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Abstract. We consider the solution to the parabolic Anderson model with homogeneous initial condition in large time-dependent
boxes. We derive stable limit theorems, ranging over all possible scaling parameters, for the rescaled sum over the solution depend-
ing on the growth rate of the boxes. Furthermore, we give sufficient conditions for a strong law of large numbers.

Résumé. Nous considérons la solution du modèle parabolique d’Anderson avec condition initiale homogène sur de grandes boîtes
dépendantes du temps. Nous dérivons des théorèmes limites stables, pour toutes les valeurs possibles des paramètres d’échelle,
pour la somme de la solution changée d’échelle en fonction du taux de croissance des boîtes. De plus, nous donnons des conditions
suffisantes pour une loi des grands nombres.
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1. Introduction

1.1. The problem

The parabolic Anderson model (PAM) is the heat equation on the lattice with a random potential, given by{
∂
∂t

u(t, x) = κ�u(t, x) + ξ(x)u(t, x), (t, x) ∈ (0,∞) ×Z
d ,

u(0, x) = u0(x), x ∈ Z
d ,

(1)

where κ > 0 denotes a diffusion constant, u0 a nonnegative function, and � the discrete Laplacian, defined by

�f (x) :=
∑

y∈Zd :|x−y|1=1

[
f (y) − f (x)

]
, x ∈ Z

d, f :Zd → R.

Furthermore, ξ := {ξ(x), x ∈ Z
d} is an i.i.d. random potential. We will stick in this paper to the homogeneous initial

condition u0 ≡ 1.
The solution u depends on two effects. The Laplacian tends to make it flat whereas the potential tends to make it

uneven. In combination this causes the occurrence of small regions where almost all mass of the system is located. This
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effect is called intermittency and it is present for all potentials that are not almost surely constant, see [9], Theorem 3.2.
It turns out that the intermittency effect becomes the more pronounced the more heavy tailed the potential is.

Basically, there are two ways of looking at the solution. On the one hand one can pick one realisation of the
potential field and consider the almost sure behaviour of u. This is the so-called quenched setting. On the other hand
one can take expectation with respect to the potential and consider the averaged behaviour of u. This is the so-called
annealed setting. Expectation with respect to ξ will be denoted by 〈·〉, and the corresponding probability measure will
be denoted by P. Those sites x ∈ Z

d whose peaks ξ(x) govern the quenched behaviour of u differ heavily from those
that govern the annealed behaviour, see [9]. Therefore, it is interesting to understand the transition mechanism from
quenched to annealed behaviour.

To this end we are interested in expressions such as 1
|Q|

∑
x∈Q u(t, x) where Q is a large centred box. If Q has a

fixed size then 1
|Q|

∑
x∈Q u(t, x) follows quenched behaviour as t tends to infinity, i.e., 1

|Q|
∑

x∈Q u(t, x)/u(t,0) → 1

a.s. This can be deduced from the Feynman–Kac representation of u given by

u(t, x) = Ex exp

{∫ t

0
ξ(Xs)ds

}
u0(Xt ), (t, x) ∈ [0,∞) ×Z

d,

where X is a simple, symmetric, continuous time random walk with generator κ� and Px (Ex ) denotes the corre-
sponding probability measure (expectation) if X0 = x a.s.

On the other hand, if we fix t and let the size of Q tend to infinity then (due to the homogeneous ini-
tial condition) by Birkhoff’s ergodic theorem 1

|Q|
∑

x∈Q u(t, x) displays annealed behaviour almost surely, i.e.,
1

|Q|
∑

x∈Q u(t, x)/〈u(t,0)〉 → 1 a.s. Therefore, a natural question is what happens if the box Q is time dependent.

