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Abstract. We consider a general multidimensional affine recursion with corresponding Markov operator P and a unique P -
stationary measure. We show spectral gap properties on Hölder spaces for the corresponding Fourier operators and we deduce
convergence to stable laws for the Birkhoff sums along the recursion. The parameters of the stable laws are expressed in terms of
basic quantities depending essentially on the matricial multiplicative part of P . Spectral gap properties of P and homogeneity at
infinity of the P -stationary measure play an important role in the proofs.

Résumé. Nous considérons une relation de récurrence affine multidimensionelle à coefficients aléatoires et nous supposons que
l’opérateur de Markov P associé a une unique probabilité stationnaire. Nous montrons la propriété de trou spectral pour les
opérateurs de Fourier correspondants sur certains espaces de fonctions Holdériennes, et nous en déduisons la convergence vers des
lois stables pour les sommes de Birkhoff le long des trajectoires. Les paramètres des lois stables obtenues s’expriment à l’aide de
quantités dépendant essentiellement de la partie multiplicative de P . La preuve est basée sur les propriétés spectrales de l’opérateur
de Markov associé et l’homogénéité à l’infini de la mesure stationnaire.
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1. Introduction and main results

We consider the vector space V = Rd endowed with the scalar product 〈x, y〉 = ∑d
i=1 xiyi and the norm |x| =

(
∑d

i=1 |xi |2)1/2. We denote by H = V � G the affine group of V , with G = GL(d,R), i.e. the set of maps h of the
form hx = gx + b (b ∈ V,g ∈ G). Let μ be a probability measure on H and x ∈ V . We denote by P the product
measure μ⊗N on Ω = HN and we consider the recurrence relation with random coefficients:

Xx
0 = x, Xx

n = MnX
x
n−1 + Qn (n ≥ 1), (1)

where (Qn,Mn) ∈ H are i.i.d. random variables with generic copy (Q,M) and with law μ. Let μ̄ be the projection
of μ on G, i.e. the law of M , and let [supp μ̄] be the closed subsemigroup generated by the support of μ̄. We will
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denote by P the corresponding Markov operator on Cb(V ), the space of continuous bounded functions on V :

Pϕ(x) =
∫

ϕ(gx + b)dμ(h), ϕ ∈ Cb(V ).

We observe that if Mn = Id (resp. Qn = 0), then Xx
n is an additive (resp. multiplicative) random walk on V (resp.

V \ {0}) (cf. [12,23,36]). Basic aspects of these special processes continue to hold in the general case of Xx
n , and

give a heuristic guide for the study of the affine random walk Xx
n . On the other hand, independently of any density

condition for μ, the conjunction of these two different processes give rise to new properties, in particular spectral gap
properties for P (cf. [5,21]) and homogeneity at infinity for the P -stationary measure (cf. [6,17,22]).

For a positive Radon measure ρ on V we denote ρP the new measure obtained from ρ by the dual action of P .
Our hypothesis will imply that the above recursion (1) has a unique stationary measure η which satisfies ηP = η and
has an unbounded support. The probability measure η is the limit distribution of Xx

n . A remarkable property of η is its
“homogeneity at infinity,” a property which was first observed in [31] for the tails of η, extended to the general case
in [34] and further developed in [1,6,13], under special conditions. See [17] for a survey of [34] as well for a precise
description of the homogeneity property of η, proved in a special case in [6] and in a generic case in [22].

In this paper we are interested in the limit behavior of the sum Sx
n =∑n

k=0 Xx
k , conveniently normalized. For d = 1

this question is connected with the slow diffusion behavior of a simple random walk on Z in a random medium (see
[33,41]). The similar problem for a finitely supported random walk on Z in a random medium is connected to the
study of a recurrence relation of the form (1) (see [14,26]). More generally, the Eq. (1) is of fundamental interest for
the study of generalized autoregressive processes (cf. [4,31]). In particular Eq. (1) is a basic model in collective risk
theory ([13]); in the context of extreme value theory, the corresponding convergence problem for normalized sample
autocorrelations of a GARCH model is considered in [37].

For d = 1, and under aperiodicity conditions, the limit behavior of Sx
n is described in [21]. For d > 1, it turns

out that, in the generic case considered below, the limits are stable laws of general type and that the multiplicative
part of the recursion plays a dominant role in the asymptotics. For d ≥ 1, in the case where Mn takes values in the
similarity group of V , the limit behavior of Sx

n is described in [5]; the homogeneity at infinity result of [6] plays an
essential role in the proof, and [5] contains a detailed description of the limit laws which turned out to be semi-stable
in the sense of P. Lévy (see [36], p. 204). For other situations where stable laws appear naturally in limits theorems
in sums of non i.i.d. random variables we refer to ([36], pp. 321–323) and [2]. Here we consider relation (1) in the
case where [supp μ̄] is “large,” a case which is generic and opposite to the case of [5]. We will need the detailed
information on the stationary law η of P given in [22] and summarised in Theorem 2.4 below; also as in [5,21], a
basic role will be played by the spectral properties of the Fourier operators Pv (v ∈ R) defined by Pvϕ = P(Xvϕ),
where Xv(x) = ei〈v,x〉. Furthermore, the homogeneity at infinity of η plays an essential role and implies that the
dominant eigenvalue of Pv has an asymptotic expansion at 0 in terms of fractional powers of |v|. These properties
allow us to develop a detailed analysis and to prove limit theorems. More generally, it turns out that, in the context
of random walks associated with nonabelian semigroup actions, spectral gap properties are valid in certain functional
spaces for large classes of random walks. Usually, such properties are studied in the context of the so called “Doeblin
condition” (see [1,9] for example). Here instead, our study is based on the Ionescu-Tulcea and Marinescu theorem
([28]). This allows us to get spectral gap properties without density condition on μ or μ̄. See [7,8,10,11,15,16,19]
for different classes of situations where analogous ideas are used. Here V can be considered as a boundary (see [12])
for the random walk on H defined by μ, and we will use spectral gap properties for Pv (v ∈ V ) in Banach spaces of
Hölder functions with slow growth at infinity. In [8] and [11] the relevant spaces are L2-spaces, while in [7,10,16],
they are of mixed type. This type of analysis is not restricted to homogeneous spaces of Lie groups as shown in [38]
for certain classes of Lipschitz maps instead of affine maps. Here we follow the general line of [5,21]. With respect
to these papers, new arguments are needed for the analysis of relation (1), in the generic case considered below (see
[22]).

The asymptotics of products of random matrices (see [3,18,23]) will play an important role, and we need to give
corresponding notations. We say that a semigroup Γ ⊂ G is strongly irreducible if no finite union of proper subspaces
of V is Γ -invariant. Also we say that g ∈ G is proximal if g has a dominant eigenvalue λ(g) ∈ R which is the unique
eigenvalue of g such that |λ(g)| = limn→∞ |gn|1/n where |g| = sup{|gx|: |x| = 1}. We say that Γ satisfies condition
i-p if Γ is strongly irreducible and contains a proximal element γ . It is proved in [39] that condition i-p for Γ and its
Zariski closure Zc(Γ ) are equivalent. Since Zc(Γ ) is a closed Lie subgroup of G with a finite number of connected
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components, condition i-p can be checked in examples (see Section 5 for some examples). Under this condition, the
limit set L(Γ ) ⊂ Pd−1 is the unique Γ -minimal subset of the projective space Pd−1 and L(Γ ) is the closure of the set
of attracting fixed points of the proximal elements in Γ .

For s ≥ 0, we denote

κ(s) = lim
n→∞

(
E|Mn · · ·M1|s

)1/n
,

s∞ = sup
{
s ≥ 0;κ(s) < ∞}

.

For g ∈ G, we write v(g) = sup(|g|, |g−1|). If E(logv(M)) < +∞, we know that the Lyapunov exponent

L(μ̄) = lim
n→∞

1

n
E
(
log |Mn · · ·M1|

)
is well defined, L(μ̄) = κ ′(0+) if s∞ > 0. If condition i-p is satisfied and s∞ > 0, then logκ(s) is strictly convex on
[0, s∞), hence if lims→s∞ κ(s) > 1, there exists a unique α ∈ (0, s∞) with κ(α) = 1.

Our hypothesis here is the following condition C (see [22]):

C1 [supp μ̄] satisfies condition i-p,
C2 s∞ > 0, L(μ̄) < 0, lims→s∞ κ(s) > 1,
C3 E(v(M)α+δ + |Q|α+δ) < ∞ for some δ > 0,
C4 suppμ has no fixed point in V .

