln
N∏

k=αN

Nλk,N (φ)

λk(φ)

λk(ψ)

Nλk,N(ψ)

∣∣∣∣∣≤
N∑

k=αN

C

k2

(
1 + C

k2

)
≤ C

N
(5.19)

which finishes the proof. �

In fact, we need a slightly different convergence.

Corollary 5.5. Let be φN,ψN converging to φ,ψ such that

∥∥φN − φ
∥∥

L2 ∨ ∥∥ψN − ψ
∥∥

L2 ≤ C

N
. (5.20)

Then we have

det(HSN(φN))

det(HSN(ψN))
−−−−→
N→+∞D(φ,ψ). (5.21)
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Proof. From the previous proposition, we get that

det(HSN(φ̂N ))

det(HSN(ψ̂N))
−−−−→
N→+∞D(φ,ψ), (5.22)

where φ̂N (resp. ψ̂N ) is the linear interpolation of φ (resp. ψ ). So we prove

DN = det(HSN(φ̂N))

det(HSN(ψ̂N))

[
det(HSN(φN))

det(HSN(ψN))

]−1

=
N∏

k=1

1 + θk(φ)

1 + θk(ψ)
−−−−→
N→∞ 1, (5.23)

where θk(φ) = λk,N (φN)−1(λk,N (φ̂N )−λk,N (φN)). From the fact that ‖φN − φ‖L2 ≤ C
N

we obtain ‖φN − φ̂N‖L2 ≤
C′
N

. Then for all y ∈ R
N , we have

∣∣HSN
(
φN
)
(y) − HSN

(
φ̂N
)
(y)
∣∣ = 1

N

N∑
i=1

∣∣V ′′(φN
i

)− V ′′(φ(xi)
)∣∣|yi |2

≤ C

N

N∑
i=1

∣∣φN
i − φ(xi)

∣∣|yi |2 ≤ C√
N

∥∥φN − φ̂N
∥∥

L2‖y‖2
4,N ≤ C

N3/2
‖y‖2

2,N .

Therefore we get that |λk,N (φN) − λk,N (φ̂N )| ≤ C

N3/2 . The same holds for ψ .
Then, we obtain∣∣θk(ψ)

∣∣≤ CN

k2
× 1

N3/2
≤ C

k2
√

N
≤ 1

2
(5.24)

for N sufficiently large.
Thus we get

∣∣ln[DN ]∣∣≤ N∑
k=1

|θk(φ) − θk(ψ)|
1 + θk(ψ)

≤ 2
N∑

k=1

∣∣θk(φ)
∣∣+ ∣∣θk(ψ)

∣∣≤ 4C

N∑
k=1

1

k2
√

N
. (5.25)

Then let us fix η > 0, we have

∣∣ln[DN ]∣∣≤ C

η
3√

N∑
k=1

1

k2
√

N
+ C

N∑
k=η

3√
N

1

k2
√

N
≤ CηN−1/6 + C

η2
N−1/6. (5.26)

Therefore we get lim supN→∞ |ln[DN ]| = 0 which proves the proposition. �

5.4. Approximated stationary points

The last property we need to check is that for each stationary point of S, there exists a unique sequence of station-
ary points of SN converging to this stationary point. Moreover, to ensure the limit of the ratio of eigenvalues, this
convergence has to be fast enough (see Corollary 5.5). To this aim, we have the following proposition.

Proposition 5.6. There exist C,N0, such that for all N > N0, there is for each minimum (resp. saddle point) φ of S a
unique minimum (resp. saddle point) φN of SN such that

∥∥φ − φN
∥∥

L2 ≤ C

N
. (5.27)



Sharp metastable asymptotics for one dimensional SPDEs 155

Proof. Since by Assumption 2.4, there is a finite number of saddles and stable points then we only need to prove the
proposition for a given saddle or minimum. Let φ be a minimum, we prove that there is sequence φN of minima of
SN such that∥∥φN − φ̂N

∥∥
L2 ≤ C

N
. (5.28)

The result (5.27) follows from (5.28) since we already have that∥∥φ − φ̂N
∥∥

L2 ≤ ∥∥φ − φ̂N
∥∥∞ ≤ C

N2
. (5.29)

In order to prove (5.28), we use a fixed point theorem. Let us consider the ball BC/
√

N of radius C√
N

in the ‖·‖2,N

norm where C is a constant we will fix later. We want to find z0 ∈ BC/
√

N such that ∇SN(φ̂N + z0) = 0. In that case

we will have φN = φ̂N + z and

∥∥φN − φ̂N
∥∥2

L2 ≤ 1

N

N∑
i=1

|zi |2 ≤ C

N2
. (5.30)

By a Taylor expansion of the gradient we have

∇SN
(
φ̂N + z

)
i
= ∇SN

(
φ̂N
)
i
+ (HSN

(
φ̂N
)
z
)
i
+ gi(z), (5.31)

where gi is the remainder which can take the form

gi(z) =
∫ 1

0
(1 − t)