More precisely, we want to find for all α ∈ (0,2) a large box QLα(t), with Qr(t) = [−r(t), r(t)]d ∩ Z
d , for any

r(t) > 0, and numbers A(t),Bα(t) such that

∑
x∈QLα(t)

u(t, x) − A(t)

Bα(t)

t→∞	⇒ Fα,

with Fα a suitable stable distribution.
In the case κ = 0, i.e., if the solutions at different sites are independent, the problem has been addressed in [1]

under the assumption that the logarithmic tail of the distribution is normalized regularly varying. A wider class of
distributions was considered in [5]. In [13] a conceptual treatment of several classes of time-dependent sums is offered,
in particular explaining the universality of the limit laws in different cases. In [1] the authors also give sufficient and
necessary conditions on the growth rate of Q for a weak law of large numbers (WLLN) and for a central limit theorem
(CLT) to hold. Corresponding results for a WLLN and a CLT for the PAM, i.e., κ �= 0, were derived in [2] and in [3].
They state that, under appropriate regularity assumptions, there exist J (t) and γ1 < γ2, all depending on the tails of ξ ,
such that:

(i) 1
|QγJ(t)|

∑
x∈QγJ(t)

u(t, x) ∼ 〈u(t,0)〉, as t → ∞ if γ > γ1, in probability, 1
|QγJ(t)|

∑
x∈QγJ(t)

u(t, x) = o(〈u(t,0)〉),
as t → ∞ if γ < γ1, in probability.

(ii) 1
|QγJ(t)|

∑
x∈QγJ(t)

u(t,x)−〈u(t,0)〉√
〈u(t,0)2〉 	⇒ N (0,1), as t → ∞ if γ > γ2, 1

|QγJ(t)|
∑

x∈QγJ(t)

u(t,x)−〈u(t,0)〉√
〈u(t,0)2〉 = o(1), as

t → ∞ if γ < γ2, in probability.

Here, N (0,1) denotes the law of the standard normal distribution with variance 1.
However, α-stable limits for the PAM have not been investigated so far. Furthermore, we give sufficient conditions

on the growth rate of Q for a strong law of large numbers to hold. So far this has been done neither for the PAM nor
for the κ = 0 case.

For a general overview of the parabolic Anderson model see, for instance [15] and [8]. A WLLN and a CLT for
the PAM with time-dependent white noise potential using rather different techniques can be found in [7]. The critical
growth rates in that model are of the same order as for the double-exponential case in our model. Similar questions
concerning a version of the random energy model were investigated in [6].
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1.2. Main results

To state the main results we need to introduce some notation. Let

ϕ(h) := − log P
(
ξ(0) > h

)
and ht a solution to

sup
h∈(0,∞)

(
th − ϕ(h)

) = tht − ϕ(ht ).

If ϕ is ultimately convex then ht is unique for any large t . Throughout this paper we will assume that ξ(0) is unbounded
from above and has finite exponential moments of all orders. Under these circumstances the left-continuous inverse
of ϕ,

ψ(s) := min
{
r: ϕ(r) ≥ s

}
, s > 0,

is well defined. Furthermore, this implies that the cumulant generating function

H(t) := log
〈
exp

{
tξ(0)

}〉
, t ≥ 0,

is well-defined and that H(t) < ∞ for all t with limt→∞ H(t)/t = ∞. If ϕ ∈ C2 is ultimately convex and satisfies
some mild regularity assumptions then the Laplace method yields that H(t) = tht − ϕ(ht ) + o(t). In the sequel we
will frequently need the following regularity assumptions.

Assumption F. There exists ρ ∈ [0,∞] such that for all c ∈ (0,1),

lim
t→∞

[
ψ(ct) − ψ(t)

] = ρc log c.

Assumption H. There exists ρ ∈ [0,∞] such that for all c ∈ (0,1),

lim
t→∞

1

t

[
H(ct) − cH(t)

] = ρc log c.

In [10], Theorems 1.2 and 2.2, the authors prove that there exists χ = χ(ρ) ∈ [0,2dκ] such that

logu(t,0)

t
= ξ

(1)
Qt

− χ + o(1), a.s., (2)

with ξ
(1)
A = sup{ξ(x): x ∈ A}, if Assumption F is satisfied, and

log〈u(t,0)p〉
t

= H(pt)

t
− pχ + o(1), p ∈N, (3)

if Assumption H is satisfied. Notice that Assumption F implies Assumption H. Furthermore, it turns out that χ = χ(ρ)

is strictly increasing in ρ with χ(0) = 0 and χ(∞) = 2dκ . For details see [10].
Prominent examples satisfying Assumption F are the double exponential distribution, i.e., P(X > x) =

exp{− exp{x/ρ}}, x > 0, for ρ ∈ (0,∞) and the Weibull distribution, i.e., P(X > x) = exp{−xγ }, x > 0 with γ > 1
for ρ = ∞.

