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Abstract. We construct a measure-valued equivalent to the spatialΛ-Fleming–Viot process (SLFV) introduced in (Banach Center
Publ. 80 (2008) 121–144). In contrast with the construction carried out there, we fix the realization of the sequence of reproduction
events and obtain a quenched evolution of the local genetic diversities. To this end, we use a particle representation which highlights
the role of the genealogies in the attribution of types (or alleles) to the individuals of the population. This construction also enables
us to clarify the state-space of the SLFV and to derive several path properties of the measure-valued process as well as of the labeled
trees describing the genealogical relations between a sample of individuals. We complement it with a look-down construction which
provides a particle system whose empirical distribution at time t , seen as a process in t , has the law of the quenched SLFV. In all
these results, the facts that we work with a fixed configuration of events and that reproduction occurs only locally in space introduce
serious technical issues that are overcome by controlling the number of events occurring and of particles present in a given area
over macroscopic time intervals.

Résumé. Nous construisons un processus à valeurs mesures équivalent au processus Λ-Fleming–Viot spatial (SLFV) introduit
dans (Banach Center Publ. 80 (2008) 121–144). Contrairement à la construction effectuée dans (Banach Center Publ. 80 (2008)
121–144), nous fixons une réalisation de la suite d’événements de reproduction et obtenons une évolution quenched des diversités
génétiques locales. Pour ce faire, nous utilisons une représentation particulaire qui met en avant le rôle des généalogies dans
l’attribution des types (ou allèles) aux individus de la population. Cette construction nous permet également de clarifier l’espace
d’états du SLFV et d’obtenir plusieurs propriétés trajectorielles du processus à valeurs mesures, ainsi que des arbres étiquetés qui
décrivent les relations généalogiques liant un échantillon d’individus. Nous complétons ces résultats avec une construction look-
down fournissant un système de particules dont la mesure empirique au temps t , vue comme un processus en t , a même loi que le
SLFV quenched. Dans tous ces résultats, le fait que nous travaillions à configuration d’événements fixée et que les reproductions
ne se produisent que localement (en espace) introduisent de sérieuses difficultés techniques qui sont surmontées en contrôlant le
nombre d’événements et de particules présentes dans une zone donnée de l’espace pendant un laps de temps macroscopique.
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1. Introduction and motivation

The spatial Λ-Fleming–Viot process was introduced in [5] and [14] as a new framework for studying the genetic
evolution of a population distributed over a continuous space. In these papers, two-dimensional spaces such as R2 or
the 2-dimensional torus were chosen since this seems natural for modeling the habitats of biological populations. The
model, however, allows to consider any domain T ⊂ Rd as a geographical space, and any compact metric space K of
types (or “alleles”). We refer to [2,6,7,16] and [3] for some of the first studies of this process and its relations to other
models.

One noteworthy difference with previous models of structured populations is the following: while in the latter the
reproduction mechanism can be phrased in terms of clocks carried by the individuals and deciding of reproduction and
death times, in the spatial Λ-Fleming–Viot process it is driven by a Poisson point process of extinction/recolonization
events (of various ranges r > 0 and impacts u ∈ (0,1]). For brevity, we shall address such a configuration of events
as an environment. Once an environment ω = {(ti , zi , ri , ui), i ∈ I } has been fixed, local populations change only
at the times ti of an event, and only within the corresponding ball B(zi, ri) ⊂ T. During such an event, a parent is
chosen uniformly at random within B(zi , ri) and a fraction ui of the local population there is replaced by offspring
of that individual in such a way that the total mass of the (continuum) population in this region remains constant.
These offspring inherit the allele of their parent, which implies a jump in the local allele frequency at that time. As
we shall see, the Poisson point process formulation also enables us to model the ancestral process of a sample of
individuals, which, thanks to an inherent assumption of neutrality, is a process independent of types: backwards-in-
time, all ancestral lineages which are in the geographical area of an event are chosen to be (or not to be) affected by
the event in an i.i.d. manner, that is by tossing a coin with success probability u. The affected lineages then coalesce
into a single ancestor whose position is uniformly distributed over the area of the event, and the ancestral process
starts again from this new configuration. We shall assume that the random environment is a Poisson process with a
possibly infinite intensity.

In a non-spatial situation (i.e. with T consisting of a single element only), the random environment reduces to a
Poisson process of so-called u-mergers, with intensity measure dt ⊗ ν(du) = dt ⊗ u−2Λ(du). In [8], the resulting
forward evolution of type frequencies was analysed as a measure-valued process and called Λ-Fleming–Viot process.

The spatial Λ-Fleming–Viot process (SLFV, in short) was formally constructed in [2] using a method of Evans
[17]. This more analytic approach, which we re-describe in Section 2.1, relies on a characterization of the semigroup
of the SLFV through a family of duality relations with the genealogical process mentioned above.

Our first motivation for this work is to relate the forwards and backwards evolutions in a more detailed manner,
by first defining a reproduction model conditioned on the environment and then by attributing the types thanks to an
explicit use of the genealogical relations between the individuals of the population. This construction, which leads
to Theorem 1, provides a more probabilistic approach to the definition of the process and enables us to include
a mutation mechanism (which was not incorporated in the analytic construction and in fact seems less tractable
there). In order to further disentangle the different sources of randomness acting on our population, in Section 2.3.1
we extend the environment ω by adding a fifth coordinate recording the spatial location of the parent during each
event. This allows to define a parental skeleton, out of which emerge all the genealogical trees relating a sample of
individuals. In Section 2.3.2, we randomly label the individuals sitting at each site by numbers from [0,1], and extend
the environment by a sixth coordinate that records the label of the parent during each reproduction event (in the spirit
of Bertoin and Le Gall’s flows of bridges, see [8]). We show that in the absence of mutation, conditionally on this
extended environment the SLFV can be seen as a deterministic flow on the field of local allele frequencies which at
any time conserves the geographical density of the population (here assumed to be constant over space), and transports
types through an accumulation of local reproduction events. Mutations may distort this flow by acting independently
on each ancestral line between the reproduction events.

Our second motivation consists in clarifying the state-space of the SLFV and its topological properties. This is done
in Lemma 2.1. Under the basic integrability assumption of [2] (see condition (1) below) we obtain some general prop-
erties about the process: Lemma 2.6 shows that the quenched (i.e., for a fixed environment) SLFV without mutation
has càdlàg paths of finite variation with probability 1; Proposition 5.2 tells us that, when the fraction of individuals
replaced during an event is always less than 1, the genealogical process of a countable sample of individuals never
comes down from infinity (see Section 5 for a definition of this property).
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Thirdly, we propose a representation of the SLFV as the empirical distribution of the paths of an infinite collec-
tion of individuals. This is done in Section 4 through a look-down construction, which enables us to approximate
the quenched spatial Λ-Fleming–Viot process by the empirical distribution of a large but finite set of individuals, uni-
formly over compact time intervals. The proof of our Theorem 2 is inspired by that of Theorem 1.1 in [10], which con-
siders non-spatial Λ-Fleming–Viot processes. With the additional spatial structure, the fact that reproduction events
happen only locally brings in new technical subtleties.

Since their introduction by Donnelly and Kurtz in [12] and [13], look-down constructions have proved useful
in different contexts. For example, in [9] it is used to show that the genealogy of an α-stable branching process
(with α ∈ (1,2)) can be described as a randomly time-changed β-coalescent. In [23], it is at the core of the study
of the evolving coalescent encoding the genealogy of the whole population in a Wright–Fisher model. Finally, in
[22] it is used to show that a given class of Λ-Fleming–Viot processes (“coming down from infinity” sufficiently
fast) with Brownian mutation have a compact support at any positive time. Such a construction was established for
the non-spatial Λ-Fleming–Viot processes in [10]. In [11], a look-down construction for continuum-sites stepping-
stone models was carried out, in which the genealogy consists in Feller processes which coalesce instantly upon
meeting. Because the corresponding genealogies are fairly different, so are the details of their proof. Furthermore,
they only show the convergence of the finite-dimensional distributions of their look-down process, whereas we prove
its convergence in the space of càdlàg paths. To our knowledge, there are no other constructions in the flavour of
[12] in which the spatial structure of the population influences their reproduction. Note however that Etheridge and
Kurtz [15] propose a look-down construction of the SLFV in the spirit of [20], and use it in particular to show that the
finite-density population model introduced in [6] converges towards the annealed SLFV as the density of individuals
tends to infinity.

In a more applied point of view, the different constructions carried out in Sections 3 and 4 allow us to interpret
a “real” population with reasonably large density as a Poissonization of the measures describing the state of the
theoretical “infinite” population. That is, at any time t we can think of our “real” population as being the result of
the evolution of the individuals with level less than some quantity N in the look-down construction (with N not too
small) between times 0 and t , which form a locally finite Poissonian cloud of trajectories in T × K. Furthermore,
the definition of the SLFV in a fixed environment may serve in reconstructing the main features of the history of
a population. Indeed, the genetic diversity observed at a given locus within a sample of individuals gives us some
information about quantities such as the local rate of coalescence, which depend essentially on the annealed evolution.
We refer to [4] for more on inference issues related to the SLFV. However, if we now consider a second locus in the
genome, or even a fraction of this genome (data which are now accessible through modern sequencing tools), the
genetic diversities observed at all these sites are correlated first and foremost by the fact that they all flow through
the same environment ω. Hence, any information on ω brought by the analysis of the diversity at one locus yields
some constraints on the genetic diversity at other loci. A good understanding of the quenched SLFV is thus necessary
to get a handle on the correlations between different parts of the genome and to devise statistical methods based on
the available data to detect the presence of atypically big events acting as major catastrophes, or of natural selection
acting on a given gene, or of any other kind of deviations from the hypothesis of neutral evolution made in this work.

The paper is laid out as follows. In Section 2, we describe the “kernel-valued” version of the spatial Λ-Fleming–
Viot process introduced in [14] and state our main result, namely the existence and uniqueness of the quenched SLFV
with mutation taking values in the space of Radon measures on T × K. We also present the two extensions of the
environment discussed above. Theorem 1 is proved in Section 3 by constructing the two-parameter semigroup of
transition probabilities conditionally on the configuration ω of events, for almost every ω. While this construction
focusses on fixed times s < t , in Section 4 we materialize the dynamics of the evolution by a look-down construction
directly defined for all times. Though these two steps could in fact be summed up into a single one, we chose to keep
them separated to put forward the role of the Poisson structure and of the exchangeability of the population in the
construction of the SLFV, and because the addition of levels is somehow an elaboration on the ideas used in the first
construction. In Section 5, we use the same kind of arguments as in the previous sections to address the question of
coming down from infinity for the genealogical process.
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2. The spatial Λ-Fleming–Viot process and its sources of randomness

2.1. The kernel-valued spatial Λ-Fleming–Viot process

Let us start by describing the first construction of the SLFV, carried out in [2] and [14]. As the geographical space in
which the population evolves we fix a domain T ⊂ Rd , and we write K for the compact space of all possible types.
For a locally compact metric space (with E = T×K or E = K as the generic examples), let M(E) (resp., M1(E))
denote the set of all nonnegative Radon (resp., probability) measures on E, and let Ξ be the quotient of the space of
all Lebesgue-measurable maps (or probability kernels) ρ :T → M1(K) by the equivalence relation

ρ ∼ ρ′ ⇔ Vol
({
x ∈ T: ρ(x, ·) 	= ρ′(x, ·)})= 0.

In other words, two maps ρ and ρ′ are in the same equivalence class iff the measures dxρ(x,dκ) and dxρ′(x,dκ) on
T×K are equal. We shall give a mathematically equivalent description of Ξ at the beginning of the next subsection.

To specify the dynamics, let μ be a σ -finite measure on (0,∞) and {νr , r > 0} be a collection of probability
measures on [0,1] such that the map r �→ νr is measurable with respect to μ. Let Π be a Poisson point process on
R × T × (0,∞)× [0,1] with intensity measure dt ⊗ dz⊗ μ(dr)νr (du). The random point configuration Π acts as
a random environment in which the population evolves: if (t, z, r, u) ∈Π , then at time t a reproduction event occurs
within the closed ball B(z, r)⊂ T, that is

• a location y is sampled uniformly at random in B(z, r) and a type k is chosen according to ρt−(y,dκ) (equivalently,
a type is sampled according to the mean type distribution in B(z, r) just before the event),

• for every x ∈ B(z, r), ρt (x,dκ) := (1 − u)ρt−(x,dκ)+ uδk .
The value of ρ outside the ball remains unchanged, that is ρt (x,dκ)= ρt−(x,dκ) for every x /∈ B(z, r).

