
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2015, Vol. 51, No. 1, 283–303
DOI: 10.1214/13-AIHP572
© Association des Publications de l’Institut Henri Poincaré, 2015

Average characteristic polynomials of determinantal
point processes1

Adrien Hardy

Institut de Mathématiques de Toulouse, Université de Toulouse, 31062 Toulouse, France; Department of Mathematics, KU Leuven,
Celestijnenlaan 200 B, 3001 Leuven, Belgium. E-mail: ahardy@kth.se

Received 8 December 2012; revised 24 April 2013; accepted 11 June 2013

Abstract. We investigate the average characteristic polynomial E[∏N
i=1(z − xi)] where the xi ’s are real random variables drawn

from a Biorthogonal Ensemble, i.e. a determinantal point process associated with a bounded finite-rank projection operator. For
a subclass of Biorthogonal Ensembles, which contains Orthogonal Polynomial Ensembles and (mixed-type) Multiple Orthogonal
Polynomial Ensembles, we provide a sufficient condition for its limiting zero distribution to match with the limiting distribution
of the random variables, almost surely, as N goes to infinity. Moreover, such a condition turns out to be sufficient to strengthen
the mean convergence to the almost sure one for the moments of the empirical measure associated to the determinantal point
process, a fact of independent interest. As an application, we obtain from Voiculescu’s theorems the limiting zero distribution for
multiple Hermite and multiple Laguerre polynomials, expressed in terms of free convolutions of classical distributions with atomic
measures, and then derive explicit algebraic equations for their Cauchy–Stieltjes transform.

Résumé. On s’intéresse au polynôme caractéristique moyen E[∏N
i=1(z− xi)] associé à des variables aléatoires réelles x1, . . . , xN

qui forment un Ensemble Biorthogonal, c’est-à-dire un processus ponctuel déterminantal associé à un opérateur de projection
borné et de rang fini. Pour une sous-classe d’Ensembles Biorthogonaux, qui contient les Ensembles Polynômes Orthogonaux et les
Ensembles Polynômes Orthogonaux Multiples (de type mixte), nous obtenons une condition suffisante pour que, presque sûrement,
la distribution limite de ses zéros coincide avec la distribution limite des variables aléatoires, quand N tend vers l’infini. De plus,
cette condition s’avère être également suffisante pour améliorer la convergence en moyenne en convergence presque sûre pour les
moments de la mesure empirique associée au processus ponctuel déterminantal. En application, on obtient avec des théorèmes de
Voiculescu une description pour les distributions limites des zéros des polynômes d’Hermite et de Laguerre multiples, en termes
de convolutions libres de lois classiques avec des mesures atomiques, ainsi que des équations algébriques explicites pour leurs
transformées de Cauchy–Stieltjes.
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1. Introduction and statement of the results

1.1. Introduction

For any N ≥ 1, let x1, . . . , xN be a collection of real random variables which forms a Biorthogonal Ensemble, that is a
determinantal point process associated with a rank N bounded projection operator. This means there exists for each N
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a Borel measure μN on R and two families (Pk,N )N−1
k=0 and (Qk,N )N−1

k=0 of L2(μN)-functions which are biorthogonal,
namely which satisfies

〈Pk,N ,Qm,N 〉L2(μN ) = δkm, 0 ≤ k,m ≤ N − 1, (1.1)

such that the joint probability distribution on R
N of x1, . . . , xN reads

1

N ! det
[
Pk−1,N (xi)

]N
i,k=1 det

[
Qk−1,N (xi)

]N
i,k=1

N∏
i=1

μN(dxi). (1.2)

If we introduce the (non-necessarily symmetric) kernel

KN(x, y) =
N−1∑
k=0

Pk,N (x)Qk,N (y), x, y ∈R, (1.3)

observe that the distribution (1.2) can be rewritten as

1

N ! det
[
KN(xi, xj )

]N
i,j=1

N∏
i=1

μN(dxi) (1.4)

and moreover that the operator acting on L2(μN) by

πN :f (x) �→
∫

KN(x, y)f (y)μN(dy) (1.5)

is a (non-necessarily orthogonal) bounded projection operator on an N -dimensional subspace of L2(μN). Conversely,
any bounded projection operator with finite rank acting on some L2 space induces a Biorthogonal Ensemble, as a
consequence of the spectral theorem for compact operators. Thus, we understand from (1.2)–(1.4) that Biorthogonal
Ensembles matches with the class of determinantal point processes associated with (non-trivial) bounded finite-rank
projection operators; for further information on determinantal point processes, we refer to the references [26,28,42].

This type of asymmetric distributions (in the sense that KN is not necessarily symmetric) has been firstly introduced
by Borodin for the purpose of studying a one parameter deformation of classical Orthogonal Polynomial Ensembles
[11]. It moreover covers a large class of important determinantal processes, like Orthogonal Polynomial Ensembles
or (mixed-type) Multiple Orthogonal Polynomial Ensembles; more information concerning these ensembles will be
provided later.

To the random variables x1, . . . , xN , we associate their average characteristic polynomial,

χN(z) = E

[
N∏

i=1

(z − xi)

]
, z ∈C, (1.6)

where the expectation E refers to (1.2), and we ask the following question: What is a sufficient condition so that
the asymptotic distribution of the zeros of χN and the limiting distribution of the random variables xi ’s coincide
as N → ∞? More precisely, if one denotes by z1, . . . , zN the (non-necessarily real nor distinct) zeros of χN and
introduces the zero counting probability measure

νN = 1

N

N∑
i=1

δzi
, (1.7)

the purpose of this work is to investigate the relation between the weak convergence of νN and the almost sure weak
convergence of the empirical measure of the determinantal point process, namely

μ̂N = 1

N

N∑
i=1

δxi
. (1.8)
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It is for example known that the eigenvalues of an N ×N random matrix drawn from the GUE form a Biorthogonal
Ensemble, and that χN is the N th monic (i.e. with leading coefficient one) Hermite polynomial. After an appropriate
rescaling, the zero distribution νN converges weakly towards the semi-circle distribution as N → ∞, and so is almost
surely the spectral measure μ̂N . There are several examples of Biorthogonal Ensembles for which such a simultaneous
convergence for μ̂N and νN is expected, but not proved yet.

The aim of this work is to provide a sufficient condition so that, as N → ∞, the convergence of the moments of νN

is equivalent to the almost sure convergence of the moments of μ̂N for a large class of determinantal point processes,
see Theorem 1.2. We will actually show that this condition implies the simultaneous moment convergence of νN and
of the mean distribution E[μ̂N ], defined by E[μ̂N ](A) = E[μ̂N (A)] for any Borel set A ⊂R, and moreover forces the
moments of μ̂N to concentrate around their means at a rate N1+ε , see Theorem 1.7. At this level of generality, the
latter concentration result is new and may be of independent interest.

