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Abstract. Consider a lattice gas evolving according to the conservative Kawasaki dynamics at inverse temperature β on a two
dimensional torus ΛL = {0, . . . ,L − 1}2. We prove the tunneling behavior of the process among the states of minimal energy.
More precisely, assume that there are n2 particles, n < L/2, and that the initial state is the configuration in which all sites of the
square {0, . . . , n − 1}2 are occupied. We show that in the time scale e2β the process evolves as a Markov process on ΛL which
jumps from any site x to any other site y �= x at a strictly positive rate which can be expressed in terms of the hitting probabilities
of simple Markovian dynamics.

Résumé. On considère un gaz sur réseau évoluant selon la dynamique de Kawasaki à température inverse β sur le tore bi-
dimensionel ΛL = {0, . . . ,L − 1}2. Nous étudions l’évolution du processus parmi les états d’énergie minimale.

Supposons la présence de n2 particules, n < L/2 et qu’à l’état initial les sites du carré {0, . . . , n − 1}2 soient tous occupés.
Nous montrons qu’à l’échelle de temps e2β le processus évolue comme une chaîne de Markov sur ΛL qui saute d’un site x vers
un site y �= x à un taux strictement positif qui peut-être exprimé en terme de probabilités d’atteinte de dynamiques markoviennes
élémentaires.
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1. Introduction

We introduced in [1,4] a general method to describe the asymptotic evolution of one-parameter families of continuous-
time Markov chains. This method has been succesfully applied in two situations: For zero-range dynamics on a finite
set which exhibit condensation [2,18], and for random walks evolving among random traps [16,17]. In the first model
the chain admits a finite number of ground sets, while in the second one there is a countable number of ground states.
We start in this paper the investigation of a third case, where the limit dynamics is a continuous process.

This article has two purposes. On the one hand, to derive some estimates needed in the proof of the convergence,
in the zero-temperature limit, of the two-dimensional Kawasaki dynamics for the Ising model in a large cube to a
Brownian motion, presented in [13]. On the other hand, to illustrate the interest of the method introduced in [1,4] by
applying it in a simple context. A first step was done in this direction in [3], where we derived the asymptotic behavior
of continuous-time Markov chains evolving on a fixed and finite state space imposing only one simple condition on
the jump rates. A second step is performed here, applying the result obtained in [3] to the Kawasaki dynamics for the
Ising model on a fixed two-dimensional square with periodic boundary condition.
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To present the main result of [3], consider a one-parameter family of irreducible Markov chains ηN(t) on a fixed
and finite state space E, reversible with respect to a probability measure μN . For example, the Glauber or the Kawaski
dynamics for the Ising model on a finite space. For η ∈ E, denote by PN

η the distribution of the process ηN(t) starting
from η. Expectation with respect to PN

η is represented by EN
η .

Denote by RN(η, ξ) the jump rates of the chain and assume that for all η, η′, ξ , ξ ′ ∈ E,

lim
N→∞

RN(η,η′)
RN(ξ, ξ ′)

∈ [0,∞] (1.1)

in the sense that the limit exists with +∞ as a possible value. Note that conditions (2.1) and (2.2) in [3] follow from
(1.1). Moreover, since for the Glauber or for the Kawasaki dynamics the jump rates are either 1 or e−kβ for some
1 ≤ k ≤ 4, assumption (1.1) is fulfilled.

Under the elementary assumption (1.1) we completely described in [3] the asymptotic evolution of the Markov
chain ηN(t). More precisely, we proved the existence of a rooted tree whose vertices are subsets of the state space.
The tree fulfills the following properties: (a) The root of the tree is the state space; (b) the subsets of each generation
form a partition of the state space; and (c) the sucessors of a vertex are subsets of this vertex. To each generation
corresponds a tunneling behavior. Let M + 1, M ≥ 1, be the number of generations of the tree, let κm + 1 be the
number of descendents at generation m + 1, 1 ≤ m ≤ M , and let Em

1 , . . . ,Em
κm

,Δm be the vertices of the generation
m + 1. We proved the existence of time scales θN

1 	 · · · 	 θN
M such that for each 1 ≤ m ≤ M :

(1) For every 1 ≤ i ≤ κm and every state η in Em
i ,

lim
N→∞ max

ξ∈Em
i

PN
ξ [HĔm

i
< Hη] = 0,

where Ĕm
i = ⋃

j �=i Em
j and where HA stands for the hitting time of a set A ⊂ E. This means that starting from a

set Em
i the process visits all the points of Em

i before reaching another set Em
j .

(2) Let Em = ⋃
i Em

i and let Ψm :Em → {1, . . . , κm} be the index function given by

Ψm(η) =
κm∑
i=1

i1
{
η ∈ Em

i

}
.

Denote by {ηm
N(t): t ≥ 0} the trace of the process {ηN(t): t ≥ 0} on Em. For every 1 ≤ i ≤ κm, η ∈ Em

i , under the
measure PN

η , the (non-Markovian) index process Xm
N(t) = Ψm(ηm

N(tθN
m )) converges to a Markov process Xm(t)

on {1, . . . , κm}.
(3) Starting from η ∈ Em, in the time scale θN

m the time spent outside Em is negligible: For every t > 0,

lim
N→∞ max

η∈E
EN

η

[∫ t

0
1
{
ηN

(
sθN

m

) ∈ Δm

}
ds

]
= 0.

Therefore, in the time scale θN
m the process ηN(t) behaves as a Markov process on a state space whose κm points

are the sets Em
1 , . . . ,Em

κm
and which jumps from Em

i to Em
j at a rate given by the jump rates of the Markov process

Xm(t).
We apply this result to investigate the zero-temperature limit of the Kawasaki dynamics for the Ising model on a

two-dimensional square with periodic boundary condition. Here, for a fixed square and a fixed number of particles, we
derive the asymptotic behavior of the dynamics among the ground states, configurations whose particles form squares.
In [13], we show that the evolution of these square configurations converges to a Brownian motion when the lenght of
the square and the number of particles increase with the inverse of the temperature.

The problem of describing the asymptotic behavior of a one-parameter family of Markov chains evolving on a
fixed and finite state space has been considered before. Olivieri and Scoppola [22,25] applied the ideas introduced in
the pathwise approach to metastability [10] to this context. They supposed that the jump probabilities P(x, y) of a
discrete-time chain are given by

P(x, y) = q(x, y)e−β[H(y)−H(x)]+ , (1.2)
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where [a]+ represents the positive part of a, q(x, y) a symmetric function and H an Hamiltonian. A subset A of
the state space E is called a cycle if maxx∈A H(x) < miny∈∂+A H(y), where ∂+A stands for the outer boundary of
A: ∂+A = {y /∈ A: ∃x ∈ A,P (x, y) > 0}. Under condition (1.2), Olivieri and Scoppola proved that the exit time of
a cycle, appropriately renormalized, converges to an exponential random variable, and they obtained estimates, with
exponential errors, for the expectation of the exit time. They were also able to describe the exit path from a cycle.
These results were generalized by Olivieri and Scoppola [23] to the non-reversible case, and by Manzo et al. [19],
who extended the results proved in [22] for the exit time of a cycle to the hitting time of the absolute minima of the
Hamiltonian.

Therefore, in the context of a fixed and finite state space, the approach proposed in [1,4] requires weaker assump-
tions on the jump rates than the pathwise approach, it provides better estimates on the exit times of the wells, and it
characterizes the transition probabilities which describe the way the process jumps from one well to another. On the
other hand, and in contrast with the pathwise approach to metastability, it does not attempt to characterize the exit
paths from a well.

The potential theoretic approach to metastability [5,6] has also been tested [9] in the framework of a fixed and
finite state space Markov chain. Bovier and Manzo considered a Hamiltonian H and an irreducible discrete-time jump
probability reversible with respect to the Gibbs measure associated to the Hamiltonian H at inverse temperature β . Let
M be a subset of the local minima of the Hamiltonian H and let Mx =M\ {x}, x ∈M. Under some assumptions on
the Hamiltonian, they computed the expectation of the hitting time of Mx starting from x ∈ M and they proved that
this hitting time properly renormalized converges to an exponential random variable. They also provided a formula
for the probability that starting from x ∈M the process returns to the set M at a local minima y ∈M in terms of the
right eigenvectors of the jump matrix of the chain. This latter formula, although interesting from the theoretical point
of view, since it establishes a link between the spectral properties of the generator and the metastable behavior of the
process, is of little pratical use because one is usually unable to compute the eigenvectors of the generator.

In our approach, we replace the formula of the jump probabilities written through eigenvectors of the generator by
one, [1], Remark 2.9 and Lemma 6.8, expressed only in terms of the capacities, capacities which can be estimated
using the Dirichlet and the Thomson variational principles. This latter formula allows us to prove the convergence of
the process (in fact, of the trace process in the usual Skorohod topology or of the original process in a weaker topology
introduced in [17]) by solving a martingale problem.

Metastability of locally conserved dynamics or of conservative dynamics superposed with non-conservative ones
have been considered before. Peixoto [24] examined the metastability of the two dimensional Ising lattice gas at low
temperature evolving according to a superposition of the Glauber dynamics with a stirring dynamics. Den Hollander
et al. [15] and Gaudillière et al. [11] described the critical droplet, the nucleation time and the typical trajectory
followed by the process during the transition from a metastable set to the stable set in a two dimensional Ising lattice
gas evolving under the Kawasaki dynamics at very low temperature in a finite square in which particles are created
and destroyed at the boundary. This result has been extended to the anistropic case by Nardi et al. [20] and to three
dimensions by den Hollander et al. [14]. Using the potential theoretic approach introduced in [5,6], Bovier et al. [7]
presented the detailed geometry of the set of critical droplets and provided sharp estimates for the expectation of the
nucleation time for this model in dimension two and three.

More recently, Gaudillière et al. [12] proved that the dynamics of particles evolving according to the Kawasaki
dynamics at very low temperature and very low density in a two-dimensional torus whose length increases as the
temperature decreases can be approximated by the evolution of independent particles. These results were used in [8],
together with the potential theoretic approach alluded to above, to obtain sharp estimates for the expectation of the
nucleation time for this model.

2. Notation and results

We consider a lattice gas on a torus subjected to a Kawasaki dynamics at inverse temperature β . Let ΛL = {1, . . . ,L}2,
L ≥ 1, be a square with periodic boundary conditions. Denote by Λ∗

L the set of edges of ΛL. This is the set of
unordered pairs {x, y} of ΛL such that ‖x − y‖ = 1, where ‖ · ‖ stands for the Euclidean distance. The configurations
are denoted by η = {η(x): x ∈ ΛL}, where η(x) = 1 if site x is occupied and η(x) = 0 if site x is vacant. The
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Hamiltonian H, defined on the state space ΩL = {0,1}ΛL , is given by

−H(η) =
∑

{x,y}∈Λ∗
L

η(x)η(y).

The Gibbs measure at inverse temperature β associated to the Hamiltonian H, denoted by μβ , is given by

μβ(η) = 1

Zβ

e−βH(η),

where Zβ is the normalizing partition function.

We consider the continuous-time Markov chain {ηβ
t : t ≥ 0} on ΩL whose generator Lβ acts on functions f :ΩL →

R as

(Lβf )(η) =
∑

{x,y}∈Λ∗
L

cx,y(η)
[
f

(
σx,yη

) − f (η)
]
,

where σx,yη is the configuration obtained from η by exchanging the occupation variables η(x) and η(y):

(
σx,yη

)
(z) =

{
η(z) if z �= x, y,
η(y) if z = x,
η(x) if z = y.

The rates cx,y are given by

cx,y(η) = exp
{−β

[
H

(
σx,yη

) −H(η)
]
+
}
,

where [a]+, a ∈ R, stands for the positive part of a: [a]+ = max{a,0}. We sometimes represent η
β
t by ηβ(t) and we

frequently omit the index β of η
β
t .

A simple computation shows that the Markov process {ηt : t ≥ 0} is reversible with respect to the Gibbs measures
μβ , β > 0, and ergodic on each irreducible component formed by the configurations with a fixed total number of
particles. Denote by |A| the cardinality of a finite set A. Let ΩL,K = {η ∈ ΩL:

∑
x∈ΛL

η(x) = K}, 0 ≤ K ≤ |ΛL|,
and denote by μ

β
K the Gibbs measure μβ conditioned on ΩL,K :

μ
β
K(η) = 1

Zβ,K

e−βH(η), η ∈ ΩL,K,

where Zβ,K is the normalizing constant Zβ,K = ∑
η∈ΩL,K

exp{−βH(η)}. We sometimes denote μ
β
K simply by μK .

For each configuration η ∈ ΩL,K , denote by Pβ
η the probability measure on the path space D([0,∞),ΩL,K) in-

duced by the Markov process {ηt : t ≥ 0} starting from η. Expectation with respect to Pβ
η is represented by Eβ

η .
Assume from now on that K = n2 for some 4 ≤ n <

√
L, and denote by Q the square {0, . . . , n − 1} × {0, . . . , n −

1}. For x ∈ ΛL, let Qx = x + Q and let ηx be the configuration in which all sites of the square Qx are occupied.
Denote by Ω0 = Ω0

L,K the set of square configurations:

Ω0 = {
ηx: x ∈ ΛL

}
.

If L > 2n the ground states of the energy H in ΩL,K are the square configurations:

Hmin := min
η∈ΩL,K

H(η) = H
(
ηx) = −2n(n − 1), (2.1)

and H(η) > −2n(n − 1) for all η ∈ ΩL,K \ Ω0.
To prove this claim, fix a configuration η ∈ ΩL,K . Denote by ξ the configuration obtained from η by moving

vertically the particles of the configuration η along the columns of ΛL in the following way. If there is a particle in the
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column Ck = {x = (x1, x2) ∈ ΛL: x1 = k}, move a particle in this column to the position (k,0) if this site is empty.
Place all the other particles in the contiguous sites above (k,0). This means that if there are j particles in the column
Ck for the configuration η, ξ(k, i) = 1 if and only if 0 ≤ i < j .