Condition C will be assumed in our results (compare with condition (H ) of [5]), except if the contrary is specified.
We observe that condition i-p for [suppρ] is valid on an open dense set in weak topology of measures ρ on G. It
follows that condition C is open in the weak topology of probability measures on H . Conditions C1 and C3 are used
to prove homogeneity at infinity of η, a property which depends on the spectral gap properties of twisted convolution
operators defined by μ̄ on the projective space of V (cf. [22]). Condition C2 plays the basic role in the homogeneity
at infinity of η.

A real number t ∈ R defines a dilation on V which is denoted by v → t.v, and we extend this notation to the action
of R on measures on V . A Radon measure ρ on V is said to be α-homogeneous if for any t > 0, t.ρ = tαρ.

Let P be the Markov operator on V defined by

Pϕ(v) =
∫

ϕ(gv)dμ̄(g), if ϕ ∈ Cb(V ).

We observe that P can be interpreted as the linearisation of P at infinity. We denote by �s the s-homogeneous measure
on R∗+ defined by �s(dt) = dt

t s+1 . It is proved in Theorem C of [22] that if d > 1 and condition C is valid, there exists

c > 0 and a probability measure σα on the unit sphere Sd−1 such that the following vague convergence is valid on
V \ {0}:

lim
t→0+

t−α(t.η) = cσα ⊗ �α = Λ. (2)

Here Λ is defined by the above convergence, is α-homogeneous, and we have ΛP = Λ. We observe that the equation
ΛP = Λ is a limiting form of the stationarity equation ηP = η. The proof is based on the general renewal theorem
of [32] and on the spectral gap property of the operator on the projective space defined by twisted convolution with μ̄

(see [20,22]).
More generally, if η is a probability measure such that the above convergence (2) is valid, we will say that η is

α-homogeneous at infinity. A probability η on V is said to be stable if for every integer n there exists a similarity hn

of the form hn(x) = anx + bn (an > 0, bn ∈ V ) such that the nth convolution power of η is the push forward of η by
hn. If an = n1/α , we say that η is α-stable.

Due to Theorem C of [22], if supp μ̄ has no invariant convex cone in V , then Λ is symmetric and σα ⊗ �α is the
unique Radon measure defined by the following conditions:

σα is a probability measure on Sd−1,(
σα ⊗ �α

)
P = σα ⊗ �α, t.

(
σα ⊗ �α

)= tα
(
σα ⊗ �α

)
, for all t > 0.
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See [22] for more detail. In Section 5 below we give information on σα and examples of the typical situations which
can occur. In any case Λ gives zero measure to any affine subspace, the projection of σα on the projective space Pd−1

is uniquely defined by the above condition and its support is equal to the limit set L([supp μ̄]) in Pd−1.
We will write g∗ for the transposed map of g ∈ G, μ̄∗ for the push-forward of μ̄ by g → g∗. Also for x ∈ V , we

write x∗ for the linear form x∗(y) = 〈x, y〉. The exponential ei〈x,y〉 will be denoted by Xx(y) and the characteristic
function of a probability measure π on V will be defined by

π̂ (x) =
∫

V

Xx(y)dπ(y).

Coming back to the affine situation, we will write

m =
∫

x dη(x), mα = κ ′(α−).

The calculation of the limit law of Sx
n will involve considering the companion recursion:

W0 = 0, Wn = M∗
n(Wn−1 + v), (3)

where v ∈ V \ {0} is a fixed vector. We will denote by Tv the corresponding transition operator, i.e.

Tv(ϕ)(x) =
∫

ϕ
(
g∗(x + v)

)
dμ̄(g).

Then as above, the unique stationary measure ηv of Tv satisfies the weak convergence on V \ {0}:

lim
t→0+

t−α(t.ηv) = Δv �= 0, (4)

and ηv,Δv satisfy

ηtv = t.ηv, Δtv = t.Δv for t ∈ R∗, ΔvP ∗ = Δv, Δtv = tαΔv for t > 0,

where, as above, P ∗ is associated with μ̄∗.
In order to state our first main result, we need to define a kind of Fourier transform Λ̃ of Λ. If α ∈ (0,2], we define

Λ̃ as follows:

Λ̃(y) =
∫ (

Xy(x) − 1
)

dΛ(x), if 0 < α < 1,

Λ̃(y) =
∫ (

Xy(x) − 1 − i
〈x, y〉

1 + |〈x, y〉|2
)

dΛ(x), if α = 1,

Λ̃(y) =
∫ (

Xy(x) − 1 − i〈x, y〉)dΛ(x), if 1 < α < 2,

Λ̃(y) = −1

4

∫
〈y, x〉2 dσ2(x), if α = 2.

The function exp(Λ̃) is the Fourier transform of the limit law of the normalized sum of η-distributed i.i.d. random
variables and Λ̃ satisfies

Λ̃(ty) = tαΛ̃(y) for t > 0, P ∗Λ̃ = Λ̃, and Re Λ̃(y) < 0 for y �= 0.

We will use also the function Λ̃1 defined by Λ̃1(y) = Λ̃(ȳ)1[1,∞)(|y|), where y = y/|y| denotes the projection of
y ∈ V \ {0} on Sd−1.
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The Fourier transform of the limit law of Sx
n for α ∈ (0,2] will be shown to be equal to eCα(v) = Φα(v) where the

function Cα(v) is defined by

Cα(v) =
{

αmαΔv(Λ̃
1), if α ∈ (0,1) ∪ (1,2];

m1Δv(Λ̃
1) + iγ (v), if α = 1,

(5)

with

γ (v) =
∫ ∫ [ 〈y + v, x〉

1 + |〈y + v, x〉|2 − 〈v, x〉
1 + |x|2 − 〈y, x〉

1 + |〈y, x〉|2
]

dΛ(x)dηv(y). (6)

(See the proof of Proposition 2.6.) We have that for t > 0

Cα(tv) = tαCα(v) if α �= 1, and C1(tv) = tC1(v) + i
〈
v,β(t)

〉
,

where β(t) = ∫
( tx

1+|tx|2 − tx

1+|x|2 )dΛ(x). Hence eCα(v) is the Fourier transform of an infinitely divisible probability

measure which belongs to an α-stable convolution semigroup (see [27,29,40]).
If α > 2, the following covariance form q of η will enter in the formulas below,

q(x, y) =
∫

〈x, ξ − m〉〈y, ξ − m〉dη(ξ).

We will write z = E(M) for the averaged operator of M if α > 1. One sees easily that the operator EM on V exists
and has spectral radius less than κ(α) = 1, hence in particular I − z∗ is invertible.

We have the following limit theorem for the partial sums Sx
n .

Theorem 1.1. Assume that the probability measure μ on H = V �G satisfies condition C above. Then if dimV > 1,
we have for any x ∈ V ,

(1) If α > 2, 1√
n
(Sx

n − nm) converges in law to the normal law on V with the Fourier transform

Φ2+(v) = exp
(−q(v, v)/2 − q

(
v,
(
I − z∗)−1

z∗v
))

.

(2) If α ∈ (0,2), let tn = n−1/α and

dn =
⎧⎨⎩

0, α ∈ (0,1);
nδ(tn), α = 1;
ntnm, α ∈ (1,2),

with δ(t) = ∫
V

tx

1+|tx|2 dη(x) for t > 0.

Then (tnS
x
n −dn) converges in law to the α-stable law with the Fourier transform Φα(v) = exp(Cα(v)), with Cα(v)

given above.
Furthermore if α = 1, then for some constant K� > 0,

∣∣δ(t)∣∣≤ {
K�|t || log |t ||, for |t | ≤ 1

2 ;
K�|t |, for |t | > 1

2 .

(3) If α = 2, then 1√
n logn

(Sx
n − nm) converges in law to the normal law with Fourier transform

Φ2(v) = exp
(
C2(v)

)
, where C2(v) = −1

4

∫ (〈v,w〉)2 + 2〈v,w〉ηv

(
w∗)dσ2(w).

(4) In all cases, the limit laws are fully nondegenerate.
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The proof of Theorem 1.1 is based on the method of characteristic functions. The characteristic function of Sx
n can

be expressed in terms of iterates of the Fourier operator Pv defined above. This operator acts as a bounded operator
on a certain Banach space Bθ,ε,λ (defined below) of unbounded functions on V and has “nice” spectral properties on
Bθ,ε,λ. Moreover P0 = P and the spectral properties of Pv allow to control the perturbation Pv of P as well as its
dominant eigenvalue k(v). Theorem 1.1 follows from the asymptotic expansion of k(v) at v = 0, which is based on
the homogeneity at infinity of η and ηv . The spectral properties of Pv follow from a theorem of Ionescu-Tulcea and
Marinescu based on certain functional inequalities proved below which are consequences of the condition L(μ̄) < 0.