1.2. Assumptions and statement of the results

Given a sequence of Biorthogonal Ensembles indexed by N (the number of particles), which one can parametrize by{
μN, (Pk,N )N−1

k=0 , (Qk,N )N−1
k=0

}
N≥1, (1.9)

we moreover assume the following structural assumption to hold (throughout this paper we denote N = {0,1,2, . . .}).

Assumption 1.1.

(a) For each N , the two families (Pk,N )N−1
k=0 and (Qk,N )N−1

k=0 can be completed in two infinite biorthogonal families
(Pk,N )k∈N and (Qk,N )k∈N of L2(μN), that is which satisfy

〈Pk,N ,Qm,N 〉L2(μN ) = δkm, k,m ∈N. (1.10)

(b) There exists a sequence (qN)N≥1 of integers having sub-power growth, that is for every n ≥ 1,

qN = o
(
N1/n

)
as N → ∞, (1.11)

such that for all k ∈ N,

xPk,N ∈ Span(Pm,N)
k+qN

m=0 .

The next sections provide examples of Biorthogonal Ensembles which satisfy Assumption 1.1. Let P be the prob-
ability measure associated to the product probability space

⊗
N(RN,PN), where (RN,PN) is the probability space

induced by (1.2). The central theorem of this work is the following.

Theorem 1.2. Assume there exists ε > 0 such that for every n ≥ 1,

max
k,m∈N: |k/N−1|≤ε,|m/N−1|≤ε

∣∣〈xPk,N ,Qm,N 〉L2(μN )

∣∣= o
(
N1/n

)
(1.12)

as N → ∞. Then, for all � ∈ N,

lim
N→∞

∣∣∣∣∫ x�μ̂N(dx) −
∫

x�νN(dx)

∣∣∣∣= 0, P-almost surely. (1.13)

In practice, the sub-power growth condition (1.12) may be interpreted as the condition that a strong enough nor-
malization for the xi ’s has been performed.

Remark 1.3. Assumption 1.1(a) and (b) provide together for each N the (unique) decomposition

xPk,N =
k+qN∑
m=0

〈xPk,N ,Qm,N 〉L2(μN )Pm,N , k ∈ N. (1.14)
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Thus (1.12) is a growth condition for the coefficients lying in a specific window of the infinite matrix (i.e. operator on
�2(N)) associated to the operator f (x) �→ xf (x) acting on Span(Pk,N )k∈N.

Having in mind that probability measures on R with compact support are characterized by their moments, the
following consequence of Theorem 1.2 may be of use to obtain almost sure convergence results.

Corollary 1.4. Under the assumption of Theorem 1.2, if there exists a probability measure μ∗ on R characterized by
its moments such that for all � ∈N,

lim
N→∞

∫
x�νN(dx) =

∫
x�μ∗(dx),

then P-almost surely μ̂N converges weakly towards μ∗ as N → ∞.

Similarly, when one is interested in the limiting zero distribution of χN , the following corollary will be of help.

Corollary 1.5. Under the assumption of Theorem 1.2, if

(a) for all N large enough χN has real zeros,
(b) there exists a probability measure μ∗ on R characterized by its moments such that for all � ∈ N,

lim
N→∞E

[∫
x�μ̂N(dx)

]
=
∫

x�μ∗(dx), (1.15)

then νN converges weakly towards μ∗ as N → ∞.

As an example of application, we will obtain in Section 3 a description for the limiting zero distribution of multiple
Hermite and multiple Laguerre polynomials, see Theorems 3.5 and 3.7. At the best knowledge of the author, this is
the first time that a description of these zero limiting distributions is provided in such a level of generality.

Remark 1.6. Although it is not hard to see from our proofs that Theorem 1.2 continues to hold for determinantal
point processes on C (with the introduction of complex conjugations where needed), Corollaries 1.4 and 1.5 are not
true in the complex setting. Indeed, consider the eigenvalues of an N × N unitary matrix distributed according to the
Haar measure, which are known to form an OP Ensemble on the unit circle with respect to its uniform measure. We
have χN(z) = zN , and thus νN = δ0 for all N , but the spectral measure μ̂N is known to converge towards the uniform
distribution on the unit circle as N → ∞.

On the road to establish Theorem 1.2, we prove the following variance decay which basically allows to extend the
mean convergence of the moments of μ̂N to the almost sure one, by combining the Chebyshev inequality and the
Borel–Cantelli lemma.

Theorem 1.7. Under the assumptions of Theorem 1.2, for every 0 < α < 1 and any � ∈ N, there exists Cα,� indepen-
dent of N such that

Var

[∫
x�μ̂N(dx)

]
≤ Cα,�

N1+α
. (1.16)

If moreover qN and the left-hand side of (1.12) are bounded (seen as sequences of the parameter N ), then (1.16) also
holds for α = 1.

Before to provide proofs for Theorems 1.2 and 1.7, we now describe a few Biorthogonal Ensembles which are
concerned by our results.
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1.3. Orthogonal Polynomial Ensembles

Examples of Orthogonal Polynomial (OP) Ensembles are provided by eigenvalue distributions of unitary invari-
ant Hermitian random matrices, including the GUE, Wishart and Jacobi matrix models; they also arise from non-
intersecting diffusion processes starting and ending at the origin. In the latter examples, μN has a density with respect
to the Lebesgue measure. They moreover play a key role in the resolution of several problems from asymptotic com-
binatorics, such as the problem of the longest increasing subsequence of a random permutation, the shape distribution
of large Young diagrams, the random tilings of an Aztec diamond (resp. hexagone) with dominos (resp. rhombuses).
This time μN is a discrete measure. For further information, see [29–31] and references therein.

The joint probability distribution of real random variables x1, . . . , xN drawn from an OP Ensemble reads

1

ZN

∏
1≤i<j≤N

|xi − xj |2
N∏

i=1

μN(dxi),

where ZN is a normalization constant and μN is a measure on R having all its moments. One can rewrite that
distribution in the form (1.2) by taking for Pk,N = Qk,N the kth orthonormal polynomial for μN . The associated
operator is then the orthogonal projection onto the subspace of L2(μN) of polynomials having degree at most N − 1.
Thus, OP Ensembles satisfy Assumption 1.1 with qN = 1.

An important observation, provided by a classical integral representation for OPs attributed to Heine, see e.g. [15],
Proposition 3.8, is that the average characteristic polynomial χN associated to an OP Ensemble equals the N th monic
OP with respect to μN . Since OPs are known to have real zeros, νN is thus supported on R.

As we shall recall in Section 2, the mean distribution E[μ̂N ] of a determinantal point process reads 1
N

KN(x, x) ×
μN(dx). Quite remarkably, it turns out that in the case of OP Ensembles, the convergence of the mean distribution
has been investigated in the approximation theory literature, where it is referred as the weak convergence of the
Christoffel–Darboux kernel. Indeed, recall that OPs satisfy the three-term recurrence relation

xPk,N = ak+1,NPk+1,N + bk,NPk,N + ak,NPk−1,N , k ≥ 1,

xP0,N = a1,NP1,N + b0,NP0,N .