For α ∈ (0,2) let Fα be the α-stable distribution with characteristic function

φα(u) =
{

exp
{−
(1 − α)|u|α exp

{−iπα
2 signu

}}
, α �= 1,

exp
{
iu(1 − γ ) − π

2 |u|(1 + 2πi log |u| signu)
}
, α = 1.



Stable limit laws for the PAM between quenched and annealed behaviour 197

Moreover, let

Lα(t) := exp
{
ϕ(hαt )

}
and Bα(t) := exp

{
t · (hαt − χ + o(1)

)}
,

where the error term of Bα(t) is chosen in a suitable way. Then we find our main result:

Theorem 1 (Stable limit laws). Let ϕ ∈ C2 be ultimately convex and Assumption F be satisfied. Then for α ∈ (0,2),∑
x∈QLα(t)

u(t, x) − A(t)

Bα(t)

t→∞	⇒ Fα,

with

A(t) =
⎧⎨⎩

0, if α ∈ (0,1),
〈u(t,0)〉, if α ∈ (1,2),〈
u(t,0)1u(t,0)≤Bα(t)

〉
, if α = 1.

Furthermore, we find:

Theorem 2 (Strong law of large numbers). Let Assumption H be satisfied, and r(t) be so large that limt→∞ 1
t
×

(log |Qr(t)| − H(2t) + 2H(t)) > 0 then for every sequence (tn)n∈N satisfying
∑

n exp{−tn} < ∞,

(1/|Qr(tn)|)∑
x∈Qr(tn)

u(tn, x)

〈u(tn,0)〉
tn→∞−→ 1 a.s.

Notice that the necessary growth rate of Q for a WLLN to hold is the same as in Theorem 1 for α = 1 and that the
necessary growth rate of Q for a CLT to hold corresponds to α = 2, see [3]. The growth rate in Theorem 2 is of the
same order as in the CLT case. Notice, that Theorem 1 is closer to the i.i.d. case than to the case of a random walk
among random obstacles as considered in [2], Theorem 3, where the limiting distributions are not stable laws, but
infinite divisible distributions with Levy spectral functions that are not continuous. It seems as if the discrete character
of the random walk mentioned in the comment on [2], Theorem 3, is more decisive for that model than for ours which
can be reduced to the i.i.d. case by virtue of an appropriate coarse-graining.

To get a feeling for the numbers involved we give them for the two examples mentioned above in Table 1 below.
Notice that in the Weibull case we have

logBα(t) = 1

α

(
log

〈
u(t,0)α

〉 + log |QLα(t)|
) + o(t),

see [11], i.e., the asymptotics of Bα(t), QLα(t) and the αth moment of u are closely linked. Because of (3) and our
considerations in Section 2 this relationship seems to be true in the double exponential case, as well.

2. Stable limit laws

Let us explain our strategy of the proof of Theorem 1. We decompose the large box QLα(t) into boxes Q
(i)
l(t), i =

1, . . . , �|QLα(t)|/|Ql(t)|� of much smaller size. In each subbox we approximate u by u(i), the solution with Dirichlet

boundary conditions in Q
(i)
l(t). In this way, we reduce the problem to the case of i.i.d. random variables. A spectral

Table 1

Distribution ϕ(x) logLα(t) logBα(t)

Weibull xγ , γ > 1 ( αt
γ )γ /(γ−1) t ( αt

γ )1/(γ−1) − 2dκαt + o(t)

Double-exponential exp{x/ρ} ραt tρ logραt − χ(ρ)αt + o(t)
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representation shows that
∑

x∈Q
(i)
l(t)

u(i)(t, x) can be approximated by etλ
(i)
1 , where λ

(i)
1 is the principal Dirichlet eigen-

value of � + ξ in Q
(i)
l(t). Then a classical result on stable limits for sums of t -dependent i.i.d. random variables yields

the result.
Note that we cannot apply the results of [1] since they require the function ϕ to be normalized regularly varying,

which is for instance not true in the important case of double-exponential tails. An alternative approach could be to
adopt the techniques from [5].