This transformation does not decrease the number of vertical edges connecting particles and maximizes the number
of horizontal edges among the configurations with a fixed number of particles per column. Therefore, H(ξ) ≤ H(η)

and to prove claim (2.1) it is enough to show that H(ξ) ≥ H(ηx) and that the equality holds only if ξ is a square
configuration. There are two cases which are examined separately. Either all columns have at least one particle, or
there is a column with no particle.

In the second case, we may assume that ξ is a configuration of {0,1}Z2
with n2 occupied sites. If the set of occupied

sites is not a connected subgraph of Z2, we decrease the energy by moving laterally a cluster of particles until it touches
another cluster. We may therefore suppose that the occupied sites form a connected set.

Associate to each particle of ξ a square of lenght 1 centered at the site occupied by the particle. Consider the
smallest rectangle in R2 which contains all squares. By construction, each row and column of the rectangle contains
at least one square.

Denote by m1 ≤ m2 the lengths of the smallest rectangle which contains all squares. The area of the rectangle, equal
to m1m2, must be larger than or equal to the number of particles n2. It follows from this inequality that m1 +m2 ≥ 2n,
with an equality if and only if m1 = m2 = n. Since each row and each column contains at least a square, there exist at
least 2(m1 + m2) edges connecting an occupied site to an empty site.

Since there are n2 particles, if all 4 bonds of each particle were attached to another particle, the energy would be
−2n2. For the configurations ξ , we have seen that 2(m1 +m2) bonds link a particle to a hole. Hence, the energy of this
configuration is at least −(2n2 − m1 − m2) ≥ −2n(n − 1), with an equality if and only if m1 = m2 = n, i.e., if ξ ′ is a
square configuration. This proves claim (2.1) if the configuration ξ can be considered as a configuration of {0,1}Z2

.
Assume now that all columns have at least one particle. This means that the configuration ξ has a row of particles

forming a ring around the torus ΛL. The argument presented below to estimate the energy of ξ applies also in the case
where a column has no particles. Let h be the maximal height of the columns: h = max{j ≥ 1: ∃k, ξ(k, j − 1) = 1}.
If all particles at height h have two horizontal neighbors, the configuration ξ forms a strip around the torus ΛL with
hL = n2 particles and its energy is equal to −(2h−1)L = −(2n2 −L) > −2n(n−1) because L > 2n by assumption.

If there is a particle with maximal height which has one or no horizontal neighbor, we may move this particle to
an empty site at minimal height without increasing the energy. We repeat this operation until reaching a configuration
formed by a strip of particles surmounted by a row of particles. Denote by h the height of the strip and by 0 ≤ k < L

the number of particles forming the top row so that n2 = hL + k. The energy of this configuration is −[2(hL + k) −
(L + 1)] = −[2n2 − (L + 1)] > −2n(n − 1) because L > 2n by assumption. This concludes the proof of claim (2.1).

We examine in this article the asymptotic evolution of the Markov process {ηt : t ≥ 0} among the |ΛL| ground
states {ηx: x ∈ ΛL} in the zero temperature limit. Denote by {ξt : t ≥ 0} the trace of the process ηt on the set of
ground states Ω0. We refer to [1] for a precise definition of the trace process. The main theorem of this article reads
as follows.

Theorem 2.1. As β ↑ ∞, the speeded up process ξ(e2βt) converges to a Markov process on Ω0 which jumps from ηx

to ηy at a strictly positive rate r(x,y). Moreover, in the time scale e2β the time spent by the original process ηt outside
the set of ground states Ω0 is negligible: for every x ∈ ΛL, t > 0,

lim
β→∞ Eβ

ηx

[∫ t

0
1
{
η
(
e2βs

)
/∈ Ω0}ds

]
= 0. (2.2)

In the terminology introduced in [1], the previous theorem states that the sequence of Markov processes {ηβ
t : t ≥ 0}

exhibits a tunneling behavior on the time-scale e2β , with metastable sets {{ηx}: x ∈ ΛL}, metastable points ηx and
asymptotic Markov dynamics characterized by the strictly positive rates r(ηx, ηy).

Remark 2.2. The asymptotic rates r(x,y) depend on the parameters L and n. We stress that these rates are strictly
positive. The asymptotic behavior is therefore non-local, the limit process being able to jump from a configuration
ηx to any configuration ηy with a positive probability. We present in Corollary 6.2 an explicit formula for these rates
in terms of the hitting probabilities of simple Markovian dynamics, and we examine in [13] the case in which n and
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L increase with β , proving that the trace process ξt converges in an appropriate time scale to a two-dimensional
Brownian motion.

Denote by Hj , j ≥ 0, the set of configurations with energy equal to Hmin + j = −2n(n − 1) + j :

Hj = {
η ∈ ΩL,K : H(η) =Hmin + j

}
, Hij =

j⋃
k=i

Hk,

and let

Δj = {
η ∈ ΩL,K : H(η) > Hmin + j

}
, (2.3)

so that H0 = Ω0 and {H0j ,Δj } forms a partition of the set ΩL,K .

Remark 2.3. The proof of Theorem 2.1 requires a precise knowledge of the energy landscape of the Kawasaki dynam-
ics in the graph ΩL,K . This description is carried out in Section 4, where we show that the process ηt visits solely
a tiny portion of the state space ΩL,K during an excursion between two ground states. More precisely, as illustrated
in Fig. 1, we show the existence of four disjoint subsets of H1, denoted by Ω1, . . . ,Ω4, and of four subsets of H2,
denoted by Γ1, . . . ,Γ4, such that, with a probability converging to 1 as the temperature vanishes,

(1) After a time of order e2β , the process jumps from a ground state to a configuration in the set Γ1;
(2) The process spends a time of order 1 in a set Γj before reaching a configuration in Ωj−1 or in Ωj ;
(3) After a time of order eβ , the process jumps from a configuration in Ωj , 1 ≤ j ≤ 4, to a configuration in the set

Γj ∪ Γj+1;
(4) The set Δ2 is never visited.

A large portion of the set H1 can be reached from a ground state only by crossing the set Δ2. For example, the
configurations in which the particles form a (n − k) × (n + k) rectangle, 3 ≤ k <

√
n, with an extra row or column of

particles attached to the longest side of the rectangle. By the previous discussion, these configurations of the set H1

are never visited during an excursion between two ground states.

The simplicity of the energy landscape emerging from Remark 2.3, and illustrated in Fig. 1, is one of the main
by-products of this article. The proof of the convergence of the Kawasaki dynamics to a Brownian motion in [13]
relies strongly on this description.

The article is organized as follows. In the next section we present a sketch of the argument and in Section 4 a
description of the shallow valleys visited during an excursion between two ground states. In Section 5, we describe
the evolution of the Markov process among these shallow valleys in the time scale eβ , and in Section 6 the asymptotic
behavior of the Kawasaki dynamics among the ground states in the time scale e2β .

Fig. 1. The energy landscape of the Kawasaki dynamics at low temperature. Ω0 represents the set of ground states, Ωj , 1 ≤ j ≤ 4, disjoint subsets
of H1, Γj , 1 ≤ j ≤ 4, disjoint subsets of H2, and Λ = H1 \ [⋃1≤j≤4 Ωj ]. The edges indicate that a configuration from one set may jump to the
other. At low temperatures, during an excursion between two ground states the process does not visit the set Δ2 and all the analysis is reduced to
the lower portion of the picture.
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3. Sketch of the proof

The proof of Theorem 2.1 relies on the strategy presented in [3] to prove the metastability of reversible Markov
processes evolving on finite state spaces. We do not investigate the full tree structure of the chain, presented in the
Introduction, but a small portion of it contained in the first and second generation of the tree.

A simple computation shows that assumptions (2.1) and (2.2) of that article are satisfied. Indeed, since H(σ x,yη)−
H(η) = (ηy − ηx){∑‖z−y‖=1 ηz − ∑

‖z−x‖=1 ηz + ηy − ηx}, the jump rates cx,y(η) may only assume the values 1,

e−β , e−2β and e−3β , which proves assumptions (2.1) and (2.2).
Denote by Rβ(η, ξ) the rate at which the process ηt jumps from η to ξ so that Rβ(η, ξ) = cx,y(η) if ξ = σx,yη for

some bond {x, y} ∈ Λ∗
L, and Rβ(η, ξ) = 0, otherwise.

A self-avoiding path γ from A to B, A, B ⊂ ΩL,K , A ∩ B = ∅, is a sequence of configurations (ξ0, . . . , ξn) such
that ξ0 ∈ A, ξn ∈ B, ξi �= ξj , i �= j , Rβ(ξj , ξj+1) > 0, 0 ≤ j < n. Denote by ΓA,B the set of self-avoiding paths from
A to B and let

GK(A,B) := max
γ∈ΓA,B

GK(γ ), GK(γ ) = G
β
K(γ ) := min

0≤i<n
μK(ξi)Rβ(ξi, ξi+1)

if γ = (ξ0, . . . , ξn). Since μK(ξi)Rβ(ξi, ξi+1) = min{μK(ξi),μK(ξi+1)}, GK(γ ) = min0≤i≤n μK(ξi) and GK(A,B)

is the measure of the saddle configuration from A to B.
Denote by DK = D

β
K the Dirichlet form associated to the generator of the Markov process ηt :

DK(f ) = 1

2

∑
{x,y}∈Λ∗

L

∑
ξ∈ΩL,K

μK(ξ)cx,y(ξ)
{
f

(
σx,yξ

) − f (ξ)
}2

, f :ΩL,K → R.

Let capK(A,B) = capβ
K(A,B), A, B ⊂ ΩL,K , A∩B =∅, be the capacity between A and B:

capK(A,B) = inf
f

DK(f ),

where the infimum is carried over all functions f :ΩL,K → R such that f (ξ) = 1 for all ξ ∈ A, and f (ξ) = 0 for all
ξ ∈ B. We proved in [3], Lemma 4.2 and 4.3, that the ratio capK(A,B)/GK(A,B) converges as β ↑ ∞: For every A,
B ⊂ ΩL,K , A∩B =∅,

lim
β→∞

capK(A,B)

GK(A,B)
= C(A,B) ∈ (0,∞). (3.1)

We claim that GK({ηx}, {ηy}) = e−2βμK(ηx) for x �= y. Denote by e1, e2 the canonical basis of R2. On the one
hand, any path γ from ηx to a set A �� ηx is such that GK(γ ) ≤ e−2βμK(ηx). On the other hand, it is easy to construct
a self-avoiding path γ = (ηx = ξ0, . . . , ξn = ηx+ei ) from ηx to ηx+ei , and therefore a path from ηx to ηy, such that
μK(ξj ) ≥ e−2βμK(ηx), 0 ≤ j ≤ n. This proves the claim.

It follows from the previous claim and from (3.1) that capK({ηx}, {ηy}) is of order e−2βμK(ηx). In particular, to
examine the evolution of the process ηt among the competing metastable states ηx we need only to care of the states
whose measure are greater than or equal to e−2βμK(ηx). Actually, as pointed out in Remark 2.3, only a much smaller
class is relevant for the problem.

In the next section we define the sets Ω1, . . . ,Ω4 introduced in Remark 2.3. In the following section we show that
starting from a configuration in

⋃
0≤j≤4 Ωj in the time scale eβ the Kawasaki dynamics evolves as a markov chain

whose points are subsets of the sets Ωj . In this chain the configurations ηx are absorbing points and the jump rates
are expressed as functions of the hitting probabilities of simple Markovian dynamics.

In Section 6, we deduce from the previous result the tunneling behavior of the process ηt on the longer time scale
e2β among the competing metastable states ηx. The jump rates of this dynamics are expressed in terms of the hitting
probabilities of the absorbing states for the Markovian dynamics derived in the previous step.
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We conclude this section recalling the definition of a valley presented in [1]. Denote by HΠ , H+
Π , Π ⊂ ΩL,K , the

hitting time and the time of the first return to Π :

HΠ = inf
{
t > 0: η

β
t ∈ Π

}
,

H+
Π = inf

{
t > 0: η

β
t ∈ Π and ∃0 < s < t;ηβ

s /∈ Π
}
.

We sometimes write H(Π), H+(Π) instead of HΠ , H+
Π .

Consider two subsets W ⊂ B of the state space ΩK and a configuration η ∈ W . The triple (W,B, η) is called a
valley if:

• Starting from any configuration of W the process visits η before hitting Bc:

lim
β→∞ max

ξ∈W
Pβ

ξ [HBc < Hη] = 0.

• There exists a sequence mβ such that, for every ξ ∈ W , HBc /mβ converges to a mean 1 exponential random

variable under Pβ
ξ . The sequence mβ is called the depth of the valley.

• The portion of time the process spends in B \W before hitting Bc is negligible: for every ξ ∈ W and every δ > 0,

lim
β→∞ Pβ

ξ

[
1

mβ

∫ HBc

0
1{ηs ∈ B \W} > δ

]
= 0.

4. Some shallow valleys

We examine in this section the evolution of the Markov process {ηβ
t : t ≥ 0} between two consecutive visits to the

ground states {ηx: x ∈ ΛL}. In the next section, we show that at very low temperatures, in the time scale eβ , much
smaller than the time scale of an excursion between ground states, the process ηt evolves as a continuous-time Markov
chain whose state space consists of subsets of H01. In this asymptotic dynamics the ground states play the role of
absorbing states. We present in this section the subsets of H01 which become the points of the asymptotic dynamics
and show that these sets are valleys. We also provide explicit formulas for the jump rates of the asymptotic dynamics
in terms of four elementary Markov processes.

For a subset B of ΛL, denote by ∂+B the outer boundary of B . This is the set of sites which are at distance one
from B:

∂+B = {
x ∈ ΛL \ B: ∃y ∈ B,‖y − x‖ = 1

}
.