∂3SN

∂z3
i

(
φ̂N + tz

)
z2
i dt = 1

N

∫ 1

0
(1 − t)V ′′′(φi + tzi)z

2
i dt. (5.32)

Then we have for all z, y ∈ BC/
√

N∣∣gi(z)
∣∣≤ C0

N
z2
i and

∣∣gi(x) − gi(y)
∣∣≤ C0

N

∣∣z2
i − y2

i

∣∣≤ 2C0

N3/2
|zi − yi |. (5.33)

Let us also remark that since φ is a stationary point for the potential S, thus we have −γφ′′(xi) + V ′(φ(xi)) = 0.
Therefore we get

∣∣∇SN
(
φ̂N
)
i

∣∣ = ∣∣∣∣∇SN
(
φ̂N
)
i
− 1

N

(−γφ′′(xi) + V ′′(φ(xi)
))∣∣∣∣

= 1

N

∣∣γN2(φ(xi+1) − 2φ(xi) + φ(xi−1)
)− γφ′′(xi)

∣∣≤ C1

N2
. (5.34)

For N sufficiently large HSN(φ̂N) is not degenerate then z0 is solution of the fixed point equation

z0 = HSN
(
φ̂N
)−1(−∇SN

(
φ̂N
)− gi

(
z0))= F

(
z0). (5.35)

The (2,N)-norm (defined by (5.1)) of HSN(φ̂N)−1 is bounded by the inverse of the smallest eigenvalue (in absolute
value). Then ‖HSN(φ̂N)−1‖2,N ≤ C2N . For z ∈ BC/

√
N , we get

∥∥F(z)
∥∥2

2,N
≤ ∥∥HSN

(
φ̂N
)−1∥∥2

2

(∥∥∇SN
(
φ̂N
)∥∥2

2 +
N∑

i=1

∣∣gi(z)
∣∣2)≤ C2

2N2
(

C2
1

N3
+ C2

0

N2
‖z‖4

4,N

)

≤ C′
1

(
1

N
+ ‖z‖4

2,N

)
≤ C′

1

(
1

N
+ C4

N2

)
≤ C2

N
(5.36)
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for C sufficiently small. Therefore F(BC/
√

N) ⊂ BC/
√

N . We also have for z, y ∈ BC/
√

N , F(y) − F(z) =
HSN(φ̂N)−1(−gi(y) + gi(z)).

Then

∥∥F(y) − F(z)
∥∥2

2,N
≤ C2N

2
N∑

i=1

∣∣−gi(y) + gi(z)
∣∣2 ≤ C′

2

N
‖y − z‖2

2,N .

Thus F is a contraction for N sufficiently large. By the fixed point theorem, there exists a unique z0 ∈ BC/
√

N solution

of z0 = F(z0) which proves Proposition 5.6. �

6. Estimates

6.1. Description

In this section, we compute uniformly in the dimension the expectation of the transition times. We proceed as in [3]
and use the potential theory developed in [10]. Let us consider the N -dimensional diffusion

dYt = −∇SN(Yt )dt + √
2ε dBt (6.1)

which comes from (2.42) with the time change YhN t = Xt . We denote by μN the invariant measure for the process Y

μN(dx) = e−SN (x)/ε dx. (6.2)

Let us recall for clarity the norms defined for y ∈R
N and p ≥ 1

‖y‖p
p,N =

N∑
i=1

|yi |p, ‖y‖∞,N = max
i=1,...,N

|yi |. (6.3)

Remark 8. As in the previous section, we associate to a point y ∈ R
N its linear interpolation on [0,1] between the

points (xi, yi) (xi is given by (2.45),(2.46)) that we denote by y. Let us consider the Lp norm of y on [0,1], we have
for all p ∈ [1,+∞]

1

(4N)1/p
‖y‖p,N ≤ ‖y‖Lp =

[∫ 1

0

∣∣y(x)
∣∣p dx

]1/p

≤ 1

N1/p
‖y‖p,N . (6.4)

This can be done using the Riesz–Thorin Theorem, recalling that

1

4N
‖y‖1,N ≤ ‖y‖L1 ≤ 1

N
‖y‖1,N and ‖y‖∞,N = ‖y‖L∞ . (6.5)

In order to introduce the other norms, we need the following a priori estimates on the eigenvalues of the Hessian
of SN . Let us recall the Hessian of SN at a point φN ∈R

N is

HSN
(
φN
)
(h)j = − 1

N

(
ΔNh

)
j
+ 1

N
V ′′(φN(xj )

)
hj for h ∈ R

N (6.6)

with the suitable boundary conditions.