Let us turn to the details. We first work on the u(i) and show in the end how to approximate u by u(i). We assume
that Q

(i)
l(t) are translated copies of Ql(t). We consider the solution u(i) to the PAM in Q

(i)
l(t) with Dirichlet boundary

conditions, i.e., ξ(x) = −∞ for all x /∈ Q
(i)
l(t), where l(t) = max{t2 log2 t,H(4t)}. The corresponding Laplacian will

be denoted �0
Q

(i)
l(t)

. By τU := inf{t > 0: Xt ∈ U} we denote the first hitting time of a set U by a random walk X. The

Feynman–Kac representation of u(i) reads

u(i)(t, x) = Ex exp

{∫ ∞

0
ξ(Xs)ds

}
1τ

(Q
(i)
l(t)

)c
>t , (t, x) ∈ [0,∞) × Q

(i)
l(t).

Let λ
(i)
1 , . . . , λ

(i)
|Ql(t)| be the order statistics of the eigenvalues of the Anderson Hamiltonian �0

Q
(i)
l(t)

+ ξ and

e
(i)
1 , . . . , e

(i)
|Ql(t)| be the corresponding orthonormal basis. Then we have the following spectral representation

∑
x∈Q

(i)
l(t)

u(i)(t, x) =
∑

x,y∈Q
(i)
l(t)

|Ql(t)|∑
k=1

eλ
(i)
k t e

(i)
k (x)e

(i)
k (y), t ∈ [0,∞). (4)

For simplicity we have suppressed the time dependence of the eigenvalues and eigenvectors that arises because the
boxes are time dependent. From Parseval’s inequality, the fact that l(t) is of subexponential order and the proof of
Theorem 2.2 in [10] it follows that there exists ε̃(i)(t) = ε̃(i)(ξ, t) = o(1) such that∑

x∈Q
(i)
l(t)

u(i)(t, x) = etμ
(i)
t , where μ

(i)
t = μ

(i)
t (ξ) = λ

(i)
1 + ε̃(i)(t).

Sometimes we will write μt instead of μ
(i)
t , λ1 for λ

(i)
1 and ε̃(t) for ε̃(i)(t).

Remark. The above already implies that for log r(t) = o(H(t)) the quenched setting is prominent in the following
sense,

lim
t→∞

logu(t,0)

log
∑

x∈Qr(t)
u(t, x)

= 1, a.s.

In the next lemma we show how the distributions of μt and ξ(0) are linked.

Lemma 3. Let Assumption F be satisfied. Then for all functions h with limt→∞ |Ql(t)|P(ξ(0) > h(t)) = 0 there exists
ε(t) = ε(ξ, t) = o(1) such that,

P
(
μt > h(t)

) ∼ |Ql(t)|P
(
ξ(0) > h(t) + χ − ε(t)

)
, t → ∞.

Proof. In [10], Proof of Theorem 2.16, the authors show that the first eigenvalue of �0
Ql(t)

+ ξ satisfies

λ1 = ξ
(1)
Ql(t)

− χ + ε̄(t),
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with ε̄(t) = ε̄(ξ, t) = o(1). Let

ε(t) := ε̃(t) + ε̄(t).

Then

P
(
μt > h(t)

) = P
(
ξ

(1)
Ql(t)

> h(t) + χ − ε(t)
)

= 1 − (
1 − P

(
ξ(0) > h(t) + χ − ε(t)

))|Ql(t)|

∼ 1 − exp
{−|Ql(t)|P

(
ξ(0) > h(t) + χ − ε(t)

)}
∼ |Ql(t)|P

(
ξ(0) > h(t) + χ − ε(t)

)
, t → ∞.

In the third line we use L’Hopital’s rule. �

Let

ϕ̃t (x) = − log P(μt > x),

and h̃t a solution to

sup
h∈(0,∞)

(
th − ϕ̃t (h)

) = t h̃t − ϕ̃t (̃ht ). (5)

It follows that h̃t = ht + χ + o(1) and if ϕ̃t is ultimately convex then h̃t is the unique solution to (5). Then, an
application of the Laplace method yields

〈
u(t,0)

〉 ∼ 〈
u(i)(t,0)

〉 ∼ t

∫ ∞

0
exp

{
th − ϕ̃(h)

}
dh = exp

{[
t h̃t − ϕ̃(̃ht )

](
1 + o(1)

)}
.