We denote by r(U) the spectral radius of a bounded linear operator U . The spectral properties of Pv are described
by the:

Theorem 1.2. If v ∈ V , the operator Pv on Bθ,ε,λ defined by Pvf = P(Xvf ) has the following properties:

(1) Pv is a bounded operator with spectral radius at most 1,
(2) If v �= 0, r(Pv) < 1,
(3) If v = 0 and π0 is the projection on C1 defined by π0ϕ = η(ϕ)1, we have for any ϕ ∈ Bθ,ε,λ:

P0ϕ = π0ϕ +Qϕ,

where Qπ0 = π0Q= 0 and r(Q) < 1.
(4) If v is small, Pv has a unique eigenvalue k(v) with |k(v)| = r(Pv). Furthermore there exists a one dimensional

projection πv and a bounded operator Qv such that Qvπv = πvQv = 0, r(Qv) < |k(v)| and

Pvϕ = k(v)πvϕ +Qvϕ, for any ϕ ∈ Bθ,ε,λ.

Furthermore k(v),πv,Qv depend continuously on v.

These spectral properties will allow us to reduce the study of the iterated operator P n
v to the study of its dominant

eigenvalue kn(v); hence k(v) plays here the role of a characteristic function for the convolution operator P defined by
μ on Cb(V ).

The asymptotic behavior of k(v) at v = 0 is given by the

Theorem 1.3. Let v ∈ V \ {0} and let Cα(v) be given by (5).

(1) If 0 < α < 1, then

lim
t→0+

k(tv) − 1

tα
= Cα(v).

(2) If α = 1, then

lim
t→0+

k(tv) − 1 − i〈v, δ(t)〉
t

= C1(v).

(3) If 1 < α < 2, then

lim
t→0+

k(tv) − 1 − i〈v, tm〉
tα

= Cα(v).

(4) If α = 2, then

lim
t→0

k(tv) − 1 − i〈v, tm〉
t2| log |t || = 2C2(v).

(5) If α > 2, then

lim
t→0

k(tv) − 1 − i〈v, tm〉
t2

= C2+(v),
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with

C2+(v) = −1

2
q(v, v) − q

(
v,
(
I − z∗)−1

z∗v
)
.

As in [21] and [5], the proof of Theorem 1.3 is based on an intertwining relation between the families of operators
Pv and Tv and on the homogeneity at infinity of η, ηv proved in [22]; this relation allows us to express k(v) in terms
of the stationary measure η and an eigenfunctional for Tv .

Remark 1.4.

(a) We may observe that, if we add stronger moment conditions (of order greater than 4), part 1 of Theorem 1.1, i.e.
convergence to a normal law, follows from the main result of [25], which is valid also for more general Lipschitz
maps of V into itself.

(b) For α ∈ [0,2], the limit law of Sx
n is a multidimensional α-stable law (see e.g. [27,29,36]) where α-stability holds

with respect to the action of the dilation group R∗+. In particular the limit law is infinitely divisible and belongs to
a convolution semigroup of Rd . This remarkable fact follows from the homogeneity of Δv with respect to v, hence
from the formula for Cα(v).

(c) It follows from Theorem 2.4 below that the negative definite function Cα satisfies ReCα(v) < 0 for v nonzero.
In Section 5, we obtain more detailed information on the function Cα . In particular, the function Cα depends
continuously on μ in a natural weak topology which guarantees continuity of moments of order α. Also, given μ̄,
the magnitude of Cα is closely related to the magnitude of the moment of order α for Q. It follows that, for the
stable limiting laws of the theorem, various situations occur, as in the case of sums of η-distributed i.i.d. random
variables on V : symmetric, nonsymmetric, supported on a proper convex cone.

(d) The fact that the stability group here is R∗+, if α belongs to [0,2] instead of a more complex one as in [5], is a
consequence of the following property depending on condition i-p and d ≥ 2 (see [23,24]): the closed subsemi-
group of R∗+ generated by the moduli of the dominant eigenvalues for the proximal elements in [supp μ̄] is equal
to R∗+. This can be compared with the situation of [5] where semi-stable laws in the sense of [36], p. 204, appear
as limits. As already mentioned condition C is generically satisfied by μ, and like in the case α > 2 of the main
theorem in [5], our limit theorem is essentially not changed under perturbation of μ. This open the possibility of
getting convergence to stable laws in natural multidimensional stochastic systems.

(e) The theorem gives the convergence of normalized 1-marginals of Sx
n . A natural question is the existence of a

functional limit theorem, i.e. the convergence towards a stable stochastic process with continuous time (cf. [36,
40]).

We note that closely related limit theorems for Sx
n have been obtained recently in the reference [9], under a stronger

hypothesis than here. In [9], μ̄ dominates a density on G and [supp μ̄] has no invariant convex cone, hence the
limiting law is symmetric. Furthermore α = 2 is excluded and the case α = 1 is treated under symmetry restrictions.
The method is based on a renewal theorem of [1] for a Markov chain which satisfies Harris condition.

2. Homogeneity at infinity of μ-stationary measures

The following proposition gives the existence and elementary properties of the stationary law of Xx
n in our context.

The first part is well known.

Proposition 2.1. Assume that μ satisfies condition C. Let

Rn = Q1 +
n−1∑
k=1

M1 · · ·MkQk+1.

Then Rn converges a.e. to

R = Q1 +
∞∑

k=1

M1 · · ·MkQk+1
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and the law of Xx
n converges to the law η of R. Furthermore, η has no atom, gives measure zero to every affine

subspace and E(|R|θ ) = ∫ |x|θ dη(x) < ∞ if θ < α.

Proof. The proofs of convergence are based on known arguments (see [4,31]), hence we give only a sketch in our
setting. If s < α, we have by definition of κ(s):

E
(|M1 · · ·Mk|s

)= E
(|Mk · · ·M1|s

)≤ C
(
κ(s) + ε

)k
for some C > 0, any integer k > 0 and 0 < ε < κ(α) − κ(s). Also E(|Qk|s) = E(|Q1|s) ≤ E(|Q1|α)s/α < ∞. It
follows if m > n,

E
(|Rm − Rn|s

)≤ C
(
E
(|Q1|α

))s/α m−1∑
k=n

(
κ(s) + ε

)k
< ∞.

Hence limm,n→∞ E(|Rm − Rn|s) = 0. The convergence a.e. of Rn to R follows. The same calculation shows
E(|R|θ ) < ∞ if α ≤ 1 and θ < α. If α > 1 and θ ∈ [1, α[, we use Minkowski inequality in Lθ (Ω) and the inde-
pendence of M1 · · ·Mk−1,Qk to get that:

E
(|R|θ )≤ CE

(|Q1|θ
)[

1 +
∞∑

k=1

(
κ(θ) + ε

)k/θ

]θ

< ∞,

if ε satisfies κ(θ) + ε < 1.
The fact that η has no atom is proved as follows.
Let A ⊂ V be the set of atoms of η. Then A is countable and

∑
x∈A η({x}) ≤ 1. It follows that, for every ε > 0,

the set {x ∈ A;η(x) ≥ ε} is finite; in particular, supx∈A η({x}) = c is attained. Let A0 = {x ∈ A;η(x) = c}. Since
ηP = η, we have hA0 = A0 if h ∈ suppμ. Then the barycenter of A0 is a suppμ-invariant point, which is excluded
by condition C4.

Assume now that there exists an affine subspace W of positive dimension such that η(W) > 0, and let W be the set
of affine subspaces of minimum dimension r with η(W) > 0. If r = 0, the contradiction follows from above. If r > 0,
we observe that for any W,W ′ ∈ W with W �= W ′, we have η(W ∩ W ′) = 0 since dim(W ∩ W ′) < dimW . Then
as above supW∈W η(W) = c′ is attained. If W0 = {W ∈ W : η(W) = c′}, we have hW0 = W0 for any h ∈ suppμ.
Let Γ be the closed subgroup of H generated by suppμ, hence hW0 = W0 for any h ∈ Γ . Then the subset Γ0 of
Γ , which leaves invariant any W ∈ W0, is a finite index subgroup of Γ . Since L(μ̄) < 0, [supp μ̄] has an element
g with |g| < 1. Assume h ∈ [suppμ] has linear part g and observe that h has a unique fixed point x ∈ V which is
attracting. Since Γ0 has finite index in Γ , we can find p ∈ N such that hp ∈ Γ0. Then for any y ∈ W with W ∈ W0,
we have

lim
n→∞hpny = x.

Since hpny ∈ W , we get x ∈ W , hence

x ∈
⋂

W∈W0

W �=∅.