Using the determinantal point processes terminology, Nevai [40] and Van Assche [43] actually proved that if aN,N =
o(N1/2), then for any continuous and bounded function f on R,

lim
N→∞

∣∣∣∣E[∫ f (x)μ̂N(dx)

]
−
∫

f (x)νN(dx)

∣∣∣∣= 0. (1.17)

Nevertheless, their proofs involve the Gaussian quadrature associated to OPs, an argument which does not seem to
be generalizable to more general Biorthogonal Ensembles. More recently, and in the case where the supports of the
measures μN are uniformly bounded, Simon [41] proved the simultaneous moment convergence of E[μ̂N ] and νN by
means of elegant operator-theoretic arguments, which have been of inspiration for this work. The (little) novelty of
Theorem 1.2 for OP Ensembles is to show that (1.17) also holds when f is polynomial, provided there exists ε > 0
such that both

max
k∈N: |k/N−1|≤ε

|ak,N | and max
k∈N: |k/N−1|≤ε

|bk,N |

have a sub-power growth as N → ∞.
Our result also strengthens the mean convergence to the almost sure one, but let us mention that by using the

Christoffel–Darboux formula for the kernel of OP Ensembles, the variance decay (1.16) can be alternatively obtained
with our growth assumption from an easy adaptation of the proof of [39], Theorem 4.3.1.(ii). The advantage of our
approach here is we do not use the Christoffel–Darboux formula, so that it applies to more general Biorthogonal
Ensembles where such a formula is not available.

Let us also mention that Breuer and Duits recently established in [12] that if aN,N = o(N1/2), for any continuous
and bounded function f the concentration of

∫
f (x)μ̂N(dx) around its mean actually happens at an exponential rate.

Their proof is based on the Laplace transform approach for concentration inequalities which provides a much more
accurate upper bound than the Chebyshev inequality we use in our proof.
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1.4. One-parameter deformation of OP Ensembles

Borodin introduced the concept of Biorthogonal Ensembles in [11] to study the following one parameter deformation
of an OP Ensemble

1

ZN

∏
1≤i<j≤N

(xi − xj )
(
xθ
i − xθ

j

) N∏
i=1

μN(dxi), (1.18)

where θ is a fixed positive real number and, when θ is non-integer, we assume for the sake of simplicity that μN

is a measure supported on R+. The motivation to study such ensembles arises from Muttalib’s work on modeling
disordered conductors in the metallic regime [38].

In a similar fashion than for OP Ensembles, for any N one can rewrite (1.18) in the form (1.2) with Pk,N a
polynomial of degree k, and Qk,N(x) = Q̃k,N (xθ ) where Q̃k,N is a polynomial of degree k, such that the Pk,N ’s and
the Qk,N ’s are biorthogonal; they are called biorthogonal polynomials in the literature, see the numerous references
in [11]. These ensembles satisfy Assumption 1.1 with qN = 1.

Equivalently, one can express the biorthogonal relations between the Pk,N ’s and Qk,N ’s by the relations〈
Pk,N , xθj

〉
L2(μN )

= 0,
〈
Qk,N , xj

〉
L2(μN )

= 0, 0 ≤ j ≤ k − 1, k ≥ 1.

It is then easy to show by using similar arguments than in the proof of [15], Proposition 3.8, that the average charac-
teristic polynomial χN satisfies 〈χN,xθj 〉L2(μN ) = 0 for all 0 ≤ j ≤ N −1 and thus equals PN,N up to a multiplicative
constant.

Our results seem to be completely new for such ensembles; no Christoffel–Darboux type formula is available for
the kernel KN in the general θ > 0 case.

1.5. Multiple Orthogonal Polynomial Ensembles

Firstly introduced by Bleher and Kuijlaars [9] to describe the eigenvalue distribution of an additive perturbation of
the GUE, breaking the unitary invariance, Multiple Orthogonal Polynomial (MOP) Ensembles show up in several per-
turbed matrix models [8,10,17], in multi-matrix models [19,20,34] as well, and in non-intersecting diffusion processes
with arbitrary prescribed starting points and ending at the origin [35]. For general presentations, see [32,33] and the
references therein.

The joint distribution of real random variables x1, . . . , xN distributed according to a MOP Ensemble has the fol-
lowing form

1

Zn,N

∏
1≤i<j≤N

(xj − xi)det

⎡⎢⎣ {xi−1
j w1,N (xj )}n1,N

i,j=1
...

{xi−1
j wr,N (xj )}nr ,N

i,j=1

⎤⎥⎦ N∏
i=1

μN(dxi), (1.19)

where μN is a measure on R having all its moments, Zn,N is a normalization constant and the weights
w1,N , . . . ,wr,N ∈ L2(μN) are such that (1.19) is indeed a probability distribution. The multi-index n = (n1, . . . , nr ) ∈
N

r depends on N and satisfies
∑r

i=1 ni = N . Note that we recover OP Ensembles by taking r = 1.
It turns out one can rewrite (1.19) in the form (1.2) where the Pk,N ’s are monic polynomials with degPk,N = k, the

Qk,N ’s are (non-necessarily polynomial) L2(μN)-functions biorthogonal to the Pk,N ’s, and MOP Ensembles satisfies
Assumption 1.1 with qN = 1, see Section 3.

Kuijlaars [32], Proposition 2.2, established that the average characteristic polynomial χN associated to (1.19) is
the nth (type II) MOP associated with the weights wi,N , 1 ≤ i ≤ r , and the measure μN , see Definition 3.1.

The simultaneous convergence of the empirical measure μ̂N and the zero distribution νN of the associated MOPs
is expected for several MOP Ensembles. It is for example the case for non-intersecting squared Bessel paths with
positive starting point and ending at the origin. Indeed, for this MOP Ensemble E[μ̂N ] converges towards a limiting
measure described in terms of the solution of a vector equilibrium problem, see [35], Theorem 2.4 and Appendix,
and the limit of νN benefits from the same description [36]. The same situation holds in the two-matrix model with
quartic/quadratic potentials, by combining the works [19] and [18]. For the non-intersecting squared Bessel paths
model, which is equivalent to a non-centered complex Wishart matrix model, the almost sure convergence of μ̂N
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towards the solution of the vector equilibrium problem has recently been obtained as a consequence of a stronger
large deviation principle [25]. For the two matrix model, to prove a large deviation upper bound involving a rate
function associated to a vector equilibrium problem is still an open problem, see [21] for further discussion. For these
two MOP Ensembles, the almost sure simultaneous convergence of μ̂N and νN follows from Theorem 1.2, since the
asymptotics of the recurrence coefficients 〈xPk,N ,Qm,N 〉L2(μN )’s are actually explicitly described in [36], (1.11), and
[18], Theorem 5.2, respectively. An other example of MOP Ensemble where the same conclusion holds is provided
by [5], in relation with the six-vertex model.