The existence and uniqueness of a Markov process evolving according to this dynamics is proven in Section 4
of [2] under the condition∫ ∞

0

∫ 1

0
urdνr(du)μ(dr) <∞. (1)

(In fact this is shown there only for T = R2, but the proof is identical in all dimensions and for any domain in Rd .)
The process is characterized by a family of duality relations, based on the following very simple idea. In the absence
of mutation, the type of the parent is transmitted to all its offspring. Thus, to know the types of a few individuals
sampled at time t , it suffices to go back to their ancestors at some reference time (say, 0) in the past, and to check
which types they carried. Now, some of the individuals alive at time t may share a common ancestor at time 0, which
introduces some correlations between their types. As a consequence, the natural dual process to consider is that tracing
the ancestral relations between a sample of individuals, from time t on and back into the past.

Let us thus imagine what the ancestral process of a sample of individuals should look like under the prescribed
evolution. Here we forget about types, and for any k ∈ N, we represent the genealogical relations of a sample of k
individuals (labelled by 1, . . . , k) by a process (Ah)h≥0 with values in the set of all partitions of {1, . . . , k} whose
blocks are marked by an element of T. In words, h= 0 corresponds to the time at which our individuals are sampled
and for any h ≥ 0, each block of Ah contains the labels of all of these individuals who share a common ancestor h
units of time back in the past. The mark of a block records the spatial location of the corresponding ancestor at that
time. When convenient, we shall write

Ah = {(
B1
h, ξ

1
h

)
, . . . ,

(
B
Nh
h , ξ

Nh
h

)}
, (2)

where ξ ih is the mark of the block Bih and Nh is the number of distinct ancestors at time h in the past. See Fig. 1 (with
h= t − s), where k = 4, Nh = 3, B1

h = {1,2},B2
h = {3},B3

h = {4}.
As a start, suppose that we sample a single individual and trace back where its ancestors were. Since forwards-in-

time the population evolves only at the epochs of events of Π , so does the spatial location of an ancestral lineage.
Going back by a sufficient amount of time, one will encounter the first event (t ′, z′, r ′, u′) in the past in which our
individual was not only in the area B(z′, r ′) hit at that time, but was also part of the fraction u′ of the local population
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Fig. 1. A realization of the ancestral location process of a sample of 4 individuals. Reproduction events are symbolized by thick lines. Starting
from time t down to time s, the first event affects the lineage sampled at location x3, the second event affects the lineage sampled at x4, the third
event affects the lineage sampled at x1 but not that sampled at x2 while the last event make these two lineages coalesce without affecting the lineage
emanating from x3. Hence, At−s = {({1,2}, ξ1

t−s ), ({3}, ξ2
t−s ), ({4}, ξ3

t−s )}.

replaced by offspring of the elected parent. (Below we shall argue that condition (1) guarantees that the time it takes
back to this first event in the past is a.s. strictly positive.) Hence, at the time h = t − t ′ of this event, the ancestral
line of our individual jumps to the location of its parent, which is by construction uniformly distributed over B(z′, r ′).
Using the same reasoning, we can then find an earlier event (t ′′, z′′, r ′′, u′′) during which this parent was born. The
ancestral lineage at that time jumps to a location uniformly distributed over B(z′′, r ′′) and stays there until the time of
the event in its past during which it was born, and so on. Now, observe that the sequence of events experienced by the
ancestral lineage backwards-in-time is governed by the law of Π . Consequently, the rate at which the lineage jumps
can be computed directly in terms of μ and νr : once the radius r and the impact u of the event have been chosen, the
volume of centres such that the current location ξ ih of a lineage belongs to the range of the event is Vol(B(ξ ih, r) ∩T)

and the probability that the lineage belongs to the set of newborns is u. Hence, the time to wait before the next jump
is exponentially distributed with parameter

∫ ∞

0

∫ 1

0
uVol

(
B
(
ξ ih, r

)∩T
)
νr(du)μ(dr),

and at that time ξ i jumps to a new location uniformly distributed over the area of the corresponding event. Under the
condition stated in (1), this jump rate is bounded by a constant independent of the current location of the lineage.

Now think of several individuals sampled at distinct locations. When a past event comes up that covers at least
one of them, each of the lineages within its range has a probability u of being an offspring of the parent chosen,
independently of the others. Then, all the lineages which were born in this event trace back to the same parent and
therefore merge at that time into a single ancestor (i.e., the corresponding blocks of Ah merge into a single block)
whose location is uniformly distributed over the area of the event. The other lineages, outside the ball or inside but
not within the pool of offspring, remain unaffected. Because nothing happens between the events in Π that affect the
genealogy, the description of A as a Markovian system of coalescing blocks whose marks evolve like a family of
correlated jump processes is complete.

There remains to find an appropriate set of test functions. To this end, let C(E) (resp., Cc(E)) stand for the set of all
continuous (resp. continuous and compactly supported) functions on the space E. Let also 〈m,f 〉 denote the integral
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of the function f against the measure m. If k ∈ N, F ∈ Cc(Tn) and g1, . . . , gk ∈ C(K), let us define the function Gg
by

Gg(κ1, . . . , κk) :=
k∏
j=1

gj (κj ) (3)

and the function Ik(·;F,g1, . . . , gk) ∈C(Ξ) by

Ik(ρ;F,g1, . . . , gk) :=
∫
Tk

F (x1, . . . , xk)

〈 ⊗
1≤j≤k

ρ(xj ,dκj ),Gg

〉
dx1 · · ·dxk. (4)

A slight modification of Lemma 4.1 in [2] shows that the family of functions of the form Ik(·;F,g1, . . . , gk), with k,
F and g1, . . . , gk as above, is dense in C(Ξ). As a consequence, they constitute a relevant set of test functions.

We can now state the duality relations upon which the characterization of the kernel-valued SLFV depends. In
Theorem 4.2 of [2], the SLFV is defined as the unique Ξ -valued Hunt process (ρt )t≥0 satisfying: for every ρ0 ∈Ξ ,
t ≥ 0, k ∈N, F ∈ Cc(Tk) and g1, . . . , gk ∈C(K),

Eρ0

[
Ik(ρt ;F,g1, . . . , gk)

]=
∫
Tk

F (x1, . . . , xk)E℘k(x)

[〈 ⊗
1≤ι≤Nt

ρ0
(
ξ ιt ,dκι

)
,

Nt∏
ι=1

∏
j∈Bιt

gj (κι)

〉]
dx1 · · · dxk, (5)

where E denotes the expectation w.r. to the process (ρt )t≥0, E is the expectation w.r. to the process A, randomized
over the environment (we shall be more precise on this point in the next section), and

℘k(x) :=
{({1}, x1

)
, . . . ,

({k}, xk)}. (6)

The idea behind (5) is precisely that expounded above: the type of an individual living at time t is given by the type
distribution ρ0(ξ

1
t , ·) at the location of its ancestor at time 0, and if several individuals have a common ancestor at

time 0 (i.e., Card(Bιt ) > 1 for some ι), they all share the same type κι with law ρ0(ξ
ι
t , ·).

2.2. The SLFV as a measure-valued process in a random environment

Let Mλ be the space of all nonnegative Radon measures on T × K whose “spatial” marginal is equal to Lebesgue
measure λ on T. Using a well-known disintegration theorem (see e.g. [19], p. 561), it is not difficult to show that Ξ is
in one-to-one correspondence with Mλ, this correspondence being

m(dx,dκ)= dxρ(x,dκ). (7)

(Here and below, we sometimes shortly write dx instead of λ(dx).) We shall endow Mλ with the topology Tv of vague
convergence and the associated Borel σ -field, and shall use Mλ as the state space for the measure-valued SLFV. Using
the correspondence (7), the function Ik defined in (4) reads as

Ik(m;F,g1, . . . , gk) :=
〈
m⊗k,F ⊗Gg

〉
,

where Gg was defined in (3). The following lemma guarantees that the set of functions of the form Ik constitutes a
wide enough family of tests functions, and reveals in particular that the convergence of a sequence (ρn)n≥1 of elements
ofΞ (as defined in [2]) is equivalent to the vague convergence of the measuresmn(dx,dκ) := dxρn(x,dκ) as n→ ∞.

Lemma 2.1.

(a) The space (Mλ,Tv) is compact.
(b) For k ∈N, F ∈ Cc(Tk), g1, . . . , gk ∈C(K), the function m �→ Ik(m;F,g1, . . . , gk) is Tv-continuous on Mλ.
(c) The linear span of the set of constant functions and of functions of the form Ik(·;F ;g1, . . . , gk), k ∈N, F ∈ Cc(Tk)

and g1, . . . , gk ∈ C(K), is dense in C(Mλ).
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Proof of Lemma 2.1. (a) Since the Tv-closedness is immediate from the definition of Mλ, it suffices to show that any
given sequence (mn) in Mλ has a subsequence that converges in the vague topology Tv . To see this, note that T×K

is locally compact and separable, hence by Theorem A2.3 in [19], M(T × K) endowed with the vague topology is
Polish (and in particular complete). Therefore, again by the quoted theorem, (Mλ,Tv) is compact.

(b) This follows from the fact that for any locally compact separable space E and k ∈N, the mapping m→m⊗k is
continuous w.r.to the vague topologies on M(E) and M(Ek).

(c) This space is an algebra that separate points in Mλ and contains the constants. Since Mλ is compact by a), the
Stone–Weierstrass theorem gives us the result. �

In Section 4, we shall need to put a metric on the space DMλ
[0,∞) of all càdlàg paths with values in Mλ. We

thus recall the following result (see, e.g., Section 1 in [12]).

Lemma 2.2. There exists a sequence (fn)n≥1 of uniformly bounded functions in Cc(T × K) which separates points
in Mλ. Furthermore, if (gn)n≥1 is such a sequence, then

d
(
m,m′) :=

∞∑
n=1

1

2n
∣∣〈m,gn〉 − 〈

m′, gn
〉∣∣, m,m′ ∈Mλ

defines a metric for the topology of vague convergence on Mλ, while

Δ
(
(mt ),

(
m′
t

)) :=
∫ ∞

0
e−t d

(
mt,m

′
t

)
dt

is a metric for the topology of locally uniform convergence on DMλ
[0,∞).

Let us fix again a measure μ on (0,∞) and a collection {νr , r > 0} of probability measures on [0,1] satisfying (1).
LetΠ be a Poisson point process with intensity measure dt⊗ dz⊗μ(dr)νr (du). We write P for the distribution ofΠ ,
and note that P assigns full measure to the set Ω of point configurations ω = (ti , zi , ri , ui)i∈I on R × T× (0,∞)×
[0,1] with the property that ti 	= ti′ for i 	= i′ and that for all s < t ∈ R and each bounded subset B of T,∑

i:s≤ti≤t,zi∈B
rdi ui <∞.

Recall the description of the ancestral process A given in Section 2.1. For P-a.a. ω ∈Ω and t ∈R, let Pω,t℘k(x) stand for
the law of the system of coalescing jump processes describing the genealogy of k of “individuals” sampled at time t
at the locations x = (x1, . . . , xk), conditionally on the environment ω. That is, under Pω,t℘k(x):

• The evolution of A starts at time h= 0 in ℘k(x) and uses only the events (ti , zi , ri , ui) ∈ ω such that ti ≤ t .
• Whenever one or more lineages belong to the range of an event, each of the lineages within B(zi , ri) takes part in

this event with probability ui or remains unaffected with probability 1 − ui , independently of each other. All those
lineages which are affected merge into a single lineage whose location is uniformly distributed over B(zi, ri). Then
A remains constant equal to its new value At−ti until the next event of ω in the past which hits at least one of the
lineages and for which at least one of these lineages takes part in the merging.

Condition (1) guarantees that for any given t ∈ R, for P-a.e. environment ω, with probability 1 no lineage in A has
an accumulation point of jumps in the time interval [0,∞). Hence, for P-a.all ω we can define Pω,t℘k(x) (for all k ∈ N

and λ⊗k-a.all x ∈ Tk) on the space D of coalescing càdlàg paths with values in T. We shall write Pt℘k(x) for the joint
distribution on Ω ×D defined by

Pt℘k(x)(dω,da) := P(dω)Pω,t℘k(x)(da). (8)

For a ∈ D and h > 0, we write ah for the restriction of a to the time interval [0, h] and note that ah describes a forest
of coalescing paths. Indeed, if a by time h has coalesced to nh paths, then ah consists of nh trees aιh, ι= 1, . . . , nh.
(Again, recall Fig. 1.)
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Remark 2.3. Since the law P is invariant by translation in the time coordinate, for any bounded measurable function
F :D →R, the quantity∫

Ω×D
F(a)Pt℘k(x)(dω,da)

is independent of t and will hence be written as

E℘k(x)
[
F(A)

]=
∫
Ω×D

F(a)P℘k(x)(dω,da).

