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Abstract. Smooth linear statistics of random permutation matrices, sampled under a general Ewens distribution, exhibit an inter-
esting non-universality phenomenon. Though they have bounded variance, their fluctuations are asymptotically non-Gaussian but
infinitely divisible. The fluctuations are asymptotically Gaussian for less smooth linear statistics for which the variance diverges.
The degree of smoothness is measured in terms of the quality of the trapezoidal approximations of the integral of the observable.

Résumé. Les statistiques linéaires d’observables régulières du spectre de matrices de permutations, choisies aléatoirement sous
une distribution générale de Ewens, donnent lieu à un phénomène intéressant de non-universalité. Bien qu’elles aient une va-
riance bornée, leurs fluctuations ne sont pas asymptotiquement Gaussiennes, mais infiniment divisibles. Si l’observable est moins
régulière, la variance diverge et les fluctuations sont Gaussiennes. Le degré de régularité est mesuré en termes de la qualité de
l’approximation trapézoidale de l’intégrale de l’observable.

MSC: 60F05; 15B52; 60B20; 60B15; 60C05; 60E07; 65D30

Keywords: Random matrices; Linear eigenvalue statistics; Random permutations; Infinitely divisible distributions; Trapezoidal approximations

1. Introduction

We study the fluctuations of the spectrum of random permutation matrices, or more precisely, of their linear statistics
under the Ewens distribution for a wide class of functions. The study of linear statistics of the spectrum of random
matrices is an active field (for results concerning invariant ensembles, see for instance [11,14–17,24–26,30,32] or [37]
and for non-invariant ensembles see for instance [5,6,8,10,18,27,29] or [36]). All previous results (except [30]) have
two common features. Firstly, the variance of linear statistics does not diverge for smooth enough functions, and thus,
no normalization is needed to get a limit law, whereas for less smooth functions the variance blows up very slowly
(i.e. logarithmically). The second feature is that those fluctuations are asymptotically Gaussian (except in [30] again,
where invariant ensembles with more than one cut are shown to have non-Gaussian fluctuations). We will see that
the behavior of the variance of the linear statistics of random permutation matrices follow the general pattern. But
we will also prove that the asymptotic limit law is more surprising, in that it is not Gaussian but infinitely divisible
when the function is smooth enough. This is in contrast to the case where the function is less regular, the fluctuations
being then indeed asymptotically Gaussian. This Gaussian behavior was previously proved by K. Wieand (see [36])
for the special case where the linear statistic is the number of eigenvalues in a given arc, and for uniformly distributed
permutations.

We first introduce our notations. If N is an integer, SN will denote the symmetric group. We denote by Mσ the
permutation matrix defined by the permutation σ ∈ SN . For any 1 ≤ i, j ≤ N , the entry Mσ (i, j) is given by

Mσ (i, j) = 1i=σ(j). (1.1)
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Mσ is unitary, its eigenvalues belong to the unit circle T. We denote them by

λ1(σ ) = e2iπϕ1(σ ), . . . , λN(σ ) = e2iπϕN (σ) ∈ T, (1.2)

where ϕ1(σ ), . . . , ϕN(σ ) are in [0,1].
For any real-valued periodic function f of period 1, we define the linear statistic

Iσ,N (f ) := Tr f̃ (Mσ ) =
N∑

i=1

f
(
ϕi(σ )

)
, (1.3)

where f̃ (e2iπϕ) = f (ϕ) is a function on the unit circle T.
We consider random permutation matrices by sampling σ under the Ewens distribution (see for instance [20])

νN,θ (σ ) = θK(σ)

θ(θ + 1) · · · (θ + N − 1)
, (1.4)

where θ > 0 and K(σ) is the total number of cycles of the permutation σ . The case θ = 1 corresponds to the uniform
measure on SN .

We study here the asymptotic behavior of the linear statistic Iσ,N (f ) under the Ewens distribution νN,θ for any θ >

0, and a wide class of functions f . As mentioned above, the asymptotic behavior depends strongly on the smoothness
of f . In order to quantify this dependence, we introduce the sequence

Rj(f ) = 1

j

j−1∑
k=0

f

(
k

j

)
−

∫ 1

0
f (x)dx. (1.5)

Using the periodicity of f , it is clear that

Rj(f ) = 1

j

(
1

2
f (0) +

j−1∑
k=1

f

(
k

j

)
+ 1

2
f (1)

)
−

∫ 1

0
f (x)dx. (1.6)

So that Rj (f ) is easily seen to be the error in the composite trapezoidal approximation to the integral of f [13].
We will see that the asymptotic behavior of the linear statistic Iσ,N (f ) is controlled by the asymptotic behavior of

the Rj (f )’s, when j tends to infinity, i.e. by the quality of the composite trapezoidal approximation to the integral
of f . The role played by the quality of the trapezoidal approximation of f might seem surprising, but it is in fact very
natural. It is a simple consequence of the fact that the spectrum of the permutation matrix Mσ is easily expressed in
terms of the cycle counts of the random permutation σ , i.e. the numbers αj (σ ) of cycles of length j , for 1 ≤ j ≤ N .
Indeed, the spectrum of Mσ consists in the union, for 1 ≤ j ≤ N , of the sets of j th roots of unity, each taken with
multiplicity αj (σ ). This gives

Iσ,N (f ) =
N∑

j=1

αj (σ )
∑
ωj =1

f̃ (ω) =
N∑

j=1

αj (σ )

j−1∑
k=0

f

(
k

j

)
. (1.7)

So that, using the definition (1.5) of the Rj ’s, and the obvious fact that
∑N

j=1 jαj (σ ) = N , it becomes clear that:

Iσ,N (f ) = N

∫ 1

0
f (x)dx +

N∑
j=1

αj (σ )jRj (f ). (1.8)

At this point, and using the basic equality (1.8), it is easy to explain intuitively the non-universality phenomenon we
have uncovered in this work. When the function f is smooth enough, the sequence Rj (f ) converges fast enough
to zero to ensure that the linear statistic is well approximated by the first few terms in the sum (1.8). These terms
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correspond to the well separated eigenvalues associated with small cycles. The discrete effects related to these small
cycles in the spectrum are then dominant, and are responsible for the non-Gaussian behavior. Thus, the appearance of
non-universal fluctuations is due to a very drastic localization phenomenon. Indeed, the important eigenvalues for the
behavior of smooth linear statistics are atypical in the sense that they correspond to very localized eigenvectors, those
localized on small cycles. When the function is less smooth, the variance will diverge (slowly) so that a normalization
will be necessary. After this normalization, the discrete effects will be washed away and the limit law will be Gaussian.

We will first describe the fluctuations of linear statistics of smooth enough functions f , i.e. in the case when the
Rj (f )’s decay to 0 fast enough to ensure that the variance of the linear statistic stays bounded.

Theorem 1.1. Let θ be any positive number, and f be a function of bounded variation. Assume that

∞∑
j=1

jRj (f )2 ∈ (0,∞). (1.9)

Then,

(1) under the Ewens distribution νN,θ , the distribution of the centered linear statistic

Iσ,N (f ) −E
[
Iσ,N (f )

]
converges weakly, as N goes to infinity, to a non-Gaussian infinitely divisible distribution μf,θ .

(2) The distribution μf,θ is defined by its Fourier transform

μ̂f,θ (t) = exp

(
θ

∫ (
eitx − 1 − itx

)
dMf (x)

)
, (1.10)

where the Lévy measure Mf is given by

Mf =
∞∑

j=1

1

j
δjRj (f ). (1.11)

(3) The asymptotic behavior of the expectation of the linear statistic is given by

E
[
Iσ,N (f )

] = N

∫ 1

0
f (x)dx + θ

N∑
j=1

Rj(f ) + o(1). (1.12)

Here, the second term
∑N

j=1 Rj (f ) may diverge, but not faster than logarithmically.