4.1. Elementary Markov processes

The jump rates among the shallow valleys introduced below are all expressed in terms of the hitting probabilities of
four elementary, finite-state, continuous-time Markov chains. We present in this subsection these processes and derive
some identities needed later. Let {xt : t ≥ 0} be the nearest-neighbor, symmetric random walk on ΛL which jumps
from a site x to x ± ei at rate 1. Denote by Px

y, y ∈ ΛL, the probability measure on D(R+,ΛL) induced by xt starting
from x. We sometimes represent xt by x(t). Denote by p(y, z,G), y ∈ ΛL, z ∈ G, G ⊂ ΛL, the probability that the
random walk starting from y reaches G at z:

p(y, z,G) := Px
y
[
x(HG) = z

]
.

By extension, for a subset A of ΛL, let p(x,A,G) = ∑
y∈A p(x,y,G). Moreover, when G = ∂+Q, we omit the set G

in the notation: p(x,A) := p(x,A, ∂+Q). Let, finally,

p(A) := p(w2 + 2e2,A) + p(w2 + e1 + e2,A). (4.1)



Tunneling of the Kawasaki dynamics at low temperatures 67

Let yt = (y1
t ,y2

t ) be the continuous-time Markov chain on Dn = {(j, k): 0 ≤ j < k ≤ n−1}∪{(0,0)} which jumps
from a site y to any of its nearest-neighbor sites z, ‖y − z‖ = 1, at rate 1. Let D+

n = {(j, n − 1): 0 ≤ j < n − 1} and
let

qn = Py
(0,1)[HD+

n
< H(0,0)], (4.2)

where Py
(0,1) stands for the distribution of yt starting from (0,1).

Let En = {0, . . . , n − 1}2 and let zt = (z1
t , z2

t ) be the continuous-time Markov chain on En ∪ {d} which jumps
from a site z ∈ En to any of its nearest-neighbor sites z′ ∈ En, ‖z′ − z‖ = 1, at rate 1, and which jumps from (1,1)

(resp. from d) to d (resp. to (1,1)) at rate 1. Let E+
n = {(j, n − 1): 0 ≤ j ≤ n − 1}, E−

n = {(j,0): 1 ≤ j ≤ n − 1},
∂En = E+

n ∪ E−
n ∪ {(0,0)} and for 0 ≤ k ≤ n − 1, let

r+n = Pz
(0,1)[H∂En = HE+

n
], r−n = Pz

(0,1)[H∂En = HE−
n
],

(4.3)
r0
n(k) = Pz

(k,1)[H∂En = H(0,0)], rn = r+n + r−n ,

where Pz
(k,1) stands for the distribution of zt starting from (k,1). Note that the values of r±n , r0

n(k) are unchanged

if we consider the trace of zt on the set {0, . . . , n − 1}2. This latter process is a nearest-neighbor random walk on
{0, . . . , n − 1}2 whose holding time at (1,1) is longer. The embedded discrete-time chain of the trace process is the
symmetric, nearest-neighbor random walk. In particular, r+n = (n − 1)−1.

We claim that

n−1∑
k=1

r0
n(k) = r−n . (4.4)

Indeed, denote by Zk the embedded, discrete-time chain on En. Outside of the boundary ∂En, Zk jumps uniformly to
one of its neighbors. At the boundary ∂En, it jumps with probability 1 to the unique neighbor in the interior En \ ∂En.
Therefore,

r0
n(k) = Pz

(k,1)[H∂En = H(0,0)] =
∑
γ

p(γ )3−1 =
∑
γ

π(k,1)p(γ )
1

3π(k,1)
,

where the sum is carried over all paths γ from (k,1) to (0,1) which never pass by ∂En. The factor 1/3 represents the
probability to jump from (0,1) to (0,0) and π the reversible stationary measure for the chain Zk , which is proportional
to the degree of the vertices. By reversibility, the previous sum is equal to

∑
γ ′

π(0,1)p
(
γ ′) 1

3π(k,1)
=

∑
γ ′

p
(
γ ′) 1

Znπ(k,1)
,

where the sum is now carried over all paths γ ′ from (0,1) to (k,1) which never pass by ∂En and Zn is the sum of the
degrees of all vertices. Last expression is equal to Pz

(0,1)[H∂En = H(k,0)]. Summing over all k yields (4.4).
Finally, consider two independent, nearest-neighbor, continuous-time, random walks ut , vt evolving on an interval

J = {m, . . . ,M}, m < M , which jump from k (resp. k + 1) to k + 1 (resp. k), m ≤ k < M , at rate 1. Let H1 = inf{t >

0: |ut − vt | = 1}. For a, a + 2 ∈ J , b, b + 1 ∈ J , let

m(J, a, b) := Puv
(a,a+2)

[
(uH1,vH1) = (b, b + 1)

]
, (4.5)

where Puv
(a,a+2) stands for the distribution of the pair (ut ,vt ) starting from (a, a + 2).

4.2. The distribution of η(H+
H01

) starting from a ground state

Denote by N (ηx) the set of eight configurations which can be obtained from ηx by a rate e−2β jump. Two of these
configurations deserve a special notation, η�

1 = σ w2,w2+e2ηw and η�
2 = σ w2,w2+e1ηw.
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Lemma 4.1. For each η ∈ N (ηx), there exists a probability measure M(η, ·) on H01 such that

M(η,A) := lim
β→∞ Pη[HH01 = HA] (4.6)

for all A⊂H01. Set Mj (·) =M(η�
j , ·), j = 1, 2. Then,

M1
(
E0,0

w
) = 1

2

{
1 + r−n +A1,2

4 + qn + rn −A
+ 1 + r−n +A2 −A1

4 + qn + rn +A(e1) −A(e2)

}
,

M2
(
E0,0

w
) = 1

2

{
1 + r−n +A1,2

4 + qn + rn −A
− 1 + r−n +A2 −A1

4 + qn + rn +A(e1) −A(e2)

}
,

where A(ei) = p(w2 + ei), Aj = p(Q
2,j
w ) and

A =A(e1) +A(e2), A1,2 =A1 +A2, A0,3 =A0 +A3.

Proof. We prove this lemma for η = η�
1, A = E2,2

0 and leave the other cases to the reader. Recall the definition of

qn, r±n introduced in (4.2), (4.3). We claim that any limit point Mj = Mj (E2,2
w ) of the sequences Pη�

j
[HH01 = HA]

satisfies the equations

(4 + qn + rn −A)(M1 +M2) = 1 +A1,2 + r−n . (4.7)

To prove (4.7), assume that Pη�
j
[HH01 = HA] converges and observe that the configuration η�

1 may jump at rate 1 to

6 configurations and at rate e−β or less to O(n) configurations. Among the configurations which can be reached at rate
1 two belong to H01, one of them being ηw and the other σw2,w2+e2−e1ηw ∈ A. Hence, if we denote by N2(η

�
1) the set

of the remaining four configurations which can be reached from η�
1 by a rate 1 jump, decomposing Pη�

1
[HH01 = HA]

according to the first jump we obtain that

6Pη�
1
[HH01 = HA] = 1 +

∑
η′∈N2(η

�
1)

Pη′ [HH01 = HA] + ε(β), (4.8)

where ε(β) is a remainder which vanishes as β ↑ ∞.
We examine the four configurations of N2(η

�
1) separately. In two configurations, σw2,w2+2e2ηw and σ w2,w2+e2+e1 ×

ηw, a particle is detached from the quasi-square Q2
w. The detached particle performs a rate 1 symmetric random walk

on ΛL until it reaches the outer boundary of the square Q0. Denote by Hhit the time the detached particle hits the
outer boundary of the square Qw. Among the remaining particles, two jumps have rate e−β and the other ones have
rate at most e−2β . Therefore, by the strong Markov property, for η′ = σ w2,w2+2e2ηw, σ w2,w2+e2+e1ηw,

Pη′ [HH01 = HA] = Pη′
[
η(Hhit) ∈ E2,2

w
] +

2∑
i=1

Pη′
[
η(Hhit) = η�

i

]
Pη�

i
[HH01 = HA] + ε(β).

By definition (4.1) of p, the contribution of the terms η′ = σ w2,w2+2e2ηw and η′ = σ w2,w2+e2+e1ηw to the sum appear-
ing on the right hand side of (4.8) is

p(w2 + e2)Pη�
1
[HH01 = HA] + p(w2 + e1)Pη�

2
[HH01 = HA] + p

(
Q2,2

w
) + ε(β). (4.9)

It remains to analyze the two configurations of N2(η), η′ = σw2−e2,w2+e2ηw and η′ = σw2−e1,w2+e2ηw. In the first
one, if we denote by z1

t the horizontal position of the particle attached to the top side of the square Q and by z2
t the

vertical position of the hole on the left side of the square, it is not difficult to check that (z1
t , z2

t ) evolves as the Markov
chain described just before (4.3) with initial condition (z1

0, z2
0) = (0,1).

Denote by Hhit the time the hole hits 0 or n−1. Since the hole moves at rate 1, and since all the other O(n) possible
jumps have rate at most e−β , with probability increasing to 1 as β ↑ ∞, Hhit occurs before any rate e−β jump takes
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place. At time Hhit three situations can happen. If the process (z1
t , z2

t ) reached (0,0) (resp. E+
n , E−

n ), the process η(t)

returned to the configuration η�
1 (resp. hitted a configuration in E1,2

w , E2,2
w ). Hence, by definition of r±n ,

Pη′ [HH01 = HA] = r−n + (1 − rn)Pη�
1
[HH01 = HA] + ε(β)

for η′ = σ w2−e2,w2+e2ηw.
Assume now that η′ = σ w2−e1,w2+e2η0. In this case, if we denote by y1 the horizontal position of the particle

attached to the side of the quasi-square and by y2 the horizontal position of the hole, the pair (y1
t ,y2

t ) evolve according
to the Markov process introduced just before (4.2) with initial condition (y1

0,y2
0) = (0,1). Denote by Hhit the time the

hole hits 0 or n − 1. Here again, since the attached particle and the hole move at rate 1 and since all the other O(n)

jumps have rate at most e−β , with asymptotic probability equal to 1, Hhit occurs before any rate e−β jump takes place.
At time Hhit, if y2

Hhit
= 0, the process η(t) has returned to the configuration η�

1, while if y2
Hhit

= n− 1, the process η(t)

has reached a configuration in E3,2
w . Since the random walk reaches n − 1 before 0 with probability qn, by the strong

Markov property

Pη′ [HH01 = HA] = (1 − qn)Pη�
1
[HH01 = HA] + ε(β)

for η′ = σ w2−e1,w2+e2ηw.
Therefore, the contribution of the last two configurations of N2(η

�
1) to the sum on the right hand side of (4.8) is

r−n + (2 − rn − qn)Pη�
1
[HH01 = HA] + ε(β). (4.10)

Equations (4.8), (4.9) and (4.10) yield a linear equation for M1 = Pη�
1
[HH01 = HA] in terms of M1 and M2 =

Pη�
2
[HH01 = HA]. Analogous arguments provide a similar equation for M2 in terms of M1 and M2. Adding these two

equations we obtain (4.7), while subtracting them gives a formula for the difference M1 − M2. The assertion of the
lemma follows from these equations for M1 +M2 and M1 −M2. �

Similar computations to the ones carried over in the previous proof permit to derive explicit expressions for Mj .
For example, we have that

M1
(
ηw) =M2

(
ηw) = 1

4 + qn + rn −A
·

By symmetry, for each η ∈N (ηx), we can represent M(η, ·) in terms of M1 and M2. Moreover, for all η ∈N (ηx),

M
(
η,ηx) +

∑
0≤i,j≤3

M
(
η,E i,j

x
) = 1.

4.3. The valleys E i,j
x

Let Qi = Q \ {wi}, 0 ≤ i ≤ 3, where

w0 = w = (0,0), w1 = (n − 1,0), w2 = (n − 1, n − 1), w3 = (0, n − 1)

are the corners of the square Q. For x ∈ ΛL, let Qi
x = x + Qi , xi = x + wi .

Denote by ∂jQ
i
x, 0 ≤ j ≤ 3, the j th boundary of Qi

x:

∂jQ
i
x = {

z ∈ ∂+Qi
x: ∃y ∈ Qi

x;y − z = (1 − j)e2
}
, j = 0,2,

∂jQ
i
x = {

z ∈ ∂+Qi
x: ∃y ∈ Qi

x;y − z = (j − 2)e1
}
, j = 1,3.

Let Q
i,j
x = ∂jQ

i
x \ Qx, let E i,j

x be the set of configurations in which all sites of the set Qi
x are occupied with an extra

particle at some location of Q
i,j
x , and let Ω1 = Ω1

L,K be the union of all such sets:

E i,j
x = {

σ xi ,zηx: z ∈ Q
i,j
x

}
, Ω1

x =
⋃

0≤i,j≤3

E i,j
x , Ω1 =

⋃
x∈ΛL

Ω1
x .
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Fig. 2. Four among the five configurations of the set E0,0
x for n = 6. The gray dot indicates the site x. We placed a square [−1/2,1/2)2 around

each particle.

Note that Ω1 ⊂H1. Figure 2 illustrates typical configurations of the set Ω1.

The process {ηβ
t : t ≥ 0} can reach any configuration ξ ∈ E i,j

x from any configuration η ∈ E i,j
x with rate one jumps,

while any jump from a configuration in E i,j
x to a configuration which does not belong to this set has rate at most e−β .