(See, e.g., Corollary 2.4.)

Another ingredient we shall need is a mutation mechanism. Let (Kt )t≥0 be a Feller process with values in K,
defined on some probability space (D̃, F̃ ,Q). For every κ ∈ K and every genealogical tree a (rooted in a single
individual and) having n leaves at some time h > 0, let us write

Qaκ

[
n∏
j=1

gj
(
Kjh

)]
, g1, . . . , gn ∈ C(K) (9)

to characterize the distribution of the types at the leaves when the root has type κ and types evolve along the branches
of a according to the mutation process K (we assume that this evolution occurs independently along distinct subtrees
emanating from the same vertex).

The Mλ-valued SLFV with mutation can now be defined (in its quenched version) as follows.

Theorem 1. For P-almost all ω there exists a unique Mλ-valued time-inhomogeneous Hunt process (Mt)t∈R whose
two-parameter semigroup is characterized as follows: For every s ≤ t = s + h ∈ R, m ∈ Mλ, k ∈ N, F ∈ Cc(Tk) and
g1, . . . , gk ∈ C(K),

Eωs,m
[〈
M⊗k
t ,F ⊗Gg

〉]

=
∫
Tk

F (x1, . . . , xk)E
ω,t
℘k(x)

[∫
K
Nh

Nh∏
ι=1

Q
Aιh
κι

[∏
j∈Bιh

gj
(
Kjh

)]
ρ
(
ξ1
h ,dκ1

) · · ·ρ(ξNhh ,dκNh)
]

dx1 · · · dxk, (10)

where ℘k(x) was defined in (6) and m= dxρ(x, ·) as in (7).

Note that the right hand side of (10) is well-defined. Indeed, it follows from the above described construction of
A that, conditionally on Nh, the law of the ancestral locations ξ1

h , . . . , ξ
Nh
h is absolutely continuous w.r. to Lebesgue

measure.
In Section 3 we shall prove a slightly stronger version of Theorem 1. Using the homogeneity of the Poisson

distribution P, we shall then be able to conclude the following annealed version of Theorem 1 (recall the notation
E℘k(x) from Remark 2.3):

Corollary 2.4. There exists a unique Mλ-valued Hunt process (Mt)t≥0 such that for every m ∈ Mλ, t ≥ 0, k ∈ N,
F ∈ Cc(Tk) and g1, . . . , gk ∈C(K),

Em
[〈
M⊗k
t ,F ⊗Gg

〉]

=
∫
Tk

F (x1, . . . , xk)E℘k(x)

[∫
KNt

Nt∏
ι=1

Q
Aιt
κι

[∏
j∈Bιt

gj
(
Kjt

)]
ρ
(
ξ1
t ,dκ1

) · · ·ρ(ξNtt ,dκNt )
]

dx1 · · · dxk. (11)

Remark 2.5. When there are no mutations (i.e., when K is the constant process), we recover formula (5), and hence
the existence and uniqueness result from [2].
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Theorem 1 shows that the quenched spatialΛ-Fleming–Viot process is a strong Markov process with càdlàg paths.
In the absence of mutation, it has even stronger path properties.

Lemma 2.6. For P-a.e. environment ω, the quenched SLFV without mutation has paths of finite variation Pω-a.s.

Lemma 2.6 is proved at the end of Section 4.2.

2.3. Extending the environment

Before establishing the main results of this work, we gather here two constructions based on particular extensions of
the environment. The first one will prove useful in the next sections, whereas the main interest of the second one is
to relate the SLFV to Bertoin and Le Gall’s flows of bridges. As discussed in the introduction, they also highlight the
different layers of randomness which appear in the construction of the spatial Λ-Fleming–Viot process.

2.3.1. Recording the locations of the parents
Recall from the paragraph above (8) that the probability measures Pω,t℘k(x) are defined P-a.s, for each fixed t . As a

preparation of the proof of Theorem 1, we shall specify a construction of a “good version” of Pω,t℘k(x) which will serve
simultaneously for all t ∈ R.

To this purpose, we mark each event (ti , zi , ri , ui) with a parental location yi , uniformly chosen from B(zi, ri), and
denote the realizations of the resulting Poisson point process by ψ = {(ti , zi , ri , ui, yi): i ∈ I }. Its distribution will,
by a slight abuse of notation, again be denoted by P.

For a given ψ , we first construct a random graph Gψ that codes the ancestral relationships between the parental
individuals living at times ti at locations yi . To this purpose, let H := (Hii′) be a family of independent, uniformly on
[0,1] distributed random variables, indexed by the pairs i 	= i′. For ti′ < ti , let us define

Gii′ := 1{Hii′≥1−ui′ }1{yi∈B(zi′ ,ri′ )}.

Thanks to the integrability condition (1), for P-almost allψ and all i, the random configuration of time points {ti′ : ti′ <
ti,Gii′ = 1} is locally finite a.s. Thus, for all such ψ , there is an H-measurable event of full probability on which for
all i ∈ I there is a uniquely defined index π(i) ∈ I (depending on ψ and H) such that

tπ(i) = sup{ti′ : ti′ < ti,Gii′ = 1}.
We now decree that the most recent event which affected a parental individual with index i was the event with index
π(i). In other words, the location of the ancestral lineage of the individual that is parental in the ith event, when
viewed backwards in time, sits at location yi for the time span ti − tπ(i) and then jumps to yπ(i). From there, it evolves
as the ancestral process of the parental individual with index π(i) (with which it has merged at time ti − tπ(i)). See
Fig. 2 for an example. Doing this for all i ∈ I gives us the genealogical tree of all the parents chosen during an event,
which we call Gψ .

Next, let us tie in the (locations of the) ancestral lineage of an individual sampled at time t at location x by deciding
when it joins the parental graph Gψ . To this purpose, we use, for givenψ and x, a family Hx of independent, uniformly
on [0,1] distributed random variables (Hxi )i∈I that are independent of the collection H, and set

Gxi := 1{Hxi ≥1−ui }1{x∈B(zi ,ri )}.

Again thanks to the integrability condition (1), for all x and for P-almost all ψ , the random configuration of time
points {ti : Gxi = 1} is locally finite a.s. Hence, for all x and all such ψ , we have an Hx -measurable event of full
probability on which for all t ∈R there is a uniquely defined index π(t, x) ∈ I such that

tπ(t,x) = sup
{
ti : ti ≤ t,Gxi = 1

}
.

The location process Aψ,tx of the ancestral lineage of an individual sampled at time t at location x is then constructed
as follows. Viewed backwards in time, the lineage remains located at x down to time tπ(t,x) =: ti , and at that time
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Fig. 2. The parental skeleton. A parental location yi is associated to event i. Then, π(i) denotes the index of the event in the past during which this
parent was born (at time tπ(i), from the parent located at yπ(i)).

jumps to the parental location yi in the event ei . From that moment on, it has merged with the ancestral line of this
parent and follows its evolution in Gψ .

This construction extends to finitely or countably many individuals Ij , j ∈ J , where Ij is drawn from a prescribed
location xj at time t , and J is a (finite or countably infinite) index set. For this we use independent uniformly on

[0,1] distributed random variables H(j)i and insert H(j)i in place of H
xj
i to define the ancestral location process of Ij .

For x = (x1, . . . , xk), we then obtain the desired version of Pω,t℘k(x) by averaging the distribution of (Aψ,tx1 , . . . ,A
ψ,t
xk )

over (yi)i∈I . Let us also note that in this way we obtain, for a Poisson point process Φ on T with Lebesgue intensity
measure, an a.s. construction of Aψ,tΦ , the locations of the ancestral lineages of individuals sampled at the points of Φ
at time t . This will be used at the beginning of the proof of Theorem 1′.

2.3.2. Recording the labels of the parents
This subsection, though not required for the remainder of the paper, is intended to connect the SLFV setting to the
representation of generalized Fleming–Viot processes in terms of bridges by Bertoin and Le Gall [8]. Let us now turn
to a “flow of bridges” point of view. To this purpose we define another extension of the environment, by assigning
to each event (ti , zi , ri , ui, yi) a parental label li , independently and uniformly drawn from [0,1]. The realizations of
the resulting Poisson point process will be denoted by χ = {(ti , zi , ri , ui, yi, li): i ∈ I }, and its distribution will again
be denoted by P.

The labels li will be used to encode differently the additional randomness obtained through the auxiliary random
variables Hii′ and Hxi in the construction described in the previous section. More precisely, following the “flow of
bridges” idea of Bertoin and Le Gall [8], we shall attribute a label to each individual in the sample and use the parental
labels li to trace back the desired ancestries. As in [8] we define the elementary bridge associated with (u, l) as

bl,u(w) := (1 − u)w+ u1[l,1](w), 0 ≤w ≤ 1.

The parental label of an individual with label v that is overlapped by an event with impact u and parental label l is
defined to be (bl,u)−1(v). In other words, under the inverse mapping (bl,u)−1 the interval [(1 − u)l, (1 − u)l + u] is
mapped back to l, whereas the intervals [0, (1−u)l) and ((1−u)l+u,1] are stretched to [0, l) and (l,1], respectively.

For each x ∈ T and s < t , the bridge Bxs,t is designed below in such a way that (Bxs,t )
−1(v) is the individual label of

the ancestor (of the individual with label v sampled at location x at time t ) that either lived at time s, or was parental
in the most recent event before t which affected the ancestral line of the individual sampled at location x at time t .
Each event affecting x between s and t contributes a jump to Bxs,t and at the same time shrinks the “old bridge” (see
Fig. 3). Since the parental labels are a.s. distinct and since the locations of the parents are a.s. different from x, when
looking at the population at site x forwards in time, what we are trying to encode here is an immigration of jumps
gradually replacing the continuous part of Bxs,t (which in turn represents the population at time t whose ancestors at
time s were already living at x).
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Fig. 3. Flow representation of the population sitting at a given site after no, 1 and 2 events. After the first event, all the individuals whose levels
belong to the interval [a, b] are offspring of the parent (a.s. chosen somewhere else in the area of the event) with label l. After the second event,
this family has shrunk to the interval [a′, b′], while the new parent with label l′ has given birth to all the individuals in the interval [c′, d ′].

More concretely, the way how two elementary bridges bu1,l1 and bu2,l2 , with bu1,l1 older than bu2,l2 , affect x is not
the usual composition bu2,l2 ◦ bu1,l1(w)= bu2,l2(bu1,l1(w)), but is given by

bu2,l2 � bu1,l1(w) := (1 − u2)bu1,l1(w)+ u21[l2,1](w)

= (1 − u2)(1 − u1)(w)+ (1 − u2)u11[l1,1]w+ u21[l2,1](w), 0 ≤w ≤ 1.

That is, a jump of size u2 is inserted at the argument l2, and the old bridge is shrunk by the factor 1 − u2 (see Fig. 3).
Doing this for all the affecting events (in the right order) gives the bridge

Bxs,t (w) :=
( ∏
j :s≤tj≤t

(1 − uj )
)
w+

∑
i:s≤ti≤t

( ∏
j :ti<tj≤t

(1 − uj )
)
ui1[li ,1](w), 0 ≤w ≤ 1. (12)

The quantity p0 := ∏
j :s≤tj≤t (1 − uj ) is the fraction in the population that is left over at time t from the population

residing at location x at time s, and the quantity pi := (∏j :ti<tj≤t (1 − uj ))ui is the fraction in the population that
is left over from the re-colonizers in the event ei . In particular, in the absence of mutation (or if we only consider
the family structure of the population at a given site), we see that the type (or family size) distribution conditioned
on the extended environment χ is a deterministic function of its initial value and of χ . Furthermore, for a random
variable V that is uniformly distributed on [0,1], the probability that the pre-image (Bxs,t )

−1(V ) equals li is pi , and
the probability that it is a continuity point of Bxs,t is p0.

Based on this last point, let us show that the ancestry of a sample of individuals can be reconstructed by a deter-
ministic procedure involving only χ and the distribution of the level Vj of the individuals that we consider. Indeed,
on the event (Bxs,t )

−1(V )= li for some i indexing an event, we set T (x,V ) := ti , and proceed back from (ti , yi) and
from the individual level li , this time using those of the extended events in χ that affect the location yi .

The integrability condition implies that for all x and P-a.a. χ∑
i:s≤ti≤t,|zi−x|≤ri

ui <∞.

Therefore, for all v ∈ [0,1], the path h �→ (Bxt−h,t )−1(v), 0 ≤ h≤ t , is a.s. of finite variation (though with jumps that
generically will occur densely in time). Let us also note that for each h ∈ [0, t], conditionally on h > t − T (x,V ), the
random variable (Bxt−h,t )−1(V ) is uniformly distributed on [0,1] when randomized over χ .