Lemma 6.1 [31]. For all φN ∈R
N such that ‖φN‖∞ < A, the eigenvalues (λk,N (φN))Nk=1 of HSN(φN) arranged in

increasing order satisfy the bound

m(A)k2 − 1 ≤ Nλk,N

(
φN
)≤ M(A)k2 + 1, (6.7)

where m(A) and M(A) do not depend on N or φN (only on A).
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Let us fix φN ∈ R
N . We consider the orthonormal eigenvectors (vl)l of HSN(φN). The decomposition of h ∈ R

N

in this orthonormal basis is given by h =∑N
l=1 h̃ivl . For p ∈ [1,∞], we define the norms ‖h‖p,F

‖h‖p

p,F =
N∑

i=1

|̃hi |p, ‖h‖∞,F = max
i=1,...,N

|̃hi |. (6.8)

As in [3], these are the norms we use to control the approximations of the potential around our stationary points. Let
us note that the norms depend on the point φN .

Remark 9. As in Section 4.1.1 in [3], the Hausdorff–Young Theorem can be adapted to the norms ‖·‖p,F and ‖·‖p,N .
For all 2 ≤ p ≤ +∞ and q such that q−1 + p−1 = 1, we obtain

1

N
‖x‖p

p,N ≤ C

(
1√
N

‖x‖q,F

)p

. (6.9)

In fact, let T :RN → R
N be the linear mapping T (y) =∑N−1

k=0 ykvN,l(z
∗
i ). By definition, ‖Ty‖p,F = ‖y‖p,N . The

proof of (6.9) is an application of the Riesz–Thorin Theorem, between p = 2 and p = ∞. On one hand, we have
‖Ty‖2

2,N = ‖y‖2
2,N since the eigenvectors form a orthonormal basis. On the other hand, we have ‖Ty‖∞,N ≤

C√
N

‖y‖1,N since the coordinates of the eigenvectors of the basis are bounded by C√
N

(see Lemma 5.2, Eq. (5.7)).

Let us recall the infinite dimensional situation. The process u starts from a minimum φl0 of S and reaches the set of
minima Ml . We denote by Ŝ0 = Ŝ(φl0 ,Ml) the height of the saddle points defined by (2.14). The idea is to construct
the same graph as in the infinite dimensional case with the approximated stationary points (minima and saddles) given
by Proposition 5.6. The difficulty here is that, even if we know that the approximated saddle points converge towards
the infinite dimensional saddle points, their potential are not strictly equal. So we construct this graph from the infinite
dimensional graph defined in Section 2.3.

By Assumption 2.4, for all N sufficiently large, we have a finite set MN = {x∗
i (N)} of minima of SN . From Propo-

sition 5.2 and Proposition 5.6, we deduce that a unique sequence of minima (x∗
l0
(N))N converges to φl0 . Similarly,

there is a subset MN
l of MN such that each minimum of (MN

l ) converges to a minimum in Ml . For each edge σ̂k of
the infinite dimensional graph, by Proposition 5.6, there is a unique saddle point z∗

k of SN satisfying (5.27).
We construct a graph for the finite dimensional case. We replace formally in the infinite dimensional graph (defined

in Section 2.3) the minima and saddle points by their (unique) finite dimensional approximation. The vertices are
subsets (Kj ) of the minima MN . The edges are saddle points of the finite dimensional potential SN .

To each saddle point z∗
k , we associate a weight

w∗
k = |λ−

N(z∗
k)|e−SN (z∗

k )/ε√
|detHSN(z∗

k)|
. (6.10)

To each vertex Kj , we associate a variable aj = a(Kj ) ∈ R. We denote by ai+ and ai− the two variables associated
to the vertices connected by the saddle point z∗

i .
We associate to this graph a quadratic form QN(a), for a a real vector indexed by the vertices (Kj )

QN(a) =
∑
z∗
l

w∗
l (al+ − al−)2. (6.11)

We distinguish K0 the subset of MN containing x∗
l0
(N). The equivalent conductance, C∗(N, ε), between the sets

x∗
l0

and MN
l is defined by

C∗(N, ε) = inf
{
QN(a), a(K0) = 1, a(J ) = 0, for all J such that J ∩MN

l =∅
}
. (6.12)

Remark 10. The graph for the finite dimensional case is constructed from the infinite dimensional case, since by
Proposition 5.6 finite stationary points converge to the infinite dimensional stationary points. All the other quantities
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are defined analogously, except for the weight of the saddle points (Eq. (6.10)) for which we must take care of the fact
that the values of the potential at these saddle points are not rigorously the same. Therefore this leads to incorporate
the exponential factor into the weight, whereas in the infinite dimensional case (Eq. (2.23)) we can omit it by factor-
izing it directly in the transition time. It is this exponential term which gives us the exponential order of the transition
time already known via large deviation estimates.