The first asymptotics follow from [11], Proposition 7. Hence, we obtain together with Lemma 3 that

logBα(t) = t h̃αt = 1

α

(
log

〈
u(t,0)α

〉 + log |QLα(t)|
)(

1 + o(1)
)
.

To prove convergence of
∑

i:Q(i)
l(t)

⊂QLα(t)
(etμ

(i)
t − Ã(t))/Bα(t), as t → ∞, to an infinitely divisible distribution with

characteristic function equal to

φ(u) = exp

{
iau − σ 2u2

2
+

∫
|x|>0

(
eiux − 1 − iux

1 + x2

)
dL̃(x)

}
, (6)

we have to verify the following condition (see [16], Chapter IV).

Condition P.

(i) Condition of infinite smallness:

lim
t→∞ max

i:Q(i)
l(t)

⊂QLα(t)

P
(

etμ
(i)
t

Bα(t)
≥ ε

)
= 0, ε > 0.

(ii) In all points x of continuity, the function L̃ satisfies:

L̃(x) = − lim
t→∞

|QLα(t)|
|Ql(t)| P

(
etμt

Bα(t)
> x

)
.
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(iii) The constant σ 2 satisfies:

σ 2 = lim
τ→0

lim sup
t→∞

|QLα(t)|
|Ql(t)| Var

(
etμt

Bα(t)
1(etμt /Bα(t))≤τ

)
= lim

τ→0
lim inf
t→∞

|QLα(t)|
|Ql(t)| Var

(
etμt

Bα(t)
1(etμt /Bα(t))≤τ

)
.

(iv) For every τ > 0 the constant a satisfies:

lim
t→∞

{ |QLα(t)|
|Ql(t)|

〈
etμt

Bα(t)
1(etμt /Bα(t))≤τ

〉
− Ã(t)

Bα(t)

}
= a +

∫ τ

0

x3

1 + x2
dL(x) −

∫ ∞

τ

x

1 + x2
dL(x).

Items (i) and (ii) will follow from the next lemma, and (iii) and (iv) from the next proposition.

Lemma 4. Let Assumption F be satisfied and ϕ ∈ C2 be ultimately convex. Then

lim
t→∞

|QLα(t)|
|Ql(t)| P

(
μt >

logBα(t)

t
+ logx

t

)
= x−α.

Proof. Lemma 3 and a first order Taylor expansion yield

P
(

μt >
logBα(t)

t
+ logx

t

)
∼ |Ql(t)|P

(
ξ(0) >

logBα(t)

t
+ logx

t
+ χ + ε(t)

)
= exp

{
log |Ql(t)| − ϕ

(
logBα(t)

t
+ χ + o(1)

)
− ϕ′

(
logBα(t)

t
+ χ + o(1)

)
logx

t
+ o(1)

}
.

Since ϕ is ultimately convex and ξ is unbounded from above we find that ϕ′′(hαt ) = 1/h′
αt = o(t2). From this we can

conclude that the error term in the Taylor expansion above vanishes asymptotically. Moreover, by our choice of l(t)

and Bα(t) it follows that

log |QLα(t)| = ϕ

(
logBα(t)

t
+ χ + o(1)

)
and lim

t→∞
ϕ′((logBα(t)/t) + χ + o(1))

t
= α. �

Proposition 5. Let Assumption F be satisfied and ϕ ∈ C2 be ultimately convex. Then, for any τ > 0,

(i) if p > α then

lim
t→∞

|QLα(t)|
|Ql(t)|

〈
eptμt

Bα(t)p
1(etμt /Bα(t))≤τ

〉
= α

p − α
τp−α;

(ii) if p < α then

lim
t→∞

|QLα(t)|
|Ql(t)|

〈
eptμt

Bα(t)p
1(etμt /Bα(t))>τ

〉
= α

α − p
τp−α;

(iii) if p = α then

lim
t→∞

|QLα(t)|
|Ql(t)|

〈
eptμt

Bα(t)p
(1(etμt /Bα(t))≤τ − 1(etμt /Bα(t))≤1)

〉
= α log τ.
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Proof. (i) Integration by parts yields

〈
eptμt 1(etμt /Bα(t))≤τ

〉 =
∫ h̃αt+log τ/t

0
etpx d

(
1 − F̄μt (x)

)
= −[

etpx−ϕ̃(x)
]x=h̃αt+log τ/t

x=0 + pt

∫ h̃αt+log τ/t

0
etpx−ϕ̃(x) dx.