We can carry out the same construction for a sequence (xj ,Vj ) with independent V1,V2, . . . , and the locations xj
not necessarily distinct. In this way we obtain a (χ,V1,V2, . . .)-measurable configuration of coalescing ancestral lines
starting in (xj ,Vj )j≥1 at time t , whose x-component, when randomized over χ , has the distribution Pt

℘k(x)
.



The quenched measure-valued spatial Lambda-Fleming–Viot process 581

3. The SLFV conditioned on the environment

In this section, we prove a slightly stronger version of Theorem 1, which will establish the latter a fortiori: for P-
almost all ω ∈Ω , we characterize a two-parameter semigroupQωs,t (m,dm

′) of transition probabilities on Mλ, where
Qωs,t (m, ·) is the distribution of a random element Ms,t (m) in Mλ, which is the result of the transformation of m due
to the mutations and the events in ω occurring in the time interval [s, t]. Notice that the semigroup Qωs,t is not time-
homogeneous, since the sequence of reproduction events encoded in the environment ω is not time-homogeneous.

Theorem 1′. For P-almost every ω ∈Ω , there exists a unique collection Qωs,t (m,dm
′) of transition probabilities on

Mλ such that for every s ≤ t ∈ R, k ∈ N, F ∈Cc(Tk), g1, . . . , gk ∈ C(K), and h := t − s,∫
Qωs,t

(
m,dm′)〈m′⊗k,F ⊗Gg

〉

=
∫
Tk

F (x1, . . . , xk)E
ω,t
℘k(x)

[∫
K
Nh

Nh∏
ι=1

Q
Aιh
κι

[∏
j∈Bιh

gj
(
Kjh

)]
ρ
(
ξ1
h ,dκ1

) · · ·ρ(ξNhh ,dκNh)
]

dx1 · · · dxk, (13)

where here again m(dx,dκ)= dxρ(x,dκ).
Furthermore, P-a.s. we have

(i) for all s ≤ t , Qωs,t (m, ·) is a continuous function of m ∈ Mλ,
(ii) for every s ∈ R and every Tv-continuous function H : Mλ → R, the map t �→ ∫

Qs,t (m,dm
′)H(m′), t ≥ s, is

continuous at t = s.
(iii) (Qωs,t ) is a two-parameter semigroup. More precisely, for all q < s < t , and for every F and g1, . . . , gk as before

we have∫
Qωq,s

(
m,dm′)∫ Qωs,t

(
m′,dm′′)〈m′′⊗k,F ⊗Gg

〉= ∫
Qωq,t

(
m,dm′′)〈m′′⊗k,F ⊗Gg

〉
. (14)

Remark 3.1. Stated in words, relation (13) reads as follows: Let Mt−h,t (m) be a random measure with distribution
Qωs,t (m, ·). Then a random k-sample drawn at locations x1, . . . , xk from Mt−h,t (m) arises in three steps: (1) Take,

under Pω,t , the random ancestry A started in ℘k(x), (2) sample the types κ1, . . . , κNh drawn at locations ξ1
h , . . . , ξ

Nh
h

from m, and (3) run the mutation process starting from the types κ1, . . . , κNh along the genealogy A forwards in time,
starting at time s = t − h, and up to time t . The types sampled at locations x1, . . . , xk at time t then result from the
forest-indexed mutation process that is run for h units of time.

Remark 3.2. Observe that (i) and (ii) together imply that Qω is a (two-parameter) Feller semigroup.

Before we prove Theorem 1′, let us show that Corollary 2.4 is a straightforward consequence of it.

Proof of Corollary 2.4. For any initial condition m ∈ Mλ, let us set Qt(m, ·)=
∫
P(dω)Qω0,t (m, ·). Using (13), (8)

and Fubini’s theorem, we obtain that for every k ∈N, F ∈ Cc(Tk) and g1, . . . , gk ∈ C(K),∫
Qt

(
m,dm′)〈m′⊗k,F ⊗Gg

〉

= E

[∫
Tk

F (x1, . . . , xk)E
ω,t
℘k(x)

[∫
KNt

Nt∏
ι=1

Q
Aιt
κι

[∏
j∈Bιt

gj
(
Kjt

)]
ρ
(
ξ1
t ,dκ1

) · · ·ρ(ξNtt ,dκNt )
]

dx1 · · · dxk

]

=
∫
Tk

F (x1, . . . , xk)E℘k(x)

[∫
KNt

Nt∏
ι=1

Q
Aιt
κι

[∏
j∈Bιt

gj
(
Kjt

)]
ρ
(
ξ1
t ,dκ1

) · · ·ρ(ξNtt ,dκNt )
]

dx1 · · · dxk. (15)
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Hence (11) holds and the existence of a suitable collection {Mt, t ≥ 0} of random variables is proven. Next,
Lemma 2.1(c) shows that the duality relations (11) are sufficient to guarantee the uniqueness in law of each Mt .

There remains only to show that {Qt, t ≥ 0} is a semigroup. Indeed, once this has be established, Theorem 1′(i) and
(ii) show that {Qt, t ≥ 0} has the Feller property, and hence defines a Hunt process. Now for 0 ≤ s ≤ t let us observe
that, because of (14)

Qt(m, ·)=
∫

P(dω)Qω0,t (m, ·)=
∫

P(dω)
∫
Mλ

Qω0,s
(
m,dm′)Qωs,t(m′, ·).

Since ω �→Qω0,s is measurable with respect to the events between times 0 and s, ω �→Qωs,t is measurable with respect
to the events between times s and t , and P-a.s. no event happens precisely at time s, then due to the independence
property of the Poisson distribution P and by Fubini’s theorem we can rewrite the r.h.s. as∫

Ω

P(dω)
∫
Mλ

Qω0,s
(
m,dm′)∫

Ω

P
(
dω′)Qω′

s,t

(
m′, ·). (16)

Since the environment distribution P (and together with it also the distribution of the genealogies randomized over the
environment) is invariant under time-shift, we can write that

∫
Ω
P(dω′)Qω′

s,t (m
′, ·)= ∫

Ω
P(dω′)Qω′

0,t−s(m′, ·). Hence
(16) equals

∫
Mλ

Qs(m,dm′)Qt−s(m′, ·), which completes the proof of the semigroup property. �

Proof of Theorem 1′. Existence ofQωs,t (m). In a first step, we consider a Poisson point measureΦ on T with intensity
measure λ. We write Φ = ∑

j∈J δxj and construct, for a given environment ψ = (ti , zi, ri , ui, yi)i∈I , the coalescing

ancestral location processes (Aψ,txj )j∈J as described in Section 2.3.1. We run this processes for h= t − s units of time
into the past and sample a type at each location ξ ιh of an ancestor according to the type distribution ρ(ξ ιh, ·). Finally,
we run the mutation process described in the paragraph around (9) along each of the ancestral trees we obtained,
independently of each other. In other words, assuming the type κι was attributed to the ιth ancestor, we use that allele
as a starting point of the evolution along the genealogical tree rooted at this ancestor, and the result of the mutation
process at time h gives us the type of each of the points xj ∈Φ such that j belongs to the block Bιh. In this way, we
obtain a point measure N on T × K, whose projection onto the geographical space forms a Poisson point process
whilst the types assigned to the different points are correlated through the genealogy (and over the geography).

In the second step, we perform the just described procedure for countably many i.i.d. copies Φ1,Φ2, . . . of Φ ,
resulting in a sequence N1,N2, . . . of random point measures on T×K. A simple but crucial observation is that the
construction of the point measures Nn is equivalent in law to the following construction:

(i) Enrich the environment with the family H and construct the parental skeleton Gψ as in Section 2.3.1.
(ii) Allocate a type to each of the parents by running the mutation process along Gψ , from time s on. This gives us a

labelled skeleton S .
(iii) For every x ∈∑

n Φn, if the ancestral location process back from x coalesces with Gψ (say, at time τx back into
the past), then start an independent mutation process from the type at this point of the skeleton and run it for the
time span τx . If the ancestral process does not coalesce with Gψ (and thus remains at x), then sample a type from
the measure ρ(x, ·). In both cases, allocate the resulting type to the “individual” located at x in the point process.

This description shows that, conditionally on S , the point measures N1,N2, . . . are independent and identically dis-
tributed. From this it is not difficult to conclude that 1

n
N n := 1

n
(N1 + · · · + Nn) converges a.s. in the vague topol-

ogy towards a (random) limit Ms,t as n→ ∞. Indeed, let us write Bc(T × K) for the set of all bounded functions
with compact support on T × K. By the law of large numbers (applied conditionally under ψ and S), for every
f ∈ Bc(T×K), the sequence (〈 1

n
N n, f 〉)n∈N converges Pω,t -a.s. and in L1 to a random variable L(f ). We thus put,

for every f ∈ Bc(T×K),

〈Ms,t , f 〉 := L(f ). (17)

Up to restricting this definition to a countable set of functions f of the form 1Aj , where the compact sets {Aj , j ∈N}
form a basis of T × K, we can conclude that Pω,t -a.s., Ms,t is a (random) nonnegative Radon measure and 1

n
N n

converges a.s. in the vague topology towards Ms,t as n→ ∞. On the other hand, again by the law of large numbers,



The quenched measure-valued spatial Lambda-Fleming–Viot process 583

for each F ∈ Cc(T) and f := F ⊗ 1K, we have that 〈 1
n
N n, f 〉 → 〈λ,F 〉 a.s. as n→ ∞. Hence, with probability one

Ms,t belongs to Mλ.
Defining Qωs,t (m, ·) as the law of Ms,t , it remains to prove (13). For this we proceed by proving the following

claim:
For every k ∈N, F ∈ Cc(Tk), g1, . . . , gk ∈C(K), we have

lim
n→∞ Eω,t

[〈(
n−1N n

)⊗k
,F ⊗Gg

〉]

=
∫
Tk

F (x1, . . . , xk)E
ω,t
℘k(x)

[∫
K
Nh

Nh∏
ι=1

Q
Aιh
κι

[∏
j∈Bιh

gj
(
Kjh

)]
ρ
(
ξ1
h ,dκ1

) · · ·ρ(ξNhh ,dκNh)
]

dx1 · · · dxk. (18)

Indeed, writing N n =∑
γ δ(Xγ ,Kγ ) we can compute

Eω,t
[〈

1

nk

(
N n

)⊗k
,F ⊗Gg

〉]
= 1

nk
Eω,t

[ ∑
γ1,...,γk

F (Xγ1 , . . . ,Xγk )

k∏
j=1

gj (Kγj )

]

= 1

nk
Eω,t

[ ∑
γ1 	=···	=γk

F (Xγ1 , . . . ,Xγk )

k∏
j=1

gj (Kγj )

]
+ O

(
1

n

)

as n→ ∞ (the sum is set to be zero if N n has less than k points, which happens only if Vol(T) <∞ and has a
probability tending to 0 as n→ ∞ in this case). Writing Φn :=Φ1 + · · · +Φn, we have

1

nk
Eω,t

[ ∑
γ1 	=···	=γk

F (Xγ1 , . . . ,Xγk )

k∏
j=1

gj (Kγj )

]

= 1

nk
Eω,t

[
Eω,t

[ ∑
γ1 	=···	=γk

F (Xγ1 , . . . ,Xγk )

k∏
j=1

gj (Kγj )

∣∣∣Φn
]]

= 1

nk
Eω,t

[ ∑
γ1 	=···	=γk

F (Xγ1 , . . . ,Xγk )E
ω,t

[
k∏
j=1

gj (Kγj )

∣∣∣Φn
]]
.

But by construction, conditionally on the distinct values of Xγ1 , . . . ,Xγk we have, again with h := t − s,

Eω,t
[
k∏
j=1

gj (Kγj )

∣∣∣Φn
]

= Eω,t℘k(X)

[∫
K
Nh

Nh∏
ι=1

Q
Aιh
κι

[∏
j∈Bιh

gj
(
Kjh

)]
ρ
(
ξ1
h ,dκ1

) · · ·ρ(ξNhh ,dκNh)
]

=: Ψg(X).