We recall the fundamental formula (6.15) proved in [10]. The expression of the expectation of the hitting time
τN
ε (BN

ρ (x∗
l0
)) is based on two quantities: the equilibrium potential and the capacity with respect to the sets BN

ρ (x∗
l0
)

and BN
ρ (MN

l ). The equilibrium potential, h∗, is defined by h∗(x) = Px[τN
ε (BN

ρ (x∗
l0
)) < τN

ε (BN
ρ (MN

l ))]. The Dirichlet

form, E N , associated with the diffusion process Y on R
N is

E N(h) = ε

∫
RN

∥∥∇h(x)
∥∥2

2,N
μN(dx). (6.13)

The capacity is the evaluation of the Dirichlet form on h∗. The capacity also satisfies a variational principle. We have

cap
(
BN

ρ

(
x∗
l0

)
,BN

ρ

(
MN

l

)) = E N
(
h∗)

= inf
{
E N(h),h ∈ H 1(

R
N
)
, h = 1 on BN

ρ

(
x∗
l0

)
, h = 0 on BN

ρ

(
MN

l

)}
. (6.14)

The expectation of the hitting time is expressed by

EνN

[
τN
ε

(
BN

ρ

(
MN

l

))]= ∫
RN h∗(x)dμN(x)

cap(BN
ρ (x∗

l0
),BN

ρ (MN
l ))

, (6.15)

where νN is a probability measure on ∂BN
ρ (x∗

l0
).

6.2. Capacity

We prove that the capacity defined in (6.14) can be estimated by the equivalent conductance C∗(N, ε) defined in
(6.12).

Proposition 6.2. For all ε < ε0 and ρ, we have

cap
(
BN

ρ

(
x∗
l0

)
,BN

ρ

(
MN

l

))= ε
√

2πε
N−2

C∗(N, ε)
(
1 + ψ1(ε,N)

)
, (6.16)

where lim supN→+∞ |ψ1(ε,N)| < √
ε|ln(ε)|3/2 for all N > N0.

The proof of this result is an adaptation to the case of a finite number of saddle points of Proposition 4.3 in [3]. The
estimate of the capacity is made in two steps: an upper bound and a lower bound.

6.2.1. Upper bound
We have the following proposition.

Proposition 6.3. For all ε < ε0 and ρ, we have

cap
(
BN

ρ

(
x∗
l0

)
,BN

ρ

(
MN

l

))≤ ε
√

2πε
N−2

C∗(N, ε)
(
1 + ψu(ε,N)

)
, (6.17)

where lim supN→∞ |ψu(ε,N)| < √
ε|ln(ε)|3/2.

Proof. The proof of this upper bound follows the proof of Lemma 4.4 in [3]. To obtain an upper bound for the
capacity, we just estimate the Dirichlet form on a test function h+. h+ is defined on some neighborhood CN

δ (z∗
i ) of

each saddle point z∗
i for some δ > 0 small enough.
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In the local orthonormal basis (given by coordinates y(i) ∈ R
N ) of the saddle point z∗

i , the neighborhood CN
δ (z∗

i )

is defined by

CN
δ

(
z∗
i

)= {y(i) ∈R
N : |y(i)

l | ≤ δ
rl√|λN,l |

,0 ≤ l ≤ N − 1

}
+ z∗

i , (6.18)

where (rl) is a sequence satisfying
∑

l

r
3/2
l

l3/2 < ∞ and (λN,l)l are the eigenvalues in the increasing order of HSN(z∗
i ).

Let us denote CN
δ =⋃i C

N
δ (z∗

i ).
Let us consider

SN,δ = {x,SN(x) ≥ SN
(
z∗
i

)+ cδ2,∀i
}
. (6.19)

The set (SN,δ ∪ CN
δ )c contains a finite number of connected components denoted Dj since each of them contains at

least a minimum x∗
j (which are in finite number by Assumption 2.4). For each connected component Dj , we define

h+ to be the constant aj ∈ [0,1]. For a saddle z∗
i , we denote Di+ and Di− the connected components attained from

z∗
i when y(i) = (δσ0,0) and y(i) = (−δσ0,0) respectively.

On SN,δ \ CN
δ , we take h+ of class C1 and such that ‖∇h+‖2,N ≤ c1

δ
. Then we define h+ on each CN

δ (z∗
i ) in the

local coordinates, by h+(y(i)) = fi(y
(i)
0 ) where

fi(y0) = (ai− − ai+) ∫ δσ0
y0

e−|λN,0|t2/2ε dt∫ δσ0
−δσ0

e−|λN,0|t2/2ε dt
+ ai+. (6.20)

Therefore, we have to estimate EN(h+) =∑i I1(i) + I2 with

I1(i) = ε

∫
CN

δ (z∗
i )

∥∥∇h+(x)
∥∥2

2,N
e−SN (x)/ε dx, I2 = ε

∫
SN,δ\BN

δ

∥∥∇h+(x)
∥∥2

2,N
e− SN (x)

ε dx. (6.21)

Taking δ = K
√

ε|ln ε|, the integrals I1(i) give us the right asymptotics and are estimated by an adaptation of
Lemma 4.4 from [3]. The quadratic approximation of the potential on the sets CN

δ (z∗
i ) is a consequence of Remark 9

and of the choice of the sets CN
δ (z∗

i ). The integral I2 is computed by following the same method as in Lemma 4.6 in
[3].