It follows that Γ leaves invariant the nontrivial affine subspace
⋂

W∈W0
W . If dim

⋂
W∈W0

W = 0, we have
constructed a point invariant under Γ , which contradicts conditions C4. If dim

⋂
W∈W0

W > 0, the direc-
tion of this affine subspace is a proper suppμ̄-invariant linear subspace, which contradicts condition i-p for
supp μ̄. �

For κ(s) we have the following proposition (see [20]):
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Proposition 2.2. Assume [supp μ̄] satisfies conditions i-p. Then logκ(s) is strictly convex on [0, s∞[. If s∞ = ∞,
we have:

lim
s→∞

logκ(s)

s
= lim

n→∞
1

n
sup

{
log |g|: g ∈ [supp μ̄]n}

= lim
n→∞

1

n
sup

{
log r(g): g ∈ [supp μ̄]n}.

In particular, the condition κ(s) < 1 on ]0,∞[ is equivalent to r(g) ≤ 1 on [supp μ̄], and if lims→s∞ κ(s) ≥ 1 there
exists a unique α ∈]0, s∞] such that κ(α) = 1.

Remark 2.3. Regularity properties of κ(s), not used here, are proved in [20]. In particular, κ(s) is analytic on [0, s∞[.

It is known (see [20,22]) that since μ̄ satisfies condition i-p and κ(s) < ∞, there exists a unique probability measure
νs on Pd−1 such that the s-homogeneous Radon measure νs ⊗ �s on Pd−1 ×R∗+ = (V \ {0})/{±Id} satisfies(

νs ⊗ �s
)
P̄ = κ(s)νs ⊗ �s,

where, by abuse of notation, P is the Markov operator defined by μ̄ on (V \ {0})/{±Id}. If x̄ ∈ Pd−1 corresponds to
x ∈ V , we denote |gx̄| = |gx|

|x| and we consider the operator ρs(μ̄) on Pd−1 defined by

ρs(μ̄)(ϕ)(x̄) =
∫

ϕ(g · x̄)|gx̄|s dμ̄(g),

where x̄ �→ g · x̄ is the projective map defined by g ∈ G. Then νs is the unique probability measure on Pd−1 such
that ρs(μ̄)νs = κ(s)νs . Furthermore, suppνs is equal to the limit set of [supp μ̄] and νs gives zero measure to
any projective subspace (see [20,22]). In the corresponding situation for the unit sphere, either there exists a unique
probability measure σs on the unit sphere which satisfies the above equation or there exist two such measures with
disjoint supports which are extremal and symmetric to each other (see [22], Theorem 2.17), if [supp μ̄] preserves a
convex cone. The following consequence of the general renewal theorem of [32] and of the spectral gap property of
the operator ρs(μ̄) is proved in [22], Theorem C, and plays an essential role here.

Theorem 2.4. If d > 1 and condition C holds, we have the following weak convergence:

lim
t→0+

t−α(t.η) = c
(
σα ⊗ �α

)= Λ,

where c > 0, σα is a probability measure on Sd−1 which has projection να on Pd−1 and Λ satisfies t.Λ = tαΛ if t > 0,
ΛP̄ = Λ. The above convergence is valid for any function f with a Λ-negligible set of discontinuities and such that
for some ε > 0

sup
x �=0

(|x|−α| log |x||1+ε
∣∣f (x)

∣∣)< ∞. (7)

In particular there exists A > 0 such that for k large enough,

1

A
2−kα ≤ η

{
x ∈ V ; |x| ≥ 2k

}≤ A2−kα. (8)

Also Λ(W) = 0 for any proper affine subspace W ⊂ V .

In the special case of the recurrence relation

Wn = M∗
n(Wn−1 + v) (n ≥ 1),

the corresponding measure on H is denoted by μ∗
v . The corresponding transition operator on V is denoted by Tv .

Then we have the
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Proposition 2.5. Assume condition C holds true for μ. Then condition C is satisfied by the measure μ∗
v on H , if

v �= 0.
The sequence

Z∗
n =

n∑
k=1

M∗
1 · · ·M∗

k

converges P-a.e. to

Z∗ =
∞∑

k=1

M∗
1 · · ·M∗

k ,

where Z is defined by the P-a.e. convergent series
∑∞

k=1 Mk · · ·M1.
The law ηv of Z∗v is the unique μ∗

v-stationary measure and ηv satisfies∫
|x|θ dηv(x) < ∞ for θ ∈ [0, α[,

∫
|x|α dηv(x) = ∞.

For any t ∈R∗, we have ηtv = t.ηv . If α > 1, for all x ∈ V the map v → ηv(x
∗) is a linear form.

The Radon measure

Δv = lim
t→0+

t−α(t.ηv)

is α-homogeneous, satisfies Δtv = tαΔv for t > 0, ΔvP ∗ = Δv , Δ−v is symmetric of Δv .
The function Cα(v) satisfies for v �= 0, ReCα(v) < 0 and for t > 0,

Cα(tv) = tαCα(v) if α �= 1, and C1(tv) = tC1(v) + i
〈
v,β(t)

〉
,

where β(t) = ∫
( tx

1+|tx|2 − tx

1+|x|2 )dΛ(x).

Proof. We observe that |M∗| = |M|, hence

lim
n→∞

(
E
(∣∣M∗

n · · ·M∗
1

∣∣s))1/n = lim
n→∞

(
E
(|M1 · · ·Mn|s

))1/n = κ(s).

One verifies easily that condition i-p for [supp μ̄], which is valid, remains valid for [supp μ̄]∗ = [supp μ̄∗]. If
supp μ̄∗ had a fixed point x ∈ V , then g∗(x + v) = x for any g ∈ supp μ̄. Since v is nonzero, we have x �= 0. Also
this implies g∗

1(g∗
2)−1x = x for any g1, g2 ∈ supp μ̄, hence x is invariant under the subgroup generated by supp μ̄.

This contradicts irreducibility of [supp μ̄].
As in the proof of Proposition 2.1, one sees that the condition

lim
n→∞

(
E
(∣∣M∗

1 · · ·M∗
n

∣∣θ ))1/n = κ(θ) < 1

for θ < α implies the convergence

lim
n→∞

n∑
k=1

M∗
1 · · ·M∗

k =
∞∑

k=1

M∗
1 · · ·M∗

k = Z∗.

Since the map g → g∗ is continuous, this gives the convergence of Zn =∑n
k=1 Mk · · ·M1 to Z =∑∞

k=1 Mk · · ·M1.
The second assertion on ηv follows from inequality (8) of Theorem 2.4 applied to μ∗

v , since Proposition 2.5 implies
that condition C for μ and μ∗

v are equivalent.
The third assertion on linearity of ηv with respect to v follows from the relations

Z∗(tv) = tZ∗(v),Z∗(v + w) = Z∗(v) + Z∗(w).
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The last assertions follow from Theorem 2.4, the relation ηtv = t.ηv for t ∈ R∗ and the definition of Cα(v). �

We recall that the characteristic function η̂v of the measure ηv is defined by η̂v(x) = ηv(Xx) and w∗ = 〈w, ·〉. In the
proof of Theorem 1.3, we shall need the following formula for the quantity Cα(v). We denote by Ĉα(v) the following
quantity:

Ĉα(v) =

⎧⎪⎪⎨⎪⎪⎩
∫
(Xv(x) − 1)η̂v(x)dΛ(x), if 0 < α < 1;∫
((Xv(x) − 1)η̂v(x) − i 〈v,x〉

1+|x|2 )dΛ(x), if α = 1;∫
((Xv(x) − 1)η̂v(x) − i〈v, x〉)dΛ(x), if 1 < α < 2;

− 1
4

∫
(〈v,w〉2 + 2〈v,w〉ηv(w

∗))dσ2(w), if α = 2.

(9)

Proposition 2.6. The formula Ĉα(v) = Cα(v) with the definition (5) is valid.

Proof. We start as in the proof of Proposition 5.19 in [5]. By definition of Λ̃, we have

Ĉα(v) =
{∫

(Λ̃(y + v) − Λ̃(y))dηv(y), if α ∈ (0,1) ∪ (1,2];∫
(Λ̃(y + v) − Λ̃(y))dηv(y) + iγ (v), if α = 1,

where γ (v) is given by (6). We follow the argument in [5], but we use in an essential way the information of [22] (see
Theorems 2.6, 2.17), and in particular Theorem 2.4 above.

We define for s < α the Radon measure Λs by

Λs = cσs ⊗ �s,

where c is given by Theorem 2.4 and σs is a probability measure on Sd−1, depending continuously on s in weak
topology, such that

ΛsP̄ = κ(s)Λs, and lim
s→α−

σs = σα,

and σα given by Theorem 2.4. The existence and continuity of σs for s < α follow from the discussion of stationary
measures given before Theorem 2.4, which is based on ([22], Theorem 2.17). Hence we have the weak convergence:

lim
s→α−

Λs = Λα = Λ.