Thus, using the kth moment formula for the Poisson point measure Φn =∑
γ δXγ we arrive at

Eω,t
[〈

1

nk

(
N n

)⊗k
,F ⊗Gg

〉]
= 1

nk
Eω,t

[ ∑
γ1 	=···	=γk

F (Xγ1 , . . . ,Xγk )Ψg(Xγ1 , . . . ,Xγk )

]
+ O

(
1

n

)

=
∫
Tk

F (x1, . . . , xk)Ψg(x1, . . . , xk)dx1 · · · dxk + O

(
1

n

)
,

which proves the claimed equality (18).
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Denoting the (compact) support of the function F by Supp(F ) and using the fact that the number of points of Φn

within the support of F is a Poisson random variable with parameter nVol(Supp(F )), we can write

Eω,t
[∣∣〈(n−1N n

)⊗k
,F ⊗Gg

〉∣∣] ≤
{

‖F‖∞
k∏
j=1

‖gj‖∞

}
Eω,t

[〈(
n−1N n

)⊗k
,1Supp(F )

〉]

≤
{

‖F‖∞
k∏
j=1

‖gj‖∞

}
Cnk Vol(Supp(F ))k

nk

= C
{

‖F‖∞
k∏
j=1

‖gj‖∞

}
Vol

(
Supp(F )

)k

for a constant C independent of all other parameters. We can therefore use dominated convergence, together with the
fact that 1

n
N n converges vaguely to Ms,t with Pω,t -probability 1, to conclude that

lim
n→∞ Eω,t

[〈(
n−1N n

)⊗k
,F ⊗Gg

〉]= Eω,t
[〈
M⊗k
s,t , F ⊗Gg

〉]
.

Combining the above with (18) yields (13), and the proof of existence is complete.

Uniqueness

By Lemma 2.1(c), the equalities (13) for all functions of the form Ik are sufficient to ensure that there is at most one
distribution on Mλ which satisfies them for any fixed ω, m, s, t . Hence, uniqueness holds.

Continuity with respect to m

This is a direct consequence of (13). Indeed, knowing that k lineages are sampled from the compact support of F ,
one can truncate the distribution of (ξ1

t , . . . , ξ
Nt
t ) uniformly in (x1, . . . , xk) ∈ Supp(F ) and turn the truncated density

into a continuous function with compact support so that, up to an arbitrarily small error term, the expectation in the
right-hand side of (13) is an integral w.r. tom⊗Nh of some continuous and compactly supported function. Assume now
that a sequence (mn)n≥1 of elements of Mλ converges vaguely towards m (and so m⊗k

n converges vaguely towards
m⊗k for every k). By the definition of vague convergence, for every (x1, . . . , xk) ∈ Supp(F ) the expectation in the
right-hand side of (13) written withmn converges to the same expectation withm as the initial type distribution. Using
dominated convergence (and working “up to an arbitrarily small correction term”) we can conclude that

lim
n→∞

∫
Qωs,t

(
mn,dm

′)〈m′⊗k,F ⊗Gg
〉= ∫

Qωs,t
(
m,dm′)〈m′⊗k,F ⊗Gg

〉
.

By Lemma 2.1(c), this guarantees that Qωs,t (mn, ·) converges weakly to Qωs,t (m, ·) as n→ ∞.

Strong continuity at s

We follow the construction in Section 2.3.1. Here the good ω’s are the ones for which the parental skeleton exists
(with a locally finite jump intensity along all its lineages) and for which for λ-almost all x the set of jump points
{ti : Gxi = 1} is locally finite on the time axis.

By Lemma 2.1(c), all we need to show is that for all ω with the just described property we have

lim
ε→0+

∫
Qωs,s+ε

(
m,dm′)〈m′⊗k,F ⊗Gg

〉= 〈
m⊗k,F ⊗Gg

〉
(19)

for every m ∈ Mλ, k ∈ N, F ∈Cc(Tk) and g1, . . . , gk ∈C(K).
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Here again, the key tool is the set of equations (13). We can couple the Pω,s+ε
℘k(x)

just as we did in Section 2.3.1 to see
that for Lebesgue-almost all x = (x1, . . . , xk) ∈ Supp(F ),

lim
ε→0

Pω,s+ε℘k(x)

[
ξ jumps during (s, s + ε]]= 0.

Together with the Feller property of the mutation process, we can thus conclude that for Lebesgue-a.e. x ∈ Supp(F )

lim
ε→0

Eω,s+ε℘k(x)

[
Nε∏
ι=1

Q
Aιε
κι

[∏
j∈Bιε

gj
(
Kjε

)]]=
k∏
j=1

gj (κj ).

This result being independent of the measurem taken to attribute the types κ1, . . . , κk , (13) and dominated convergence
give us that (19) is satisfied for every m ∈Mλ, P-a.s.

Flow property

Let us give a conceptual proof, based on Remark 3.1 (which is stated below Theorem 1′). For brevity, we write
Mω
q,s(m) for a random element in Mλ that has distribution Qωq,s(m, ·). With that notation, we have to show that

Mω
s,t (M

ω
q,s(m))

d=Mω
q,t (m) for P-almost all ω. By Lemma 2.1, for this it is enough to show that the type distribution

of a random k-sample drawn at locations x1, . . . , xk coincide for both random measures. We start with analysing these
for Mω

s,t (M
ω
q,s(m)). In order to obtain the random types at the locations ξ1

t−s , . . . , ξ
Nt−s
t−s as required in step (2) of Re-

mark 3.1, we have to go further down in the ancestry, now starting from the partition {({1}, ξ1
t−s), . . . , ({Nt−s}, ξNt−st−s )}.

By the Markov property of A under Pω,t℘k(x) (see Section 2.3.1) , this amounts to running A for a total time t − q . Con-

sequently, we have to sample at the locations ξ1
t−q, . . . , ξ

Nt−q
t−q from the measure m, and from the resulting types run

the mutation process forwards in time between times q and s in order to obtain the types at time s. These are used as
the input in step (3) of Remark 3.1, that is, as the initial conditions for another go of the mutation process between
times s and t . By the Markov property of the mutation process K, this amounts to running K along the genealogy A
between times q and t . In total, we have thus arrived at the types of a random k-sample drawn at locations x1, . . . , xk
from Mω

q,t (m). Notice that this scheme being independent of the measure m, it works simultaneously for all m’s.
The proof of Theorem 1′ is now complete. �

4. A look-down representation of the SLFV-process

In the previous section we constructed the two-parameter semigroup (Qωs,t ) given the configuration ω of events. This
was done, first for fixed times s < t , on top of the random genealogy of a sample whose locations had a Poisson(cλ)-
distribution (with c→ ∞). One ingredient for constructing this random genealogy was the process of parental lo-
cations in the events, which was independent of the sampling locations. In this section, we shall again work with a
Poisson system of sampling locations “with infinite spatial density” but now this system will evolve in time, with the
locations of the sampling and the parental locations in the events being coupled. That is, we shall always choose the
parent among the individuals of our Poisson system.

Let us start with an informal description. At time t = 0 we start with a Poisson configuration of particles on
T×[0,∞) with intensity measure λ(dx)⊗ d�. The first component is the particle’s location, the second will be called
the particle’s level. While the levels stay fixed in time, the locations ζj (t), given ω = (ti , zi , ri , ui)i∈I ∈Ω , perform
independent jump processes: at each time ti such that ‖ζj (ti−)− zi‖ ≤ ri , the particle at level �j tosses a coin with
success probability ui , independently of everything else. If this coin comes up with “success,” the particle jumps to a
location ζj (ti) that is chosen uniformly from B(zi, ri), again independently of everything else.

Because of the integrability condition (1), the jump times of every single particle are a.s. locally finite, and because
of the Poisson colouring theorem, the process (ζj (t), �j )j remains Poisson, with invariant intensity measure λ(dx)⊗
d� (as we shall see below). Among all the particles that are affected by the event at time ti there will therefore be
a.s. one whose level is smallest, say �j (i). The key idea is now to declare the location ζj (i)(ti−) as the parental
location in the event at time ti , and to decree that all those (ti , ζj (ti)) for which ζj jumped at time ti are children of
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(ti−, ζj (i)(ti−)). In this way, a genealogy is filled into the space–time point configuration (ti , ζj (ti)) in a look-down
manner: certain ones of the particles at higher levels look down at a particle at lower level and copy its type.

Let us now proceed with a more formal definition of the particle system in order to prove a look-down representa-
tion of the SLFV as stated in Theorem 2. We shall discuss possible generalizations of this construction in Section 4.3.

4.1. A particle system and its look-down genealogy

Let us fix again an environment ω ∈Ω . Let us define the forwards-in-time motion (ζt )t≥0 of a single individual in the
environment ω as follows: whenever ζ lies within the range of an event (ti , zi , ri , ui) ∈ ω, the process at time ti does
nothing with probability 1 − ui , or jumps to a new location uniformly distributed over B(zi , ri) with probability ui .
We write Pωx for the probability measure on D under which ζ starts at x ∈ T (recall that D is the space of coalescing
càdlàg paths with values in T, defined just above (8)).

Let us observe that Lebesgue measure is reversible for the evolution of ζ . Indeed, writing Ki(x,dy) for the transi-
tion kernel of ζ during the event of ω labelled by i, we have

Ki(x,dy)= 1{x /∈B(zi ,ri )}δx + 1{x∈B(zi ,ri )}
{
(1 − ui)δx + ui

Vol(B(zi, ri))
dy

∣∣∣∣
B(zi ,ri )

}
, (20)

so that it is easy to check that

dxKi(x,dy)= dyKi(y,dx), x, y ∈ T.

In particular, Lebesgue measure is conserved by the flow through the countably many events of ω (which is reminiscent
of the fact – proved in the previous section – that Mω

s,t (m), m ∈ Mλ, has Lebesgue measure as a “spatial” marginal
for any s and t ).

Let us now define a Poisson point process N on T×D × [0,∞) with intensity measure dxPωx (dζ )⊗ d�. That is,
we fix a Poisson point process (xj )j∈J of locations at time 0, and launch a path ζ j from the point xj . In addition,
each path is labeled by a level in [0,∞) which we shall use to indicate who reproduces during an event. Note that, by
the invariance of Lebesgue measure under the dynamics of ζ , the spatial distribution of the population is conserved at
any time. That is:

Lemma 4.1. For every t ≥ 0 and every c ∈ [0,∞], the set {(ζ jt , �j ): (xj , ζ j , �j ) ∈ N , �j ≤ c} forms a Poisson point
process on T× [0, c] with intensity measure dx ⊗ 1{�≤c} d�.

Since the epochs of a reproduction event are deterministic when ω is fixed, we can in particular use Lemma 4.1 at
the time ti of an event.

The process N encodes which individual takes part in a given reproduction event: if the time of this event is ti ≥ 0,
then all individuals such that ζ jti− 	= ζ jti are affected by the event, while the others remain unaffected. Let us now define

the ancestral lineage of the individual (t, ζ jt ) by first tracing back ζ j to its most recent jump before t . If this jump
happened at time ti∗, say, and if j∗ is the index of the path that had the lowest level among all those affected at time
ti∗, then the ancestral location remains at ζ jt for 0 ≤ h < t − ti∗ and jumps to ζ j∗ti∗ at time h= t − ti∗. Back from ti∗,
we then proceed inductively.

As we did for the ancestral process A (defined in Section 2), for any finite set of distinct indices j1, . . . , jk we call
P ts := P ts (j1, . . . , jk) the marked partition defined as

P th = {(
π1
h,X

1
h

)
, . . . ,

(
π
Lh
h ,X

Lh
h

)}
,

where each πιh contains the labels of all the individuals in {j1, . . . , jk} at time t who share a common ancestor at
time t − h, the second component Xιh stands for the spatial location of this ancestor at time t − h, and Lh denotes the
number of distinct ancestors at that time. Notice that, since the Poisson point process on T×D×[0,∞) has an infinite
intensity measure dxPωx ⊗ d�, it always contains infinitely many individuals even though T may have finite volume.

The following lemma is crucial for the look-down representation of the SLFV.
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Lemma 4.2. For any finite set {j1, . . . , jk}, (P th)h∈[0,t] has the same law as the ancestral process (Ah)h∈[0,t] under
Pω,t
℘k(ζ

j1
t ,...,ζ

jk
t )

(recall the notation ℘k from (6)).

Proof. By Lemma 4.1, at any time t ≥ 0 the set {(ζ jt , �j ): (xj , ζ j , �j ) ∈ N } forms a Poisson point process on T ×
[0,∞) with intensity measure dx⊗d�. Furthermore, the environment ω is fixed and so the times ti at which the events
take place are deterministic. For these two reasons, we first claim that

Claim 4.3. During any given event, the spatial location just before the event of the affected individual with lowest
level is uniformly distributed over the range of the event.

Indeed, let us write (ti , zi , ri , ui) for this event. By the thinning property of Poisson point processes, the set of
affected individuals forms a Poisson point process on B(zi, ri)×[0,∞) with intensity measure ui1B(zi ,ri )(x)dx⊗ d�,
and thus levels and locations are attributed independently. The result is then straightforward.