Therefore, we obtain that for all (aj )j , for N ≥ N0(ε)

cap
(
BN

ρ

(
x∗),BN

ρ

(
MN

l

))≤∑
i

ε
√

2πε
N−2 (ai− − ai+)2|λN,0|e−SN (z∗

i )/ε√
|det(HSN(z∗

i ))|
(
1 + A1

√
ε
∣∣ln(ε)

∣∣3/2)
.

Taking the minimum of the right-hand side over a, we get the result (6.17). �

6.2.2. Lower bound
We now prove the corresponding lower bound.

Proposition 6.4. For all ε < ε0 and ρ, we have

cap
(
BN

ρ

(
x∗),BN

ρ

(
MN

l

))≥ ε
√

2πε
N−2

C∗(N, ε)
(
1 + ψl(ε,N)

)
, (6.22)

where lim supN→∞ |ψl(ε,N)| < √
ε|ln(ε)|3/2.

Proof. The proof is adapted from [3]. For a saddle point z∗
i , we take a narrow corridor from one (local) minimum

to another one and minimize the Dirichlet form on the union of these corridors. In [3], this corridor was a rectangle
because of the particular case considered. In this article, we have to be more precise about their construction. We use
the same notations as in the proof of the upper bound.



160 F. Barret

Let us fix δ0. We consider the subset of RN−1

C
N,⊥
δ

(
z∗
i

)= {y(i) ∈R
N :
∣∣y(i)

l

∣∣≤ δ
rl√|λN,l |

,1 ≤ l ≤ N − 1

}
(6.23)

and we define CN
δ (z∗

i ) = [−δ0, δ0] × C
N,⊥
δ (z∗

i ) + z∗
i . We denote by x∗

i− and x∗
i+ the two minima of the basins sur-

rounding z∗
i .

Let (γ0(s))s∈[−s−,s+] be a regular C2 path from xi− to xi+ with γ0(s) = z∗
i + (s,0) for s ∈ [−δ0, δ0]. We also

suppose that there is η > 0 for which SN(γ0(s)) < SN
0 − 3η for |s| ≥ δ0 and that ‖γ ′

0(s)‖2,N = 1. Let, for all s, A(s)

be an isomorphism from R
N−1 to γ ′

0(s)
⊥ ⊂R

N of class C1 in s and such that for |s| < δ0, A(s)y = (0, y1, . . . , yN−1).
Then we construct a family of paths γ (s, y⊥) by

γ (s, y⊥) = γ0(s) + A(s)y⊥. (6.24)

Such a construction of a path γ0 is always possible in the infinite dimensional setting (because of Assumption 2.4).
Then taking the finite dimensional projection, it gives us a path for the finite dimensional case.

We define the corridor from xi− to xi+, for δ > 0 small enough

Cδ

(
z∗
i

)= {x = γ (s, y⊥), y⊥ ∈ C
N,⊥
δ

(
z∗
i

)
,∀s
}
. (6.25)

Let h be the equilibrium potential which realizes the minimum of the Dirichlet form and define ai±(y⊥) = h(xi± +
A(±s±)y⊥), the values near the minimum.

To estimate a lower bound, we are going to restrict the Dirichlet form on the union of the corridors Cδ(z
∗
i ):

EN(h) = ε

∫
RN

‖∇h‖2
2,NμN(dx) ≥

∑
i

ε

∫
Cδ(z

∗
i )

‖∇h‖2
2,NμN(dx) = ε

∑
I5(i). (6.26)

We define the function fi on Cδ(z
∗
i ), by fi(s, y⊥) = h(γ (s, y⊥)). The change of variable on Cδ(z

∗
i ) gives us the

Jacobian gi(s, y⊥) = det(Jγ )(s, y⊥) and we obtain

I5(i) ≥
∫

B
N,⊥
δ (z∗

i )

∫ s+

−s−

∣∣∣∣∂fi

∂s

∣∣∣∣2e−SN (γ (s,y⊥))/εgi(s, y⊥)ds dy⊥. (6.27)

We take y⊥ as a parameter then the second term is bounded below by the minimum over functions fi of the integral∫ s+

−s−

∣∣∣∣∂fi

∂s

∣∣∣∣2e−SN (γ (s,y⊥))/εgi(s, y⊥)ds (6.28)

with the conditions fi(−s−, y⊥) = h(xi− + A(−s−)y⊥) = ai−(y⊥) and fi(s+, y⊥) = h(xi+ + A(s+)y⊥) = ai+(y⊥).
This gives us a lower bound for the capacity.