Remark 1.8. Let us stress that our results for MOP Ensembles combine nicely with a Deift–Zhou steepest descent
analysis. Indeed, it is known for such ensembles that one can represent KN in terms of the solution of a Riemann–
Hilbert problem, see [32]. This, in principle, allows to use the Deift–Zhou steepest descent method, which yields a
precise asymptotic description of KN , and related quantities. In particular, the 〈xPk,N ,Qm,N 〉L2(μN )’s can be ex-
pressed in terms of the solution of the Riemann–Hilbert problem (see [23], Section 5) and a control of their growth
would follow from that steepest descent analysis (alternatively, a control of the growth of the nearest neighbor recur-
rence coefficients is also sufficient, as explained in Section 3). Such an asymptotic analysis also typically provides
the locally uniform convergence and tail estimates for KN as N → ∞, from which would follow (1.15), and where
the limiting measure μ∗ has in general compact support. In most cases, the zeros of χN are real; this is always true
for important subclasses of MOPs like Angelesco or AT systems [27]. Thus, if one assumes the latter to be true, the
combination of a successful Deift–Zhou steepest descent analysis together with Corollary 1.5 and Theorem 1.7 would
provide the almost sure weak convergence of the empirical measure μ̂N , and moreover the weak convergence of the
zero distribution νN of the MOPs towards μ∗, without extra effort.

Remark 1.9. As we have seen, OP Ensembles, their θ -deformation, and MOP Ensembles all satisfy Assumption 1.1
with qN = 1. A class of determinantal point processes which satisfy this assumption but for which qN may grow is
provided by mixed-type MOP Ensembles (where Pk,N ’s are no longer polynomials), originally introduced by Daems
and Kuijlaars to describe non-intersecting Brownian bridges with arbitrary starting and ending points [14]. Delvaux
showed that the average characteristic polynomial χN is in this case a mixture of MOPs [16].

The rest of this work is structured as follows. In Section 2, we establish Theorems 1.2 and 1.7. In Section 3, after
a quick introduction to MOPs, we use Corollary 1.5 and Voiculescu’s theorems in order to identify the limiting zero
distribution of the multiple Hermite and multiple Laguerre polynomials in terms of free convolutions, and moreover
derive algebraic equations for their Cauchy–Stieltjes transform.

2. Proof of the main theorems

In a first step to establish Theorems 1.2 and 1.7, we express all the quantities of interest in terms of traces of appropriate
operators; this is a usual move in the theory of determinantal point processes.

2.1. Step 1: Tracial representations

Consider a determinantal point process associated to the rank N bounded projector πN acting on L2(μN) with kernel
KN given by (1.3), so that

Im(πN) = Span(Pk,N )N−1
k=0 , Ker(πN)⊥ = Span(Qk,N )N−1

k=0 .

The usual definition of a determinantal point process, see e.g. [28], provides for any n ≥ 1 and any Borel function
f :Rn →R the identity

E

[ ∑
i1 
=···
=in

f (xi1 , . . . , xin)

]

=
∫

f (x1, . . . , xn)det
[
KN(xi, xj )

]n
i,j=1

n∏
i=1

μN(dxi), (2.1)
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where the summation concerns all pairwise distinct indices taken from {1, . . . ,N}.
Let M be the operator acting on L2(μN) by

Mf (x) = xf (x). (2.2)

Then, it is standard to show that the following identity holds.

Lemma 2.1. For any � ∈N,

E

[∫
x�μ̂N(dx)

]
= 1

N
Tr
(
πNM�πN

)
.

Proof. By using (2.1) with n = 1, (1.3) and the biorthogonality relations (1.1), we obtain

E

[
N∑

i=1

x�
i

]
=

N−1∑
k=0

∫
x�Pk,N (x)Qk,N (x)μN(dx)

=
N−1∑
k=0

〈(
πNM�πN

)
Pk,N ,Qk,N

〉
L2(μN )

= Tr
(
πNM�πN

)
. �

We also represent the variance of the moments in a similar fashion.

Lemma 2.2. For any � ∈N,

Var

[∫
x�μ̂N(dx)

]
= 1

N2

(
Tr
(
πNM2�πN

)− Tr
(
πNM�πNM�πN

))
.

Proof. We write

Var

[
N∑

i=1

x�
i

]
= E

[
N∑

i=1

x2�
i

]
+E

[∑
i 
=j

x�
i x

�
j

]
−
(
E

[
N∑

i=1

x�
i

])2

in order to obtain, thanks to (2.1) with n = 2 and Lemma 2.1,

Var

[
N∑

i=1

x�
i

]
= Tr

(
πNM2�πN

)−
∫ ∫

x�y�KN(x, y)KN(y, x)μN(dx)μN(dy).

Finally, observe that∫ ∫
x�y�KN(x, y)KN(y, x)μN(dx)μN(dy)

=
N−1∑
k=0

∫
x�

(∫
KN(x, y)y�Pk,N (y)μN(dy)

)
Qk,N(x)μN(dx)

=
N−1∑
k=0

〈
πNM�πNM�πNPk,N ,Qk,N

〉
L2(μN )

= Tr
(
πNM�πNM�πN

)
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to complete the proof. �

We now check that the average characteristic polynomial χN equals the characteristic polynomial of the operator
πNMπN acting on Im(πN).

Proposition 2.3. If det stands for the determinant of endomorphisms of Im(πN), then

χN(z) = det(z − πNMπN), z ∈ C.

Proof. On the one hand, Vieta’s formulas provide

E

[
N∏

i=1

(z − xi)

]
= zN +

N∑
n=1

1

n! (−1)nzN−n
E

[ ∑
i1 
=···
=in

xi1 · · ·xin

]

and (2.1) yields for any 1 ≤ n ≤ N

E

[ ∑
i1 
=···
=in

xi1 · · ·xin

]
=
∫

det
[
xjK(xi, xj )

]n
i,j=1

n∏
i=1

μN(dxi).

On the other hand, since πNMπN is an integral operator acting on Im(πN) with kernel (x, y) �→ yKN(x, y), the
Fredholm’s expansion, see e.g. [24], reads

det(z − πNMπN) = zN +
N∑

n=1

1

n! (−1)nzN−n

∫
det
[
xjKN(xi, xj )

]n
i,j=1

n∏
i=1

μN(dxi),

from which Proposition 2.3 follows. �

The next immediate corollary will be of important use in what follows.

Corollary 2.4. For any � ∈N,∫
x�νN(dx) = 1

N
Tr
(
(πNMπN)�

)
.

The second step is to rewrite the traces in terms of weighted lattice paths.

2.2. Step 2: Lattice paths representations

We introduce for each N the oriented graph GN = (VN,EN) having VN =N
2 for vertices and for edges

EN = {
(n, k) → (n + 1,m) : n, k ∈ N, 0 ≤ m ≤ k + qN

}
To each edge is associated a weight

wN

(
(n, k) → (n + 1,m)

)= 〈xPk,N ,Qm,N 〉L2(μN ),

and the weight of a finite length oriented path γ on GN is defined as the product of the weights of the edges contained
in γ , namely

wN(γ ) =
∏

e∈EN : e⊂γ

wN(e). (2.3)

Then the following holds.
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Lemma 2.5. For any � ∈N,

E

[∫
x�μ̂N(dx)

]
= 1

N

N−1∑
k=0

∑
γ : (0,k)→(�,k)

wN(γ ), (2.4)

where the rightmost summation concerns all the oriented paths on GN starting from (0, k) and ending at (�, k).