Second, let us define τ as the quantity in [0, t] such that t − τ is the most recent time at which one of our k paths
jumps before time t ; the time t − τ is necessarily the epoch ti of a reproduction event. Let us show that τ has the
same distribution as the first time at which A jumps under Pω,t℘k , where we write ℘k instead of ℘k(ζ

j1
t , . . . , ζ

jk
t ) to ease

the notation. For ν = 1, . . . , k, let αν(ti) stand for the set of indices of the events of ω occurring in the time interval
(ti , t] and whose range overlaps ζ jνt . Let us now observe that, by independence of the paths ζ j (which jump or remain
unaffected independently of each other during an event), we can write

Pω[t − τ ≤ ti] = Pω
[
none of the k paths is affected during (ti , t]

]
=

k∏
ν=1

Pω
[
ζ
jν
s = ζ jνt ,∀s ∈ (ti , t]

]

=
k∏
ν=1

∏
a∈αν(ti )

(1 − ua). (21)

But coming back to the definition of A under Pω,t , we see that (21) is exactly the probability that none of the lineages
starting from locations ζ j1t , . . . , ζ

jk
t jumps before time t − ti . Hence, the first time τ at which P jumps has the same

law as the first time at which A jumps.
Thirdly, again by the independence of ζ j1, . . . , ζ jk , all individuals present in the area of an event just before (and

therefore just after) the event occurs choose independently of each other whether they take part in the event and jump,
or not. Therefore, during an event affecting at least one of them, the choice of who is affected or not is decided by a
set of independent Bernoulli r.v.’s, as in the evolution of A. By Claim 4.3, the location of the individual with lowest
level, onto which all affected individuals look down to find an ancestor, is uniformly distributed over the area of the
event. Furthermore, the location of an affected individual is resampled independently of its current position during the
event, so that the parental location is independent of the position of its offspring. This is precisely what happens to A
during a merger.

Lastly, one can pursue the analysis by defining the most recent time t − τ2 such that the paths ζ j1, . . . , ζ jν do not
jump during the time interval (t − τ2, t − τ). The same reasoning gives us that τ2 has the same distribution as the
epoch of the second jump of A under Pω,t℘k , that the set of individuals who look down on the lowest level during the
event occurring at time t − τ2 has the same law as the second merger of A and that the location of the ancestor is
uniformly distributed over the area of the event. Carrying on in this way and using the facts that both P and A are
finite-rate jump processes, we can conclude that they are equal in distribution. �

4.2. Look-down representation of the SLFV-process

As in Section 3, let us now consider a Feller process (Kt )t≥0 with values in the compact type space K. Let B stand
for the generator of K. For convenience, we shall see B as an operator on Cc(T × K) that acts only on the second
coordinate. With this in mind, from now on we assume that the domain D(B) of B is dense in Cc(T×K).
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Using the particle system together with its genealogy from the previous subsection, for any measure m ∈ Mλ, we
construct a configuration of T×K-valued paths (ζ jt ,K

j
t , �j )j∈J by choosing the Kj0 independently with distribution

ρ(xj , ·), j ∈ J , and letting the Kj evolve according to the look-down genealogy of the particle system. That is,
mutations occur independently on each level and whenever a path j looks down on a path i with lower level, Kj
jumps to the current value of Ki at that time.

For any n ∈N and t ≥ 0, let us define

Mn
t := 1

n

∑
j :�j≤n

δ
(ζ
j
t ,K

j
t )
.

From Lemma 4.2 and the fact that at any time, the set of locations of the particles forms a Poisson point process with
Lebesgue intensity, we obtain that for P-almost every ω

nMn
t
d=N n

under Pω, where the marked point configuration N n was defined in the proof of Theorem 1′. By an argument involving
exchangeability and thinning, this extends, for any fixed time t ≥ 0 and all n ∈N, to the distributional equality

(
M1
t ,2M

2
t , . . . , nM

n
t

) d= (
N 1,N 2, . . . ,N n

)
.

Hence, for any t ≥ 0, the sequence (Mn
t )n≥0 has the same distribution as the sequence 1

n
N n, which, as was shown in

the proof of Theorem 1′, converges Pω a.s. for P-almost every ω. Thus, for every f ∈ D(B) ∩ Cc(T × K), one can
define the a.s. limit

〈
M∞
t , f

〉 := lim
n→∞

〈
Mn
t , f

〉= lim
n→∞

1

n

∑
j :�j≤n

f
(
ζ
j
t ,K

j
t

)
. (22)

This convergence holds in fact in a pathwise manner, as shown by the following result. Recall from Lemma 2.2 the
topology of uniform convergence over compact time intervals with which DMλ

[0,∞) is equipped.

Theorem 2. For P-a.e. environment ω, the sequence (Mn)n≥1 converges Pω-a.s. towards the process (M∞
t )t≥0, uni-

formly over compact time intervals. Furthermore, M∞ has the same law as the quenched spatial Λ-Fleming–Viot
process of Theorem 1 with initial conditionM0 =m.

Our proof of Theorem 2 will be guided by the proof of Theorem 1.1 in [10]. The new difficulty which arises in our
setting is due to the need to control the number and the spatial distribution of all the particles with levels less than n
lying within the compact support Sf (for the “geographical” coordinate) of some function f ∈ Cc(T×K) in a given
(deterministic or random) time interval. This is achieved through the following lemma.

Lemma 4.4. For P-almost all ω ∈Ω and every T ≥ 0, let θ = θ(ω,T ) be defined by

θ :=
∫
T

Pωx
(
(ζt )0≤t≤T ∩ Sf 	= ∅)dx.

Then, θ is finite with P-probability 1.

Proof of Lemma 4.4. This property is obvious when T has finite Lebesgue measure, and so let us concentrate on the
case where T is unbounded. By Fubini’s theorem, we have

E[θ ] =
∫
T

E
[
Pωx

(
(ζt )0≤t≤T ∩ Sf 	= ∅)]dx =

∫
T

Px
[
(ζt )0≤t≤T ∩ Sf 	= ∅]dx,

where (in analogy to the notation introduced in Remark 2.3) Px := ∫
Pωx (·)P(dω) denotes the annealed probability

measure of ζ . But under Px , ζ is a finite-rate jump process whose instantaneous jump rates are bounded uniformly
in the location by the quantity in (1). Let us assume that the jump rate J is independent of the location and equal to
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this quantity (as, e.g., when T = Rd ). Indeed, the existence of boundaries only slows down the evolution of a lineage
by making the balls B(x, r)⊂ T smaller than the d-dimensional ball B(x, r)⊂ Rd , and so the desired property will
remain satisfied even when the jump rate of ζ is inhomogeneous in space. To simplify the notation, let us also suppose
that Sf = B(0, a) for some a > 0. Again, we do not loose generality with this assumption since there exists a > 0
such that Sf ⊂ B(0, a), and the probability of entering Sf before time T is bounded by that of entering B(0, a). Since
the volume of possible centres for an event of radius r overlapping both x ∈ T and a subset of Sf is bounded by the
volume Vr of the ball B(x, r), we can write that

Px[ζ lies in Sf after its first jump] ≤ 1

J

∫ ∞

((|x|−a)/2)∨0
Vr

(∫ 1

0
uνr(du)

)
Vol(Sf )

Vr
μ(dr).

(Note that a ball overlapping both x and Sf has radius at least (|x| − a)/2, then the volume of possible centres is
bounded by Vr , the lineage jumps with probability u chosen according to νr(du) and finally the probability that it
jumps into Sf is bounded by Vol(Sf )/Vr ). For x ∈ B(0,3a), we shall simply bound this probability by 1. Integrating
against Lebesgue measure, turning to polar coordinates, and finally using Fubini’s theorem, we obtain that∫

T

Px[ζ lies in Sf after its first jump]dx

≤ Vol
(
B(0,3a)

)+ Vol(Sf )Cd
J

∫ ∞

3a
Rd−1

∫ ∞

(R−a)/2

(∫ 1

0
uνr(du)

)
μ(dr)dR

≤ Vol
(
B(0,3a)

)+ Vol(Sf )Cd
J

∫ ∞

a

(∫ 1

0
uνr(du)

)∫ 2r+a

0
Rd−1 dRμ(dr)

≤ Vol
(
B(0,3a)

)+C
∫ ∞

a

rd
∫ 1

0
uνr(du)μ(dr) := Ĉ <∞

by (1), where Cd is a constant depending only on the dimension d , and C, Ĉ > 0 depend on d and f .
As concerns the subsequent jumps, recall from the beginning of Section 4.1 that Lebesgue measure is invariant

under the evolution of ζ . As a consequence, calling τ the first time at which ζ jumps and using the strong Markov
property of ζ , we have that∫

T

Px[ζ lies in Sf after its 2nd jump]dx =
∫
T

Ex
[
Pζτ [ζ lies in Sf after its first jump]]dx

=
∫
T

Px[ζ lies in Sf after its first jump]dx ≤ Ĉ.

Proceeding by recursion, we obtain that the integral over T of the probability that ζ belongs to Sf after its ith jump
is bounded by Ĉ for any i ≥ 1. But by our assumptions, the number of jumps made by ζ in the time interval [0, T ] is
independent of its starting point and is a Poisson r.v. with parameter J T . Hence, since the number of jumps of ζ is
also independent of its trajectory we can write that

E[θ ] =
∫
T

Px
[
(ζt )0≤t≤T ∩ Sf 	= ∅]dx

=
∫
T

∞∑
k=0

Px
[
k jumps in [0, T ]]Px[ζ belongs to Sf initially or after one of its first k jumps]dx

≤ e−J T
∞∑
k=0

(J T )k
k!

k∑
i=0

∫
T

Px[ζ lies in Sf after its ith jump]dx

≤ e−J T
∞∑
k=0

(J T )k
k!

(
Vol(Sf )+ kĈ

)= Vol(Sf )+ ĈJ T <∞.

We can thus conclude that θ <∞ for a.e. environment. �
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We can now turn to the proof of Theorem 2.

Proof of Theorem 2. Let us start by the first statement. The key ingredient of our proof is adapted from Lemma 3.2
in [10]:

Lemma 4.5. For P-a.e. environment ω, for every T , ε > 0 and every f ∈D(B)∩Cc(T×K), there exists a summable
sequence (δn)n≥1 such that for every n ∈N,

Pω
(

sup
0≤t≤T

∣∣〈Mn
t , f

〉− 〈
M∞
t , f

〉∣∣≥ 11ε
)

≤ δn.

Indeed, let us fix f ∈D(B)∩Cc(T×K) and for every s ≥ 0, let Υs be defined by

Υs =
∑

(t,z,r,u)∈ω
1{t≤s}uVol

(
B(z, r)∩ Sf

)
, (23)

where here again Sf ⊂ T stands for the compact support of f (for the “geographical” coordinate). This quantity will
give us an upper bound on the sum of the jumps of 〈Mn

t , f 〉 over the time interval [0, T ]. Note that

E[ΥT ] =
∫ T

0

∫ ∞

0

∫
Sf+B(0,r)

∫ 1

0
uVol

(
B(z, r)∩ Sf

)
νr(du)dzμ(dr)dt

≤ T
∫ ∞

0

∫
Sf+B(0,r)

∫ 1

0
u
(
C1r

d ∧ Vol(Sf )
)
νr(du)dzμ(dr)

≤ T C2

∫ C3

0

∫ 1

0
urdνr (du)μ(dr)+ T C4

∫ ∞

C3

∫ 1

0
uVol

(
Sf +B(0, r)

)
νr(du)μ(dr)

≤ T C5

∫ ∞

0

∫ 1

0
urdνr(du)μ(dr) <∞ (24)

for some constants C1,C2,C3,C4,C5 > 0, where the last line uses the integrability condition (1). As a consequence,
with P-probability 1 the quantity ΥT is finite.

Now, let us define the deterministic times (αi)i≥1 by

α1 := inf

{
t : Υt >

1

n2

}
∧ 1

n2

and

αi+1 := inf

{
t : Υt > Υαi +

1

n2

}
∧
(
αi + 1

n2

)
.