A simple computation shows that the function fi realizing this lower bound is

fi(s, y⊥) = (ai+(y⊥) − ai−(y⊥)
)∫ s

−s− eSN (s,y⊥)/εgi(s, y⊥)−1 ds∫ s+
−s− eSN (s,y⊥)/εgi(s, y⊥)−1 ds

+ ai−(y⊥). (6.29)

Inserting this function in the integral (6.27), we obtain

I5(i) ≥
∫

C
N,⊥
δ (z∗

i )

(
ai+(y⊥) − ai−(y⊥)

)2[∫ s+

−s−
eSN (s,y⊥)/εgi(s, y⊥)−1 ds

]−1

dy⊥. (6.30)

The end of the proof comes from an upper bound of the integral uniformly for y⊥ ∈ C
N,⊥
δ (z∗

i ). We write∫ s+

−s−
eSN (s,y⊥)/εgi(s, y⊥)−1 ds = I6(i) + I7(i), (6.31)
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where

I6(i) =
∫ δ0

−δ0

eSN (s,y⊥)/εgi(s, y⊥)−1 ds and I7(i) =
∫

|s|>δ0

eSN (s,y⊥)/εgi(s, y⊥)−1 ds. (6.32)

As in Lemma 4.8 in [3], we control the quadratic approximation near the saddle z∗
i with the following lemma for

which we omit the proof.

Lemma 6.5. For all y = (s, y⊥) ∈ CN
δ (z∗

i ), if the sequence (rl)l satisfies
∑

l

r
3/2
l

l3/2 < ∞, we have for δ0 ≥ δ∣∣∣∣SN
(
γ (s, y⊥) + z∗

i

)− SN
(
γ (0, y⊥) + z∗

i

)+ 1

2
|λ0,N |s2

∣∣∣∣ ≤ A6δ
3
0, (6.33)∣∣∣∣∣SN

(
z∗
i + γ (0, y⊥)

)− SN
(
z∗
i

)− 1

2

N−1∑
k=1

λN,ky
2
k

∣∣∣∣∣ < A8δ
3. (6.34)

Following the proof of Lemma 4.7 in [3], we can also prove the existence of a constant A6 such that for all N

and y⊥

I6(i) ≤ eSN (z∗
i +(0,y⊥))/ε

√
2πε

|λN,0|
(

1 + A6
δ3

0

ε

)
. (6.35)

In addition, we need to prove an upper bound for the integral I7(i).

Lemma 6.6. There exists a constant A7 such that for all N and y⊥

I7(i) ≤ A7
√

Ne(Ŝ−2η)/ε, (6.36)

where η > 0 is given by the definition of the path γ0.

Proof. We have to be careful with the change of variable. Let us write the Jacobian matrix Jγ (s, y⊥) in the local base
(γ ′

0(s), γ
′
0(s)

⊥), if we denote P0 the projection on Span(γ ′
0(s)), we get the Jacobian matrix (written by blocks)

Jγ (s, y⊥) =
(

1 + P0(A
′(s)y⊥) 0

∗ A(s)

)
(6.37)

since ImA(s) = γ ′
0(s)

⊥. Then, as A(s) is an isometry, we obtain that

gi(s, y⊥) = ∣∣det
(
Jγ (s, y⊥)

)∣∣= ∣∣1 + P0
(
A′(s)y⊥

)∣∣= 1 + O(δ). (6.38)

Thus, for δ sufficiently small,

I7(i) =
∫

|s|>δ0

eSN (s,y⊥)/εgi(s, y⊥)−1 ds ≤ (1 + Cδ)e(Ŝ−2η)/ε(s+ + s−) ≤ 2(s+ + s−)e(Ŝ−2η)/ε

since SN(s, y⊥) < Ŝ − 2η for all |s| > δ0, and y⊥ ∈ C
N,⊥
δ . Then by construction of the path we have that

s+ + s− ≤ C‖xi− − xi+‖2,N ≤ C
√

N‖xi− − xi+‖L2 . (6.39)
�

We insert (6.35) and (6.36) in Eq. (6.30). Then we proceed as in the proof of Lemma 4.7 from [3] and we obtain

I5(i) ≥ ε

√ |λN,0|
2πε

∫
B

N,⊥
δ (z∗

i )

(
ai+(y⊥) − ai−(y⊥)

)2
e−SN (z∗

i +(0,y⊥))/ε dy⊥
[

1 + A6
δ3

0

ε
+ A′

7e− η
ε

]−1

. (6.40)
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Using Eq. (4.10) from Proposition 4.3, we obtain for all y⊥, |aj (y⊥) − aj (0)| < e−C/ε . Then using the approximation
(6.34) and following the proof of Lemma 4.7 in [3], we obtain for δ = √

Kε|ln ε| and δ0 = K ′ε|ln ε| with K ′ > K ,

I5(i) ≥ ε
(
ai− − ai+)2e−SN (z∗

i )/ε

√
2πε

N−2|λN,0|√
|det(HSN(z∗

i ))|
(
1 − A5

√
ε
∣∣ln(ε)

∣∣3/2)
. (6.41)

Equation (6.22) follows by minimizing along the (aj )j . �

6.3. Uniform estimate of the mass of the equilibrium potential

We prove estimates of the numerator of (6.15). Let us denote x∗
l0

∈R
N to be the closest minimum to φl0 in L2([0,1]).

We will prove an adaptation of Proposition 4.9 of [3].

Proposition 6.7. For all ε < ε0 and ρ, we have∫
RN

h∗(x)dμN(x) = (2πε)N√
detHSN(x∗

l0
)
e
−SN (x∗

l0
)/ε(

1 + ψ2(ε,N)
)
, (6.42)

where |ψ2(ε,N)| < √
ε|ln(ε)|3/2 for all N > N0.