We define also Λ̃s for s < α, s �= 1,

Λ̃s(y) =
∫ (

Xy(x) − 1
)

dΛs(x), if 0 < s < 1,

Λ̃s(y) =
∫ (

Xy(x) − 1 − i〈x, y〉)dΛs(x), if 1 < s < 2.

Then Λ̃s depends continuously on (s, y) in [0, α] × V \ {0} and Λ̃s satisfies:

P ∗Λ̃s(x) =
∫

Λ̃s

(
g∗x

)
dμ̄(g) = κ(s)Λ̃s(x), and Λ̃s(tx) = t sΛ̃s(x), for t > 0.

For s < α, we define

Ĉs(v) =
∫ (

Λ̃s(y + v) − Λ̃s(y)
)

dηv(y)

and we observe that by dominated convergence,

lim
s→α−

Ĉs(v) =
∫ (

Λ̃(y + v) − Λ̃(y)
)

dηv(y).
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Hence lims→α− Ĉs(v) = Ĉα(v) if α �= 1, while lims→α− Ĉs(v) = Ĉα(v) − iγ (v) if α = 1. On the other hand, Z∗
0v =∑∞

k=0 M∗
0 · · ·M∗

k v satisfies Z∗
0v = M∗

0 (Z∗v + v), where

Z∗ =
∞∑

k=1

M∗
1 · · ·M∗

k

and M∗
0 is a copy of M∗ independent of Z. It follows:

E
(
Λ̃s

(
Z∗

0v
)) = E

[∫
Λ̃s

(
g∗(Z∗v + v

))
dμ̄(g)

]
= κ(s)E

(
Λ̃s

(
Z∗v + v

))
,

hence

Ĉs(v) = E
(
Λ̃s

(
Z∗v + v

))−E
(
Λ̃s

(
Z∗v

))=
(

1

κ(s)
− 1

)
E
(
Λ̃s

(
Z∗v

))
.

By Proposition 2.2, the function logκ(s) is convex, hence κ(s) has a left derivative κ ′(α−) at s = α:

mα = lim
s→α−

1 − κ(s)

α − s
.

In order to get the value of Ĉα(v), we need to evaluate lims→α−(α − s)E(Λ̃s(Z
∗v)).

For this purpose we will use Theorem 2.4, we write

Fs,v(t) =
∫

|x|≥t

Λ̃s(x̄)dηv(x)

and we observe that |Fs,v(t)| ≤ supx̄∈Sd−1 |Λ̃s(x̄)| is bounded by K < +∞ on [0, α] by definition of Λ̃s . Also for
t ≥ 0:

tαFs,v(t) =
∫

|x|≥1
Λ̃s(x̄)dηt

v(x)

with ηt
v = tα(t−1.ηv). Hence, using the convergence of ηt

v to Δv for t → +∞ given by Theorem 2.4 and the fact that
Λ̃1 is bounded by K < +∞ with Δv-negligible discontinuities, we get for t large,

tαFs,v(t) = Δv

(
Λ̃1

s

)+ cs(t),

where Λ̃1
s (x) = Λ̃s(x̄)1[1,∞)(|x|) and cs(t) = o(1) as t → +∞ uniformly in s ∈ [0, α]. We note that uniformity of

o(1) is valid since the function Λ̃s(x̄) is continuous and bounded on [0, α] × Sd−1, hence Λ̃1
s (x) is bounded by the

Δv-integrable function K1[1,∞)(|x|). By definition of Fs,v :

E
(
Λ̃s

(
Z∗v

)) =
∫

|y|sΛ̃s(ȳ)dηv(y) =
∫

V

(∫
0<t≤|y|

sts−1 dt

)
Λ̃s(ȳ)dηv(y)

=
∫ ∞

0
sFs,v(t)t

s−1 dt.

Let ρ be a positive increasing function on [0, α) such that

lim
s→α−

ρ(s) = +∞, lim
s→α−

(α − s)ρs(s) = 0, lim
s→α−

ρs−α(s) = 1.
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One can take for example ρ(s) = (α − s)−1/(2α). Then to compute the required limit, we decompose the integral of
Fs,v(t) according to the function ρ(s) and use the asymptotic expansions of Fs,v(t):

(α − s)E
(
Λ̃s

(
Z∗v

)) = (α − s)

∫ ρ(s)

0
sFs,v(t)t

s−1 dt

+ (α − s)

∫ ∞

ρ(s)

sΔv

(
Λ̃1

s

)
t−α+s−1 dt + (α − s)

∫ ∞

ρ(s)

cs(t)t
−α+s−1 dt.

Notice that the limits of the first and third terms are zero. Indeed, by the properties of ρ(s):

lim
s→α−

∣∣∣∣(α − s)

∫ ρ(s)

0
sFs,v(t)t

s−1 dt

∣∣∣∣≤ lim
s→α−

(α − s)ρs(s) sup
t>0

∣∣Fs,v(t)
∣∣= 0.

To compute the limit of the third term, let ε > 0 and observe that, using the above remark, there exists s0 = s0(ε) < α

close to α such that |cs(t)| < ε for t > ρ(s0), hence using again the properties of ρ(s):

lim
s→α−

∣∣∣∣(α − s)

∫ ∞

ρ(s)

cs(t)t
−α+s−1 dt

∣∣∣∣≤ ε lim
s→α−

ρs−α(s) = ε.

Since ε was arbitrary, we obtain that the limit above is in fact zero. As a result, using again the properties of ρ(s),

lim
s→α−

Ĉs(v) = lim
s→α−

(
1

κ(s)
− 1

)
E
(
Λ̃s

(
Z∗v

))
= mα lim

s→α−
(α − s)

∫ ∞

ρ(s)

sΔv

(
Λ̃1

s

)
t−α+s−1 dt

= mα lim
s→α−

sΔv

(
Λ̃1

s

)
lim

s→α−
ρs−α(s) = αmαΔv

(
Λ̃1),

since, as above, lims→α− Λ̃1
s = Λ̃1 and Λ̃1

s is uniformly bounded by a Δv-integrable function. The statement fol-
lows. �

3. Spectral gap properties of Fourier operators, eigenfunctions and eigenvalues

We follow closely the method of [5,21] and we recall the corresponding functional space notations.
On continuous functions on V we introduce the semi-norm

[f ]ε,λ = sup
x �=y

|f (x) − f (y)|
|x − y|ε(1 + |x|)λ(1 + |y|)λ

and the two norms

|f |θ = sup
x

|f (x)|
(1 + |x|)θ , ‖f ‖θ,ε,λ = |f |θ + [f ]ε,λ.

Notice that the conditions λ + ε ≤ θ (always assumed) and [f ]ε,λ < ∞ imply |f |θ < ∞. Define the Banach spaces

Cθ = {
f : |f |θ < ∞}

, Bθ,ε,λ = {
f : ‖f ‖θ,ε,λ < ∞}

and on them we consider the action of the transition operator P :

Pf (x) = E
(
f (Mx + Q)

)=
∫

f (hx)dμ(h),
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where (Q,M) is a random variable distributed according to μ. We consider also the Fourier operator Pv defined by

Pvf (x) = P(Xvf )(x) = E
[
Xv(Mx + Q)f (Mx + Q)

]
where v ∈ V . Notice that P0 = P . We will prove later (Theorem 3.4) that the operators Pv are bounded on Bθ,ε,λ

for appropriately chosen parameters θ, ε, λ. Also, for v small, they have a unique dominant eigenvalue k(v) with
|k(v)| < 1 if v �= 0, k(0) = 1 and the rest of the spectrum of Pv is contained in a disk of center 0 and radius less
than |k(v)|. For an operator A we denote by σ(A) its spectrum and by r(A) its spectral radius. These properties are
based on the estimations below and [28,30]. The following simple but basic fact was observed in [19]. For reader’s
convenience, we give its proof.

Proposition 3.1. We have

P n
v f (x) = E

(
Xv

(
Sx

n

)
f
(
Xx

n

))
.

Proof. If n = 1, then the formula above coincide with definition of Pv . By induction, we have

P n
v f (x) = P

(
XvP

n−1
v f

)
(x) = E

[
Xv(Mx + Q)

(
P n−1

v f
)
(Mx + Q)

]
= E

[
Xv(Mx + Q)Xv

(
S

Mx+Q
n−1

)
f
(
X

Mx+Q
n−1

)]
= E

[
Xv

(
Sx

n

)
f
(
Xx

n

)]
. �

The following proposition gives the basic estimations which allow the use of [28]. Similar estimations were used
in [34,35] for different purposes.