This sequence of times decomposes the interval [0, T ] into at most in := 2(ΥT + T )n2 subintervals, over which we
shall control the fluctuations of Mn and M∞. To this end, let us define a sequence (α̃i)i≥1 of stopping times (with
respect to the filtration {σ({M∞

s , s ≤ t}), t ≥ 0}) by

α̃i := inf
{
t > αi :

∣∣〈M∞
t , f

〉− 〈
M∞
αi
, f

〉∣∣≥ 6ε
}
,

where by convention inf∅ = ∞. Let us set

Hi :=
∣∣〈M∞

αi
, f

〉− 〈
Mn
αi
, f

〉∣∣∨ ∣∣〈M∞
α̃i
, f

〉− 〈
Mn
α̃i
, f

〉∣∣.
Recall the quantity θ = θ(ω,T ) defined in Lemma 4.4, and that the number of paths with level less than n and passing
through Sf within the time interval [0, T ] is a Poisson r.v. with parameter nθ . By Lemma 4.4, θ <∞ for P-a.e.
environments. In addition, θ >Vol(Sf ) > 0 P-a.s., which guarantees that nθ is a.s. of the same order as n.
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Let us now observe that, since f (ζ, k)= 0 for any ζ /∈ Sf , for every t ∈ [0, T ] we can write

〈
Mn
t , f

〉= 1

n

∑
j∈Θn

f
(
ζ
j
t ,K

j
t

)= Card(Θn)

n

1

Card(Θn)

∑
j∈Θn

f
(
ζ
j
t ,K

j
t

)
,

where Θn is the set of all indices j such that �j ≤ n and (ζ jt )0≤t≤T ∩ Sf 	= ∅. The analysis of the parameter nθ made
just above shows that, if we define the event An by

An :=
{

Card(Θn) /∈
[
nθ

2
,2nθ

]}
, (25)

then there exists C6 > 0 (independent of θ ) such that for every n ∈ N, Pω(An)≤ e−C6θn. But since θ > 0, Lemma 3.1
in [10] and the fact that Card(Θn)/n becomes concentrated around θ yield

Pω
(

max
i≤in

Hi ≥ ε
)

≤ Pω(An)+
in∑
i=1

Pω
(
Hi ≥ ε and Acn

)≤ e−C6n + 16(ΥT + T )n2e−C7n (26)

for some constant C7 > 0 depending only on f and ε. This controls the distance between Mn and M∞ at some
discrete times. Since the definition of α̃i bounds the variations of 〈M∞, f 〉 over the small time intervals of interest,
there remains to show that 〈Mn,f 〉 does not fluctuate too much over these intervals.

For any i ∈ {1, . . . , in}, and any index j ∈ N, let τi,j be the first time after αi at which the type and location of the
individual at level �j is updated during a reproduction event, with the result that the value of f (ζ j ,Kj ) changes (so
that an individual outside Sf may have been updated several times before the time τi,j at which it enters Sf ). Splitting
the evolution of the individuals of Mn into its two components, mutation and reproduction, we can write that for any
t ∈ [αi,αi+1]

〈
Mn
t , f

〉− 〈
Mn
αi
, f

〉 = 1

n

∑
j :�j≤n

{
f
(
ζ
j

(t∧τi,j )−,K
j

(t∧τi,j )−
)− f (ζ jαi ,Kjαi )}

+ 1

n

∑
j :�j≤n

{
f
(
ζ
j
t ,K

j
t

)− f (ζ j(t∧τi,j )−,Kj(t∧τi,j )−)}. (27)

The second term in the r.h.s. of (27) is bounded by 2‖f ‖∞
n

Nn(αi, αi+1), where Nn(αi, αi+1) denotes the number of
particles j living at time αi , with level at most n and such that τi,j ≤ αi+1. These particles are of three kinds:

(a) either they belong to Sf at time αi and are affected by an event (s, z, r, u) ∈ ω before time αi+1 (each with
probability u during this event),

(b) or they do not belong to Sf at time αi but the first event (t, z, r, u) that affects them happens before time αi+1 and
brings them within Sf (each with probability uVol(Sf ∩B(z, r))/Vol(B(z, r)) during this event),

(c) or else they do not belong to Sf at time αi , they jump at least twice between αi and αi+1 and one of this jump
(except the first one) brings them into Sf .

We thus need to bound the number of each kind of particles, which we denote respectively by N (a)
n,i , N

(b)
n,i and N (c)

n,i .
To simplify the notation, let us also set ε′ := ε/(2‖f ‖∞).

First, by Lemma 4.1 the collection {(ζ jαi , �j ), j ∈ J } forms a Poisson point process on T × [0,∞) with intensity
measure dx ⊗ d�. Hence, if all the particles initially (i.e., at time αi ) contained in Sf were frozen until an event
(s, z, r, u), the number of those affected by this event and with level less than n would be a Poisson r.v. Ps with
parameter nuVol(Sf ∩ B(z, r)). But some of these particles may have already been affected by a previous event, so
that in fact Ps gives a stochastic upper bound on the number of particles affected for the first time and by this event.
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Considering now all the events occurring between αi and αi+1, we obtain that

N (a)
n,i �

∑
(s,z,r,u):αi<s≤αi+1

Ps
(d)= Poisson

( ∑
(s,z,r,u):αi<s≤αi+1

nuVol
(
Sf ∩B(z, r)

))

= Poisson
(
n(Υαi+1 −Υαi )

)
,

where the equality in distribution comes from the fact that the Ps ’s can be chosen independent since they correspond
to thinnings of the set {(ζ jαi , �j ): ζ jαi ∈ Sf , �j ≤ n} that are independent of each others. Now, Υαi+1 − Υαi ≤ 1/n2 by
construction, and so there exists a constant C8 > 0 such that

Pω
(
N (a)
n,i ≥ nε′/3)≤ Prob

(
Poisson(1/n)≥ nε′/3)≤ e−C8n. (28)

Using the same reasoning, the number of particles originally outside Sf and affected for the first time during an
event (s, z, r, u) that brings them within Sf is stochastically bounded by a Poisson r.v. with parameter

nuVol
(
B(z, r) \ Sf

)
)
Vol(Sf ∩B(z, r))

Vol(B(z, r))
≤ nuVol

(
Sf ∩B(z, r)

)
.

Hence, here again we have that

Pω
(
N (b)
n,i ≥ nε′/3)≤ e−C8n. (29)

Finally, N (c)
n,i is stochastically bounded by a Poisson r.v. with parameter

n

∫
T

Pωx
(
at least 2 jumps in

[
αi,αi + n−2] and passes through Sf in this interval

)
dx. (30)

Observe that αi is a stopping time with respect to the Poisson point process of reproduction events. Hence, using the
Markov inequality and then Fubini’s theorem, we can write that

P

[∫
T

Pωx
(
at least 2 jumps in

[
αi,αi + n−2] and passes through Sf in this interval

)
dx ≥ ε′/6

]

≤ 6

ε′

∫
T

Px
(
at least 2 jumps in

[
αi,αi + n−2] and passes through Sf in this interval

)
dx.

Proceeding as in the proof of Lemma 4.4, we obtain that the above integral is bounded by a constant times n−4.
Consequently,

P

[
∃i ≤ in:

∫
T

Pωx
(≥ 2 jumps in

[
αi,αi + n−2] and passes through Sf in this interval

)
dx ≥ ε′/6

]
≤ C9

n2
.

(Recall that E[in] is proportional to n2.) By the Borel–Cantelli lemma, we can conclude that for P-a.e. environments,
there exists n0(ω) such that for every n≥ n0,∫

T

Pωx
(≥ 2 jumps in

[
αi,αi + n−2] and passes through Sf in this interval

)
dx < ε′/6, ∀i ≤ in.

Assuming that our fixed environment belongs to this set of full P-probability and recalling (30), we obtain that for
every n≥ n0(ω)

Pω
(∃i ≤ in: N (c)

n,i ≥ nε′/3)≤ C10n
2e−C11n. (31)
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Combining (28), (29), (31) and the facts that 2‖f ‖∞ε′ = ε and

Nn(αi, αi+1)=N (a)
n,i +N (b)

n,i +N (c)
n,i ,

we obtain that

Pω
(

max
i≤in

sup
αi<t≤αi+1

∣∣∣∣1

n

∑
j :�j≤n

{
f
(
ζ
j
t ,K

j
t

)− f (ζ j(t∧τi,j )−,Kj(t∧τi,j )−)}
∣∣∣∣≥ ε

)
≤C12n

2e−C13n (32)

for some constants C12,C13 > 0.
Let us now consider the first term in the r.h.s. of (27), which corresponds to the evolution due to mutation. Recall

that B denotes the generator of the mutation process, and that mutations occur independently along distinct lines.
Recall also that we write Bf for the action of B on the second argument of f . We have

1

n

∑
j :�j≤n

{
f
(
ζ
j

(t∧τi,j )−,K
j

(t∧τi,j )−
)− f (ζ jαi ,Kjαi )}

= 1

n

∑
j :�j≤n

{
f
(
ζ
j

(t∧τi,j )−,K
j

(t∧τi,j )−
)− f (ζ jαi ,Kjαi )−

∫ t∧τi,j

αi

Bf
(
ζ
j
s ,Kjs

)
ds

}

+ 1

n

∑
j :�j≤n

∫ t∧τi,j

αi

Bf
(
ζ
j
s ,Kjs

)
ds

:=Δi(t)+ 1

n

∑
j :�j≤n

∫ t∧τi,j

αi

Bf
(
ζ
j
s ,Kjs

)
ds,

where (Δi(t))t∈[αi ,αi+1] is a zero-mean martingale (as the sum of finitely many zero-mean martingales). Recall the
event An defined in (25). For any n large enough so that 2θn−2‖Bf ‖∞ ≤ ε, we have

Pω
(

max
i≤in

sup
αi<t≤αi+1

∣∣∣∣1

n

∑
j :�j≤n

{
f
(
ζ
j

(t∧τi,j )−,K
j

(t∧τi,j )−
)− f (ζ jαi ,Kjαi )}

∣∣∣∣≥ 2ε

)

≤ Pω(An)+
∑
i≤in

Pω
(

sup
αi<t≤αi+1

∣∣Δi(t)∣∣+ 2nθ

n
n−2‖Bf ‖∞ ≥ 2ε;Acn

)

≤ Pω(An)+
∑
i≤in

Pω
(

sup
αi<t≤αi+1

∣∣Δi(t)∣∣≥ ε;Acn).
Hence, using Lemma 3.1(b) in [10] together with the same argument as in (26) to control the number of individuals
in Sf and with label at most n at any given time, we obtain that

Pω
(

max
i≤in

sup
αi<t≤αi+1

∣∣∣∣1

n

∑
j :�j≤n

{
f
(
ζ
j

(t∧τi,j )−,K
j

(t∧τi,j )−
)− f (ζ jαi ,Kjαi )}

∣∣∣∣≥ 2ε

)
≤ (

2(ΥT + T )n2 + 1
)
e−C14n

for some C14 > 0. Together with (27) and (32), this gives us that

Pω
(

max
i≤in

sup
αi<t≤αi+1

∣∣〈Mn
t , f

〉− 〈
Mn
αi
, f

〉∣∣≥ 3ε
)

≤ C15n
2e−C16n (33)

for some C15,C16 > 0.
Now, it is easy to see that if maxi≤in Hi < ε and maxi≤in supαi<t≤αi+1

|〈Mn
t , f 〉 − 〈Mn

αi
, f 〉| < 3ε, necessarily

α̃i > αi+1 for every i ≤ in, which implies that

max
i≤in

sup
αi≤t≤αi+1

∣∣〈M∞
t , f

〉− 〈
M∞
αi
, f

〉∣∣< 6ε
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on this event. Using (26) and (33), we finally obtain that

Pω
(

sup
0≤t≤T

∣∣〈Mn
t , f

〉− 〈
M∞
t , f

〉∣∣≥ 11ε
)

≤ C17n
2e−C18n =: δn,

and Lemma 4.5 is proved. Then, the Borel–Cantelli lemma gives us the a.s. convergence of 〈Mn,f 〉 towards 〈M∞, f 〉
as n→ ∞, uniformly over compact time intervals. Since by assumption the set D(B)∩Cc(T×K) is separable and is
dense in Cc(T×K), the a.s. convergence of Mn towards M∞ follows from Lemma 2.2, as well as the fact that M∞
has càdlàg paths with probability 1.

Finally, let us now prove thatM∞ has the same law as the quenched spatialΛ-Fleming–Viot process of Theorem 1.
As we have already mentioned at the beginning of Section 4.2, with the notation of the proof of Theorem 1′ we have

Mn
t

(d)= 1

n
N n.

Letting n tend to infinity and using the a.s. convergence of n−1N n towards the random measure M0,t , we can conclude
thatM∞

t has law Qω0,t (m, .).
Let us now fix 0< s < t and condition on M∞

s =m ∈ Mλ. By construction, the types of all the individuals alive
at time t are determined by propagating the types of the individuals living at time s along the genealogical trees
created by the look-down dynamics. But Lemma 4.2 and the Markov property of the genealogical processes ensure
that the ancestries between times s and t of any finite sample of individuals living at time t have the same law as the
trees (Ah)0≤h≤t−s under the probability measure Pω,t (recall that A is defined in the paragraph around (2), and Pω,t

is introduced just after Lemma 2.1). Consequently, the proof of Theorem 1′ shows that M∞
t has law Qωs,t (m,dm

′).
We can therefore conclude that M∞ is a Markov process with transition semigroup (Qωs,t )0≤s≤t , and so Theorem 1
guarantees thatM∞ has the same law as the quenched SLFV (Mt)t≥0. The proof of Theorem 2 is now complete. �

Let us end this section with the proof of Lemma 2.6.