N∑
j=1

Rj(f ) = O(
√

logN). (1.13)

(4) The asymptotic behavior of the variance of the linear statistic is given by

Var
[
Iσ,N (f )

] = θ

N∑
j=1

jRj (f )2 + o(1). (1.14)

Remark 1. In this theorem (and in the next), we restrict ourselves to the class of functions f of bounded variation.
This is not at all a necessary hypothesis, but it simplifies greatly the statements of the theorems. Our proofs give
more. We will come back later (in Section 2) to the best possible assumptions really needed for each statement. These
assumptions involve the notion of Cesaro means of fractional order, which we wanted to avoid in this introduction.
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Remark 2. We note that the assumption (1.9) is not satisfied in the trivial case where f is in the kernel of the composite
trapezoidal rule, i.e. when the composite trapezoidal rule gives the exact approximation to the integral of f for all
j ’s. In this case, the sequence Rj (f ) is identically zero and the linear statistic is non-random. Obviously, this is the
case for every constant function f and for every odd function f , i.e. if

f (x) = −f (1 − x). (1.15)

It is indeed easy to see then that Rj (f ) = 0 for all j ≥ 1.

Remark 3. Consider now the even part of f , i.e.

feven(x) = 1

2

(
f (x) + f (1 − x)

)
. (1.16)

It is clear then that

Rj(f ) = Rj (feven), (1.17)

so that the assumption (1.9) in fact only deals with the even part of f .

Remark 4. In order to avoid the possibility mentioned above for all Rj (f )’s to be zero, we introduce the following
assumption

feven is not a constant. (1.18)

Note that, in general, it is not true that (1.18) implies that the sequence of Rj (f )’s is not identically zero, even when
f is continuous! (See [22] or [28].) But when f is in the Wiener algebra, i.e. when its Fourier series converges
absolutely, then (1.18) does imply that one of the Rj (f )’s is non zero (see [28], p. 260).

Remark 5. It is in fact easy to compute explicitly the value of the expectation and variance of the linear statistic
Iσ,N (f ) for any value of θ and of N . This is done below, in Section 7. The asymptotic analysis is not immediate for
the values of θ < 1.

We now want to show how the assumption (1.9) can easily be translated purely in terms of manageable regularity
assumptions on the function f itself.

Corollary 1.2. If f ∈ C1, let ω(f ′, δ) be the modulus of continuity of its derivative f ′. Assume that

∞∑
j=1

1

j
ω

(
f ′,1/j

)2
< ∞, (1.19)

also assume (1.18) in order to avoid the trivial case mentioned above, then the conclusions of Theorem 1.1 hold.

Of course, the condition (1.19) is satisfied if f ∈ C1+α , for 0 < α < 1, i.e. if f ′ is α-Hölder continuous.
We can give variants of the assumptions of smoothness of f given in Corollary 1.2. For instance,

Corollary 1.3. If f has a derivative in Lp , let ω(p)(f ′, δ) be the modulus of continuity in Lp of its derivative f ′, i.e.

ω(p)
(
f ′, δ

) = sup
0≤h≤δ

{∫ 1

0

∣∣f ′(x + h) − f ′(x)
∣∣p dx

}1/p

. (1.20)

Assume that

ω(p)
(
f ′, δ

) ≤ δα with α >
1

p
, (1.21)

also assume (1.18) in order to avoid the trivial case mentioned above, then the conclusions of Theorem 1.1 hold.
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It is of course also possible to relate the Rj (f )’s to the Fourier coefficients of f . Indeed, if the Fourier series of f

f (x) = a0 +
∞∑

n=1

an cos(n2πix) +
∞∑

n=1

bn sin(n2πix) (1.22)

converges, then the Poisson summation formula shows that

Rj (f ) =
∞∑

n=1

ajn. (1.23)

Using this relation, it is easy to prove the following corollary:

Corollary 1.4. If f is in the Sobolev space Hs , for s > 1, and if one assumes (1.18), then the conclusions of Theo-
rem 1.1 hold.

Remark 6. The formula (1.23) gives an expression for the asymptotic variance of the linear statistic

lim
N→∞ Var

[
Iσ,N (f )

] = θ

∞∑
j=1

jRj (f )2 = θ

∞∑
k,l=1

akald(k, l), (1.24)

where d(k, l) is the sum of the divisors of the integers k and l.

We now give two interesting examples of functions satisfying the conditions of Theorem 1.1:

Example 1. Let f be a trigonometric polynomial of degree k. Then, Rj(f ) = 0 for all j > k. Obviously, the condition
(1.9) of Theorem 1.1 is satisfied and the limit distribution μf,θ is a compound Poisson distribution with Mf given by

Mf = θ

k∑
j=1

1

j
δjRj

. (1.25)

Example 2. Let f ∈ C∞ and f ≡ 1 on [a, b] and f ≡ 0 on [a − ε, b + ε]c, then the result of Theorem 1.1 applies.
So, the centered linear statistic IσN

(f )−E[IσN
(f )] has a finite variance and a non-Gaussian infinitely divisible limit

distribution. This is a very different behavior from the case f = 1[a,b] (see below), where the limit is Gaussian.

Remark 7. Since the submission of this paper, two results closely related to ours have been published. A recent result
by [19] shows the same phenomenon for sparse regular random graphs: Consider the adjacency matrix for a regular
random graph, obtained by the permutation model. Then, for f being smooth enough, the degree d being fixed, the
centered linear statistic converges weakly to the infinitely divisible distribution given in (2.4), as the order N goes to
infinity. Furthermore, the authors show a Gaussian limit law for the case when d is growing with N , i.e. when the
adjacency matrix is less sparse. This indicates the connection between sparse random matrices and the non-Gaussian
effect for linear statistics.

In [23], the authors study a more general model of random matrices built upon random permutations, where they
also obtain fluctuations of linear statistics.

We now give our second main result, i.e. sufficient conditions ensuring that the variance of the linear statistic
Iσ,N (f ) diverges and that the linear statistic converges in distribution to a Gaussian, when centered and normalized.

We will use the common asymptotic notation an ∼ bn, if an/bn → 1 as n → ∞.

Theorem 1.5. Let θ be any positive number, and f be a bounded variation function such that

∞∑
j=1

jRj (f )2 = ∞. (1.26)
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Then,

(1) under the Ewens distribution νN,θ , the distribution of the centered and normalized linear statistic

Iσ,N (f ) −E[Iσ,N (f )]√
Var Iσ,N (f )

(1.27)

converges weakly, as N goes to infinity, to the Gaussian standard distribution N (0,1).
(2) The asymptotic behavior of the expectation of the linear statistic is given by

E
[
Iσ,N (f )

] = N

∫ 1

0
f (x)dx + θ

N∑
j=1

Rj (f ) + O(1). (1.28)

Here, the second term
∑N

j=1 Rj(f ) may diverge, but not faster than logarithmically.

N∑
j=1

Rj(f ) = O(logN). (1.29)

(3) The asymptotic behavior of the variance of the linear statistic is given by

Var
[
Iσ,N (f )

] ∼ θ

N∑
j=1

jRj (f )2. (1.30)

Example 3. Consider f = 1(a,b) for an interval (a, b) ⊂ [0,1]. Iσ,N (f ) is then simply the number of eigenvalues in
the arc [e2iπa, e2iπb]. The function f is obviously of bounded variation. This example has been treated in the simple
case where θ = 1 in [36]. We will see here that Theorem 1.5 enables us to extend the results of [36] to any value of
θ > 0. Indeed, the error in the composite trapezoidal approximation Rj (f ) is very easy to compute for an indicator
function:

Rj(f ) = 1

j

({ja} − {jb}). (1.31)

Obviously, in this case, Theorem 1.5 applies and for some constant C > 0, we have that

Iσ,N (f ) −E[Iσ,N (f )]√
Cθ logN

(d)⇒N (0,1).