Proof. It follows inductively on � from (1.14) and the definition (2.3) that

(
πNM�πN

)
Pk,N =

N−1∑
m=0

( ∑
γ : (0,k)→(�,m)

wN(γ )

)
Pm,N , �, k ∈N. (2.5)

Thus, we obtain from the biorthogonality relations (1.1)

Tr
(
πNM�πN

) =
N−1∑
k=0

〈(
πNM�πN

)
Pk,N ,Qk,N

〉
L2(μN )

=
N−1∑
k=0

∑
γ : (0,k)→(�,k)

wN(γ ), (2.6)

and Lemma 2.5 follows from Lemma 2.1. �

Next, we introduce

DN = {
(n,m) ∈N

2: m ≥ N
}

(2.7)

and obtain a similar representation for the moments of νN .

Lemma 2.6. For any � ∈N,∫
x�νN(dx) = 1

N

N−1∑
k=0

∑
γ : (0,k)→(�,k),γ∩DN=∅

wN(γ ). (2.8)

Proof. Similarly than for (2.5), we have

(πNM · · ·πNM︸ ︷︷ ︸
�

πN)Pk,N =
N−1∑
m=0

( ∑
γ : (0,k)→(�,m),γ∩DN=∅

wN(γ )

)
Pm,N, �, k ∈ N. (2.9)

Since π2
N = πN , this yields

Tr
(
(πNMπN)�

) =
N−1∑
k=0

〈
(πNM · · ·πNM︸ ︷︷ ︸

�

πN)Pk,N ,Qk,N

〉
L2(μN )

=
N−1∑
k=0

∑
γ : (0,k)→(�,k),γ∩DN=∅

wN(γ ) (2.10)

and thus Lemma 2.6, because of Corollary 2.4. �

If we denote by γ (m) the ordinate of a path γ at abscissa m, then we can represent the variance of the moments of
μ̂N in a similar fashion.
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Lemma 2.7. For any � ∈N,

Var

[∫
x�μ̂N(dx)

]
= 1

N2

N−1∑
k=0

∑
γ : (0,k)→(2�,k),γ (�)≥N

wN(γ ). (2.11)

Proof. We have already shown in (2.6) that

Tr
(
πNM2�πN

)=
N−1∑
k=0

∑
γ : (0,k)→(2�,k)

wN(γ ). (2.12)

Since

(
πNM�πNM�πN

)
Pk,N =

N−1∑
m=0

( ∑
γ : (0,k)→(�,m),γ (�)<N

wN(γ )

)
Pm,N , �, k ∈N,

we moreover obtain

Tr
(
πNM�πNM�πN

)=
N−1∑
k=0

∑
γ : (0,k)→(2�,k),γ (�)<N

wN(γ ). (2.13)

Lemma 2.7 is then a consequence of Lemma 2.2 and (2.12)–(2.13). �

We are now in position to complete the proofs of Theorems 1.2 and 1.7.

2.3. Step 3: Upper bounds and conclusions

Let us first provide a proof for Theorem 1.2 assuming that Theorem 1.7 holds.

Proof of Theorem 1.2. It is enough to prove that for any given � ∈ N

lim
N→∞

∣∣∣∣E[∫ x�μ̂N(dx)

]
−
∫

x�νN(dx)

∣∣∣∣= 0, (2.14)

since (1.13) would then follow from Theorem 1.7, together with the Chebyshev inequality and the Borel–Cantelli
lemma. As a consequence of Lemmas 2.5 and 2.6, we obtain

E

[∫
x�μ̂N(dx)

]
−
∫

x�νN(dx) = 1

N

N−1∑
k=0

∑
γ : (0,k)→(�,k),γ∩DN 
=∅

wN(γ ). (2.15)

Since by following an edge of GN one increases the ordinate by at most qN , the rightmost sum of (2.15) will bring
null contribution if k is strictly less that N − �qN . Observe moreover that the vertices explored by any path γ going
from (0, k) to (�, k) for some N − �qN ≤ k ≤ N − 1 such that γ ∩ DN 
= ∅ form a subset of{

(n,m) ∈ N
2: 0 ≤ n ≤ �,N − �qN ≤ m < N + �qN

}
.

As a consequence, if one roughly bounds from above the number of such paths by (2�qN)�, one obtains from (2.15)
that ∣∣∣∣E[∫ x�μ̂N(dx)

]
−
∫

x�νN(dx)

∣∣∣∣
≤ (2�qN)�

N
max

k,m∈N: |k/N−1|≤�qN/N,|m/N−1|≤�qN/N

∣∣〈xPk,N ,Qm,N 〉L2(μN )

∣∣�. (2.16)
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It then follows from (2.16) together with the growth assumptions (1.11) and (1.12) that (2.14) holds, and the proof of
Theorem 1.2 is therefore complete up to the proof of Theorem 1.7. �

We now prove Theorem 1.7 by using similar arguments than in the proof of Theorem 1.2.

Proof of Theorem 1.7. Again, because following an edge of GN increases the ordinate of at most qN , the rightmost
sum of (2.11) brings zero contribution except when k ≥ N − �qN . Observe also that the vertices explored by any path
γ going from (0, k) to (2�, k) for some N − �qN ≤ k ≤ N − 1 and satisfying γ (�) ≥ N form a subset of

{
(n,m) ∈N

2: 0 ≤ n ≤ 2�,N − 2�qN ≤ m < N + 2�qN

}
.

As a consequence, we obtain from Lemma 2.7 the (rough) upper-bound

Var

[∫
x�μ̂N(dx)

]

≤ (4�qN)2�

N2
max

k,m∈N: |k/N−1|≤2�qN/N,|m/N−1|≤2�qN/N

∣∣〈xPk,N ,Qm,N 〉L2(μN )

∣∣2�
. (2.17)

Using the sub-power growth/boundedness assumptions on qN and on the left-hand side of (1.12), Theorem 1.7 fol-
lows. �

3. Application to multiple orthogonal polynomials

MOPs have been introduced in the context of the Hermite–Padé approximation of Stieltjes functions, which was itself
first motivated by number theory after Hermite’s proof of the transcendence of e, or Apéry’s proof of the irrationality
of ζ(2) and ζ(3), see [44] for a survey. For our purpose here, we will focus on the so-called type II MOPs, for which
the zeros are of important interest since they are the poles of the rational approximants provided by the Hermite–Padé
theory. These polynomials generalize orthogonal polynomials in the sense that we consider more than one measure of
orthogonalization, and a class of classical MOPs such as multiple versions of the Hermite, Laguerre, Jacobi, Charlier,
Meixner, etc, polynomials emerged [3,4,13]. They are already the subject of many works where they are studied as
special functions; we refer to the monograph [27] for further information.