Proposition 3.2. There exists D = D(θ) < ∞ such that for any v ∈ V , n ∈N, θ < α we have∣∣P n
v f

∣∣
θ

≤ D|f |θ . (10)

If 2λ+ ε < α, ε < 1, θ < 2λ, there exist constants C1,C2 ≥ 0, ρ ∈ [0,1) depending on θ, ε, λ such that for any n ∈N,
f ∈ Bθ,ε,λ, v ∈ V ,[

P n
v f

]
ε,λ

≤ C1ρ
n[f ]ε,λ + C2|v|ε|f |θ . (11)

Proof. Notice that

Xx
n = X

y
n + Πn(x − y), (12)

where Πn = MnMn−1 · · ·M1. Writing Xn = X0
n, by Proposition 3.1 we have

∣∣P n
v f (x)

∣∣
θ

≤ E

[ |f (Xx
n)|

(1 + |Xx
n |)θ · (1 + |Xx

n |)θ
(1 + |x|)θ

]

≤ |f |θE
[
(1 + |Xn| + |Πnx|)θ

(1 + |x|)θ
]

≤ 3θ |f |θE
(
1 + |Xn|θ + |Πn|θ

)
≤ 3θ |f |θ

(
1 +E|Xn|θ + C

(
κ(θ) + ε′)n),

where 0 < ε′ < 1 − κ(θ) and C is a constant. If we set D = 3θ (1 + supn E|Xn|θ + C) < ∞, the first inequality (10)
follows.

Now we turn to the proof of (11). By Proposition 3.1, we have

P n
v f (x) − P n

v f (y) = E
[
Xv

(
Sx

n

)(
f
(
Xx

n

)− f
(
X

y
n

))]+E
[(
Xv

(
Sx

n

)−Xv

(
S

y
n

))
f
(
X

y
n

)]
.
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Without loss of generality, assume that |x| ≥ |y|. Let

J1(x, y) = |E[Xv(S
x
n )(f (Xx

n) − f (X
y
n))]|

|x − y|ε(1 + |x|)λ(1 + |y|)λ ,

J2(x, y) = |E[(Xv(S
x
n ) −Xv(S

y
n ))f (X

y
n)]|

|x − y|ε(1 + |x|)λ(1 + |y|)λ .

The first step is to estimate J1(x, y).

J1(x, y) ≤ E
(∣∣f (Xx

n

)− f
(
X

y
n

)∣∣/(|x − y|ε(1 + |x|)λ(1 + |y|)λ))
≤ [f ]ε,λE

( |Xx
n − X

y
n |ε(1 + |Xx

n |)λ(1 + |Xy
n |)λ

|x − y|ε(1 + |x|)λ(1 + |y|)λ
)

≤ [f ]ε,λE
( |Πn|ε(1 + |Xn| + |Πnx|)λ(1 + |Xn| + |Πny|)λ

(1 + |x|)λ(1 + |y|)λ
)

≤ [f ]ε,λE
(|Πn|ε

(
1 + |Xn| + |Πn|

)2λ)
≤ 32λ[f ]ε,λ

(
E|Πn|ε +E|Πn|2λ+ε + (

E|Πn|2λ+ε
)ε/(2λ+ε)(

E|Xn|2λ+ε
)2λ/(2λ+ε))

.

Proposition 2.2 allows us to choose ε1 > 0 and a constant A1 such that

max
{
κ(ε), κ(2λ + ε)

}+ ε1 < 1,

and for all n ∈N,

E|Πn|2λ+ε ≤ A1
(
κ(2λ + ε) + ε1

)n
, E|Πn|ε ≤ A1

(
κ(ε) + ε1

)n
.

Now setting

ρ = max
{
κ(ε) + ε1, κ(2λ + ε) + ε1,

(
κ(2λ + ε) + ε1

)2λ/(2λ+ε)}
and

C1 = 32λ
(

2A1 + (A1)
ε/(2λ+ε) sup

n

(
E|Xn|2λ+ε

)2λ/(2λ+ε)
)
,

we have

J1(x, y) ≤ C1ρ
n[f ]ε,λ. (13)

Now we are going to estimate J2(x, y). Observe that∣∣ei〈x,y〉 − 1
∣∣≤ 2|x|ε|y|ε and Sx

n − S
y
n = Zn(x − y),

where Zn =∑n
k=1 Mk · · ·M1. Using these facts, we get

J2(x, y) ≤ 2|v|ε|f |θE
[ |Zn|ε(1 + |Xy

n |)θ
(1 + |x|)λ(1 + |y|)λ

]
≤ 2|v|ε|f |θE

[ |Zn|ε(1 + |Xn| + |Πn| · |y|)θ
(1 + |x|)λ(1 + |y|)λ

]
≤ 2 · 3θ |v|ε|f |θE

[|Zn|ε
(
1 + |Xn|θ + |Πn|θ

)]
.
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To finish our proof, the left thing is to prove the uniform boundedness of the expectation in the last expression. For
s < α, by the properties of κ(s), there exists εs > 0 and a constant As > 1 such that

κ(s) + εs < 1 and E|Πn|s ≤ As

(
κ(s) + εs

)n
.

Then if s < min{1, α},

E|Zn|s ≤ 1 +
n∑

m=1

E|Πm|s ≤ As

n∑
m=0

(
κ(s) + εs

)m
,

and if s ∈ [1, α),

E|Zn|s ≤
(

1 +
n∑

m=1

(
E|Πm|s)1/s

)s

≤
(

As

n∑
m=0

(
κ(s) + εs

)m/s

)s

.

Therefore for s < α,

sup
n

E|Zn|s < ∞.

Also we have that supn E|Xn|q < ∞ for q < α. Now noticing that θ + ε < α and applying the Hölder inequality, we
obtain that

sup
n

E
[|Zn|ε

(
1 + |Xn|θ + |Πn|θ

)]
< ∞.

We set C2 = 2 · 3θ supnE[|Zn|ε(1 + |Xn|θ + |Πn|θ )] and thus

J2(x, y) ≤ C2|v|ε|f |θ . (14)

Finally combining (13) and (14) we obtain that[
P n

v f
]
ε,λ

≤ sup
x,y

(
J1(x, y) + J2(x, y)

)≤ C1ρ
n[f ]ε,λ + C2|v|ε|f |θ . �

Proposition 3.3. Assume that 2λ + ε < α. Then, for any v �= 0, the equation Pvf = zf , |z| = 1, f ∈ Bθ,ε,λ implies
f = 0. In particular, r(Pv) < 1.

If supp μ̄ consists of similarities, this is Lemma 3.14 in [5]; in view of its role here we give the proof.

Proof of Proposition 3.3. Assume that Pvf = zf for some nonzero f ∈ Bθ,ε,λ. Then the function f is bounded.
Indeed for every n∣∣f (x)

∣∣= ∣∣znf (x)
∣∣≤ P n

(|f |)(x),

hence∣∣f (x)
∣∣≤ lim

n→∞P n
(|f |)(x) = η

(|f |).
Next observe that since f is continuous, on the support of η the function |f | is equal to its maximum and without
loss of generality we may assume that this maximum is 1. For every n and x ∈ suppη, noticing that znf (x) =
E[ei〈v,Sx

n 〉f (Xx
n)] and using a convexity argument, we can show that

znf (x) = ei〈v,Sx
n 〉f

(
Xx

n

)
, P-a.e.
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Hence for every x, y ∈ suppη,

f (x)

f (y)
ei〈v,Zn(y−x)〉 = f (Xx

n)

f (X
y
n)

, (15)

where Zn =∑n
k=1 Mk · · ·M1. By the Hölder inequality and since |f | = 1, we have

lim sup
n→∞

E

∣∣∣∣f (Xx
n)

f (X
y
n)

− 1

∣∣∣∣
≤ [f ]ε,λ lim sup

n→∞
E
[∣∣Xx

n − X
y
n

∣∣ε(1 + ∣∣Xx
n

∣∣)λ(1 + ∣∣Xy
n

∣∣)λ]
= [f ]ε,λ lim sup

n→∞
E
[∣∣Mn · · ·M1(x − y)

∣∣ε(1 + ∣∣Xx
n

∣∣)λ(1 + ∣∣Xy
n

∣∣)λ]
≤ [f ]ε,λ|x − y|ε lim sup

n→∞
[
E|Mn · · ·M1|2λ+ε

]ε/(2λ+ε)

· lim sup
n→∞

[
E
(
1 + ∣∣Xx

n

∣∣)λ+ε/2(1 + ∣∣Xy
n

∣∣)λ+ε/2]2λ/(2λ+ε)
.

By our assumption, the first limit is zero and the second one is finite. Hence

lim sup
n→∞

E

∣∣∣∣f (Xx
n)

f (X
y
n)

− 1

∣∣∣∣= 0.

Therefore for P a.e. trajectory ω there exists a sequence {nk} = {nk(ω)} such that

lim
nk→∞

f (Xx
nk

)

f (X
y
nk

)
= 1.