We can also deduce the asymptotic behavior of the expectation and of the variance, using the conclusions of
Theorem 1.5 and the computations made in the particular case θ = 1 in [36]. Indeed, it is shown in [36], that for a
constant c1(a, b)

N∑
j=1

Rj(f ) = −c1(a, b) logN + o(logN). (1.32)

So that from the statement proven in Theorem 1.5:

E
[
Iσ,N (f )

] = N

∫ 1

0
f (x)dx + θ

N∑
j=1

Rj (f ) + O(1). (1.33)

We see that

E
[
Iσ,N (f )

] = N(b − a) − θc1 logN + o(logN). (1.34)
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The value of c1(a, b) is studied in [36]. It depends on the fact that a and b are rational or not. It vanishes if a and b

are both irrational.
We also have, from the computations in [36], that there exists a positive constant c2(a, b) such that

N∑
j=1

jRj (f )2 = c2(a, b) logN + o(logN). (1.35)

So that we have for any θ > 0, by Theorem 1.5, that

Var Iσ,N (f ) ∼ c2(a, b)θ logN.

The value of c2(a, b) also depends on the arithmetic properties of a and b, and is studied in [36].

Example 4. Consider the imaginary part of the function f (t) = log(1 − e−2iπt ), for a fixed irrational number t .
This case has been treated for θ = 1 in [21], where the authors study the logarithm of the characteristic polynomial.
Moreover, relating the imaginary part of f (t) with the counting function covers the result of [36]. In [21], the real
part of f (t) satisfies a central limit theorem as well. However, the proof requires different tools than presented in this
paper.

Remark 8. We want to point out that f being of bounded variation is not a necessary condition in order to get a
Gaussian limit distribution. But, when f is of bounded variation, it is easy to see that there exists a constant C such
that

Var Iσ,N (f ) ≤ C logN. (1.36)

The case treated in the example above gives the maximal normalization for functions of bounded variation.

The remainder of this article is organized as follows. In Section 2, we state our results with weaker assumptions
than the theorems given in this introduction. These assumptions use the classical notion of Cesaro means of fractional
order, which we recall in the first subsection of Section 2. In Section 3, we prove the Corollaries 1.2, 1.3 and 1.4,
using estimates on the trapezoidal approximation. In order to prove the main results of Section 2, our main tool will
be the Feller coupling. This is natural since the problem is translated by the basic equality (1.8) in terms of cycle
counts of random permutations (see also [21] or [36]). However, we will need to improve on the known results for
the approximation given by this coupling (see for example [1] or [7]) and relate these bounds to Cesaro means. The
main lemmas are given in Section 4. We will then be ready to prove in Section 5 and Section 6 our general results as
stated in Section 2 and that these more general results imply the two theorems of this introduction Theorems 1.1 and
1.5. Finally in the very short Section 7, we give an explicit expression for the expectation and variance of the linear
statistics as promised in Remark 5.

2. Cesaro means and convergence of linear statistics

2.1. Cesaro means

We will state here our optimal results in terms of convergence of the Cesaro means of fractional order. First, we will
need to recall the classical notion of Cesaro means of order θ and of Cesaro convergence (C, θ) for a sequence of real
numbers, say s = (sj )j≥0 (see [38], Volume 1, p. 77, formulae (1.14) and (1.15)).

Definition 2.1.

(i) The Cesaro numbers of order α > −1 are given by

Aα
N :=

(
N + α

N

)
. (2.1)
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(ii) The Cesaro mean of order θ > 0 of the sequence s = (sj )j≥0 is given by

σ θ
N(s) =

N∑
j=0

Aθ−1
N−j

Aθ
N

sj . (2.2)

(iii) A sequence of real numbers s = (sj )j≥0 is said to be convergent in Cesaro sense of order θ (or in (C, θ) sense)
to a limit � iff the sequence of Cesaro means σ θ

N(s) converges to �.

Let us recall the following basic facts about Cesaro convergence (see [38]):

Lemma 2.2.

(i) Convergence in the (C, θ1) sense to a limit �, implies convergence (C, θ2) to the same limit for any θ1 ≤ θ2.
(ii) Usual convergence is (C,0) convergence. The classical Cesaro convergence is (C,1) convergence.

(iii) If the sequence (sj )j≥0 is bounded and converges (C, θ1) to a limit � for some value θ1 > 0, then it converges
(C, θ) to the same limit, for any θ > 0.

These facts are all classical, see [38] for a proof, in particular Lemma (2.27), p. 70, Volume 2 for a proof of (iii).

2.2. The case of bounded variance, non-Gaussian limits

We will give here a sharper statement than Theorem 1.1 and prove that it implies Theorem 1.1. Define the sequence
u(f ) = (uj (f ))j≥1 = (jRj (f ))j≥1.

Theorem 2.3. Let θ be any positive number. Assume that

∞∑
j=1

jRj (f )2 ∈ (0,∞). (2.3)

In case where 0 < θ < 1, assume additionally that the sequence |u(f )| = (|jRj (f )|)j≥1 converges to zero in the
Cesaro (C, θ) sense.

Then,

(1) under the Ewens distribution νN,θ , the distribution of the centered linear statistic

Iσ,N (f ) −E
[
Iσ,N (f )

]
converges weakly, as N goes to infinity, to a non-Gaussian infinitely divisible distribution μf,θ .

(2) The distribution μf,θ is defined by its Fourier transform

μ̂f,θ (t) = exp

(
θ

∫ (
eitx − 1 − itx

)
dMf (x)

)
, (2.4)

where the Lévy measure Mf is given by

Mf =
∞∑

j=1

1

j
δjRj (f ). (2.5)

(3) The asymptotic behavior of the expectation of the linear statistic is given by

E
[
Iσ,N (f )

] = N

∫ 1

0
f (x)dx +

N∑
j=1

Rj (f ) + o(1). (2.6)



628 G. Ben Arous and K. Dang

Here, the second term
∑N

j=1 Rj (f ) may diverge, but not faster than logarithmically.

N∑
j=1

Rj(f ) = O(
√

logN) (2.7)

(4) If, on top of the preceding assumptions, one assumes that the sequence u(f )2 = (uj (f )2)j≥1 converges in Cesaro
(C,1 ∧ θ) sense, then the asymptotic behavior of the variance of the linear statistic is given by

Var
[
Iσ,N (f )

] = θ

N∑
j=1

jRj (f )2 + o(1). (2.8)

Theorem 2.3 will be proved in Section 5.

2.3. The case of unbounded variance, Gaussian limits

We will give here a slightly sharper statement than Theorem 1.5 and prove that it implies Theorem 1.5.

Theorem 2.4. Let θ be any positive number, and assume that

∞∑
j=1

jRj (f )2 = ∞ (2.9)

and that

max
1≤j≤N

|jRj | = o(ηN), (2.10)

where η2
N = θ

∑N
j=1 jRj (f )2. Then,

(1) under the Ewens distribution νN,θ , the distribution of the centered and normalized linear statistic

Iσ,N (f ) −E[Iσ,N (f )]√
Var Iσ,N (f )

(2.11)

converges weakly, as N goes to infinity, to the Gaussian standard distribution N (0,1).
(2) The asymptotic behavior of the expectation of the linear statistic is given by

E
[
Iσ,N (f )

] = N

∫ 1

0
f (x)dx +

N∑
j=1

Rj (f ) + o(ηN). (2.12)

Here, the second term
∑N

j=1 Rj (f ) may diverge, but not faster than logarithmically.

N∑
j=1

Rj(f ) = o(ηN

√
logN) (2.13)

(3) The asymptotic behavior of the variance of the linear statistic is given by

Var
[
Iσ,N (f )

] ∼ η2
N = θ

N∑
j=1

jRj (f )2. (2.14)

This theorem will be proved in Section 6.
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3. Estimates on the trapezoidal rule and proofs of the Corollaries 1.2, 1.3 and 1.4

In this section, we will discuss known results about the quality of the composite trapezoidal approximation for pe-
riodic functions, in order to relate the decay of the Rj (f )’s to the regularity of f . Moreover, we will give proofs of
Corollary 1.2, Corollary 1.3, Corollary 1.4.