It turns out that even for the multiple Hermite or multiple Laguerre polynomials, no general description of the
limiting zero distribution seems yet available in the literature. To motivate further the importance of an asymptotic
description for the zeros, let us mention that they play an important role in the strong asymptotic for MOPs. For
example, the work [37] of Lysov and Wielonsky deals with the strong asymptotics of multiple Laguerre polynomials
in the case where r = 2. A key ingredient in their analysis is the a priori knowledge of an algebraic equation for
the Cauchy–Stieltjes transform of the limiting zero distribution (that they denote ψ(z), up to a trivial rescaling), see
equation (1.4) in [37]. Our purpose in this section is to show that our results allow to transport the powerful technology
developed in free probability to the description of such zero distributions. In particular, we obtain algebraic equations
for the Cauchy–Stieltjes transform of the multiple Hermite and Laguerre polynomials in the general case where r ≥ 2.

Let us first introduce MOPs.

3.1. Multiple orthogonal polynomials

Let μ be a Borel measure on R with infinite support and having all its moments. Consider r ≥ 1 pairwise distinct
functions w1, . . . ,wr in L2(μ).
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Definition 3.1. Given a multi-index n = (n1, . . . , nr ) ∈Nr , the nth (type II) MOP associated to the weights w1, . . . ,wr

and the measure μ is the unique monic polynomial Pn of degree n1 +· · ·+nr which satisfies the orthogonality relations∫
xkPn(x)w1(x)μ(dx) = 0, 0 ≤ k ≤ n1 − 1,

...
...∫

xkPn(x)wr(x)μ(dx) = 0, 0 ≤ k ≤ nr − 1.

(3.1)

Note that the existence/uniqueness of the nth MOP is not automatic, and depends on whether the system of linear
equations (3.1) admits a unique solution. We say that a multi-index n is normal if it is indeed the case. Since by taking
r = 1 we clearly recover OPs, we shall assume r ≥ 2 in what follows.

Let (n(N))N∈N = (n
(N)
1 , . . . , n

(N)
r )N∈N be a sequence of normal multi-indices which satisfies the following path-

like structure.

(a) For every N ∈N,

N∑
i=1

n
(N)
i = N.

(b) For every N ∈N and 1 ≤ i ≤ r ,

n
(N+1)
i ≥ n

(N)
i .

(c) There exists R ∈ N such that for any N ∈N and 1 ≤ i ≤ r ,

n
(N+R)
i ≥ n

(N)
i + 1. (3.2)

(d) For every 1 ≤ i ≤ r , there exist q1, . . . , qr ∈ (0,1) such that

lim
N→∞

n
(N)
i

N
= qi . (3.3)

We then write for convenience

PN(x) = Pn(N) (x), N ∈ N, (3.4)

and observe that PN has degree N . We now focus on the weak convergence for the zero counting probability measure
νN of PN as N → ∞, defined as in (1.7) with z1, . . . , zN the zeros of PN(x), maybe up to a rescaling of the zeros.
Before showing how our results answer that question in the case of the multiple Hermite and multiple Laguerre
polynomials, we first need to introduce a few ingredients from free probability theory.

3.2. Elements of free probability

Free probability deals with non-commutative random variables which are independent in an algebraic sense. It has
been introduced by Voiculescu for the purpose of solving operator algebra problems. We now just provide the few
elements of free probability needed for the purpose of this work, and refer to [1,46] for comprehensive introductions.

For a probability measure λ on R with compact support, let Kλ be the inverse, for the composition of formal series,
of the Cauchy–Stieltjes transform

Gλ(z) =
∫

λ(dx)

z − x

=
∞∑

k=0

(∫
xkλ(dx)

)
z−k−1, (3.5)
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and set the R-transform of λ by

Rλ(z) = Kλ(z) − 1

z
. (3.6)

Definition 3.2. Let λ and η be two probability measures on R with compact support. The free additive convolution of
λ and η, denoted by λ� η, is the unique probability measure (on R with compact support) which satisfies

Rλ�η(z) = Rλ(z) + Rη(z). (3.7)

Consider a probability measure λ on [0,+∞) with compact support different from δ0. If χλ is the inverse for the
composition of formal series of

1

z
Gλ

(
1

z

)
− 1 =

∞∑
k=1

(∫
xkλ(dx)

)
zk, (3.8)

we then define the S-transform of λ by

Sλ(z) = 1 + z

z
χλ(z). (3.9)

Definition 3.3. Let λ and η be two probability measures on [0,+∞) with compact support and both different from
δ0. The free multiplicative convolution of λ and η, denoted λ� η, is the unique probability measure (on [0,+∞) with
compact support and different from δ0) which satisfies

Sλ�η(z) = Sλ(z)Sη(z). (3.10)

For this work, the importance of the free additive and multiplicative convolutions relies on the following results due
to Voiculescu, extracted from [1], which describe the limiting eigenvalue distribution of perturbed GUE and Wishart
matrices. A random matrix XN is distributed according to GUE(N) if it is drawn from the space HN(C) of N × N

Hermitian matrices according to the probability distribution

1

ZN

exp
{−NTr

(
X2

N

)
/2
}

dXN, (3.11)

where dXN stands for the Lebesgue measure on HN(C) � RN2
and ZN is a normalization constant. It is said to be

distributed according to Wishartα(N), where α > −1 if a real parameter, if the probability distribution reads instead

1

ZN

det(XN)Nα exp
{−NTr(XN)

}
1{XN≥0} dXN, (3.12)

where XN ≥ 0 means that XN is positive semi-definite. The semi-circle distribution is defined by

μSC(dx) = 1

2π

√
4 − x21[−2,2](x)dx, (3.13)

and the (rescaled) Marchenko–Pastur distribution of parameter ρ > 0 by

μMP(ρ)(dx) = max

(
1 − 1

ρ
,0

)
δ0 + 1

2πx

√
(ρ+ − x)(x − ρ−)1[ρ−,ρ+](x)dx, (3.14)

where ρ± = (1 ± √
ρ)2/ρ. Then the following holds.
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Theorem 3.4. Consider a sequence of uniformly bounded deterministic matrices (AN)N , were AN is an N × N

Hermitian matrix, and assume there exists a probability measure λ on R with compact support such that for all � ∈N,

lim
N→∞

1

N
Tr(AN)� =

∫
x�λ(dx).

(a) If (XN)N is a sequence of independent random matrices with XN distributed according to GUE(N), then for all
� ∈N,

lim
N→∞

1

N
E
[
Tr(XN + AN)�

]=
∫

x�μSC � λ(dx).

(b) If (XN)N is a sequence of independent random matrices with XN distributed according to Wishartα(N), and if
the AN ’s are moreover positive semi-definite with λ 
= δ0, then for all � ∈N,

lim
N→∞

1

N
E
[
Tr
(
A1/2

N XNA1/2
N

)�]=
∫

x�μMP(1/1+α) � λ(dx).