Proof of Lemma 2.6. Again, let us consider f ∈ Cc(T×K) and show that (〈M∞
t , f 〉)t≥0 has paths of finite variation

with Pω-probability 1. By taking a countable basis f1, f2, . . . of Cc(T×K), we shall then conclude that this property
holds for all fi ’s simultaneously with probability 1, and so by Lemma 2.2 that a.s.M∞ has paths of finite variation in
DMλ

[0,∞).
Let us thus fix T > 0. Since there is no mutation, M∞ evolves only at the times of a reproduction event. By

construction, during the event (t, z, r, u), at each site x within B(z, r) a fraction u of the population is replaced by
individuals that are all of some type κ . That is (in the notation of (7)), ρ∞

t (x)= (1 − u)ρ∞
t−(x)+ uδκ . Together with

the fact that the spatial marginal of each M∞
t is Lebesgue measure, for any finite number of times t0, . . . , tl such that

0 = t0 < t1 < · · ·< tl = T , we have

l−1∑
j=0

∣∣〈M∞
tj+1
, f

〉− 〈
M∞
tj
, f

〉∣∣ ≤
∑

(t,z,r,u)∈ω:0<t≤T

∣∣〈M∞
t , f

〉− 〈
M∞
t−, f

〉∣∣
≤ 2‖f ‖∞

∑
(t,z,r,u)∈ω:0<t≤T

uVol
(
Sf ∩B(z, r)

)
,

where here again Sf stands for the compact support of f with respect to the spatial coordinate. But by (23) and (24),
the sum in the r.h.s. above is finite for P-a.e. ω, and is independent of the subdivision (t0, . . . , tl) chosen. Since the
total variation of (〈M∞

t , f 〉)0≤t≤T is given by

sup
l∈N

sup
(t0,...,tl )

l−1∑
j=0

∣∣〈M∞
tj+1
, f

〉− 〈
M∞
tj
, f

〉∣∣,
the desired result follows. �
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4.3. Generalizations

The construction carried out in the last paragraph is robust in the sense that it can accommodate different variants of
the spatial Λ-Fleming–Viot process such as that introduced in [5]. In the Gaussian model of [5], the environment is
given by a Poisson point process of epochs and centres with intensity measure cdt⊗ dx, where c > 0. During an event
centered on z ∈ T, the fraction u(z, x) of the population killed at site x is given by

u(z, x) := u0 exp
(−|z− x|2/(2θ2)), (34)

where u0 ∈ (0,1] is the maximal killing intensity and θ2 > 0 is a fixed parameter. Then, the location of the parent is
sampled according to the kernel

v(z, y) := 1

(2π(αθ)2)d/2
exp

(−|z− y|2/(2α2θ2)), (35)

where α > 0 (note that if α > 1, the parent is chosen from a wider area than that over which the impact of the event
is non-negligible). A type is then drawn from the local type distribution at this site. Finally, the population removed
during the first step is replaced by offspring of the chosen parent so that the local mass of individuals at every site
remains constant. This process can be phrased as an Mλ-valued evolution, and the corresponding genealogical process
can be described explicitly.

In order to adapt the look-down construction of Section 4.1, let us emphasize its two main ingredients:

An ancestry given by a finite-rate jumps process:
A lineage at location x is affected by an event whenever it belongs to the fraction u(zi, x) replaced during the event.
Hence, with (34), the rate at which a lineage jumps is equal to

c

∫
T

u(z, x)dz= cu0

∫
T

e−|x−z|2/(2θ2) dz <∞.

This fact enables us to introduce a well-defined procedure to make individual types evolve in time.

Reversibility of Lebesgue measure:
With the rule (35), the transition kernel Ki corresponding to the ith event, centered on zi , is given by

Ki(x,dy)=
(
1 − u(zi, x)

)
δx + u(zi, x)v(zi, y)dy.

Since conditionally on zi the new location of ζ is independent of its previous position, it is not difficult to see that

dxKi(x,dy)= dyKi(y,dx).

Hence, Lebesgue measure is again reversible for the evolution of ζ .
Next, when α = 1 we can again choose the parent to be the affected individual with lowest level. When α 	= 1, the

kernel with which the parent is drawn differs from that with which individuals are affected, and so we have to change
the way the parent is sampled. This time, we thin the Poisson point process of individuals at the time of the event
by keeping each point (ζ jti−, �j ) with probability v(zi, ζ

j
ti−)/v(0,0). We then take the individual of the thinned point

process with lowest level as the parent, and resample its location using the kernel v(zi, y)dy. In this way, some of the
affected individuals may now have a lower level than the parent. However, the resampling of the location of the parent
ensures that the position of the ancestor just after a given merger of P has density v(zi, ·), which is the essential point
in the equality in distribution of P and A (cf. Lemma 4.2).

Using the two properties emphasized above and the ideas of Sections 4.1 and 4.2, one can then construct a particle
representation for the stochastic flow obtained in the Gaussian model.

Another possible generalization is to allow multiple parents. Extending the ball model from Section 4.1, we may
e.g. fix a distribution γ on N with compact support and associate an independent realization Ni of γ to each event
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of ω. During the ith event, Ni parents are picked independently and uniformly over the area of the event. If the
corresponding types are κ1, . . . , κNi (not necessarily distinct), the new value of the SLFV is given by

Mti := 1B(zi ,ri )cMti− + 1B(zi ,ri )

{
(1 − ui)Mti− + ui

Ni

Ni∑
n=1

δκn

}
.

In words, within the area of the event we keep a fraction 1 − ui of the population as it was just before the event, and
replace a fraction ui by offspring of the Ni reproducing types in equal proportions. Thus, the associated genealogies
can have multiple and simultaneous mergers whenever γ puts some mass onto {2,3, . . .}.

In the corresponding look-down construction, the only difference with that of Section 4.2 is that we use the Ni
affected individuals with lowest levels as the parents during event i, and decide that an affected individual looks down
onto one of these Ni levels with equal probability, independently of each other. Since the two conditions given above
are fulfilled (with the kernel Ki given by (20)), we can construct a look-down coupling between the quenched SLFV
and its genealogies.

5. Coming down from infinity

Recall that a coalescent is said to come down from infinity if, starting from countably many lineages, there exists a
time in the past at which the number of ancestors is finite. For non-spatial exchangeable coalescents, it is known that
whenever the quantity corresponding to the impact u here is always less than 1, then either the coalescent comes down
from infinity instantaneously with probability 1, or the number of ancestors remains infinite for all times a.s. See e.g.
Proposition 23 in [24] for a statement of this result for coalescents with multiple mergers, and Lemma 31 in [25]
for the more general case of coalescents with simultaneous and multiple mergers. Furthermore, a precise criterion
for CDI is obtained in [26] for Λ-coalescents, and some conditions are given in Section 5.5 of [25] as concerns the
Ξ -coalescents.

In the context of spatial coalescents, only a few results exist concerning the question of coming down from infinity.
Indeed, the geographical movement of lineages may separate them before they find a common ancestor, or may bring
back together some lineages which were too far away from each other to coalesce. Hence, understanding the form
of the resulting genealogical process requires a fine analysis of the interplay between these two mechanisms. In [21],
Limic and Sturm consider a population spread over the vertices of a finite graph. They assume that the lineages migrate
independently of each other between the sites and can coalesce only when they belong to the same subpopulation.
They show that the corresponding spatial coalescent comes down from infinity if and only if its non-spatial counterpart
does. The case of discrete but infinite graphs is then explored in [1], where it is shown that because the timescales of
migration and coalescence are precisely the same, an arbitrarily large number of lineages can escape from the others
without coalescing. As a consequence, the spatial coalescents they consider never come down from infinity. Finally, a
version of the SLFV in which the geographical space is a self-similar hierarchical structure (such as a Cantor set, or
an infinite m-ary tree) is introduced in [18]. The forwards-in-time evolution is formulated as a stochastic flow in the
same spirit as Bertoin and Le Gall’s construction of the Λ-Fleming–Viot superprocess in [8]. Freeman then details
the five different possible behaviours of the corresponding ancestral process, making explicit the importance of the
geographical structure in the form of the genealogies.

Coming back to the SLFV, imagine we sample countably many individuals in the ball B := B(0,1)⊂ T and trace
back their genealogical relations. We want to show that, under the condition∫ ∞

0
νr
({1})μ(dr)= 0, (36)

in a.e. environment the number of distinct ancestors remains infinite for all times in the past.

Remark 5.1. The condition (36) simply says that the impact parameter is always less than 1. If it does not hold, an
event overlapping all the lineages but for a finite number (say, n) of them may have impact 1, in which case the number
of ancestors would come down to n+ 1<∞.
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In fact, as one might expect from the comparison of the finiteness condition (1) with the condition

Rate at which a single lineage is affected =
∫ 1

0

Λ(du)

u
<∞

for the presence of dust in a nonspatial Λ-coalescent (see Theorem 8 in [24]), we shall show that at time t > 0 in
the past infinitely many lineages have not yet been affected by an event. The difficulty here comes from the spatial
correlations between the rates at which close-by lineages are affected by reproduction events. Despite this effect of
space, the proof of the following proposition relies on the Poissonian structure of the events. Recall the condition (1)
of existence of the spatial Λ-Fleming–Viot process on T with parameters μ and {νr , r > 0}.

Proposition 5.2. Assume that (36) holds. Let N be a Poisson point process on B × [0,∞) with intensity measure
dx|B ⊗ d�, and let us use {({i}, xi): (xi, �i) ∈ N } as the initial value of the spatial Λ-coalescent A defined in Sec-
tion 2.1. Then for almost every environment ω, at any time t > 0 the set of the ancestral locations in At contains a
Poisson point process on B with infinite intensity. In particular, the spatial Λ-coalescent A never comes down from
infinity.

Proof. For every x ∈ B , let us write α(x, t) for the set of events of ω between (backward) times 0 and t overlapping
x. We have

P
(
Pω,0x (ξ does not jump until time t) > 0

)= P

( ∏
i∈α(x,t)

(1 − ui) > 0

)
= 1. (37)

Indeed, using the exponential formula for the Poisson point process of events, we can write for every θ > 0

E
[
eθ

∑
i∈α(x,t) log(1−ui)]= exp

{
t

∫ ∞

0

∫ 1

0
Vr,x

[
(1 − u)θ − 1

]
νr(du)μ(dr)

}
, (38)

where Vr,x stands for the volume of the ball B(x, r) in T. But for every u ∈ [0,1), 1 − (1 − u)θ decreases to 0 as θ
decreases to 0. Furthermore, using this property with θ = 1 we obtain that for every θ ∈ (0,1),

0 ≤
∫ ∞

0

∫ 1

0
Vr,x

[
1 − (1 − u)θ ]νr(du)μ(dr)≤

∫ ∞

0

∫ 1

0
Vr,xuνr(du)μ(dr) <∞

by the condition (1) imposed on μ and {νr , r > 0}. We can therefore use dominated convergence and the fact that the
set {u= 1} is never charged to conclude that

lim
θ→0

∫ ∞

0

∫ 1

0
Vr,x

[
(1 − u)θ − 1

]
νr(du)μ(dr)= 0.

Coming back to (38) and letting θ tend to 0, we obtain that P[∑i∈α(x,t) log(1 − ui) = −∞] = 0 and thus (37) is
proved.

Using now Fubini’s theorem, we can write

1 = 1

Vol(B)

∫
B

P

[ ∏
i∈α(x,t)

(1 − ui) > 0

]
dx = E

[
1

Vol(B)

∫
B

1{∏i∈α(x,t)(1−ui)>0} dx

]
,

and since the quantity within the expectation on the right-hand side belongs to [0,1], it therefore needs to be 1 P-a.s.
In particular, for a.e. ω, we can find ε(ω) ∈ (0,1) such that∫

B

1{∏i∈α(x,t)(1−ui)>ε(ω)} dx > 0.

Let us call Sε,ω the set {x ∈ B:
∏
i∈α(x,t)(1 − ui) > ε(ω)}. What we have just shown is that for almost every ω, Sε,ω

has positive Lebesgue measure. Hence it contains infinitely many points of N , and each of them has probability at
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least ε(ω) not to have been affected yet, independently of each other. Together with initial Poissonian structure of N ,
this completes the proof of Proposition 5.2. �
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