3.1. Jackson-type estimates on the composite trapezoidal approximation

In order to relate the decay of the Rj (f )’s to the regularity of f , we can use two related approaches. First, we can
control directly the size of the Rj ’s by Jackson type inequalities as in [9,12] or [31]. Or we may use the Poisson
summation formula given in (1.23) and use the decay of the Fourier coefficients of f .

We start by using the first approach, and recall known Jackson-type estimates of the error in the trapezoidal ap-
proximation.

Lemma 3.1.

(i) There exists a constant C ≤ 179/180 such that∣∣Rj (f )
∣∣ ≤ Cω2(f,1/2j), (3.1)

where

ω2(f, δ) = sup
|h|≤δ,x∈[0,1]

∣∣f (x + 2h) − 2f (x + h) + f (x)
∣∣. (3.2)

(ii) If the function f is in C1, then

∣∣Rj (f )
∣∣ ≤ C

ω(f ′,1/j)

2j
. (3.3)

(iii) If the function f is in W 1,p , then

∣∣Rj (f )
∣∣ ≤ Cω(p)

(
f ′,1/j

) 1

j1−1/p
. (3.4)

Proof. The first item is well known (see [9]).
The second item is a consequence of the first, since by the Mean Value Theorem

ω2(f, δ) ≤ δω
(
f ′,2δ

)
. (3.5)

The third item is also an easy consequence of the first since

f (x + 2h) − 2f (x + h) + f (x) =
∫ x+h

x

(
f ′(t + h) − f ′(t)

)
dt. (3.6)

So that

∣∣f (x + 2h) − 2f (x + h) + f (x)
∣∣ ≤

(∫ 1

0

∣∣f ′(t + h) − f ′(t)
∣∣p dt

)1/p

h(p−1)/p, (3.7)

which shows that

ω2(f, δ) ≤ ω(p)
(
f ′, δ

)
δ1−1/p. (3.8)

�
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3.2. Proofs of Corollary 1.2 and 1.3 using Jackson bounds

Proof of Corollary 1.2. We can control the decay of the Rj (f )’s using the item (ii) of Lemma 3.1, which implies
that

jRj (f )2 ≤ C2 ω(f ′,1/j)2

4j
. (3.9)

It is then clear that under the assumption (1.19), the series
∑∞

j=1 jRj (f )2 is convergent. But (1.19) implies that the
Fourier series of f is absolutely convergent, so by the result mentioned above ([28], p. 260) it is true that (1.18)
implies that one of the Rj (f )’s is non zero. And thus,

∑∞
j=1 jRj (f )2 ∈ (0,∞). If we add that f is obviously of

bounded variation, we have then checked the assumptions of Theorem 1.1 and thus, proved Corollary 1.2. �

Proof of Corollary 1.3. We can here control the decay of the Rj (f )’s using the item (iii) of Lemma 3.1, and the
assumption (1.21), which imply that∣∣Rj (f )

∣∣ ≤ C
1

j1+α−1/p
. (3.10)

So, if α > 1/p, the series
∑∞

j=1 jRj (f )2 is convergent, since

jR2
j (f ) ≤ C

j1+2(α−1/p)
. (3.11)

Moreover, as above, it is easy to see that (1.21) implies that the Fourier series of f is absolutely convergent, so by
the result mentioned above ([28], p. 260) it is true that (1.18) implies that one of the Rj (f )’s is non zero. Again, f

is obviously of bounded variation, we have then checked the assumptions of Theorem 1.1 and thus, proved Corol-
lary 1.3. �

Remark: It is in fact true that limj→∞ jRj (f ) = 0 is satisfied as soon as f ∈ W 1,p (see [12]).

3.3. Proofs of Corollary 1.4 and the Poisson summation formula

We now turn to the proof of Corollary 1.4, using the second possible approach, i.e. the Poisson summation formula,
(1.23).

Proof of Corollary 1.4. Let f be in Hs , s > 1 and consider its Fourier series

f (x) = a0 +
∞∑

n=1

an cos(n2πix) +
∞∑

n=1

bn sin(n2πix). (3.12)

Then there exists a sequence (ck)k≥1 ∈ �2 such that

ak = ck

ks
. (3.13)

So,

Cj :=
∑
�≥1

cj�

�s
(3.14)

is in �2 by Lemma 4 of [31], p. 131. Thus, using the Poisson summation formula (1.23),

Rj (f ) = Cj

js
, (3.15)
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which is more than enough to prove that the series
∑∞

j=1 jRj (f )2 is convergent. Moreover, as above, it is easy to see
that (1.18) implies that one of the Rj (f )’s is non zero, and that f is obviously of bounded variation. We have then
checked the assumptions of Theorem 1.1 and thus, proved Corollary 1.4. �

4. Bounds on the Feller coupling and Cesaro means

4.1. The Feller coupling

Let σ ∈ SN be a given permutation and αj (σ ) be the number of j -cycles of σ . A classical result (see for example
[3,4,33] is that under the Ewens distribution νN,θ , the joint distribution of (α1(σ ), . . . , αN(σ )) is given by

νN,θ

[(
α1(σ ), . . . , αN(σ )

) = (a1, . . . , aN)
] = 1∑N

j=1 jaj =N

N !
θ(N)

N∏
j=1

(
θ

j

)aj 1

aj ! , (4.1)

where θ(N) = θ(θ + 1) · · · (θ + N − 1).
We recall now the definition and some properties of the Feller coupling, a very useful tool to study the asymptotic

behavior of αj (σ ) (see for example [1], p. 523).
Consider a probability space (Ω,F ,P) and a sequence (ξi)i≥1 of independent Bernoulli random variables defined

on (Ω,F) such that

P[ξi = 1] = θ

θ + i − 1
and P[ξi = 0] = i − 1

θ + i − 1
.

For 1 ≤ j ≤ N , denote the number of spacings of length j in the sequence 1ξ2 · · · ξN1 by Cj (N), i.e.

Cj(N) =
N−j∑
i=1

ξi(1 − ξi+1) · · · (1 − ξi+j−1)ξi+j + ξN−j+1(1 − ξN−j+2) · · · (1 − ξN). (4.2)

Define (Wjm)j≥1 by

Wjm =
∞∑

i=m+1

ξi(1 − ξi+1) · · · (1 − ξi+j−1)ξi+j (4.3)

and set for j ≥ 1,

Wj := Wj0. (4.4)

Define

JN = min{j ≥ 1: ξN−j+1 = 1} (4.5)

and

KN = min{j ≥ 1: ξN+j = 1}. (4.6)

With the notations above, we state the following result of [7], p. 169:

Theorem 4.1. Under the Ewens distribution νN,θ ,

(i) (Cj (N))1≤j≤N has the same distribution as (αj (σ ))1≤j≤N , i.e. for any a = (a1, . . . , aN) ∈N
N ,

P
[(

C1(N), . . . ,CN(N)
) = a

] = νN,θ

[(
α1(σ ), . . . , αN(σ )

) = a
]
, (4.7)



632 G. Ben Arous and K. Dang

(ii) (Wj )1≤j≤N are independent Poisson random variables with mean θ/j ,
(iii) and∣∣Cj (N) − Wj

∣∣ ≤ WjN + 1{JN+KN=j+1} + 1{JN=j}. (4.8)

We will need to improve on the known results for the Feller coupling. In particular we will need the following. For
any sequence of real numbers (uj )j≥1, define

GN =
N∑

j=1

ujCj (N) (4.9)

and

HN =
N∑

j=1

ujWj . (4.10)

We will need to control the L1 and L2-distances between the random variables GN and HN . In order to prove Theo-
rem 1.1 and Theorem 1.5, we will apply these estimates to the case where the sequence uj is chosen to be

uj (f ) = jRj (f ). (4.11)

4.2. L1 bounds on the Feller coupling

We begin with the control of the L1-distance in this subsection. We first state our result in a very simple (but not
optimal) shape.