By Proposition 2.5, limn→∞ Zn(ω) = Z(ω) exists a.s. Hence letting k → ∞ we obtain that there is Ω0 such that
P(Ω0) = 1 and for ω ∈ Ω0,

f (x)

f (y)
= ei〈v,Z(ω)(x−y)〉 = ei〈Z∗(ω)v,x−y〉.

We are going to prove that this leads to a contradiction whenever v �= 0. We choose xj , yj ∈ suppη, j = 1, . . . , d

with xj − yj spanning V as a vector space. Such points exist because the support of η, as a set invariant under the
action of suppμ, is not contained in some proper affine subspace of V . Let ηv be the law of W(ω) = Z∗(ω)v. Then
for every j the support of ηv is contained in the union of affine hyperplanes

⋃
n∈Z{Hj + nsj vj }, where Hj is some

hyperplane orthogonal to vj = xj − yj and sj is appropriately chosen constants. Taking intersection of all such sets
defined for every j we conclude that suppηv is contained in some discrete set of points, hence suppηv is discrete.
This contradicts Proposition 2.1.

For the last assertion we observe that in view of Theorem of Ionescu Tulcea and Marinescu [28], if z belongs to
the spectrum of Pv and |z| = 1 then z is an eigenvalue of Pv . �

The following theorem corresponds to items 1–3 of Theorem 1.2 and is our basic tool for the study of Pv .

Theorem 3.4. Assume θ, ε, λ satisfy 0 < ε < 1, 2λ + ε < α, θ ≤ 2λ. Then Pv has the following properties:

(1) Pv is a bounded operator on Bθ,ε,λ with spectral radius r(Pv) ≤ 1;
(2) If v �= 0, r(Pv) < 1;
(3) If v = 0, P = P0 satisfies P 1 = 1, ηP = η.

The operator Q on Bθ,ε,λ defined by Qf = Pf − η(f )1 has spectral radius less than 1 and η(Qf ) = 0. In other
words, P is the direct sum of the Identity on C1 and of an operator on Kerη with spectral radius strictly less than 1.
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Proof. Proposition 3.2 implies that Pv is a power-bounded operator on Bθ,ε,λ, hence assertion 1 follows. Since
bounded subsets of (Bθ,ε,λ,‖ · ‖θ,ε,λ) are relatively compact in (Cθ , | · |θ ), the inequality in part 2 of Proposition 3.2
shows that we can apply the theorem of Ionescu-Tulcea and Marinescu (see [28]) to Pv . In particular, if for some
v ∈ V , r(Pv) = 1, there exists f ∈ Bθ,ε,λ and z ∈ C, |z| = 1, f �= 0 such that Pvf = zf . If v �= 0, this contradicts
Proposition 3.3, hence assertion 2 follows.

If v = 0, part 2 of Proposition 3.2 gives: [P n0f ]ε,λ ≤ ρ1[f ]ε,λ for some n0 ∈ N, ρ1 ∈ [0,1[. We show that f →
[f ]ε,λ defines a norm equivalent to f → |f |θ on the subspace Kerη = {f ∈ Bθ,ε,λ;η(f ) = 0}. Since η(f ) = 0, if
f ∈ Kerη, the condition [f ]ε,λ = 0 implies f = 0. Hence f → [f ]ε,λ is a norm on Kerη, which satisfies [f ]ε,λ ≤
‖f ‖θ,ε,λ. Since ε ≤ 1 we have∣∣f (x) − f (y)

∣∣ ≤ [f ]ε,λ|x − y|ε(1 + |x|λ)(1 + |y|λ)
≤ 4[f ]ε,λ

(
1 + |x|λ+ε

)(
1 + |y|λ+ε

)
.

Since λ + ε < θ < α, we have 1 + |x|λ+ε ≤ 2(1 + |x|θ ) and
∫ |y|λ+ε dη(y) = D < ∞. Hence, using η(f ) = 0:∣∣f (x)

∣∣≤ 8(1 + D)[f ]ε,λ
(
1 + |x|θ ),

i.e. |f |θ ≤ 8(1 + D)[f ]ε,λ. The equivalence of norms follows.
We can write Bθ,ε,λ =C1 ⊕Kerη. Since P 1 = 1 and ηP = η, the subspaces C1 and Kerη are closed P -invariant

subspaces of Bθ,ε,λ. Since Q1 = 0, Q can be identified with its restriction to Kerη. Then the inequality [Qn0f ]ε,λ ≤
ρ1[f ]ε,λ and the equivalence of norms observed above imply

r
(
Qn0

)≤ ρ1, r(Q) ≤ ρ
1/n0
1 < 1. �

The study of Ptv for t small and v fixed is based on a theorem of Keller and Liverani [30], Proposition 3.2 and the
following easy lemma.

Lemma 3.5. If λ + 2ε < θ < α, δ ≤ ε, there exists C > 0 such that for any γ ∈ [λ + 2ε, θ ] and v,w ∈ V :∣∣(Pv − Pw)f
∣∣
γ

≤ C|v − w|δ‖f ‖θ,ε,λ.

Proof. We observe that∣∣(Pv − Pw)f (x)
∣∣ ≤

∫ ∣∣ei〈v,hx〉 − ei〈w,hx〉∣∣∣∣f (hx)
∣∣dμ(h)

≤ 2|v − w|δ
∫

|hx|δ∣∣f (hx) − f (0)
∣∣dμ(h) + 2|v − w|δ∣∣f (0)

∣∣ ∫ |hx|δ dμ(h)

≤ 2|v − w|δ[f ]ε,λ
∫

|hx|δ+ε
(
1 + |hx|)λ dμ(h) + 2|v − w|δ|f |θ

∫
|hx|δ dμ(h). (16)

Therefore if we take C = supx{2
∫ [|hx|δ+ε(1 + |hx|)λ + |hx|δ]dμ(h)/(1 + |x|)λ+2ε}, then∣∣(Pv − Pw)f

∣∣
γ

= sup
x

∣∣(Pv − Pw)f (x)/
(
1 + |x|)γ ∣∣≤ C|v − w|δ‖f ‖θ,ε,λ. �

In view of Theorem 3.4 and Lemma 3.5, we may use the perturbation theorem of [30] for the family Ptv , hence as
in [5,21] we have the following

Proposition 3.6. Assume ε < 1, λ + 2ε < θ ≤ 2λ < 2λ + ε < α, v ∈ V . Then there exists t0 > 0, δ > 0, ρ < 1 − δ

such that for every t ∈ R with |t | ≤ t0:

(a) The spectrum of Ptv acting on Bθ,ε,λ is contained in S = {z ∈C; |z| ≤ ρ} ∪ {z ∈ C; |z − 1| < δ}.
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(b) The set σ(Ptv) ∩ {z ∈ C; |z − 1| ≤ δ} consists of exactly one eigenvalue k(tv), the corresponding eigenspace is
one dimensional and limt→0 k(tv) = 1.

(c) If πtv is the spectral projection on the above eigenspace of Ptv , there exists an operator Qtv with r(Qtv) ≤ ρ,
πtvQtv =Qtvπtv = 0 and for every n ∈N, f ∈ Bθ,ε,λ,

P n
tvf = kn(tv)πtv(f ) +Qn

tv(f ).

Furthermore k(tv), πtv , Qtv depends continuously on t .
(d) For any z in the complement of S:∥∥(z − Ptv)

−1f
∥∥

θ,ε,λ
≤ D‖f ‖θ,ε,λ

for some constant D independent of t .

This statement allows us to complete the proof of Theorem 1.2. For t small define the function gtv = πtv(1). Hence

Ptvgtv = k(tv)gtv.

Then for any function f in Bθ,ε,λ we define Etv(f ) ∈C by πtv(f ) = Etv(f )gtv .
We will be able to get the asymptotic expression of k(tv) for t small through the use of a new family of operators

Tt,v on Bθ,ε,λ defined by

Tt,vf (x) =
∫

Xtb(x + v)f
(
g∗(x + v)

)
dμ(h).

Then Tv = T0,v , Tvηv = ηv , where ηv is the stationary measure for the Markov chain Wn. It turns out that the analogues
of Theorem 3.4, Proposition 3.6, are valid for the family Tt,v . Therefore, for small values of t , the spectrum of Tt,v

in some neighborhood of 1 consists of only one point k∗(t, v) which satisfies |k∗(t, v)| = r(Tt,v). We denote by
T ∗

t,v the dual operator on B∗
θ,ε,λ of Tt,v . One observes that for any v ∈ V , the function Xv belongs to Bθ,ε,λ and

‖Xv‖θ,ε,λ ≤ 1 + 2|v|ε . It follows that for any E ∈ B∗
θ,ε,λ,

Ê(v) := E(Xv)

plays the role of a Fourier transform for E and∣∣Ê(v)
∣∣≤ (

1 + 2|v|ε)‖E‖θ,ε,λ.