This means that at low temperatures the process ηt reaches equilibrium in E i,j
x before exiting this set, which is the first

condition for a set to be the well of a valley.
The main result of this subsection states that for any configuration ξ ∈ E i,j

x , the triples (E i,j
x ,E i,j

x ∪ Δ1, ξ) are
valleys in the terminology of [1]. This means, in particular, that starting from any configuration in E i,j

x , the hitting
time of the set H01 \ E i,j

x properly rescaled converges in distribution, as β ↑ ∞, to an exponential random variable.
We compute in Proposition 4.3 the time scale which turns the limit a mean one exponential distribution, as well as the
asymptotic distribution of η(H(H01 \ E i,j

x )).
Denote by N (E i,j

x ), N for neighborhood, the configurations which do not belong to E i,j
x , but which can be reached

from a configuration in E i,j
x by performing a jump which has rate e−β . The set N (E2,2

w ), for instance, has the following
3n elements. There are n + 1 configurations obtained when the top particle detaches itself from the others: σw2,zηw,
where z = (−1, n), (a,n + 1), 0 ≤ a ≤ n − 2, (n − 1, n). There are n − 1 configurations obtained when the particle
at w2 − e2 moves upward: σ w2−e2,zηw, z = (a,n), 0 ≤ a ≤ n − 2. There are n − 2 configurations obtained when the
particle at w2 − e1 moves to the right: σ w2−e1,zηw, z = (a,n), 0 ≤ a ≤ n − 3. To complete the description of the set
N (F2,2

w ), we have to add the configurations σ w3,w3+e2σ w2,w3+e1+e2ηw and σw2−e1,w2−e1+e2σ w2,w2−2e1+e2ηw.

Lemma 4.2. For x ∈ ΛL, 0 ≤ i, j ≤ 3, and ξ ∈ N (E i,j
x ), there exists a probability measure M(ξ, ·) defined on H01

such that

lim
β→∞ Pβ

ξ

[
η(HH01) ∈A

] =M(ξ,A)

for all A ⊂ H01. Moreover, let Π be one of the sets E i,j
w , 0 ≤ i, j ≤ 3, or one of the singletons {ηw}, {σ w2,w3+e1+e2 ×

σw0,w3+e2ηw}. Then,

(1) For z ∈ J1 = {(−1, n), (n − 1, n), (a,n + 1): 0 ≤ a ≤ n − 2},

M
(
σ w2,zηw,Π

) =
3∑

k=0

p
(
z,Q2,k

w
)
1
{
Π = E2,k

w
} + p(z,w2 + e2)M1(Π) + p(z,w2 + e1)M2(Π).

(2) For z ∈ Q
2,2
w ,

M
(
σ w2−e2,zηw,Π

) = 1

n − 1
1
{
Π = E1,2

w
} + r0

n(nz)M1(Π)

+
{

n − 2

n − 1
− r0

n(nz)

}
1
{
Π = E2,2

w
}
,

where nz = n − 1 − z1, z = (z1, z2).
(3) For z = (k, n), 0 ≤ k ≤ n − 3,

M
(
σw2−e1,zηw,E2,2

w
) = 1.
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(4) Finally, for the last two configurations of N (E2,2
w ),

M
(
σw3,w3+e2σ w2,w3+e1+e2ηw,Π

) = 1

n
1
{
Π = {

σ w2,w3+e1+e2σ w0,w3+e2ηw}}
+ n − 1

n
1
{
Π = E2,2

w
}
,

M
(
σw2−e1,w2−e1+e2σ w2,w2−2e1+e2ηw,E2,2

w
) = 1.

Proof. We present the proof for i = j = 2, x = w, the other cases being analogous. As we have seen, the set N (E2,2
w )

has five different types of configurations. We examine each one separately. Assume first that ξ = σ w2,zηw for some
z ∈ J1, J1 the set defined in the statement of the lemma. The free particle, initially at z performs a rate one, nearest-
neighbor, symmetric random walk in ΛL until it reaches the outer boundary of the square Q. All the other possible
jumps have rate at most e−β and may therefore be neglected in the argument. When the free particle attains ∂+Q, the
configuration either belongs to one of the sets E2,k , 0 ≤ k ≤ 3, or is one of the configurations η�

1 or η�
2 introduced in

Lemma 4.1. By definition (4.1) of p, it belongs to E2,k
w with probability p(z,Q2,k

w ) and is equal to the configuration η�
1

(resp. η�
2) with probability p(z,w2 + e2) (resp. p(z,w2 + e1)). This proves the first assertion of the lemma.

Assume now that ξ = σ w2−e2,zηw, z ∈ Q
2,2
w . The configuration ξ has a particle attached to the top side of the

square Q and a hole on the right side of the square. This pair behaves as the process zt introduced in the begining
of this section and evolves until the hole reaches the bottom of the square or its original position at the top. There
are three cases to be considered. The hole may reach w1 before w2. This happens with probability (n − 1)−1 and the
configuration attained belongs to the equivalent class E1,2

w .
The hole may reach w2 before w1 when the top particle is not at w2 + e2. In this case the process reached a

configuration in E2,2
w . This event has probability Pz

(j,1)[H∂En = HE−
N
], where j = n− 1 − z · e1 and where Pz

(j,1) is the
measure introduced in (4.3). By definition of the set ∂En,

Pz
(j,1)[H∂En = HE−

N
] = 1 − Pz

(j,1)[H∂En = HE+
N
] − Pz

(j,1)[H∂En = H(0,0)]

= n − 2

n − 1
− r0

n(j).

Finally, the hole may reach w2 before w1 at a time where the top particle is at w2 + e2. In this case the process
reached the configuration η�

1 introduced in the previous lemma. This event happens with probability r0
n(j), which

concludes the proof of the second assertion of the lemma.
In the case ξ = σw2−e1,zηw, the hole initially at w2 − e1 performs a horizontal, rate one, symmetric random walk

on the interval {m+1, . . . , n−1}, where m represents the horizontal position of the top particle, which itself performs
a horizontal, rate one, symmetric random walk limited on its right by the hole in the row below. This coupled system
evolves as the process yt introduced in (4.2) until the hole initially at w2 − e1 reaches its original position at w2.

Suppose that ξ = σ w3,w3+e2σ w2,w3+e1+e2ηw. In this situation the hole at w3 performs a vertical, rate one, symmetric
random walk on {(0, b): 0 ≤ b ≤ n}. The hole reaches w before it reaches w3 with probability n−1.

Finally, if ξ = σw2−e1,w2−e1+e2σ w2,w2−2e1+e2ηw, there is only one rate one jump which drives the system back to
the set E2,2

w . �

By symmetry, the distribution of η(H(H01 \ E i,·
x )) can be obtained from the one of η(H(H01 \ E0,j

w )), 0 ≤ j ≤ 3.
When the set Π is a singleton {ζ } we represent M(ξ, {ζ }) by M(ξ, ζ ). This convention is adopted for all functions of
sets without further comment. Recall the notation introduced in the beginning of this section and in the statement of
Lemma 4.2. Let

Z
(
E i,j

x
) =

∑
ξ∈N (E i,j

x )

M
(
ξ,

(
E i,j

x
)c) =

∑
ξ∈N (E i,j

x )

{
1 −M

(
ξ,E i,j

x
)}

. (4.11)

Note that Z(E i,j
x ) does not depend on x. In this sum, the terms M(ξ, ·) are not multiplied by weights ω(ξ) because

asymptotically the process hits N (E i,j
x ) according to a uniform distribution. In view of the previous lemma and
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by (4.4),

Z
(
E2,2

x
) = 1 + 1

n − 1
+ (

1 + r−n
)[

1 −M1
(
E2,2

w
)]

+
∑
z∈J �

1

{[
1 − p

(
z,Q2,2

w
)] − p(z,w2 + e2)M1

(
E2,2

w
) − p(z,w2 + e1)M2

(
E2,2

w
)}

,

where J �
1 = J1 \ {w2 + e2}.

Proposition 4.3. Fix 0 ≤ i, j ≤ 3 and x ∈ ΛL.

(1) For any ξ ∈ E i,j
x , the triple (E i,j

x ,E i,j
x ∪ Δ1, ξ) is a valley of depth μK(E i,j

x )/ capK(E i,j
x , [E i,j

x ∪ Δ1]c);
(2) For any ξ ∈ E i,j

x , under Pβ
ξ , H(H01 \ E i,j

x )/eβ converges in distribution to an exponential random variable of

parameter Z(E i,j
x )/|E i,j

x |;
(3) For any ξ ∈ E i,j

x , Π ⊂H01 \ E i,j
x ,

lim
β→∞ Pβ

ξ

[
η
(
H

(
H01 \ E i,j

x
)) ∈ Π

] = 1

Z(E i,j
x )

∑
η∈N (E i,j

x )

M(η,Π) =: Q(
E i,j

x ,Π
)
.

Proof. Recall [1], Theorem 2.6. Condition (2.15) is fulfilled by definition of the set Δ1. A simple argument shows that
GK(ξ, ζ ) = e−βμK(ηw) for any pair of configurations ξ �= ζ ∈ E i,j

x , and that GK(E i,j
x , [E i,j

x ∪ Δ1]c) ≤ e−2βμK(ηw).
Condition (2.14) follows from these estimates and (3.1). This proves the first assertion of the lemma.

To prove the second assertion of the lemma, we start with a recursive formula for H
H01\E i,j

x
. Let τ1 the time the

process leaves the set E i,j
x : τ1 = inf{t > 0: η

β
t /∈ E i,j

x }. We have that

H
H01\E i,j

x
= τ1 + HH01 ◦ θτ1 + 1{HH01 ◦ θτ1 = HE i,j

x
◦ θτ1}HH01\E i,j

x
◦ θH+

H01
,

where {θt : t ≥ 0} stands for the shift operators.
Fix λ > 0 and let λβ = λe−β . By the strong Markov property, for any ξ ∈ E i,j

x ,

Eβ
ξ

[
e
−λβH

H01\Ei,j
x

] = Eβ
ξ

[
e−λβτ1Eβ

ητ1

[
1{HH01 �= HE i,j

x
}e−λβHH01

]]
+ Eβ

ξ

[
e−λβτ1Eβ

ητ1

[
1{HH01 = HE i,j

x
}e−λβHH01 exp{−λβH

H01\E i,j
x

◦ θHH01
}]]. (4.12)

Recall the definition of N (E i,j
x ) given just before the statement of Lemma 4.2. With a probability which converges

to 1 as β ↑ ∞, η
β
τ1 belongs to N (E i,j

x ). Each configuration in N (E i,j
x ) belongs to an equivalent class which eventually

attains H01 after a finite random number of rate one jumps. This proves that

lim
A→∞ lim

β→∞ max
ζ∈N (E i,j

x )

Pβ
ζ [HH01 > A] = 0.

Therefore, we may replace in (4.12) exp{−λβHH01} by 1 at a cost which vanishes as β ↑ ∞.
By the strong Markov property, after the last replacement, the second term on the right hand side of (4.12) can be

rewritten as

Eβ
ξ

[
e−λβτ1 Eβ

ητ1

[
1{HH01 = HE i,j

x
}Eβ

ηHH01

[
exp{−λβH

H01\E i,j
x

}]]].
Since E i,j

x is an equivalent class and the process leaves E i,j
x only after a rate e−β jump, a simple coupling argument

shows that

lim
β→∞ max

η,ζ∈E i,j
x

∣∣Eβ
η

[
exp{−λβH

H01\E i,j
x

}] − Eβ
ζ

[
exp{−λβH

H01\E i,j
x

}]∣∣ = 0.
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The previous expectation is thus equal to

Eβ
ξ

[
exp{−λβH

H01\E i,j
x

}]Eβ
ξ

[
e−λβτ1 Eβ

ητ1

[
1{HH01 = HE i,j

x
}]]

plus an error which vanishes as β ↑ ∞.
We claim that (e−βτ1, η

β
τ1) converges in distribution, as β ↑ ∞, to a pair of independent random variables where

the first coordinate is an exponential time and the second coordinate has a distribution concentrated on N (E i,j
x ). The

proof of this claim relies on [1], Theorem 2.7, and on a coupling argument.
Let G

i,j
x = N (E i,j

x ) ∪ E i,j
x . Consider the Markov process {η̂β

t : t ≥ 0} on G
i,j
x whose jump rates r̂(η, ξ) are given

by

r̂(η, ξ) =
⎧⎨
⎩

r(η, ξ) if η ∈ E i,j
x , ξ ∈ G

i,j
x ,

r(ξ, η) if η ∈N
(
E i,j

x
)
, ξ ∈ E i,j

x ,
0 otherwise.

Note that r̂(η, ξ) = e−β or 0 if η ∈ N (E i,j
x ), and that we may couple the processes η

β
t and η̂

β
t in such a way that the

probability of the event {ηβ
t = η̂

β
t : 0 ≤ t ≤ τ1} converges to one as β ↑ ∞ if the initial state belongs to E i,j

x .
Let {ξ1, . . . , ξm} be an enumeration of the set N (E i,j

x ) and consider the partition E i,j
x ∪ {ξ1} ∪ · · · ∪ {ξm} of the

set G
i,j
x . Assumption (H1) of [1], Theorem 2.7, for the process η̂

β
t is empty for the sets {ξj } and has been checked in

the first part of this proof for the set E i,j
x . Assumption (H0) for the process η̂

β
t speeded up by eβ can be verified by

a direct computation. Therefore, by [1], Theorem 2.7, the pair (e−β τ̂1, η̂
β
τ1) converges in distribution, as β ↑ ∞, to a

pair of independent random variables in which the first coordinate has an exponential distribution and the second one
is concentrated over N (E i,j

x ). This result can be extended to the original pair (e−βτ1, η
β
τ1) by the coupling argument

alluded to above.
It follows from the claim just proved and the previous estimates that

lim
β→∞ Eβ

ξ

[
e
−λβH

H01\Ei,j
x

] = lim
β→∞

Eβ
ξ [e−λβτ1]Eβ

ξ [Pβ
ητ1

[HH01 �= HE i,j
x

]]
1 − Eβ

ξ [e−λβτ1]Eβ
ξ [Pβ

ητ1
[HH01 = HE i,j

x
]]

·

If τ1/eβ converges to an exponential random variable of parameter θ , the right hand side becomes

lim
β→∞

θEβ
ξ [Pβ

ητ1
[HH01 �= HE i,j

x
]]

λ + θEβ
ξ [Pβ

ητ1
[HH01 �= HE i,j

x
]]

,

which means that H(H01 \ E i,j
x )/eβ converges to an exponential random variable of parameter

γ = θ lim
β→∞ Eβ

ξ

[
Pβ

ητ1
[HH01 �= HE i,j

x
]].