Lemma 4.2. For every θ > 0, there exists a constant C(θ) such that, for every integer N ,

E
(|GN − HN |) ≤ C(θ) max

1≤j≤N
|uj |. (4.12)

This result is a trivial consequence of a deeper result, that we now give after introducing some needed notations.
We recall that for any real number x and integer k,(

x

k

)
= x(x − 1) · · · (x − k + 1)

k! . (4.13)

We now define for any θ > 0 and every 1 ≤ j ≤ N ,

ΨN(j) :=
(

N − j + γ

N − j

)(
N + γ

N

)−1

=
j−1∏
k=0

N − k

θ + N − k − 1
, (4.14)

where γ = θ − 1.
We then have:

Lemma 4.3.

E|GN − HN | ≤ C(θ)

N

N∑
j=1

|uj | + θ

N

N∑
j=1

|uj |ΨN(j). (4.15)

Lemma 4.3 is obviously a direct consequence of the following:
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Lemma 4.4. Let θ > 0, there exists a constant C(θ), such that, for every 1 ≤ j ≤ N

E
∣∣Cj (N) − Wj

∣∣ ≤ C(θ)

N
+ θ

N
ΨN(j) (4.16)

In order to prove Lemma 4.4, we note that, by (4.8),

E
∣∣Cj (N) − Wj

∣∣ ≤ E(WjN) + P(JN + KN = j + 1) + P(JN = j). (4.17)

It thus suffices to provide bounds on E[WjN ], P[JN = j ] and P[JN + KN = j + 1].

Lemma 4.5. For any θ > 0 and for every 1 ≤ j ≤ N ,

E(WjN) ≤ θ2

N − 1
. (4.18)

Proof. Let

U
(j)
i := ξi(1 − ξi+1) · · · (1 − ξi+j−1)ξi+j , (4.19)

then, for i ≥ 2,

E
(
U

(j)
i

) ≤ E(ξi)E(ξi+j ) = θ2

(θ + i − 1)(θ + i + j − 1)
≤ θ2

(i − 1)2
. (4.20)

By (4.20), we have immediately that, for any θ > 0,

E(WjN) =
∞∑

i=N+1

E
(
U

(j)
i

) ≤ θ2
∞∑

�=N

1

�2
≤ θ2

N − 1
. (4.21)

�

We compute next the distribution of the random variable JN explicitly.

Lemma 4.6.

P[JN = j ] = θ

N
ΨN(j). (4.22)

Proof. The random variable JN is equal to j if and only if ξN = 0, ξN−1 = 0, . . . , ξN−j+2 = 0 and ξN−j+1 = 1. So,
for any 1 ≤ j ≤ N ,

P[JN = j ] = N − 1

θ + N − 1
× N − 2

θ + N − 2
· · · N − (j − 1)

θ + N − (j − 1)
× θ

θ + N − j

= θ

N

j−1∏
k=0

N − k

θ + N − k − 1
= θ

N
ΨN(j), (4.23)

which proves the claim. �

We now bound the distribution of the random variable JN + KN .

Lemma 4.7. For any θ > 0,

P[KN + JN = j + 1] ≤ θ

N
. (4.24)
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Proof. Consider first the random variable KN . For any θ > 0,

P[KN = j ] = N

θ + N
× N + 1

θ + N + 1
· · · N + j − 2

θ + N + j − 2
× θ

θ + N + j − 1

≤ θ

N + θ
. (4.25)

For any θ > 0, use (4.25) to write

P[KN + JN = j + 1] =
j∑

�=1

P(JN = j + 1 − �)P(KN = �)

≤ θ

N + θ
P(JN ≤ j) ≤ θ

N
. (4.26)

�

The last three lemmas imply the result of Lemma 4.4. We have now controlled the L1-distance between GN and
HN .

4.3. L2 bounds on the Feller coupling

We now turn to the control of the L2-distance between the random variables GN and HN . We first state our result in
a simple (but not optimal) shape.

Lemma 4.8. For every θ > 0, there exists a constant C(θ) such that, for every integer N ,

E
(
(GN − HN)2) ≤ C(θ) max

1≤j≤N
|uj |2. (4.27)

This result is an immediate consequence of the following much more precise statement.

Lemma 4.9. For every θ > 0, there exists a constant C(θ) such that, for every integer N ,

E
(
(GN − HN)2) ≤ C(θ)

[(
1

N

N∑
j=1

|uj |
)2

+ 1

N

N∑
j=1

|uj |2

+ 1

N2

N∑
j=1

|uj |
N∑

k=1

|uk|ΨN(k)

+ 1

N

N∑
j=1

|uj |2ΨN(j)

]
. (4.28)

Proof. We note that

E
(
(GN − HN)2) ≤

N∑
j,k=1

|uj ||uk|E
(|Cj − Wj ||Ck − Wk|

)
. (4.29)

By (4.8), for any fixed 1 ≤ j, k ≤ N ,

|Cj − Wj ||Ck − Wk| ≤ Wj,NWk,N + Wj,N1JN=k + Wj,N1JN+KN=k+1

+ 1JN+KN=j+1Wk,N + 1JN+KN=j+11JN=k
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+ 1JN+KN=j+11JN+KN=k+1

+ 1JN=jWk,N + 1JN=j1JN=k

+ 1JN=j1JN+KN=k+1. (4.30)

To control E(|Cj − Wj ||Ck − Wk|), we will give upper bounds for expectations of all the terms on the RHS of
(4.30). We start by giving a bound for E(Wj,NWk,N): By (4.3) and (4.19), we have

E(Wj,NWk,N) =
∑

i,�≥N+1

E
(
U

(j)
i U

(k)
�

)
=

∑
i,�≥N+1

i<�

E
(
U

(j)
i U

(k)
�

) +
∑

i,�≥N+1
i>�

E
(
U

(j)
i U

(k)
�

) +
∑

i≥N+1

E
(
U

(j)
i U

(k)
i

)
. (4.31)

We write the first term on the RHS as follows:∑
i,�≥N+1
i<�<i+j

E
(
U

(j)
i U

(k)
�

) +
∑

i,�≥N+1
i+j<�

E
(
U

(j)
i U

(k)
�

) +
∑

i≥N+1

E
(
U

(j)
i U

(k)
i+j

)
. (4.32)

It is easy to see that for any � ∈ (i, i + j), U
(j)
i U

(k)
� = 0. If � is strictly larger than i + j , then U

(j)
i and U

(k)
� are

independent. This gives, using (4.20),∑
i,�≥N+1
i+j<�

E
(
U

(j)
i U

(k)
�

) =
∑

i,�≥N+1
i+j<�

E
(
U

(j)
i

)
E

(
U

(k)
�

)

≤
∞∑

i=N+1

E
(
U

(j)
i

) ∑
�>i+j

θ2

(� − 1)2

≤
∞∑

i=N+1

θ4

(i − 1)2

1

(i + j − 1)
≤ C(θ)

N2
. (4.33)

Also, by the same argument,

∞∑
i=N+1

E
(
U

(j)
i U

(k)
i+j

) ≤
∞∑

i=N+1

E(ξi)E(ξi+j )E(ξi+j+k)

≤
∞∑

i=N+1

θ3

(i − 1)(i + j − 1)(i + j + k − 1)
≤ C(θ)

N2
. (4.34)

The first term on the RHS of (4.31) is then bounded by C(θ)/N2. The second term can be bounded similarly. For
the third term, we observe that U

(j)
i U

(k)
i = 0 if j �= k. So, by (4.20)∑

i≥N+1

E
(
U

(j)
i U

(k)
i

) =
∑

i≥N+1

E
((

U
(j)
i

)2) =
∑

i≥N+1

E
(
U

(j)
i

)
≤

∑
i≥N+1

θ

(i − 1)2
≤ C(θ)

N
. (4.35)