Here F̄μt denotes the tail distribution function of μt . Similarly as in the proof of Lemma 4 we find with the help of a
first order Taylor expansion of ϕ that uniformly in τ ,

ϕ̃

(
h̃αt + log τ

t

)
∼ ϕ̃(̃hαt ) − α log τ, t → ∞.

Substituting x = h̃αt + log τ
t

u for τ �= 1 we find that

pt

∫ h̃αt+log τ/t

0
etpx−ϕ̃(x) dx ∼ epth̃αt−ϕ̃(̃hαt )p log τ

∫ 1

−∞·sign log τ

eu(p−α) log τ du

∼ p

p − α
epth̃αt−ϕ̃(̃hαt )+(p−α) log τ , t → ∞.

Altogether this proves the claim.
(ii) and (iii) follow similarly. �

Overall we find:

Theorem 6. Let Assumption F be satisfied and ϕ ∈ C2 be ultimately convex. Then for α ∈ (0,2),

∑
i:Q(i)

l(t)
⊂QLα(t)

etμ
(i)
t − Ã(t)

Bα(t)

t→∞	⇒ Fα,

with

Ã(t) =
⎧⎨⎩

0, if α ∈ (0,1),
〈etμt 〉, if α ∈ (1,2),
〈etμt 1μt≤1〉, if α = 1.

Proof. Since the u(i) are i.i.d., the μ
(i)
t are as well. Hence, we have to check the four points of Condition P. Items

(i) and (ii) follow from Lemma 4. We find that L̃(x) = x−α . It follows from Proposition 5 that σ 2 = 0. Furthermore,
Proposition 5 together with [1], Proposition 6.4, yields the constant a from which we can deduce φ. The stability of
the limit law follows from [16], Theorem IV.12, since σ 2 = 0 and L̃(x) = x−α . �

Remark. An infinitely divisible law with characteristic function as in (6) is stable if and only if either L̃ ≡ 0 or σ 2 = 0
and L̃(x) = cx−α , c > 0, α ∈ (0,2), see [16], Theorem IV.12.

We extend the functions u(i) to a function ũ :QLα(t) → [0,∞) by putting ũ(t, x) = u(i)(t, x) for x ∈ Q
(i)
l(t). Now it

remains to show that

∑
x∈QLα(t)

u(t, x) − A(t)

Bα(t)
and

∑
x∈QLα(t)

ũ(t, x) − Ã(t)/|Ql(t)|
Bα(t)

=
∑

i:Q(i)
l(t)

⊂QLα(t)

exp{tμ(i)
t } − Ã(t)

Bα(t)



202 J. Gärtner and A. Schnitzler

Fig. 1. Coarse-graining.

have the same α-stable limit distribution. To this end let Ic
t = ⋃

i:Q(i)
l(t)

⊂QLα(t)
Q

(i)
l(t)

\ Q
(i)
l(t)(1−1/t)

and It = QLα(t) \ Ic
t

(see Fig. 1).
Notice that

u(t, x) − ũ(t, x) = Ex exp

{∫ ∞

0
ξ(Xs)ds

}
1τ

(Q
(i)
l(t)

)c
≤t , (t, x) ∈ [0,∞) × Q

(i)
l(t)

.

In the next lemma we show that those paths of the random walk in the Feynman–Kac formula that start in It and leave
Ql(t) before time t are asymptotically negligible.

Lemma 7. Almost surely,

lim
t→∞ sup

x∈Ql(t)(1−1/t)

Ex exp

{∫ ∞

0
ξ(Xs)ds

}
1τ(Ql(t))

c≤t = 0.