We examine the case i = j = 2, x = w. Recall the description of the set N (E2,2
w ) presented before Lemma 4.2. By

computing the average rates which appear in assumption (H0) of [1], we obtain that under Pβ
ξ , τ1/eβ converges in

distribution to an exponential random variable of parameter |N (E2,2
w )|/|E2,2

w | = 3n/(n − 1), and that η
β
τ1 converges to

a uniform distribution on N (E2,2
w ). Hence, by the conclusions of the previous paragraph and by Lemma 4.2, H(H01 \

E2,2
w )/eβ converges to an exponential random variable of parameter Z(E2,2

w )/|E2,2
w |. This proves the second assertion

of the proposition.
We turn to the third assertion. Denote by {Hj : j ≥ 1} the successive return times to H01:

H1 = H+(H01), Hj+1 = H+(H01) ◦ θHj
, j ≥ 1.
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With this notation, we may write for every ξ ∈ E2,2
w ,

Pβ
ξ

[
η(H

H01\E2,2
w

) ∈ Π
] =

∑
j≥1

Pβ
ξ

[
η(Hk) ∈ E2,2

w ,1 ≤ k ≤ j − 1, η(Hj ) ∈ Π
]
. (4.13)

By the strong Markov property, for any ξ ′ ∈ E2,2
w , Π ′ ⊂H01,

Pβ

ξ ′
[
η(H1) ∈ Π ′] = Eβ

ξ ′
[
Pβ

ητ1

[
η(HH01) ∈ Π ′]].

Under Pβ
ξ , the distribution of ητ1 converges to the uniform distribution over N (E2,2

w ) as β ↑ ∞. Hence, by Lemma 4.2,

lim
β→∞ Pβ

ξ ′
[
η(H1) ∈ Π ′] = 1

|N (E2,2
w )|

∑
η∈N (E2,2

w )

M
(
η,Π ′)

for all ξ ′ ∈ E2,2
w , Π ′ ⊂ H01. Denote the right hand side of the previous formula by q(Π ′). It follows from identity

(4.13), the strong Markov property and the previous observation that for all Π ⊂H01 \ E2,2
w ,

lim
β→∞ Pβ

ξ

[
η(H

H01\E2,2
w

) ∈ Π
] = q(Π)

1 − q(E2,2
w )

,

which concludes the proof of the proposition. �

Since H01 \ E i,j
x = [E i,j

x ∪ Δ1]c , it follows from the second assertion of the proposition that the depth of the valley
(E i,j

x ,E i,j
x ∪ Δ1, ξ) is eβ |E i,j

x |/Z(E i,j
x ). In particular,

lim
β→∞

μK(E i,j
x )

eβ capK(E i,j
x , [E i,j

x ∪ Δ1]c)
= |E i,j

x |
Z(E i,j

x )
· (4.14)

Since μK(E i,j
x ) = |E i,j

x |e−βμK(ηw),

lim
β→∞

capK(E i,j
x , [E i,j

x ∪ Δ1]c)
e−2βμK(ηw)

= Z
(
E i,j

x
)
.

In view of Lemma 4.2, we have the following explicit formula for the probability measure Q(E2,2
w , ·) on H01. Let

R
(
E i,j

x ,Π
) = Z

(
E i,j

x
)
Q

(
E i,j

x ,Π
) =

∑
η∈N (E i,j

x )

M(η,Π), Π ⊂H01. (4.15)

Recall the definition of the set J �
1 introduced one equation below (4.11). Then,

R
(
E2,2

w , ηw) = (
1 + r−n

)
M1

(
ηw)

+
∑
z∈J �

1

{
p(z,w2 + e2)M1

(
ηw) + p(z,w2 + e1)M2

(
ηw)}

,

for 0 ≤ i, j ≤ 3, (i, j) �= (2,2);

R
(
E2,2

w ,E i,j
w

) = (
1 + r−n

)
M1

(
E i,j

w
) + 1

{
E i,j

w = E1,2
w

} +
∑
z∈J �

1

p(z,w2 + e2)M1
(
E i,j

w
)

+
∑
z∈J �

1

{
p
(
z,Q2,j

w
)
1
{
Π = E2,j

w
} + p(z,w2 + e1)M2

(
E i,j

w
)};
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and

R
(
E2,2

w , σ w2,w3+e1+e2σ w0,w3+e2ηw) = 1

n
·

The rate R(E2,2
w ,Π) vanishes if Π does not intersect {ηw, ξ1}⋃

(i,j)�=(2,2) E
i,j
w , where ξ1 is the configuration appearing

in the previous displayed formula. Hence, on the time scale eβ , starting from the valley E2,2
w the process may fall in

the deep well ηw, it may reach some valley E i,j
w , (i, j) �= (2,2), which are similar to E2,2

w , or attain the configuration
σw2,w3+e1+e2σ w0,w3+e2ηw. In the next subsection we show that this configuration is the well of a valley, a property
shared by a class of configurations.

4.4. The valleys {ηa,(k,�)
x }

Let Rl, Rs be the rectangles Rl = {1, . . . , n−1}×{1, . . . , n−2}, Rs = {1, . . . , n−2}×{1, . . . , n−1}, where l stands
for lying and s for standing. Let ns0 = ns2 = n − 2, ns1 = ns3 = n − 1 be the length of the sides of the standing rectangle
Rs. Similarly, denote by nli , 0 ≤ i ≤ 3, the length of the sides of the lying rectangle Rl: nli = nsi+1, where the sum
over the index i is performed modulo 4.

Denote by Ia, a ∈ {s, l}, the set of pairs (k,�) = (k0, �0; k1, �1; k2, �2; k3, �3) such that

• 0 ≤ ki ≤ �i ≤ nai ,
• If kj = 0, then �j−1 = naj−1.

For (k,�) ∈ Ia, a ∈ {s, l}, let Rl(k,�), Rs(k,�) be the sets

Rl(k,�) = Rl ∪ {
(a,0): k0 ≤ a ≤ �0

} ∪ {
(n, b): k1 ≤ b ≤ �1

}
∪ {

(n − a,n − 1): k2 ≤ a ≤ �2
} ∪ {

(0, n − 1 − b): k3 ≤ b ≤ �3
}
,

Rs(k,�) = Rs ∪ {
(a,0): k0 ≤ a ≤ �0

} ∪ {
(n − 1, b): k1 ≤ b ≤ �1

}
∪ {

(n − 1 − a,n): k2 ≤ a ≤ �2
} ∪ {

(0, n − b): k3 ≤ b ≤ �3
}
.

Note that a hole between particles on the side of a rectangle is not allowed in the sets Ra(k,�), Rs(k,�).
Denote by Ia, a ∈ {s, l}, the set of pairs (k,�) ∈ Ia such that |Ra(k,�)| = n2. For (k,�) ∈ Ia, denote by Mi(k,�)

the number of particles attached to the side i of the rectangle Ra(k,�):

Mi(k,�) =
{

�i − ki + 1 if ki+1 ≥ 1,
�i − ki + 2 if ki+1 = 0.

Clearly, for (k,�) ∈ Ia,
∑

0≤i≤3 Mi(k,�) = 3n−2+A, where A is the number of occupied corners, which are counted
twice since they are attached to two sides.

Denote by I ∗
a ⊂ Ia, the set of pairs (k,�) ∈ Ia whose rectangles Ra(k,�) have at least two particles on each side:

Mi(k,�) ≥ 2, 0 ≤ i ≤ 3. Note that if (k,�) belongs to I ∗
a , for all x ∈ Ra(k,�), there exist y, z ∈ Ra(k,�), y �= z, with

the property ‖x − y‖ = ‖x − z‖ = 1.
For (k,�) ∈ Ia, a ∈ {s, l}, x ∈ ΛL, let Ra

x (k,�) = x + Ra(k,�), and let η
a,(k,�)
x represent the configurations defined

by

ηa,(k,�)
x (a, b) = 1 if and only if (a, b) ∈ Ra

x (k,�).

The configurations η
a,(k,�)
x , (k,�) ∈ Ia \ I ∗

a , belong to Ω1 or form a (n − 1) × (n + 1) rectangle of particles with one
extra particle attached to a side of length n + 1. Let Ω2 = Ω2

L,K , be the set of configurations associated to the pairs
(k,�) in I ∗

a :

Ω2
x = {

ηa,(k,�)
x : a ∈ {s, l}, (k,�) ∈ I ∗

a

}
, Ω2 =

⋃
x∈ΛL

Ω2
x .
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Fig. 3. Some configurations η
l,(k,�)
x for n = 6. The first one corresponds to the vector (k,�) = ((1,5); (1,4); (1,6); (0,1)) and the last one to the

vector (k,�) = ((0,1); (1,5); (0,5); (1,5)). The inner gray rectangle represents the set x + Rl and the black dot the site x.

Figure 3 illustrates typical configurations of the set Ω2.
To describe the valleys which can be attained from η

a,(k,�)
x we have to define a map from Ω2 to H01 which translates

by one unit all particles in an external row or column of a rectangle Ra
x (k,�). This must be done carefully because the

translation of one row may produce a configuration which does not belong to H01, or a configuration η
a,(k′,�′)
x , where

the vector (k′,�′) differs from (k,�) in more than one coordinate.
Denote by I−

a,i (resp. I+
a,i ), 0 ≤ i ≤ 3, the pairs (k,�) in I ∗

a for which the particle sitting at ki (resp. �i ) jumps to

ki − 1 (resp. �i + 1) at rate e−β . The abuse of notation is clear. For instance, by site k0 we mean the site (k0,0), or, if
a= s, by site �2 we mean site (n − 1 − �2, n). The subsets I±

a,i of I ∗
a are given by

I−
a,i = {

(k,�) ∈ I ∗
a : ki ≥ 2 or ki = 1, �i−1 = nai−1

}
,

I+
a,i = {

(k,�) ∈ I ∗
a : �i ≤ nai − 1 or �i = nai , ki+1 = 1

}
.

For (k,�) ∈ I−
a,i , denote by T̂ −

a,iη
a,(k,�)
x the configuration obtained from η

a,(k,�)
x by moving the particle sitting at

ki to ki − 1, with the same abuse of notation alluded to before. Similarly, for (k,�) ∈ I+
a,i , denote by T̂ +

a,iη
a,(k,�)
x the

configuration obtained from η
a,(k,�)
x by moving the particle sitting at �i to �i + 1.

Define the map T −
a,i : I−

a,i → Ia by

T −
a,i (k,�) =

{
(k − ei ,� − ei ) if ki+1 ≥ 1,
(k − ei + ei+1,�) if ki+1 = 0,

where {e1, . . . , e4} stands for the canonical basis of R4. The map T +
a,i : I+

a,i → Ia is defined in an analogous way.

Hence, the map T +
s,2 translate to the left all particles on the top row of the rectangle Rs and the map T −

l,3 translate in

the upward direction all particles on the leftmost column of Rl.
The vector T ±

a,i (k,�) may not belong to I ∗
a when there are only two particles on one side of a rectangle Ra and

one of them is translated along another side. For example, suppose that k0 = 1, �0 = n − 2, k1 = 0, �1 = 1 for a
vector (k,�) ∈ I ∗

s . In this case, necessarily k2 = 1, �2 = n − 2, k3 = 0, �3 = n − 1, and T −
s,0(k,�) /∈ I ∗

s . In fact, the

configuration η
s,T −

s,0(k,�)
x belongs to the set Ω3 to be introduced in the next subsection. Similarly, if k1 = 2, �1 = n−1,

k2 = 0, �2 = 1 for a vector (k,�) ∈ I ∗
s , T −

s,1(k,�) /∈ I ∗
s , and η

s,T −
s,1(k,�)

x ∈ Ω1.
Fix a vector (k,�) ∈ I ∗

a such that Mi(k,�) = 2 for some 0 ≤ i ≤ 3. Denote by Ja,i (k,�) the interval over which the
particles on side i may move:

Ja,i = Ja,i (k,�) = {
1 − 1

{
�i−1 = nai−1

}
, . . . , nai + 1{ki+1 ≤ 1}},

and by T b
a,i (k,�), b, b + 1 ∈ Ja,i , the vector obtained from (k,�) by replacing the occupied sites ki , ki + 1 by the

sites b, b + 1. Note that T b
a,i (k,�) belongs to I ∗

a because we assumed n > 3. Note also that we did not excluded the

possibility that b = ki in which case T b
a,i (k,�) = (k,�).

Denote by N (η) the set of all configurations which can be attained from η ∈ Ω2 by a rate e−β jump. Note that the
set N (η

a,(k,�)
x ) may have more than 8 configurations. For example, if a = s, x = w, �0 = n−3 and k1 ≥ 2, the particle

at (n − 2,1) jumps at rate e−β to (n − 2,0). However, starting from this configuration, the probability of the event
H(H01) �= H(η

s,(k,�)
w ) converges to 0 since the unique rate one jump from this configuration is the return to η

s,(k,�)
w .

The proof of the next result is straightforward and left to the reader. One just needs to identify all configurations
which can be reached by rate 1 jumps from a configuration in N (η).
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Lemma 4.4. Fix η ∈ Ω2. Then, for all ξ ∈N (η), there exists a probability measure M(ξ, ·) defined on H01 such that

lim
β→∞ Pβ

ξ

[
η
(
H(H01)

) ∈ Π
] =M(ξ,Π), Π ⊂H01.