This gives

E(Wj,NWk,N) =
{

C(θ)/N2, if j �= k,

C(θ)/N, if j = k.
(4.36)
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So,

N∑
j,k=1

|uj ||uk|E(Wj,NWk,N) ≤ C1(θ)

(
1

N

N∑
j=1

|uj |
)2

+ C2(θ)
1

N

N∑
j=1

|uj |2. (4.37)

Obviously, Wj,N and 1JN=k are independent. So, the expectation of the second term on the RHS in (4.30) is
bounded as follows:

E(Wj,N1JN=k) ≤ C(θ)

N
P(JN = k). (4.38)

Of course, this bound is also valid for E(1JN=jWk,N ).
Then,

N∑
j,k=1

|uj ||uk|E(Wj,N1JN=k) ≤ C(θ)

N

N∑
j=1

|uj | ·
N∑

k=1

|uk|P(JN = k). (4.39)

For Wj,N1JN+KN=k+1, we write

E(Wj,N1JN+KN=k+1) = E

(
k∑

�=1

Wj,N1JN+KN=k+11JN=�

)

=
k∑

�=1

E(Wj,N+k−�1KN=k+1−�)P(JN = �). (4.40)

But,

E(Wj,N+k−�1KN=k+1−�)

= E

( ∑
i>N+k+1−�

U
(j)
i 1KN=k+1−�

)
+E

(
U

(j)

N+k+1−�1KN=k+1−�

)
. (4.41)

Since
∑

i>N+k+1−� U
(j)
i and 1KN=k+1−� are independent,

E

( ∑
i>N+k+1−�

U
(j)
i 1KN=k+1−�

)
≤ C1(θ)

N
P(KN = k + 1 − �) ≤ C2(θ)

N2
, (4.42)

where we used (4.20) and (4.25). For the second term, we have, again by (4.20),

E
(
U

(j)

N+k+1−�1KN=k+1−�

) ≤ E
(
U

(j)

N+k+1−�

) ≤ θ2

N2
, (4.43)

which gives

E(Wj,N+k−�1KN=k+1−�) ≤ C(θ)

N2
. (4.44)

This gives also the bound for E(1JN+KN=j+1Wk,N).
Then,

N∑
j,k=1

|uj ||uk|E(Wj,N1JN+KN=k+1) ≤ C(θ)

(
1

N

N∑
j=1

|uj |
)2

. (4.45)
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For the remaining terms in (4.30), we observe that

E(1JN+KN=j+11JN=k) = P(KN = j + 1 − k)P(JN = k)

≤ C(θ)

N
P(JN = k). (4.46)

This applies for 1JN=j1JN+KN=k+1, as well.
Then

N∑
j,k=1

|uj ||uk|E(1JN+KN=j+11JN=k) ≤ C(θ)

N

N∑
j=1

|uj | ·
N∑

k=1

|uk|P(JN = k). (4.47)

We get, by (4.24)

N∑
j,k=1

|uj ||uk|E(1JN+KN=j+11JN+KN=k+1) =
N∑

j=1

|uj |2P(JN + KN = j + 1)

≤ C(θ)

N

N∑
j=1

|uj |2. (4.48)

Since 1JN=j1JN=k = 0 for k �= j ,

E(1JN=j1JN=k) =
{
P(JN = j), if k = j,

0, otherwise,
(4.49)

we get

N∑
j,k=1

|uj ||uk|E(1JN=j1JN=k) ≤
N∑

j=1

|uj |2P(JN = j), (4.50)

which, using also Lemma 4.6, proves the claim of Lemma 4.9. �

4.4. Cesaro means and the Feller coupling bounds

The link between our estimates and Cesaro means of fractional order is given by an interesting interpretation of Cesaro
means of order θ in terms of the random variable JN .

Lemma 4.10. The Cesaro mean σ θ
N of order θ of a sequence s = (sj )j≥0, with s0 = 0, is given by

σ θ
N(s) = N

N + θ

N∑
j=1

sjP[JN = j ] = θ

N + θ

N∑
j=1

sjΨN(j). (4.51)

The proof of this lemma is immediate from Lemma 4.6, the Definition 2.1 of the Cesaro means and of the numbers
ΨN(j), given in (4.14).

Using this interpretation of the Cesaro means, we can state our results about the L1 and L2 distances between the
variables GN and HN given in Lemma 4.3 and Lemma 4.9 in terms of the Cesaro means of the sequence uj (f ) and
uj (f )2.

Theorem 4.11. For every θ > 0, there exists a constant C(θ) such that

(i) E|GN − HN | ≤ C(θ)
(
σ 1

N

(|u|) + σθ
N

(|u|)) (4.52)
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(ii) and

E
(
(GN − HN)2) ≤ C(θ)

[
σ 1

N

(|u|)2 + σ 1
N

(
u2) + σ 1

N

(|u|)σθ
N

(|u|) + σθ
N

(
u2)]. (4.53)

This theorem is simply a rewriting of Lemma 4.3, and Lemma 4.9, using the identification given in Lemma 4.10.
It implies easily the following results:

Theorem 4.12. If the sequence (uj )j≥1 converges in Cesaro (C, θ ∧ 1) sense to 0, then

lim
N→∞E|GN − HN | = 0. (4.54)

Proof. By assumption, the sequence converges in (C,1) and in (C, θ) sense to 0. Thus, the RHS of the bound given
in Theorem 4.11 tends to zero, which proves Theorem 4.12. �

Similarly we can get the following result about convergence in L2.

Theorem 4.13. If the sequences (|uj |)j≥1 and (u2
j )j≥1 both converge to zero in Cesaro (C, θ ∧ 1), then

lim
N→∞E

(
(GN − HN)2) = 0. (4.55)

Proof. By assumption, the sequences (|uj |)j≥1 and (u2
j )j≥1 converge in (C,1) and in (C, θ) sense to 0. Thus, the

RHS of the bound given in (4.53) tends to zero, which proves Theorem 4.13. �

5. Proof of Theorem 2.3 and Theorem 1.1

5.1. A simple convergence result for series of Poisson random variables

We give here a result of convergence in distribution for the random variables

HN(f ) =
N∑

j=1

Wjuj (f ), (5.1)

to an infinitely divisible law. This result is elementary since it only uses the fact that the random variables Wj ’s are
independent and Poisson distributed.

Lemma 5.1. Under the assumption (2.3), i.e.

N∑
j=1

jR2
j ∈ (0,∞), (5.2)

the distribution μN of HN −E[HN ] converges weakly to the distribution μf,θ defined by (2.4).

Proof. The Fourier transform of HN −E[HN ] is easy to compute, indeed:

log μ̂N (t) = logE
[
eit (HN−E[HN ])] = log

N∏
j=1

E

[
exp

(
ituj

(
Wj − θ

j

))]

=
N∑

j=1

θ

j

(
eituj − ituj − 1

)
. (5.3)
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Obviously, for |t | ≤ T ,∣∣∣∣θj (
eituj − ituj − 1

)∣∣∣∣ ≤ θ

j

t2u2
j

2
≤ θ

T 2

2

u2
j

j
. (5.4)

By (1.9), log μ̂N (t) converges absolutely uniformly and its limit

ψ(t) =
∞∑

j=1

θ

j

(
eituj − ituj − 1

)
(5.5)

is continuous. By Lévy’s theorem, exp(ψ(t)) is the Fourier transform of the probability measure μf,θ and μN con-
verges in distribution to μf,θ as N goes to infinity. �

Obviously, μf,θ is an infinitely divisible distribution and its Lévy–Khintchine representation is easy to write. We
recall that an infinitely divisible distribution μ has Lévy–Khintchine representation (a,M,σ 2) if its Fourier transform
is given by

μ̂(t) = exp

(∫ (
eitx − 1 − itx

1 + x2

)
dM(x) + iat − 1

2
σ 2t2

)
, (5.6)

where a ∈ R, σ > 0 and M is an admissible Levy measure, i.e.∫
x2

1 + x2
dM(x) < ∞.