Proof. We find that

sup
x∈Ql(t)(1−1/t)

Ex exp

{∫ ∞

0
ξ(Xs)ds

}
1τ(Ql(t))

c≤t

≤ exp
{
t sup

x∈Ql(t)

ξ(x)
}
P0(τ(Ql(t)/t )

c ≤ t)

≤ 2d+1 exp

{
t · o

(
log

(|Ql(t)|
)) − |Ql(t)/t | log

( |Ql(t)/t |
dκt

)}
t→∞−→ 0.

In the last inequality we use [10], Lemma 2.5 and Corollary 2.7. �

Lemma 8. For all ε > 0,

(i) if α ∈ (0,1] then

lim
t→∞ P

(
1

Bα(t)

∑
x∈QLα(t)

[
u(t, x) − ũ(t, x)

]
> ε

)
= 0;

(ii) if α ∈ [1,2) then

lim
t→∞ P

(
1

Bα(t)

∑
x∈QLα(t)

[
u(t, x) − 〈

u(t, x)
〉 − ũ(t, x) + 〈̃

u(t, x)
〉]

> ε

)
= 0;
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(iii) if α = 1 then

lim
t→∞ P

( ∑
x∈QLα(t)

u(t, x) − 〈u(t, x)1u(t,x)≤Bα(t)〉 − ũ(t, x) + 〈̃u(t, x)1ũ(t,x)≤Bα(t)〉
Bα(t)

> ε

)
= 0.

Proof. (i) From Lemma 7 and the fact that |It | < Bα(t) for all t it follows that for t → ∞,

P
(

1

Bα(t)

∑
x∈QLα(t)

u(t, x) − ũ(t, x) > ε

)
∼ P

(
1

Bα(t)

∑
x∈Ic

t

u(t, x) − ũ(t, x) > ε

)
.

By the definition of Bα(t) and by Markov’s inequality it follows that

P
(

1

Bα(t)

∑
x∈Ic

t

u(t, x) − ũ(t, x) > ε

)
≤ P

( ∑
x∈Ic

t

u(t, x)

|QLα(t)|1/α〈u(t,0)α〉1/α
> ε

)

≤ 1

εα

〈(∑x∈Ic
t
u(t, x))α〉

|QLα(t)|〈u(t,0)α〉

≤ 1

εα

|QLα(t)|
|It |

〈u(t,0)α〉
|QLα(t)|〈u(t,0)α〉

t→∞−→ 0.

(ii) Similarly as in case (i) we find that asymptotically

P
(

1

Bα(t)

∑
x∈QLα(t)

[
u(t, x) − 〈

u(t, x)
〉 − ũ(t, x) + 〈̃

u(t, x)
〉]

> ε

)

≤ 1

εα

〈(∑x∈Ic
t
u(t, x))α〉

|QLα(t)|〈u(t,0)α〉 + o(1).

Furthermore, we have〈( ∑
x∈Ic

t

u(t, x)

)α〉
≤

〈( ∑
x∈Ic

t

(
u(t, x)2 +

∑
y∈Ic

t :
|x−y|≤l(t)/t

u(t, x)u(t, y) +
∑

y∈Ic
t :

|x−y|>l(t)/t

u(t, x)u(t, y)

))α/2〉

≤
∑
x∈Ic

t

∣∣l(t)(1 − 1/t)
∣∣〈u(t, x)α

〉 + ∑
x,y∈Ic

t :
|x−y|>l(t)/t

〈(
u(t, x)u(t, y)

)α/2〉
.

The first summand can be treated as in case (i) whereas the second summand can be treated similarly as in the proof
of Lemma 9.

(iii) follows analogously. �

Now we are able to prove Theorem 1.

Proof of Theorem 1. We only consider the case α ∈ (0,1). The other cases follow similarly. It follows from Lemma 8
that for every ε > 0,

lim
t→∞ P

( ∑
i:Q(i)

l(t)
⊂QLα(t)

∣∣∣∣
∑

x∈Q
(i)
l(t)

u(t, x) − exp{tμ(i)
t }

Bα(t)

∣∣∣∣ > ε

)
= 0,
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while Theorem 6 states that under the same conditions as in Theorem 1,

∑
i:Q(i)

l(t)
⊂QLα(t)

etμ
(i)
t

Bα(t)

t→∞	⇒ Fα.