Moreover, for 0 ≤ i ≤ 3, a ∈ {s, l}, (k,�) ∈ I±
a,i

M
(
T̂ ±
a,iη

a,(k,�)
x , η

a,T ±
a,i (k,�)

x
) = 1

Mi(k,�)
,

M
(
T̂ ±
a,iη

a,(k,�)
x , ηa,(k,�)

x
) = Mi(k,�) − 1

Mi(k,�)

if Mi(k,�) ≥ 3; and

M
(
T̂ −
a,iη

a,(k,�)
x , η

a,T b
a,i (k,�)

x
) =m

(
Ja,i (k,�), ki − 1, b

)
, b, b + 1 ∈ Ja,i (k,�),

M
(
T̂ +
a,iη

a,(k,�)
x , η

a,T b
a,i (k,�)

x
) =m

(
Ja,i (k,�), ki, b

)
, b, b + 1 ∈ Ja,i (k,�),

if Mi(k,�) = 2, where the probability m(J, a, c) has been introduced in (4.5).

Let

Z
(
ηa,(k,�)

x
) =

∑
ξ∈N (η

a,(k,�)
x )

∑
ζ �=η

a,(k,�)
x

M(ξ, ζ ) =
∑

ξ∈N (η
a,(k,�)
x )

{
1 −M

(
ξ, ηa,(k,�)

x
)}

.

Note that Z(η
a,(k,�)
x ) does not depend on x and that

Z
(
ηa,(k,�)

w
) =

3∑
i=0

1{Mi(k,�) > 2}
Mi(k,�)

{
1
{
(k,�) ∈ I−

a,i

} + 1
{
(k,�) ∈ I+

a,i

}}

+
3∑

i=0

1
{
Mi(k,�) = 2

}
1
{
(k,�) ∈ I−

a,i

}[
1 −m(Ja,i , ki − 1, ki)

]

+
3∑

i=0

1
{
Mi(k,�) = 2

}
1
{
(k,�) ∈ I+

a,i

}[
1 −m(Ja,i , ki, ki)

]
.

Proposition 4.5. Fix x ∈ ΛL, a ∈ {s, l}, (k,�) ∈ I ∗
a . Then,

(1) The triple ({ηa,(k,�)
x }, {ηa,(k,�)

x } ∪ Δ1, η
a,(k,�)
x ) is a valley of depth given by μK(η

a,(k,�)
x )/ capK({ηa,(k,�)

x },
[{ηa,(k,�)

x } ∪ Δ1]c);
(2) Under Pβ

η
a,(k,�)
x

, H(H01 \ {ηa,(k,�)
x })/eβ converges in distribution to an exponential random variable of parameter

Z(η
a,(k,�)
x );

(3) For any Π ⊂H01 \ {ηa,(k,�)
x },

lim
β→∞ Pβ

η
a,(k,�)
x

[
η
(
H

(
H01 \ {

ηa,(k,�)
x

})) ∈ Π
]

= 1

Z(η
a,(k,�)
x )

∑
ξ∈N (η

a,(k,�)
x )

M(ξ,Π) =: Q(
ηa,(k,�)

x ,Π
)
.
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Proof. Recall [1], Theorem 2.6. Assumption (2.14) is fulfilled by default and assumption (2.15) follows from the
definition of the set Δ1. This proves the first assertion of the proposition.

The proof of the second claim is simpler than the one of the second assertion of Proposition 4.3 if we take τ1 as
the time of the first jump. With this definition, τ1 and η

β
τ1 are independent random variables by the Markov property,

τ1/eβ converges to an exponential random variable of parameter |N |, where N =N (η
a,(k,�)
x ), and η

β
τ1 converges to a

random variable which is uniformly distributed over N .
By the arguments of Proposition 4.3, starting from η

a,(k,�)
x , H(H01 \ {ηa,(k,�)

x })/eβ converges in distribution to an
exponential random variable of parameter

γ = lim
β→∞

∑
ξ∈N

Pβ
ξ

[
H(H01) �= H

(
ηa,(k,�)

x
)]

.

To conclude the proof, it remains to recall the statement of Lemma 4.4, and the definition of Z(η
a,(k,�)
x ).

The proof of the third assertion of the proposition is identical to the one of the third claim of Proposition 4.3. �

As in (4.14), the second assertion of this proposition gives an explicit expression for the depth of the valley pre-
sented in the first statement. On the other hand, following (4.15), for η ∈ Ω2, let

R(η,Π) = Z(η)Q(η,Π) =
∑

ξ∈N (η)

M(ξ,Π), Π ⊂H01.

By Lemma 4.4, if Mi(k,�) > 2 for some 0 ≤ i ≤ 3,

R
(
ηa,(k,�)

x , η
a,T ±

a,i (k,�)
x

) = 1{(k,�) ∈ I±
a,i}

Mi(k,�)

and if Mi(k,�) = 2,

R
(
ηa,(k,�)

x , η
a,T b

a,i (k,�)
x

) = pa(k,�, i, b), b, b + 1 ∈ Ja,i (k,�),

where

pa(k,�, i, b) = 1
{
(k,�) ∈ I−

a,i

}
m(Ja,i , ki − 1, b) + 1

{
(k,�) ∈ I+

a,i

}
m(Ja,i , ki, b).

It follows from Proposition 4.5 and Lemma 4.4 that starting from a configuration ζ ∈ Ω2 the process η
β
t reaches

H01 only in a configuration of Ω1 ∪ Ω2 or in a configuration in which all sites of a (n − 1) × (n + 1) rectangle are
occupied and an extra particle is attached to a side of length n + 1. To pursue our analysis, we have to investigate this
new set of configurations.

4.5. The valleys Ea,i
x

The arguments of this subsection are similar to the ones of Section 4.3. Let T l, T s be the rectangles T l = {0, . . . , n}×
{0, . . . , n − 2}, T s = {0, . . . , n − 2} × {0, . . . , n}. Denote by T a

x , a ∈ {s, l}, x ∈ ΛL, the rectangle T a translated by x:
T a

x = x + T a, and by ηx,a the configuration in which all sites of T a
x are occupied. Note that ηx,a belongs to ΩL,K−1

and not to ΩL,K .
For a ∈ {s, l}, x ∈ ΛL, z ∈ ∂+T a

x , denote by ηz
x,a the configuration in which all sites of the rectangle T a

x and the site
z are occupied: ηz

x,a = ηx,a + dz, where dy , y ∈ ΛL, is the configuration with a unique particle at y and summation of
configurations is performed componentwise. Denote by ∂jT

a
x , 0 ≤ j ≤ 3, the j th boundary of T a

x :

∂jT
a
x = {

z ∈ ∂+T a
x : ∃y ∈ T a

x ;y − z = (1 − j)e2
}
, j = 0,2,

∂j T
a
x = {

z ∈ ∂+T a
x : ∃y ∈ T a

x ;y − z = (j − 2)e1
}
, j = 1,3.
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Fig. 4. Four among the seven configurations of El,2x for n = 6. The gray dot represents the site x.

Figure 4 illustrates typical configurations of the set Ω3.
Let

Ea,j
x = {

ηz
x,a: z ∈ ∂jT

a
x

}
,

and let Ω3 = Ω3
L,K be the set of all such configurations:

Ω3
x =

3⋃
j=0

⋃
a∈{s,l}

Ea,j
x , Ω3 =

⋃
x∈ΛL

Ω3
x .

The process {ηβ
t : t ≥ 0} can reach any configuration ξ ∈ Ea,j

x from any configuration η ∈ Ea,j
x with rate one jumps.

The main result of this subsection states that for any configuration ξ ∈ Ea,j
x , the triples (Ea,j

x ,Ea,j
x ∪Δ1, ξ) are valleys.

Denote by N (Ea,j
x ), the configurations which do not belong to Ea,j

x , but which can be reached from a con-
figuration in Ea,j

x by performing a jump of rate e−β . The set N (Es,0
w ) has the following n + 3 elements. There

are n + 1 configurations obtained when the bottom particle detaches itself from the others: ηw,s + dz, where
z ∈ J2 = {(−1,−1), (a,−2), (n − 1,−1): 0 ≤ a ≤ n − 2}. There is a configuration in N (Es,0

w ) which is obtained
when the bottom particle is at (1,−1) and the particle at w moves to w − e2: σ w,w−e2η

(1,−1)
w,s . The last configuration

of N (Es,0
w ) is obtained when the bottom particle is at (n − 3,−1) and the particle at w1 − e1 moves to w1 − e1 − e2:

σw1−e1,w1−e1−e2η
(n−3,−1)
w,s .

Lemma 4.6. Fix x ∈ ΛL, a ∈ {s, l} and 0 ≤ j ≤ 3. For each ξ ∈ N (Ea,j
x ), there exists a probability measure M(ξ, ·)

defined on H01 such that

lim
β→∞ Pβ

ξ

[
η(HH01) ∈ Π

] =M(ξ,Π), Π ⊂H01.

Moreover, if ξ ∈ N (Es,0
w ),

M
(
ηw,s + dz,Es,j

w
) = p

(
z, ∂jT

s
w , ∂+T s

w
)
, 0 ≤ j ≤ 3, z ∈ J2,

M
(
σw,w−e2η(1,−1)

w,s ,Π
) =

{
1

n+1 if Π = {
σ w3+e2,w−e2η

(1,−1)
w,s

}
,

n
n+1 if Π = {

η
(1,−1)
w,s

}
,

M(ξ,Π) =
{

1
n+1 if Π = {

σ w2−e1+e2,w1−e1−e2η
(n−3,−1)
w,s

}
,

n
n+1 if Π = {

η
(n−3,−1)
w,s

}
,

if ξ = σ w1−e1,w1−e1−e2η
(n−3,−1)
w,s .

The proof of the previous lemma is simpler than the one of Lemma 4.2 and left to the reader. By symmetry, the
distribution of η(H(H01 \E ·,·

x )) can be obtained from the one of η(H(H01 \Es,0
w )) or from the one of η(H(H01 \Es,1

w )).
Define

Z
(
Ea,j

x
) =

∑
ξ∈N (Ea,j

x )

M
(
ξ,

(
Ea,j

x
)c) =

∑
ξ∈N (Ea,j

x )

{
1 −M

(
ξ,Ea,j

x
)}

.
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By the previous lemma,

Z
(
Es,0

w
) = 2

n + 1
+

∑
y∈J2

[
1 − p

(
y, ∂0T

s
w, ∂+T s

w
)]

.

Proposition 4.7. Fix 0 ≤ j ≤ 3, a ∈ {l, s}, x ∈ ΛL.

(1) For every ξ ∈ Ea,j
x , the triple (Ea,j

x ,Ea,j
x ∪ Δ1, ξ) is a valley of depth μK(Ea,j

x )/ capK(Ea,j
x , [Ea,j

x ∪ Δ1]c);
(2) For any ξ ∈ Ea,j

x , under Pβ
ξ , H(H01 \ Ea,j

x )/eβ converges in distribution to an exponential random variable of

parameter Z(Ea,j
x )/|Ea,j

x |;
(3) For any ξ ∈ Ea,j

x , Π ⊂H01 \ Ea,j
x ,

lim
β→∞ Pβ

ξ

[
η
(
H

(
H01 \ Ea,j

x
)) ∈ Π

] = 1

Z(Ea,j
x )

∑
η∈N (Ea,j

x )

M(η,Π) =: Q(
Ea,j

x ,Π
)
.

The proof of this proposition is similar to the one of Proposition 4.3, with τ1 defined as the first time the process
leaves the set Ea,j

x . Remark (4.14) concerning the explicit formula for the depth of the valley appearing in the first
statement of Proposition 4.7 also holds.

For a ∈ {s, l}, x ∈ ΛL, 0 ≤ j ≤ 3, let Ea,j
x

R
(
Ea,j

x ,Π
) = Z

(
Ea,j

x
)
Q

(
Ea,j

x ,Π
) =

∑
η∈N (Ea,j

x )

M(η,Π), Π ⊂H01.

It follows from the previous two results that starting from a configuration ζ ∈ Ω3 the process η
β
t reaches H01 only

in a configuration of Ω2 ∪ Ω3 or in a configuration in which all sites of a (n − 3) × n rectangle are occupied with 3n

extra particles attached to the boundary. This is the last set of configurations which needs to be examined.

4.6. The valleys {ζa,(k,�)
x }

The arguments of this subsection are similar to the ones of Section 4.4. Let R2,l, R2,s be the rectangles R2,l =
{1, . . . , n}× {1, . . . , n− 3}, R2,s = {1, . . . , n− 3}× {1, . . . , n}. Let n

2,s
0 = n

2,s
2 = n− 3, n

2,s
1 = n

2,s
3 = n be the length

of the sides of the standing rectangle R2,s. Similarly, denote by n
2,l
i , 0 ≤ i ≤ 3, the length of the sides of the lying

rectangle R2,l: n
2,l
i = n

2,s
i+1, where the sum over the index i is performed modulo 4.

Denote by I2,a, a ∈ {s, l}, the set of pairs (k,�) such that

• 0 ≤ ki ≤ �i ≤ n
2,a
i ,

• If kj = 0, then �j−1 = n
2,a
j−1.

For (k,�) ∈ I2,a, a ∈ {s, l}, let R2,l(k,�), R2,s(k,�) be the sets

R2,l(k,�) = R2,l ∪ {
(a,0): k0 ≤ a ≤ �0

} ∪ {
(n + 1, b): k1 ≤ b ≤ �1

}
∪ {

(n + 1 − a,n − 2): k2 ≤ a ≤ �2
} ∪ {

(0, n − 2 − b): k3 ≤ b ≤ �3
}
,

R2,s(k,�) = R2,s ∪ {
(a,0): k0 ≤ a ≤ �0

} ∪ {
(n − 2, b): k1 ≤ b ≤ �1

}
∪ {

(n − 2 − a,n + 1): k2 ≤ a ≤ �2
} ∪ {

(0, n + 1 − b): k3 ≤ b ≤ �3
}
.