The distribution μf,θ in Lemma 5.1 has therefore a Lévy–Khintchine representation (a, θM,0) with

a =
∫ (

x

1 + x2
− x

)
dM(x) =

∞∑
j=1

λj

(
uj

1 + u2
j

− uj

)
(5.7)

and

M =
∞∑

j=1

1

j
δuj

. (5.8)

It is easy to see that the assumption (1.9) implies that
∫

x2dM(x) < ∞ so that M is admissible.

5.2. Proof of Theorem 2.3

We proceed now to the proof of Theorem 2.3, by using the Feller coupling bounds proved in Section 4.
We first prove the first and second statements of Theorem 2.3. Under the assumption that

∑∞
j=1 jR2

J < ∞, we have
seen that the sequence |uj | converges in (C,1) sense to zero. Moreover, if θ < 1, we assumed in Theorem 2.3 that the
sequence |uj | converges in (C, θ) sense to zero. Thus, we know that the assumption of Theorem 4.12 is satisfied, and
thus that,

lim
N→∞E|GN − HN | = 0. (5.9)

Using now Lemma 5.1, we have proved that GN −E(GN) converges in distribution to μf,θ defined by (2.4). But, by
the basic identity (1.8), we know that Iσ,N (f ) − E[Iσ,N (f )] has the same distribution as GN(f ) − E[GN(f )]. This
proves the first two statements of Theorem 2.3.

The third statement is simple. Indeed, by (1.8) and by (5.9),

E
[
Iσ,N (f )

] = N

∫ 1

0
f (x)dx +E(GN) = N

∫ 1

0
f (x)dx +E(HN) + o(1). (5.10)
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In order to complete the proof, it suffices to mention that the expectation of HN is easy to compute:

E(HN) = θ

N∑
j=1

uj

j
= θ

N∑
j=1

Rj . (5.11)

This proves the third statement of Theorem 2.3.
The proof of the fourth statement follows a similar pattern. Again, by (1.8),

Var
[
Iσ,N (f )

] = Var(GN). (5.12)

But if one also assumes, as in the fourth item of Theorem 2.3, that the sequence (u2
j ) converges in (C,1 ∧ θ) sense to

zero, then by (4.13) we know that

lim
N→∞E

(
(GN − HN)2) = 0. (5.13)

This, and (5.9), imply that

Var(GN) = Var(HN) + o(1). (5.14)

In order to complete the proof, it suffices to compute the variance of HN :

Var(HN) = θ

N∑
j=1

u2
j

j
= θ

N∑
j=1

jR2
j . (5.15)

This proves the fourth statement and completes the proof of Theorem 2.3.

5.3. Proof of Theorem 1.1

We show here how Theorem 2.3 implies Theorem 1.1.
We will need the following simple facts.

Lemma 5.2.

(i) The assumption
∑∞

j=1 jRj (f )2 < ∞ implies the (C,1) convergence of the sequence (|uj (f )|)j≥1 to zero.

(ii) If one assumes that
∑∞

j=1 jRj (f )2 < ∞ and that the function f is of bounded variation, then the sequence
(|uj (f )|)j≥1 converges in (C, θ) sense to zero, for any θ > 0.

(iii) If one assumes that
∑∞

j=1 jRj (f )2 < ∞ and that the function f is of bounded variation, then the sequence

(uj (f )2)j≥1 converges in (C, θ) sense to zero, for any θ > 0.

Proof. The first item is well known (see statement (a), p. 79 of [38], Volume 1). It is a consequence of the simple
application of the Cauchy–Schwarz inequality∣∣∣∣∣ 1

N

N∑
j=1

uj

∣∣∣∣∣ ≤ 1

N

(
N∑

j=1

jR2
j

)1/2( N∑
j=1

j

)1/2

≤
( ∞∑

j=1

jR2
j

)1/2

. (5.16)

So that

lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
j=1

uj

∣∣∣∣∣ ≤
( ∞∑

j=1

jR2
j

)1/2

. (5.17)



Eigenvalues of random permutation matrices 641

But the LHS of (5.17) does not depend on the initial k values of the sequence uj . By setting these k values to zero,
and by taking k large enough, we can then make the RHS as small as we want. This implies that

lim
N→∞

1

N

N∑
j=1

uj = 0. (5.18)

This is the (C,1) convergence to zero, claimed in item (i).
In order to prove the item (ii), we need the following observation.

Lemma 5.3. If the function f is of bounded variation, then∣∣Rj (f )
∣∣ ≤ TV(f )

j
, (5.19)

where TV(f ) denotes the total variation of f .

Proof. Since f is of bounded variation, it can be written as a difference of two non-decreasing functions

f = f + − f −. (5.20)

Using (1.5),

Rj

(
f +) =

j−1∑
k=0

∫ (k+1)/j

k/j

(
f +

(
k

j

)
− f +(x)

)
dx. (5.21)

So that

∣∣Rj

(
f +)∣∣ ≤ 1

j

j−1∑
k=0

(
f +

(
k + 1

j

)
− f +

(
k

j

))
≤ 1

j
TV

(
f +)

. (5.22)

Using the same argument for f − gives the result of Lemma 5.3. �

So, this shows that the sequence (uj (f ))j≥1 is bounded, when f is of bounded variation. Now, using the item (i)
of this lemma and item (iii) of Lemma 2.2, we see that the sequence (|uj (f )|)j≥1 and thus, uj (f ) converges in (C, θ)

sense to zero, for any value of θ > 0.
The last item is trivial, since the sequence u(f ) = (uj (f ))j≥1 is bounded, say by the constant C. Indeed, then the

Cesaro means of the sequence u(f )2 = (uj (f )2)j≥1 are bounded, for any θ > 0 by

σ θ
N

(
u(f )2) ≤ Cσθ

N

(∣∣u(f )
∣∣). (5.23)

This implies the (C, θ) convergence of the sequence u(f )2. �

Thus, Lemma 5.2 shows that Theorem 2.3 implies Theorem 1.1. Indeed, the general assumptions needed in Theo-
rem 2.3 about the Cesaro convergence of the sequences u(f ) and u(f )2 are satisfied by Lemma 5.2.

6. Proof of Theorem 2.4 and Theorem 1.5

6.1. A simple Gaussian convergence result for series of Poisson random variables

We give here a result of convergence in distribution for the random variables

HN(f ) =
N∑

j=1

Wjuj (f ) (6.1)
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to a Gaussian law, once centered and normalized. This result is again elementary since it only uses the fact that the
random variables Wj ’s are independent and Poisson distributed.

Here, we assume as in Theorem 2.4 that (2.9) and (2.10) are valid. Notice that

η2
N = Var(HN). (6.2)

Lemma 6.1. Under these assumptions, the distribution of

HN −E[HN ]
ηN

converges weakly to N (0,1) as N → ∞.