Proof. As the previous section, we define around the minimum x∗
l0

∈ R
N a neighborhood CN

δ (x∗
l0
). In the local or-

thonormal basis of the minimum x∗
l0

, the neighborhood CN
δ (x∗

l0
) is defined by

CN
δ

(
x∗
l0

)= {y ∈R
N : |yl | ≤ δ

rl√|λN,l |
,0 ≤ l ≤ N − 1

}
+ x∗

l0
, (6.43)

where (rl) is a sequence satisfying
∑

l

r
3/2
l

l3/2 < ∞ and (λN,l)l are the eigenvalues in the increasing order of HSN(x∗
l0
).

We need to estimate∫
RN

h∗(x)dμN(x). (6.44)

Let us remark that for x ∈ ∂CN
δ (x∗), one of the coordinates is precisely δrk/

√
λk,N thus

SN(x) > SN
(
x∗)+ δ2r2

k − Cδ3 > SN
(
x∗)+ cδ2. (6.45)

We consider S′ such that the set {φ,S(φ) ∈]S(φl0), S
′]} contains no stationary point. Then using Proposition 5.1,

for all η small enough, there exists N0 such that for N > N0, {x,SN(x) ∈ [SN(x∗) + 1
2cδ2, S′ − η]} contains no

stationary point. We define the set A = {SN(x) ≤ SN(x∗) + cδ2} \ BN
ρ (x∗). Note also that for δ small enough,

CN
δ (x∗) ⊂ BN

ρ (x∗). Hence we decompose (6.44) in three parts:∫
RN

h∗(x)dμN(x) = I8 +
∫

SN (x)≥SN (x∗
l0

)+cδ2
h∗(x)dμN(x) +

∫
A

h∗(x)dμN(x). (6.46)

To estimate the third integral we need a control on the equilibrium potential on the set A.

Lemma 6.8. For all ρ < ρ0 and η > 0 there exists ε0(ρ) such that for ε < ε0 and δ > 0, let x ∈ A, we have

h∗
N(x) = Px

[
τN
ε

(
BN

ρ

(
x∗))< τN

ε

(
BN

ρ

(
MN

l

))]≤ e−(S′−SN (x)−2η)/ε. (6.47)
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Proof. By definition of the set A all the paths from x ∈ A to x∗ attain a height of S′ − η at least. To prove this
fact, let us take a path from x to x∗, it must attain its maximum Ŝ at some time t0. This maximum must satisfies
Ŝ > SN(x∗) + cδ2, since if it is not the case then from Eq. (6.45), the path must stay in CN

δ (x∗) which contradicts
the fact that x is in A. Then the minimal path from x to x∗ must attain its maximum at a stationary point of height
greater than SN(x∗) + cδ2 thus of height greater than S′ − η. This gives us an easy lower bound for the rate function
on the set of transition from x ∈ A to x∗. Then using the method from [25] and the uniform large deviation principle,
we prove that

h∗(x) = Px

[
τN
ε

(
BN

ρ

(
x∗))< τN

ε

(
BN

ρ

(
MN

l

))]≤ e−(S′−2η−SN (x))/ε (6.48)

uniformly in N . �

We get from (6.46)∫
RN

h∗(x)dμN(x) ≤ I8 +
∫

SN (x)≥SN (x∗
l0

)+cδ2
e−SN (x)/ε dx +

∫
SN (x)≤SN (x∗

l0
)+cδ2

e−(S′−2η)/ε dx, (6.49)

where we have used the fact that h∗ is bounded by one for the second integral and the previous lemma for the third
integral. The integral I8 gives the main contribution and is estimated as in the proof of Proposition 4.9 of [3] using the
quadratic approximation of the potential on CN

ρ (x∗
l0
). The second integral on the right-hand side is estimated as in the

proof of Lemma 4.6 in [3].
We bound the third integral by the volume of the set {SN(x) ≤ SN(x∗

l0
) + cδ2} which is bounded uniformly in N .

In fact, from the bound on SN and the convergence of SN(x∗
l0
) to S(φl0), we get for δ sufficiently small

{
SN(x) ≤ SN

(
x∗
l0

)+ cδ2}⊂ {∥∥∇Nx
∥∥2

2,N
+ ‖x‖2

2,N < N
(
S(φl0) + c

)}
(6.50)

which is a deformed ball. The computation shows that this quantity is uniformly bounded in N .
We obtain the result since the order of magnitude of the two last integrals (O(e−(S′−η)/ε)) of (6.49) is much smaller

than I8 = O(e
−SN (x∗

l0
)/ε

). �

6.4. Finite dimensional formula

The finite dimensional formula is now obtained with a uniform control in the dimension. From Proposition 5.6, we
take x∗ = φN

l0
where φN

l0
is the unique minimum of SN such that

∥∥φl0 − φN
l0

∥∥
L2 ≤ C

N
,

∥∥φ̂N
l0

− φN
l0

∥∥∞ ≤ C√
N

, (6.51)

where φ̂N
l0

is the linear interpolation of φl0 .