Therefore, the claim follows from Slutzky’s theorem. �

Remark. We expect that a similar result as Theorem 1 with the same stable limit distribution also holds for potential
tails that are bounded from above as considered in [4] and [12]. However, since in that case we do not have such a
close link between μt and ξ

(1)
Ql(t)

we cannot determine the distribution of μt and therefore Lα(t) = − log P(μt > h̃t )

cannot be made as explicit as under Assumption F.

For more heavy tailed potentials than considered in this paper the cumulant generating function H is not finite
any more and annealed asymptotics do not exist. Therefore, our approach is not feasible it that situation. However,
there are some recent papers on the PAM with localised initial condition δ0 that derive scaling limit theorems for
exponential tails, see [14] or Weibull tails with parameter γ < 1, see [17].

3. Strong law of large numbers

Recall that l(t) = max{t2 log2 t,H(4t)} and that x + Ql(t) is the lattice box with centre x and sidelength l(t).

Lemma 9. Let Assumption H be satisfied and r(t) be chosen as in Theorem 2, then

lim
t→∞

1

|Qr(t)|2
∑

x,y∈Qr(t):
|x−y|>2l(t)

( 〈u(t, x)u(t, y)〉
〈u(t,0)〉2

− 1

)
= 0.

Proof. For t > 0 and x ∈ Qr(t) let

u(1)(t, x) = Ex exp

{∫ ∞

0
ξ(Xs)ds

}
1τ(x+Ql(t))

c≥t

and

u(t, x, y) = Ex,y exp

{∫ ∞

0
ξ(Xs)ds

}
exp

{∫ ∞

0
ξ(Ys)ds

}
1τX

(x+Ql(t))
c<t or τY

(y+Ql(t))
c<t ,

where X and Y are two independent random walks starting in x, y, respectively, Ex,y is their joint expectation, and τX
A ,

τY
A are their exit times from a set A ⊂ Z

d , respectively. If |x −y| > 2l(t) then u(1)(t, x) and u(1)(t, y) are independent,
and hence∑

x,y∈Qr(t):
|x−y|>2l(t)

( 〈u(t, x)u(t, y)〉
〈u(t,0)〉2

− 1

)
=

∑
x,y∈Qr(t):

|x−y|>2l(t)

〈u(t, x, y)〉
〈u(t,0)〉2

.

Hölder’s inequality and [9], Lemma 2.4 and Theorem 3.1, yield for all x, y ∈ Qr(t) \ Ql(t),〈
u(t, x, y)

〉 ≤
√〈

u(t,0)4
〉
2Px(τ(x+Ql(t))

c < t)

≤ exp

{
1

2

(
l(t) − l(t) log l(t)

) + o(t)

}
t→∞−→ 0. �
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Proof of Theorem 2. By Chebyshev’s inequality we find that for every s > 0,

P
(

sup
tn>s

1

|Qr(tn)|
∑

x∈Qr(tn)

(
u(tn, x)

〈u(tn,0)〉 − 1

)
> ε

)

≤
∑
tn>s

1

ε2
Var

(
1

|Qr(tn)|
∑

x∈Qr(tn)

(
u(tn, x)

〈u(tn,0)〉 − 1

))
.

As t tends to infinity it follows with Lemma 9 that

Var

(
1

|Qr(t)|
∑

x∈Qr(t)

(
u(t, x)

〈u(t,0)〉 − 1

))
∼ 1

|Qr(t)|2
∑

x,y∈Qr(t):
|x−y|<2l(t)

( 〈u(t, x)u(t, y)〉
〈u(t,0)〉2

− 1

)

∼ 1

|Qr(t)|
∑

x∈Ql(t)

( 〈u(t,0)u(t, x)〉
〈u(t,0)〉2

− 1

)

≤ |Ql(t)|
|Qr(t)|

〈u(t,0)2〉
〈u(t,0)〉2

= exp
{− log |Qr(t)| + H(2t) − 2H(t) + o(t)

}
.

The last asymptotics are due to (3). Now the claim follows because for our choice of r(t),

lim
s→∞

∑
tn>s

exp
{− log |Qr(tn)| + H(2tn) − 2H(tn) + o(tn)

} = 0.
�
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