Denote by I2,a, a ∈ {s, l}, the set of pairs (k,�) ∈ I2,a such that |R2,a(k,�)| = n2. For (k,�) ∈ I2,a, denote by
M

2,a
i (k,�) the number of particles attached to the side i of the rectangle R2,a(k,�):

M
2,a
i (k,�) =

{
�i − ki + 1 if ki+1 ≥ 1,
�i − ki + 2 if ki+1 = 0.
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Fig. 5. Examples of configurations in Ω4
x for n = 6. In general 3n particles (or n − 2 holes) have to be placed around the rectangle, respecting the

constraints introduced above. The black dot represents the site x.

Clearly, for (k,�) ∈ I2,a,
∑

0≤i≤3 M
2,a
i (k,�) = 3n+A, where A is the number of occupied corners, which are counted

twice since they are attached to two sides.
Denote by I ∗

2,a ⊂ I2,a, the set of pairs (k,�) ∈ I2,a whose rectangles R2,a(k,�) have at least two particles on each

side: M
2,a
i (k,�) ≥ 2, 0 ≤ i ≤ 3. Note that if (k,�) belongs to I ∗

2,a, for all x ∈ R2,a(k,�), there exist y, z ∈ R2,a(k,�),
y �= z, with the property ‖x − y‖ = ‖x − z‖ = 1.

For (k,�) ∈ I2,a, a ∈ {s, l}, x ∈ ΛL, let R
2,a
x (k,�) = x + R2,a(k,�), and let ζ

a,(k,�)
x represent the configurations

defined by

ζa,(k,�)
x (a, b) = 1 if and only if (a, b) ∈ R2,a

x (k,�).

The configurations ζ
a,(k,�)
x , (k,�) ∈ I2,a, have at least four particles attached to the longer side, and the configurations

ζ
a,(k,�)
x , (k,�) ∈ I2,a \ I ∗

2,a, belong to Ω3, forming a (n − 1) × (n + 1) rectangle of particles with one extra particle

attached to a side of length n − 1. Let Ω4 = Ω4
L,K , be the set of configurations associated to the pairs (k,�) in I ∗

2,a:

Ω4
x = {

ζa,(k,�)
x : a ∈ {s, l}, (k,�) ∈ I ∗

2,a

}
, Ω4 =

⋃
x∈ΛL

Ω4
x .

Figure 5 illustrates typical configurations of the set Ω4.
We now describe the configurations which can be attained from a configuration in Ω4. Denote by I±

2,a,i , a ∈ {s, l},
0 ≤ i ≤ 3, the subset of I ∗

2,a defined by

I−
2,a,i = {

(k,�) ∈ I ∗
2,a: ki ≥ 2 or ki = 1, �i−1 = n

2,a
i−1

}
,

I+
2,a,i = {

(k,�) ∈ I ∗
2,a: �i ≤ n

2,a
i − 1 or �i = n

2,a
i , ki+1 = 1

}
.

For (k,�) ∈ I−
2,a,i , denote by T̂ −

2,a,iζ
a,(k,�)
x the configuration obtained from ζ

a,(k,�)
x by moving the particle sitting

at ki to ki − 1. As in Section 4.4, the abuse of notation is clear. Similarly, for (k,�) ∈ I+
2,a,i , denote by T̂ +

2,a,iζ
a,(k,�)
x

the configuration obtained from ζ
a,(k,�)
x by moving the particle sitting at �i to �i + 1.

Define the map T −
2,a,i : I−

2,a,i → I2,a by

T −
2,a,i (k,�) =

{
(k − ei ,� − ei ) if ki+1 ≥ 1,
(k − ei + ei+1,�) if ki+1 = 0.

The map T +
2,a,i : I+

2,a,i → I2,a is defined in an analogous way.

The vector T ±
2,a,i (k,�) may not belong to I ∗

2,a when there are only two particles on one side of a rectangle R2,a

and one of them is translated along another side. Since there are at least four particles attached to the longer sides of
the rectangle, this may happen only in the shorter sides of the rectangles. In this case the configuration associated to
the vector T ±

2,a,i (k,�) belongs to Ω3.

Fix a vector (k,�) ∈ I ∗
2,a such that M

2,a
i (k,�) = 2 for some 0 ≤ i ≤ 3. Denote by J2,a,i (k,�) the interval over

which the particles on side i may move:

J2,a,i = J2,a,i (k,�) = {
1 − 1

{
�i−1 = n

2,a
i−1

}
, . . . , n

2,a
i + 1{ki+1 ≤ 1}},
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and by T b
2,a,i (k,�), b, b + 1 ∈ J2,a,i , the vector obtained from (k,�) by replacing the occupied sites (ki, ki + 1) by

(b, b + 1). Note that T b
2,a,i (k,�) always belongs to I ∗

2,a, and that we did not excluded the possibility that b = ki in

which case T b
2,a,i (k,�) = (k,�).

Denote by N (η) the set of all configurations which can be reached from η ∈ Ω4 by a rate e−β jump.

Lemma 4.8. Fix η ∈ Ω4. For each ξ ∈N (η), there exists a probability measure M(ξ, ·) defined on H01 such that

lim
β→∞ Pβ

ξ

[
η
(
H(H01)

) ∈ Π
] =M(ξ,Π), Π ⊂H01.

Moreover, for 0 ≤ i ≤ 3, a ∈ {s, l} and (k,�) ∈ I±
2,a,i ,

M
(
T̂ ±

2,a,iζ
a,(k,�)
x , ζ

a,T ±
2,a,i (k,�)

x
) = 1

M
2,a
i (k,�)

,

M
(
T̂ ±

2,a,iζ
a,(k,�)
x , ζa,(k,�)

x
) = M

2,a
i (k,�) − 1

M
2,a
i (k,�)

if M
2,a
i (k,�) ≥ 3; and

M
(
T̂ −

2,a,iζ
a,(k,�)
x , ζ

a,T b
2,a,i (k,�)

x
) =m

(
J2,a,i (k,�), ki − 1, b

)
,

M
(
T̂ +

2,a,iζ
a,(k,�)
x , ζ

a,T b
2,a,i (k,�)

x
) =m

(
J2,a,i (k,�), ki, b

)
,

for b, b + 1 ∈ J2,a,i (k,�) if M
2,a
i (k,�) = 2. The probability measure m(J, a, c) has been introduced in (4.5).

Let

Z
(
ζa,(k,�)

x
) =

∑
ξ∈N (ζ

a,(k,�)
x )

M
(
ξ,

{
ζ s,(k,�)

x
}c) =

∑
ξ∈N (ζ

a,(k,�)
x )

{
1 −M

(
ξ, ζa,(k,�)

x
)}

.

Proposition 4.9. Fix x ∈ ΛL, a ∈ {l, s}, (k,�) ∈ I ∗
2,a. Then,

(1) The triple ({ζa,(k,�)
x }, {ζa,(k,�)

x } ∪ Δ1, ζ
a,(k,�)
x ) is a valley of depth μK(ζ

a,(k,�)
x )/ capK({ζa,(k,�)

x }, [{ζa,(k,�)
x } ∪

Δ1]c);
(2) Under Pβ

ζ
a,(k,�)
x

, H(H01 \ {ζa,(k,�)
x })/eβ converges in distribution to an exponential random variable of parameter

Z(ζ
a,(k,�)
x );

(3) For any Π ⊂H01 \ {ζa,(k,�)
x },

lim
β→∞ Pβ

ζ
a,(k,�)
x

[
η
(
H

(
H01 \ {

ζa,(k,�)
x

})) ∈ Π
]

= 1

Z(ζ
a,(k,�)
x )

∑
ξ∈N (ζ

a,(k,�)
x )

M(ξ,Π) =: Q(
ζa,(k,�)

x ,Π
)
.

For η ∈ Ω4, let

R(η,Π) = Z(η)Q(η,Π) =
∑

ξ∈N (η)

M(ξ,Π), Π ⊂H01.
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5. Tunneling behavior among shallow valleys

We examine in this section the evolution of the Markov process {ηβ
t : t ≥ 0} in the time scale eβ among the shallow

valleys introduced in the previous section. We first introduce a family of deep valleys or traps.

Lemma 5.1. Fix x ∈ ΛL. The triple ({ηx}, {ηx} ∪ Δ1, η
x) is a valley of depth μK(ηx)/ capK({ηx}, [{ηx} ∪ Δ1]c).

This result follows from [1], Theorem 2.6. Up to this point, we introduced five types of disjoint subsets of ΩL,K :

• {ηx}, x ∈ ΛL;
• E i,j

x , 0 ≤ i, j ≤ 3, x ∈ ΛL;
• {ηa,(k,�)

x }, x ∈ ΛL, a ∈ {l, s}, (k,�) ∈ I ∗
a ;

• Ea,i
x , a ∈ {l, s}, 0 ≤ i ≤ 3, x ∈ ΛL;

• {ζa,(k,�)
x }, x ∈ ΛL, a ∈ {l, s}, (k,�) ∈ I ∗

2,a.

Denote by E1, . . . ,Eκ an enumeration of these sets. In this enumeration we shall assume that E1 = {ηw} and that the
first |ΛL| sets correspond to the square configurations: for 1 ≤ i ≤ |ΛL|, Ei = {ηxi } for some xi ∈ ΛL. Some sets Ej

are singletons, as the first |ΛL| sets, and some are not, as the set E|ΛL|+1 = E0,0
w . Let E = ⋃

1≤j≤κ Ej be the union of

all subsets and let Ěj = ⋃
i �=j Ei . For 1 ≤ i ≤ |ΛL|, we sometimes denote Ei = {ηx} by Ex.

Let Δ∗
1 = Δ1 ∪ [H1 \ E]. Fix a configuration ξi in each set Ei , 1 ≤ i ≤ κ . We proved above and in the previous

section that the triples (Ei ,Ei ∪ Δ1, ξi) are valleys. The next result states that we may increase Δ1 to Δ∗
1.

Lemma 5.2. The triples (Ei ,Ei ∪Δ∗
1, ξi), |ΛL| < i ≤ κ , are valleys of depth eβ |Ei |/Z(Ei ). Moreover, for every |ΛL| <

i ≤ κ , 1 ≤ j �= i ≤ κ , ξ ∈ Ei ,

lim
β→∞ Pβ

ξ

[
H(Ěi ) = H(Ej )

] = Q(Ei ,Ej ).

Proof. As already remarked in (4.14), it follows from the second assertion of the propositions stated in the previous
section that the depth of the valleys (Ei ,Ei ∪ Δ1, ξi), |ΛL| < i ≤ κ , is eβ |Ei |/Z(Ei ). The first assertion of the lemma
follows from Lemma 7.1 below and from the fact, proved in the previous section, that for |ΛL| < i ≤ κ ,

lim
β→∞ min

ξ∈Ei

Pβ
ξ

[
H(H01 \ Ei ) = H(E)

] = 1.

The second statement of the lemma follows from the definition of the probability measure Q(Ei , ·) introduced in
the previous section. �

Denote by {ηEt : t ≥ 0} the trace of the process η
β
t on E . The jumps rates of the Markov process ηEt are represented

by RE
β (η, ξ). Recall that ξi is a fixed configuration in the set Ei .

Proposition 5.3. The sequence of Markov processes {ηβ
t : t ≥ 0} exhibits a tunneling behavior on the time-scale eβ ,

with metastable states {Ej : 1 ≤ j ≤ κ}, metastable points ξj , 1 ≤ j ≤ κ , and asymptotic Markov dynamics character-
ized by the rates

r(Ei ,Ej ) = 0, 1 ≤ i ≤ |ΛL|,1 ≤ j �= i ≤ κ,

r(Ei ,Ej ) = R(Ei ,Ej ), |ΛL| < i ≤ κ,1 ≤ j �= i ≤ κ.

Proof. We check that the first two assumptions of [1], Theorem 2.7, are fulfilled. We start with assumption (H1). For
the valleys Ej which are singletons, there is nothing to prove. For the other ones, as Ěj ⊂ [Ej ∪Δ1]c , assumption (H1)
follows from the proofs of Propositions 4.3 and 4.7.
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We turn to assumption (H0). Denote by rβ(Ei ,Ej ) the average rates of the trace process:

rβ(Ei ,Ej ) = 1

μK(Ei )

∑
η∈Ei

μK(η)
∑
ξ∈Ej

RE
β (η, ξ).

We claim that eβrβ(Ei ,Ej ), 1 ≤ i �= j ≤ κ , converges to a limit denoted by r(i, j), and that
∑

j �=i r(i, j) = 0, 1 ≤ i ≤
|ΛL|, ∑

j �=i r(i, j) ∈ (0,∞), i > |ΛL|.
Consider first the case i > |ΛL|. We may rewrite eβrβ(Ei ,Ej ) as eβrβ(Ei , Ěi ) × [rβ(Ei ,Ej )/rβ(Ei , Ěi )]. By [3],

Corollary 4.4, rβ(Ei ,Ej )/rβ(Ei , Ěi ) converges to a number p(Ei ,Ej ) ∈ [0,1].
On the other hand, by [1], Lemma 6.7, eβrβ(Ei , Ěi ) = eβ capK(Ei , Ěi )/μK(Ei ). From the results stated in the

previous section, it is easy to construct a path γ from Ei to Ěi such that GK(γ ) = e−βμK(η), η ∈ Ei . It is also easy to
see that any path γ ′ from Ei , to Ěi is such that GK(γ ) ≤ e−βμK(η), η ∈ Ei . Hence, GK(Ei , Ěi ) = e−βμK(η), η ∈ Ei .
Assumption (H0) for i > |ΛL| follows from this identity and (3.1).

Fix now i ≤ |ΛL|. Since rβ(Ei ,Ej ) ≤ rβ(Ei , Ěi ), we have to show that the rescaled rate eβrβ(Ei , Ěi ) =
eβ capK(Ei , Ěi )/μK(Ei ) vanishes as β ↑ ∞. Since GK(Ei , Ěi ) ≤ e−2βμK(η), η ∈ Ei , the result follows from (3.1).