Proof. Write H̃N for

HN −E[HN ]
ηN

= HN −E[HN ]√
Var[HN ] =

N∑
j=1

uj (Wj − (θ/j))

ηN

, (6.3)

then

logE
[
eitH̃N

] =
N∑

j=1

θ

j

(
eituj /ηN − ituj /ηN − 1

)
, (6.4)

which gives the distribution of H̃N in its Lévy–Khintchine representation (aN , θMN,σ 2
N), with

aN =
N∑

j=1

(
θ

j (η2
N + u2

j )

(−u3
j

ηN

))
, (6.5)

MN =
N∑

j=1

1

j
δuj /ηN

(6.6)

and σN = 0.
We continue this proof by applying the Lévy–Khintchine Convergence theorem ([34], p. 62):
Consider a bounded continuous function f such that f (x) = 0 for |x| < δ, then∫

f dMN =
N∑

j=1

θ

j
f

(
uj

ηN

)
1|uj /ηN |>δ. (6.7)

Under the assumption (2.10),
∫

f dMN = 0 for N large enough, so that

lim
N→∞

∫
f dMN =

∫
f dM = 0. (6.8)

Again, using the assumption (2.10), we have that for any � > 0,∫ �

−�

x2 dMN + σ 2
N =

N∑
j=1

θ

j

u2
j

η2
N

1|uj |<�ηN
. (6.9)

So for N large enough,
∫ �

−�
x2 dMN = 1 and so

lim
N→∞

∫ �

−�

x2 dMN = 1. (6.10)
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Moreover, for every N define

εN = max1≤j≤N |uj |
ηN

, (6.11)

then we can bound aN above by

|aN | ≤
N∑

j=1

(
θ/j

η2
N + u2

j

(
εNu2

j

)) ≤ εN

η2
N

N∑
j=1

θ

j
u2

j = εN . (6.12)

By the assumption (2.10), we see that

lim
N→∞aN = 0. (6.13)

By (6.8), (6.10), (6.13) and using Theorem 3.21, p. 62 in [34], we see that H̃N converges in distribution to the
infinitely divisible distribution with Lévy–Khintchine representation (a,M,σ 2) = (0,0,1), i.e. to the standard normal
Gaussian N (0,1). �

6.2. Proof of Theorem 2.4

We proceed now to the proof of Theorem 2.4, by using the Feller coupling bounds proved in Section 4. Again, we
assume here, as in Theorem 2.4, that (2.9) and (2.10) are valid. By Lemma 4.2, we know that

E
(|GN − HN |) ≤ C(θ) max

1≤j≤N
|uj | = o(ηN). (6.14)

Again, denote by H̃N := HN−E(HN )
ηN

and G̃N := GN−E(GN )
ηN

. Then obviously,

E
(|G̃N − H̃N |) = o(1), (6.15)

which, together with the convergence result (Lemma 6.1) for HN proves that G̃N converges in distribution to a
standard Gaussian law N(0,1).

Moreover, this also proves that

E(GN) = E(HN) + o(ηN) = θ

N∑
j=1

Rj + o(ηN). (6.16)

And, by Lemma 4.8, we also know that

E
(
(GN − HN)2) ≤ C(θ) max

1≤j≤N
u2

j = o
(
η2

N

)
. (6.17)

Then obviously,

E
(
(G̃N − H̃N)2) ≤ 2

(
E

(
(GN − HN)2) +E(GN − HN)2) = o

(
η2

N

)
. (6.18)

So that∣∣√Var(GN) − √
Var(HN)

∣∣ = o(ηN) (6.19)

and thus,

Var(GN) ∼ Var(HN) = η2
N. (6.20)
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From these three results, we get that

GN −E(GN)√
Var(GN)

converges in distribution to a standard Gaussian N (0,1). But Iσ,N (f ) − E(Iσ,N (f )) has the same distribution as
GN −E(GN) and thus,

Iσ,N −E(Iσ,N )√
Var(Iσ,N )

converges also in distribution to a N (0,1) distribution. We thus have proved the first statement of Theorem 2.4.
Moreover, we have that

E(IN) =
∫ 1

0
f (x)dx +E(GN) =

∫ 1

0
f (x)dx + θ

N∑
j=1

Rj + o(ηN), (6.21)

which is the second statement of Theorem 2.4. Finally,

Var(Iσ,N ) = Var(GN) ∼ Var(HN) = η2
N, (6.22)

which is the third statement. We have completed the proof of Theorem 2.4.

6.3. Proof of Theorem 1.5

We prove here how Theorem 2.4 implies Theorem 1.5. In Theorem 1.5 we assumed that f is of bounded variation,
which implies, as we have seen, that uj (f ) = O(1), and thus, that

max
1≤j≤N

|uj | = o(ηN) (6.23)

since the sequence ηN is assumed to diverge. This proves that the hypothesis of Theorem 1.5 are satisfied under those
of Theorem 2.4. Thus we get that the conclusions of Theorem 2.4 are valid. They are almost exactly the same as the
conclusions of Theorem 1.5. The only thing left to prove is the item (ii). But using Lemma 4.2, 5.11, and the fact that
uj (f ) = jRj (f ) = O(1), we have that

E
[
Iσ,N (f )

] = N

∫ 1

0
f (x)dx +

N∑
j=1

Rj (f ) + O(1). (6.24)

The bound

N∑
j=1

Rj(f ) = O(logN) (6.25)

is trivial since again Rj = O( 1
j
). With this we have derived Theorem 1.5 from Theorem 2.4.

7. The expectation and the variance

For the sake of completeness, we give here the explicit expressions for the expectation and the variance of Iσ,N , when
σ is chosen from SN by the Ewens distribution with parameter θ . The basic computations for the expectation and
the variance of the cycle counts can be simply derived by the following formula established by Watterson [35] (see
Arratia, Barbour and Tavaré [2], (4.7), p. 68):
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For every b ≥ 1, (r1, . . . , rb) ≥ 0,

E

[
b∏

j=1

α
[rj ]
j

]
= 1m≤NΨN(m)

b∏
j=1

(
θ

j

)rj

, (7.1)

where ΨN(m) is defined as in (4.14), m = ∑b
j=1 jrj , x[r] = x(x − 1) · · · (x − r + 1) and γ = θ − 1.

Thus, the mean and the variance of Iσ,N can be easily computed.

Lemma 7.1.

E
[
Iσ,N (f )

] = N

∫ 1

0
f (x)dx +

N∑
j=1

E
[
αj (σ )

]
uj (f )

= N

∫ 1

0
f (x)dx + θ

N∑
j=1

ΨN(j)Rj (f ). (7.2)

Proof. From the general formula (7.1), we easily see that for any j ≥ 1 and any θ > 0,

Eθ [αj ] = θ

j
ΨN(j)1j≤N . (7.3)

Thus, (7.2) follows immediately. �

The variance of Iσ,N is given by the following lemma:

Lemma 7.2.

Var
[
Iσ,N (f )

] = Var

[
N∑

j=1

αjuj (f )

]

= θ
∑
j=1

jR2
jΨN(j) + θ2

∑
j,j ′≤N

RjRj ′
(
ΨN

(
j + j ′)1j+j ′≤N − ΨN(j)ΨN

(
j ′))

= η2
N + θ

∑
j=1

jR2
j

(
ΨN(j) − 1

)
+ θ2

∑
j,j ′≤N

RjRj ′
(
ΨN

(
j + j ′)1j+j ′≤N − ΨN(j)ΨN

(
j ′)). (7.4)

Proof. Again, from the general formula (7.1), we easily see that for any j ≥ 1 and any θ > 0,

Eθ [αjαj ′ ] = θ2

jj ′ ΨN

(
j + j ′)1j+j ′≤N (7.5)

and

Eθ

[
α2

j

] = θ2

j2
ΨN(2j)1j≤N/2 + θ

j
ΨN(j)1j≤N . (7.6)

The variance of αj is therefore given by

Varθ [αj ] = θ

j
ΨN(j)1j≤N + θ2

j2
ΨN(2j)1j≤N/2 − θ2

j2
ΨN(j)21j≤N (7.7)
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and the covariance by

Covθ [αj ,αj ′ ] = θ2

jj ′ ΨN

(
j + j ′)1j+j ′≤N − θ2

jj ′ ΨN(j)ΨN

(
j ′)1j≤N1j ′≤N, (7.8)

for j �= j ′. Then, the variance of Iσ,N given in (7.4) follows immediately. �

Remark 9. The case where θ = 1 is particularly simple, since ΨN(j) = 1, for 1 ≤ j ≤ N . Indeed then

E
[
Iσ,N (f )

] = N

∫ 1

0
f (x)dx + θ

N∑
j=1

Rj(f )

and

Var
[
Iσ,N (f )

] = η2
N.

Thus the asymptotic formulae we give in this work are then exact. For general values of θ > 0, it is possible to derive
these asymptotic expressions directly form the explicit formulae given in this section, without using the bounds on the
Feller coupling, but this is not a trivial matter, in particular when θ < 1.
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