Proposition 6.9. Let τN
ε be the transition time from BN

ρ (φN
l0

) to BN
ρ (MN

l ), we have uniformly in N

EφN
l0

[
τN
ε

]= 2πe
SN (φN

l0
)/ε

C∗(N, ε)

√
detHSN(φN

l0
)

(
1 + Ψ (ε,N)

)
, (6.52)

where C∗(N, ε) is the equivalent conductance and

lim sup
N→+∞

∣∣Ψ (ε,N)
∣∣≤ C

√
ε|ln ε|3/2. (6.53)
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Proof. Inserting the estimates for the capacity (Proposition 6.2) and the numerator (Proposition 6.7) in Eq. (6.15) we
conclude that

EνN

[
τN
ε

]= 2πe
SN (φN

l0
)/ε

C∗(N, ε)

√
detHSN(φN

l0
)

(
1 + Ψ1(ε,N)

)
, (6.54)

where lim supN |Ψ1(ε,N)| < C
√

ε|ln(ε)|3/2 and νN is a probability measure on ∂BN
ρ (φN

l0
). Now we use Proposi-

tion 4.3 to replace the measure νN by the point φN
l0

. For y ∈ BN
ρ (φN

l0
), we have by definition∥∥φN

l0
− y
∥∥2

L2 < ρ2,
∣∣SN

(
φN

l0

)− SN(y)
∣∣< ρ. (6.55)

Then from Proposition 5.6, we have N0 such that for N ≥ N0

‖φl0 − y‖2
L2 < 2ρ2,

∣∣S(φl0) − SN(y)
∣∣< 2ρ. (6.56)

Thus since V is regular, we obtain |‖φ′
l0
‖2
L2 − ‖y′‖2

L2 | < Cρ.

Let z = y − φl0 , we have by integration by parts∣∣∥∥φ′
l0

+ z′∥∥2
L2 − ∥∥φ′

l0

∥∥2
L2

∣∣= ∣∣2〈φ′
l0
, z′〉+ ∥∥z′∥∥2

L2

∣∣= ∣∣−2
〈
φ′′

l0
, z
〉+ ∥∥z′∥∥2

L2

∣∣< Cρ (6.57)

since φl0 is regular as a classical solution of a differential equation. Then we obtain by the Cauchy–Schwarz inequality∥∥z′∥∥2
L2 ≤ Cρ + 2

∥∥φ′′
l0

∥∥
L2‖z‖L2 ≤ (C + 2

∥∥φ′′
l0

∥∥
L2

)
ρ. (6.58)

Thus we get∥∥y − φN
l0

∥∥∞ ≤ ‖y − φl0‖∞ ≤ C′‖y − φl0‖H 1 = C′‖z‖H 1 ≤ C′′√ρ. (6.59)

Using Proposition 4.3, we get that for all N ≥ N0∣∣EνN

[
τN
ε

]−Eφl0
N

[
τN
ε

]∣∣≤ e(Ŝ−2η)/ε (6.60)

which gives us (6.52) since the exponential asymptotics of (6.54) is greater than e(Ŝ−η)/ε . �

6.5. Proof of Theorem 2.6

From Proposition 6.9 applied to the finite diffusion approximation where the minima and saddle points are given by
Proposition 5.6, we have

EφN
l0

[
τN
ε

]= 2πhN e
SN (φN

l0
)/ε

C∗(N, ε)

√
detHSN(φN

l0
)

(
1 + Ψ (ε,N)

)
, (6.61)

where the factor hN comes from the time change (Eq. (2.42)). Using Proposition 5.2 (convergence of the eigenvalues)
and Corollary 5.5 (convergence of the ratio of eigenvalues), the quadratic forms QN converges to Q:

1

hN

QN(a)

√
detHSN

(
φN

l0

) =
∑
φ∗N

l

|λ−
N(φ∗N

l )|
hN

√√√√ detHSN(φN
l0

)

|detHSN(φ∗N
l )|e−SN (φ∗N

l )/ε(al+ − al−)2,

1

hN

QN(a)

√
detHSN

(
φN

l0

) −−−−→
N→+∞

∑
φ∗

l

∣∣λ−(φ∗
l

)∣∣√ DetHφl0
S

|DetHφ∗
l
S|e−S(φ∗

l )/ε(al+ − al−)2 (6.62)

= Q(a)e−S(φ∗
l )/ε
√

DetHφl0
S,
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where φ∗N
l are the relevant saddle points given by Proposition 5.6. Then the minimizer converges. For all ε, we get

1

hN

C∗(N, ε)

√
detHSN

(
φN

l0

)−−−−→
N→∞ C∗(φl0 ,Ml )e

−S(φ∗
l )/ε
√

DetHφl0
S. (6.63)

Therefore, we obtain the result of Theorem 2.6 from Proposition 3.4.
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