We are now in position to state the results of this section.

3.3. Multiple Hermite polynomials

Recall that if HN stands for the N th Hermite polynomial, that is the OP associated to μ(dx) = e−x2/2 dx, then the
zero counting probability distribution νN of its rescaled version HN(

√
Nx) is known to converge weakly towards the

semi-circle distribution (3.13).
Given r ≥ 2 pairwise distinct real numbers a1, . . . , ar , consider the measure and the weights given by

μ(dx) = e−x2/2 dx, wj (x) = eaj x, 1 ≤ j ≤ r.

The associated MOPs are called multiple Hermite polynomials. For a sequence of multi-indices (n(N))N satisfying
the path-like structure described in Section 3.1, denote by H

(a1,...,ar )
N the associated MOP as in (3.4). We shall prove

the following.

Theorem 3.5. Let νN be the zero probability distribution of the rescaled multiple Hermite polynomial

H
(
√

Na1,...,
√

Nar )
N (

√
Nx).

Then νN converges weakly as N → ∞ towards

μSC �
(

r∑
j=1

qj δaj

)
.

Although we introduced the R-transform of a probability measure as a formal series, it is actually possible to define
it as a proper analytic function, provided one restricts oneself to appropriate subdomains of the complex plane, and
equality (3.7) continues to hold, see [6], Section 5. Then, since RμSC(z) = z and the Cauchy–Stieltjes transform of∑r

i=1 qiδai
is explicit, one can obtain from (3.7) that the Cauchy–Stiejles transform G of μSC � (

∑r
j=1 qj δaj

) is
an algebraic function, by performing similar manipulations than in the proof of Lemma 1 in [7], and concluding by
analytic continuation. More precisely, one obtains that

Corollary 3.6. The weak limit of νN has a Cauchy–Stieltjes transform G which satisfies the algebraic equation

P
(
z,G(z)

)= 0, z ∈ C, (3.15)
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where the bivariate polynomial P(z,w) is given by

P(z,w) = w

r∏
i=1

(z − w − ai) −
r∑

i=1

qi

r∏
j=1,j 
=i

(z − w − ai). (3.16)

Probability measures for which the Cauchy–Stieltjes transform is algebraic have interesting regularity properties, see
[2], Section 2.8, and are moreover suitable for numerical evaluation, see e.g. [22].

We now turn to multiple Laguerre polynomials, for which we provide a similar analysis.

3.4. Multiple Laguerre polynomials

If L
(α)
N stands for the N th Laguerre polynomial of parameter α > −1, that is the OP associated to μ(dx) =

xαe−x1[0,+∞)(x)dx, then it is known that the zero probability distribution νN of L
(Nα)
N (Nx) converges weakly as

N → ∞ towards the Marchenko–Pastur distribution (3.14) of parameter 1/(1 + α).
There exist two different definitions for the multiple Laguerre polynomials in the literature, see [27], Section 23.4.

We consider here the so-called multiple Laguerre polynomials of the second kind, which are defined as follows. Given
r ≥ 2 pairwise distinct positive numbers a1, . . . , ar and α ≥ 0, consider

μ(dx) = xαe−x1[0,+∞)(x)dx, wj (x) = e(1−aj )x, 1 ≤ j ≤ r,

and, given a sequence of multi-indices (n(N))N satisfying the path-like structure described previously, let L
(α;a1,...,ar )
N

be the associated MOP as in (3.4).

Theorem 3.7. Let νN be the zero probability distribution of the rescaled multiple Laguerre polynomial

L
(Nα;Na1,...,Nar )
N (x).

Then νN converges weakly as N → ∞ towards

μMP(1/1+α) �
(

r∑
j=1

qj δ1/aj

)
.

As it was the case for the R-transform, the S-transform can be defined as an analytic function, and (3.10) also
holds on subdomains of the complex plane, see [6], Section 6. Then, because SμMP(ρ)

(z) = ρ/(1 + ρz), one can also
obtain from (3.10), taking care of the definition domains, that the Cauchy–Stieltjes transform G of μMP(1/1+α) �
(
∑r

j=1 qj δ1/aj
) satisfies an algebraic equation.

Corollary 3.8. The weak limit of νN has a Cauchy–Stieltjes transform G which satisfies the algebraic equation

P
(
z,G(z)

)= 0, z ∈ C, (3.17)

where P(z,w) is given by

P(z,w) = w

r∏
i=1

(
z − zw

ai

+ α

ai

)
−

r∑
i=1

qi

r∏
j=1,j 
=i

(
z − zw

ai

+ α

ai

)
. (3.18)

3.5. Proofs

Before providing proofs for Theorems 3.5 and 3.7, we first precise a few points concerning MOP Ensembles, that we
introduced in Section 1.5.

A sequence of measures (μN)N , weights wj,N ∈ L2(μN), 1 ≤ j ≤ r , and a path-like sequence of multi-indices
(n(N))N induce a sequence of MOP Ensembles. Namely, for each N one can associate random variables x1, . . . , xN
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distributed according to (1.19) where we chose for the multi-index n = n(N). As Biorthogonal Ensembles, one can
chose Pk,N to be the n(k)th (type II) MOP associated with μN and the wj,N ’s. The associated biorthogonal functions
Qk,N ’s can then be constructed for any k ∈ N from the type I MOPs, see [27], Theorem 23.1.6, and Assumption 1.1
is satisfied with qN = 1. We moreover recall that the average characteristic polynomial χN equals PN,N .

In order to obtain growth estimates for the 〈xPk,N ,Qm,N 〉L2(μN )’s, we now describe a connection with the so-called
nearest neighbors recurrence coefficients, which are sometimes easier to compute.

3.5.1. Nearest neighbors recurrence coefficients
Van Assche [45] established for general MOPs, says associated to a measure μ and weights wi ’s, that for every normal
multi-index n there exist real numbers (a

(d)
n )1≤d≤r and (b

(d)
n )1≤d≤r satisfying

xPn(x) = Pn+e1 + a(1)
n Pn(x) +

r∑
d=1

b(d)
n Pn−ed

(x),

... (3.19)

xPn(x) = Pn+er + a(r)
n Pn(x) +

r∑
d=1

b(d)
n Pn−ed

(x),

where

ed = (0, . . . ,0︸ ︷︷ ︸
d−1

,1,0, . . . ,0) ∈N
r , 1 ≤ d ≤ r.

Note that this provides

Pn+ei
(x) − Pn+ej

(x) = (
a

(j)
n − a(i)

n
)
Pn(x), 1 ≤ i, j ≤ r. (3.20)

With the path-like sequence of multi-indices (n(k))k∈N and allowing the wi ’s and μ to depend on a parameter N ,
we write for convenience

a
(d)
k,N = a

(d)

n(k),N
, b

(d)
k,N = b

(d)

n(k),N
, 1 ≤ d ≤ r.

Then the following holds.