In view of the proof of [3], Lemma 10.2, and Lemma 5.2, eβrβ(Ei ,Ej ), 1 ≤ i �= j ≤ κ , converges to
Z(Ei )Q(Ei ,Ej ) = R(Ei ,Ej ).

It remains to show property (M3) of tunneling, which states that the time spent outside E is negligible. Fix 1 ≤ i ≤ κ

and ξ ∈ Ei . Denote by {Hj : j ≥ 1} the times of the successive returns to E : H1 = H+(E), Hj+1 = H+(E) ◦ θHj
,

j ≥ 1. To prove (M3), it is enough to show that for all t > 0

lim
k→∞ lim

β→∞ Pβ
ξ

[
Hk ≤ teβ

] = 0 and

(5.1)

lim
β→∞ Eβ

ξ

[
e−β

∫ Hk∧teβ

0
1
{
ηβ

s ∈ Δ∗
1

}
ds

]
= 0 for all k ≥ 1.

Since H1 = H+(E) is greater than the time of the first jump, there exists a positive constant c0, independent of β ,
which turns H1 = H+(E) bounded below by a mean c0eβ exponential time, Pβ

η almost surely for all η ∈ E . The first
result of (5.1) follows from this observation and of the strong Markov property.

To estimate the second term of (5.1), fix k ≥ 1 and rewrite the time integral as
∑

0≤j<k

∫ Hj+1∧teβ

Hj ∧teβ . For a fixed j , the

integral vanishes unless Hj < teβ . In this case, we may apply the strong Markov property to estimate the expectation
by

k sup
ξ∈E

Eβ
ξ

[
e−β

∫ H1∧teβ

0
1
{
ηβ

s ∈ Δ∗
1

}
ds

]
.

If ξ belongs to Ei , 1 ≤ i ≤ |ΛL|, the expectation is bounded above by tPβ
ξ [τ1 ≤ teβ ], where τ1 is the time of the

first jump. This expression vanishes because τ1 is an exponential time whose mean is of order e2β . For i > |ΛL|, we
have seen in the proofs of the propositions of the previous section that the time spent between two visits to E can be
estimated by the time a rate 1, finite state, irreducible Markov process needs to visit a specific set. This concludes the
proof of the proposition. �

Let Ψ :E → {1, . . . , κ} be the index function Ψ (η) = ∑
1≤j≤κ j1{η ∈ Ej }. It follows from the previous result that

the non-Markovian process X
β
t = Ψ (ηE

teβ ) converges to the Markov process on {1, . . . , κ} with jump rates r(i, j) =
R(Ei ,Ej ). The states {1, . . . , |ΛL|} are absorbing, while the states {|ΛL| + 1, . . . , κ} are transient for the asymptotic
dynamics.

Let q(i, j), 1 ≤ i ≤ κ , 1 ≤ j ≤ |ΛL|, be the probability that starting from i the asymptotic process eventually
reaches the absorbing point j :

q(i, j) = Pi[Xt = j for some t > 0], (5.2)
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where Pi stands for the probability on the path space D([0,∞), {1, . . . , κ}) induced by the Markov process with rates
r(j, k) starting from i. We sometimes denote q(i, j) by q(Ei ,Ej ).

6. Tunneling among the deep valleys

We prove in this section the main result of this article. Recall that we denoted by Ex, x ∈ ΛL, the singletons {ηx},
and that we denoted by N (ηx) the set of configurations which can be reached from ηx by a jump of rate e−2β . By
Lemma 4.1, for each ξ ∈N (ηx) there exists a probability measure M(ξ, ·) defined on H01 such that

lim
β→∞ Pβ

ξ

[
η(HH01) ∈ Π

] =M(ξ,Π), Π ⊂H01.

Recall from (5.2) the definition of the probability q(Ej , ·). Let

Z =
∑

ξ∈N (ηx)

κ∑
j=1

M(ξ,Ej )q(Ej , F̆x) =
∑

ξ∈N (ηx)

κ∑
j=1

M(ξ,Ej )
[
1 − q(Ej ,Ex)

]
,

where F̆x = ⋃
y�=x Ey, the union being carried over y ∈ ΛL. Recall that we denote by Δ0 the configurations which are

not ground states: Δ0 = ΩL,K \ Ω0, and let F = ⋃
y∈ΛL

Ey.

Proposition 6.1. Fix x ∈ ΛL.

(1) The triple (Ex,Ex ∪ Δ0, η
x) is a valley of depth μK(ηx)/ capK(Ex, F̆x);

(2) Under Pβ
ηx , H(F̆x)/e2β converges in distribution to an exponential random variable of parameter Z;

(3) For any y �= x,

lim
β→∞ Pβ

ηx

[
η
(
H(F̆x)

) = ηy] = 1

Z

∑
ξ∈N (ηx)

κ∑
j=1

M(ξ,Ej )q(Ej ,Ey) =:Q(x,y).

Proof. Recall [1], Theorem 2.4. By definition of the set Δ0, μK(Δ0)/μK(Ex) is of order e−β . Condition (2.15) is
therefore fulfilled. Since Ei is a singleton, condition (2.14) holds automatically and the result follows.

The proof of the second assertion is similar to the one of the second claim in Proposition 4.3 with the following
modifications. We first need to replace the normalization eβ by e2β and to define τ1 as the time of the first jump, to
write

H(F̆x) = τ1 + H(F) ◦ θτ1 + 1
{
H(F) ◦ θτ1 = H(Ex) ◦ θτ1

}
H(F̆x) ◦ θH+(F).

At this point, we repeat the arguments presented in the proof of Proposition 4.3. In the present context, τ1 and ητ1

are independent by the Markov property, and ηH(Ex) = ηx. We may therefore skip the coupling arguments of Proposi-
tion 4.3.

In contrast, we need to show that

lim
A→∞ lim

β→∞ max
ζ∈N (ηx)

Pβ
ζ

[
H(F) > Aeβ

] = 0. (6.1)

Starting from ζ ∈ N (ηx), in a time of order one the process reaches E . It follows from Proposition 5.3 that once at
E in a time of order eβ the process reaches one of the absorbing point {ηx: x ∈ ΛL} of the asymptotic Markovian
dynamics characterized by the rates r(·, ·). This proves (6.1).

It follows from this result and the proof of Proposition 4.3 that to prove the second assertion of the proposition it is
enough to show that

lim
β→∞

∑
ζ∈N (ηx)

Pβ
ζ

[
H(F) �= H(Ex)

] = Z.
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Since H(E) ≤ H(F) ≤ H(Ex), by the strong Markov property we may rewrite the previous probability as

Eβ
ζ

[
Pβ

η(H(E))

[
H(F) �= H(Ex)

]]
.

We computed in Lemma 4.1 the asymptotic distribution of η(H(E)) and we represented by q(Ej ,Ey) the probability
that the asymptotic process starting from a set Ej , 1 ≤ j ≤ κ , eventually reaches the absorbing state Ey, y ∈ ΛL. The
second assertion of the proposition follows from these two results.

We now turn to the third assertion of the proposition. Fix y �= x. This argument is also similar to the one of
Proposition 4.3. Denote by {Hj : j ≥ 1} the successive return times to F :

H1 = H+(F), Hj+1 = H+(F) ◦ θHj
, j ≥ 1.

With this notation,

Pβ
ηx

[
η
(
H(F̆x)

) = ηy] =
∑
j≥1

Pβ
ηx

[
η(Hk) = ηx,1 ≤ k ≤ j − 1, η(Hj ) = ηy]. (6.2)

By the strong Markov property, if τ1 stands for the time of the first jump, for any z ∈ ΛL,

Pβ
ηx

[
η(H1) = ηz] = Eβ

ηx

[
Eβ

ητ1

[
Pβ

ηH(E)

[
η(HF ) = ηz]]].

As β ↑ ∞, this expression converges to

1

8

∑
ξ∈N (ηx)

κ∑
j=1

M(ξ,Ej )q(Ej ,Ez).

The third assertion of the proposition follows from (6.2), this identity and the strong Markov property. �

It follows from (1) and (2) that the triple(
Ex,Ex ∪ Δ0, η

x) is in fact a valley of depth e2β/Z. (6.3)

Corollary 6.2. The sequence of Markov processes {ηβ
t : t ≥ 0} exhibits a tunneling behavior on the time-scale e2β ,

with metastable states {Ex: x ∈ ΛL}, metastable points {ηx} and asymptotic Markov dynamics characterized by the
rates

r(Ex,Ey) = ZQ(x,y), x �= y ∈ ΛL.

Proof. The proof is similar to the one of Proposition 5.3. We first check that assumptions (H0) and (H1) of [1],
Theorem 2.7, are fulfilled. Hypothesis (H1) is trivially satisfied since the sets Ex are singletons.

To prove assumption (H0), denote {ηFt : t ≥ 0} the trace of the process η
β
t on F , and by RF

β the jump rates of
the trace process. Note that in this case of singleton valleys, the average rates coincide with the rates. We claim that
e2βRF

β (Ex,Ey), x �= y ∈ ΛL, converges to a limit denoted by R(x,y).

We may rewrite e2βRF
β (Ex,Ey) as e2βRF

β (Ex, F̌x)×[RF
β (Ex,Ey)/R

F
β (Ex, F̌x)]. By [3], Corollary 4.4, RF

β (Ex,Ey)/

RF
β (Ex, F̌x) converges to a number p(Ex,Ey) ∈ [0,1]. On the other hand, by [1], Lemma 6.7, e2βRF

β (Ex, F̌x) =
e2β capK(Ex, F̌x)/μK(Ex). Clearly, GK(Ex, F̌x) = e−2βμK(ηx). Hence, assumption (H0) follows from (3.1).

In view of [3], Lemma 10.2, Proposition 6.1 and (6.3), e2βRF
β (Ex,Ey), x �= y ∈ ΛL, converges to ZQ(x,y).

It remains to show property (M3) of tunneling, which states that the time spent outside F is negligible. Fix x ∈ ΛL.
Denote by {Hj : j ≥ 1} the times of the successive returns to F : H1 = H+(F), Hj+1 = H+(F) ◦ θHj

, j ≥ 1. To
prove (M3), it is enough to show that for all t > 0

lim
k→∞ lim

β→∞ Pβ
ηx

[
Hk ≤ te2β

] = 0 and

(6.4)

lim
β→∞ Eβ

ηx

[
e−2β

∫ Hk∧te2β

0
1
{
ηβ

s ∈ Δ0
}

ds

]
= 0 for all k ≥ 1.
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Since H1 = H+(F) is greater than the time of the first jump, H1 is bounded below by an exponential time of
parameter 8e−2β , Pβ

η almost surely for all η ∈ E . The first line of (6.4) follows from this observation and from the
strong Markov property.

To estimate the second term of (6.4), fix k ≥ 1 and rewrite the time integral as
∑

0≤j<k

∫ Hj+1∧te2β

Hj ∧te2β . For a fixed j ,

the integral vanishes unless Hj < te2β . Hence, by the strong Markov property, the expectation is less than or equal to

k max
y∈ΛL

Eβ
ηy

[
e−2β

∫ H1∧te2β

0
1
{
ηβ

s ∈ Δ0
}

ds

]
.

Recall that we denoted by F(ηy) the set of configurations which can be reached from ηy by a jump of rate e−2β . By
the strong Markov property, this expression is bounded by

k max
y∈ΛL

max
ξ∈F(ηy)

Eβ
ξ

[
e−2βH(F) ∧ t

]
.

By (6.1) this expression vanishes as β ↑ ∞. �

7. General results

We prove in this section an useful general result. Fix a sequence (EN : N ≥ 1) of countable state spaces. The elements
of EN are denoted by the Greek letters η, ξ . For each N ≥ 1 consider a matrix RN : EN × EN → R such that
RN(η, ξ) ≥ 0 for η �= ξ , −∞ < RN(η,η) ≤ 0 and

∑
ξ∈EN

RN(η, ξ) = 0 for all η ∈ EN .

Let {ηN
t : t ≥ 0} be the minimal right-continuous Markov process associated to the jump rates RN(η, ξ) [21].

It is well known that {ηN
t : t ≥ 0} is a strong Markov process with respect to the filtration {FN

t : t ≥ 0} given by
FN

t = σ(ηN
s : s ≤ t). Let Pη , η ∈ EN , be the probability measure on D(R+,EN) induced by the Markov process

{ηN
t : t ≥ 0} starting from η.
Consider two sequences W = (WN ⊆ EN : N ≥ 1), B = (BN ⊆ EN : N ≥ 1) of subsets of EN , the second one

containing the first and being properly contained in EN : WN ⊆ BN � EN . Fix a point ξ = (ξN ∈ WN : N ≥ 1) in W
and a sequence of positive numbers θ = (θN : N ≥ 1).

Next result states an obvious fact. We may add to the basin B of a valley (W ,B, ξ ) a set C never visited by the
process without modifying the properties of the valley.

Lemma 7.1. Assume that the triple (W ,B, ξ) is a valley of depth θ and attractor ξ . Let C = (CN ⊂ EN : N ≥ 1) be
a sequence of sets such that Bc

N is attained before CN when starting from WN :

lim
N→∞ inf

η∈WN

Pη[HBc
N

< HCN
] = 1. (7.1)

Then, the triple (W ,B ∪ C, ξ) is a valley of depth θ and attractor ξ .

Proof. We have to check the three conditions of [1], Definition 2.1. The first one is obvious because Bc
N ⊃ (BN ∪

CN)c . On the event {HBc
N

< HCN
}, HBc

N
= H(BN∪CN)c . Hence, the convergence in distribution of H(BN∪CN)c/θN to

a mean one exponential variable follows from (7.1) and from the one of HBc
N
/θN . For the same reasons, on the set

{HBc
N

< HCN
}, ∫ HBc

N

0 1{ηN
s ∈ A}ds = ∫ H(BN ∪CN )c

0 1{ηN
s ∈ A}ds. In particular, property (V3) for the triple (W ,B ∪

C, ξ) follows from (7.1) and (V3) for the valley (W ,B, ξ ). �
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