Lemma 3.9. If there exists ε > 0 such that for every 1 ≤ d ≤ r the sequences{
max

k∈N: |k/N−1|≤ε

r
max
j=1

∣∣a(d)

n(k)−ej ,N

∣∣}
N≥1

,
{

max
k∈N: |k/N−1|≤ε

∣∣b(d)
k,N

∣∣}
N≥1

, (3.21)

are bounded, then so is the sequence{
max

k,m∈N: |k/N−1|≤ε,|m/N−1|≤ε

∣∣〈xPk,N ,Qm,N 〉L2(μN )

∣∣}
N≥1

.

Proof. First, as a consequence of (3.2) and [27], (23.1.7), we have

〈xPk,N ,Qm,N 〉L2(μN ) = 0, m < k − R. (3.22)

Define the sequence (ik)k∈N taking its values in {1, . . . , r} by

n(k+1) = n(k) + eik , m ∈N.
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For a fixed k, which may be chosen as large as we want, (3.19) yields

xPk,N (x) = Pk+1,N (x) + a
(ik)
k,NPk,N (x) +

r∑
d=1

b
(d)
k,NPn(k)−ed ,N (x). (3.23)

Then, since (3.20) provides for any 1 ≤ d ≤ r and m large enough

Pn(m)−ed ,N (x) = Pm−1,N (x) + (
a

(d)

n(m−1)−ed ,N
− a

(im−1)

n(m−1)−ed ,N

)
Pn(m−1)−ed ,N (x),

we obtain inductively with (3.23) that

xPk,N (x) = Pk+1,N (x) + a
(ik)
k,NPk,N (x) +

(
r∑

d=1

b
(d)
k,N

)
Pk−1,N (x)

+
k−2∑

m=k−R

(
r∑

d=1

b
(d)
k,N

k−1∏
l=m+1

(
a

(d)

n(l)−ed ,N
− a

(il)

n(l)−ed ,N

))
Pm,N(x) + Rk,N(x), (3.24)

where Rk,N is a polynomial of degree at most k − R − 1. By comparing (3.24) with the (unique) decomposition
(1.14) and (3.22), we obtain explicit formulas for the 〈xPk,N ,Qm,N 〉’s in terms of the nearest neighbor recurrence
coefficients, from which Lemma 3.9 easily follows. �

3.5.2. Proof of Theorem 3.5

Proof. Associate to the multi-indices (n(N))N∈N the (uniformly bounded) sequence (AN)N∈N of diagonal matrices

AN = diag(a1, . . . , a1︸ ︷︷ ︸
n

(N)
1

, . . . , ar , . . . , ar︸ ︷︷ ︸
n

(N)
r

) ∈ HN(C).

On the one hand, let (XN)N be a sequence of independent random matrices, with XN distributed according to
GUE(N). If μ̂N stands for the empirical measure associated to the eigenvalues of YN = XN + AN , then Theorem 3.4
(a) and (3.3) provide for any � ∈ N

lim
N→∞E

[∫
x�μ̂N(dx)

]
= lim

N→∞
1

N
E
[
Tr(XN + AN)�

]
=
∫

x�μSC �
(

r∑
j=1

qj δaj

)
(dx). (3.25)

On the other hand, observe from (3.11) that the random matrix YN is distributed on HN(C) according to

1

Z′
N

exp
{−NTr

(
Y2

N − 2ANYN

)
/2
}

dYN, (3.26)

where Z′
N is a new normalization constant. By performing a spectral decomposition in (3.26), integrating out the

eigenvectors and using a confluent version of the Harish–Chandra–Itzykson–Zuber formula, Bleher and Kuijlaars [9]
obtained that the random eigenvalues of YN form a MOP Ensemble, see (1.19), associated to the N -dependent weights
and measure

μN(dx) = e−Nx2/2 dx, wj,N (x) = eNaj x, 1 ≤ j ≤ r, (3.27)

and the multi-index n(N). The average characteristic polynomial χN for that MOP Ensemble then equals the associated

n(N)th MOP, which is seen from a change of variable to be H
(
√

Na1,...,
√

Nar )
N (

√
Nx), up to a multiplicative constant.
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The weights in (3.27) form an AT system, from which it follows that any multi-index is normal, and that χN has real
zeros, cf. [27], Chapter 23. One moreover obtains from [45], Section 5.2, and a change of variables explicit formulas
for the nearest neighbors recurrence coefficients associated to (3.27),

a
(d)
n,N = ad, b

(d)
n,N = nd

N
, n = (n1, . . . , nr).

Thus, Theorem 3.5 follows from (3.25), Lemma 3.9 and Corollary 1.5. �

3.5.3. Proof of Theorem 3.7

Proof. The proof follows the same spirit as the proof of Theorem 3.5. Introduce the sequence of (uniformly bounded)
diagonal matrices

AN = diag(1/a1, . . . ,1/a1︸ ︷︷ ︸
n

(N)
1

, . . . ,1/ar , . . . ,1/ar︸ ︷︷ ︸
n

(N)
r

),

and let (XN)N be a sequence of independent random matrices, where XN is distributed according to Wishartα(N).
With μ̂N the empirical measure of the eigenvalues of YN = A1/2

N XNA1/2
N , Theorem 3.4(b) and (3.3) then provide for

all � ∈N

lim
N→∞E

[∫
x�μ̂N(dx)

]
=
∫

x�μMP(1/(1+α)) �
(

r∑
j=1

qj δ1/aj

)
(dx). (3.28)

Now, observe from (3.12) that YN is distributed on HN(C) according to

1

Z′
N

det(YN)Nα exp
{−NTr

(
A−1

N YN

)}
1{YN≥0} dYN, (3.29)

where Z′
N is a new normalization constant. Similarly than for the Hermite case, the eigenvalues of YN form a MOP

Ensemble associated to

μN(dx) = xNαe−Nx dx, wj,N (x) = eN(1−aj )x, 1 ≤ j ≤ r, (3.30)

and the multi-index n(N), see [10]. The average characteristic polynomial χN is then the n(N)th MOP associated to
(3.30), which is L

(Nα;Na1,...,Nar )
N (x) up to a multiplicative constant. The weights in (3.30) form an AT system so that

any multi-index is normal and χN has real zeros. If we denotes |n| = n1 + · · · + nr for n ∈N
r , then one obtains from

[45], Section 5.4, that the nearest neighbors recurrence coefficients for (3.27) read

a
(d)
n,N = nd(|n| + Nα)

N2ad

, b
(d)
n,N = |n| + Nα + 1

Nad

+
r∑

j=1

nj

Naj

, n = (n1, . . . , nr ).

Theorem 3.7 finally follows from (3.28), Lemma 3.9 and Corollary 1.5. �

Remark 3.10. Having in mind the proofs of Theorems 3.5 and 3.7, it would be of interest to find out if there exists a
matrix model for the multiple version of the Jacobi polynomials, the Jacobi–Piñeiro polynomials, which are related in
a limiting case to the rational approximations of ζ(k) and polylogarithms [27], Section 23.3.2, and then if it would be
possible to describe its limiting zero distribution thanks to free convolutions.
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