The following relation between Ptv and Tt,v plays an essential role in the calculation of the asymptotic expansion for
k(tv).

Proposition 3.7. For any t ∈R, v ∈ V \ {0}, E ∈ B∗
θ,ε,λ,

Ptv(Ê ◦ t) = (
T̂ ∗

t,vE
) ◦ t.

Proof. As in [21], the proof is based on the definitions of Xx , Tt,v and the fact that the map x → tx commute with
x → gx for g ∈ G. However, in view of its role here, we give it explicitly. Since x → gx (g ∈ G) and x → tx

commute:

Tt,v(Xtx)(y) =
∫

Xtb(y + v)Xtx

(
g∗(y + v)

)
dμ(h)

=
∫

Xtb(y + v)Xt (gx)(y + v)dμ(h) =
∫

Xt (gx+b)(y + v)dμ(h);

Ptv(Ê ◦ t)(x) =
∫ ∫

Xtv(gx + b)Xy

(
t (gx + b)

)
dE(y)dμ(h)

=
∫ ∫

Xy+v

(
t (gx + b)

)
dE(y)dμ(h) = E

(
Tt,v(Xtx)

)= T̂ ∗
t,vE(tx). �
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As in [21], this proposition allows us to construct an eigenfunction of Ptv from an eigenfunctional ηt,v of Tt,v ,
hence in Section 4 it will lead to the expansion of k(tv) at t = 0, using the following result (see [21], Corollary 2):

Corollary 3.8. Assume ηt,v ∈ B∗
θ,ε,λ satisfies

T ∗
t,vηt,v = k∗(t, v)ηt,v, ηt,v(1) = 1.

If ε < 1/2, there exists t3 > 0 such that if |t | ≤ t3, the function

ψtv = η̂t,v ◦ t

is the unique normalized eigenfunction of Ptv (with value 1 at 0) acting on Bθ,ε,λ and corresponding to the eigenvalue
k(tv), i.e.

Ptv(ψtv) = k(tv)ψtv, ψtv(0) = 1.

Moreover k(tv) = k∗(t, v) and(
k(tv) − 1

)
η(ψtv) = η

(
ψtv(Xtv − 1)

)
.

Remark 3.9. In particular, using assertion c of Proposition 3.6, we see that limt→0 ‖ψtv −1‖θ,ε,λ = 0. Since η defines
an element of Bθ,ε,λ, we have limt→0 η(ψt,v) = 1.

4. Asymptotic expansion of eigenvalues in terms of tails and the proof of Theorem 1.1

Using the techniques of [30,35] and the above results, we deduce from Proposition 3.6 the following result (see [5],
Proposition 3.18):

Proposition 4.1. Assume additionally that λ + 3ε < θ , 2λ + 3ε < α. Then the identity embedding of Bθ,ε,λ into
Bθ,ε,λ+ε is continuous and the decomposition Ptv = k(tv)πtv + Qtv coincide on both spaces. Moreover, there exist
constants D > 0 and t1 > 0 such that for |t | ≤ t1, we have if |v| ≤ 1:

(i) ‖(Ptv − P)f ‖θ,ε,λ+ε ≤ D|t |ε‖f ‖θ,ε,λ;
(ii) ‖(k(tv)πtv − π0)f ‖θ,ε,λ+ε ≤ D|t |ε‖f ‖θ,ε,λ;

(iii) ‖(πtv − π0)f ‖θ,ε,λ+ε ≤ D|t |ε‖f ‖θ,ε,λ;
(iv) ‖(Qtv −Q)f ‖θ,ε,λ ≤ D|t |ε‖f ‖θ,ε,λ;
(v) ‖gtv − 1‖θ,ε,λ ≤ D|t |ε;

(vi) |k(tv) − 1| ≤ D|t |ε;
(vii) Etv is a bounded functional on Bθ,ε,λ with norm at most D|t |ε .

The following theorem is a consequence of Propositions 3.8, 4.1 and the homogeneity at infinity of stationary
measures, given by Theorem 2.4. It is a detailed form of Theorem 1.3.

Theorem 4.2.

(a) If 0 < α < 1, then

lim
t→0+

k(tv) − 1

tα
= Cα(v)

with

Cα(v) =
∫ (

Xv(x) − 1
)
η̂v(x)dΛ(x).
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(b) If α = 1, then

lim
t→0+

k(tv) − 1 − i〈v, δ(t)〉
t

= C1(v)

with

C1(v) =
∫

V

((
Xv(x) − 1

)
η̂v(x) − i

〈v, x〉
1 + |x|2

)
dΛ(x)

and δ(t) = ∫
V

tx

1+|tx|2 dη(x). Furthermore there exists a constant K� with K� = c1 + 4A/ log 2 + ∫
|x|>1 |x|/(1 +

|x|2)dΛ(x) (A is given in Theorem 2.4) such that

∣∣δ(t)∣∣≤ {
K�|t || log t |, |t | ≤ 1/2,

K�|t |, |t | > 1/2.

(c) If 1 < α < 2,

lim
t→0+

k(tv) − 1 − i〈v, tm〉
tα

= Cα(v),

where

Cα(v) =
∫ ((

Xv(x) − 1
)
η̂v(x) − i〈v, x〉)dΛ(x).

(d) If α = 2,

lim
t→0

k(tv) − 1 − i〈v, tm〉
t2| log |t || = 2C2(v),

where

C2(v) = −1

4

∫ (〈v,w〉2 + 2〈v,w〉ηv

(
w∗))dσ2(w)

is a quadratic form.
(e) If α > 2, then

lim
t→0

k(tv) − 1 − i〈v, tm〉
t2

= C2+(v)

with

C2+(v) = −1

2
q(v, v) − q

(
v,
(
I − z∗)−1

z∗v
)
.

The proof is based on estimations of Ptv , ψtv , η, which are valid here, as in [5], Theorem 5.1; these estimations
are formal consequences of the homogeneity statements in Theorem 2.4, Corollary 3.8, which in turn correspond to
relations (2.2), (2.3) and Lemma 3.23 of [5].

To prove our Theorem 4.2, we need further properties of the stationary measure η. In particular, essential use is
made of the homogeneity at infinity of η stated in Theorem 2.4. Also Lemmas 4.4, 4.5, 4.6 are used in the proof. The
comparisons stated in these lemmas are based on the general Lemma 4.3, will allow to estimate expressions of the
form

∫
V

f (t, x)dη(x) for |t | small. We denote by I1 the interval [−1,1]. For the proof of the lemmas below, see [5],
Section 4.
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Lemma 4.3. Let f be any continuous function on I1 × V satisfying∣∣f (t, x)
∣∣≤ {

Dδ,β |t |δ+β |x|β, for |tx| > 1;
Dδ,γ |t |δ+γ |x|γ , for |tx| ≤ 1,

(17)

where β < α, γ + δ > α and δ > 0. Then

lim
t→0

1

|t |α
∫

V

f (t, x)dη(x) = 0.

Now we present some properties of the eigenfunction ψtv . To do this, we will need some further hypotheses on the
parameters θ, ε, λ and from now on, we will assume additionally that

if 1 < α < 2, then 1 + λ + ε > α,

if α = 2, then λ + 2ε > 1,

if α > 2, then λ = 1.

It is easy to prove that there exists θ, ε, λ satisfying all the assumptions in our theorems and the conditions above.

Lemma 4.4. There exists D′′ such that∣∣ψtv(x) − η̂v(tx)
∣∣≤ D′′|t |2ε|x|ε, for |tx| > 1;∣∣ψtv(x) − η̂v(tx)
∣∣≤ D′′|t |ε|tx|τ , for |tx| ≤ 1,

for τ = min{1, λ + ε}.

Corollary 4.5. If α ≤ 2, then

lim
t→0

1

|t |α
∫

V

(
Xv(tx) − 1

)(
ψtv(x) − η̂v(tx)

)
dη(x) = 0.

We will need also the speed of convergence of η(ψtv) to 1.

Lemma 4.6. Assume v is fixed. Then there exists D′′′ > 0 and t3 > 0 such that for |t | < t3, we have∣∣1 − η(ψtv)
∣∣≤ D′′′|t |min{1,λ+ε}.

As an example of how to use the above estimations and the basic Theorem 2.4, let us consider in more detail the
cases α < 1 and α = 1. For the cases α ∈]1,2], α > 2 we refer to [5], Section 5.

Proof of Theorem 4.2. Case α < 1. We use the expression of ψtv, k(tv) given by Corollary 3.8 and write for t > 0,

1

tα

(
k(tv) − 1

)
η(ψtv) = 1

tα

∫ (
Xv(tx) − 1

)
ψtv(x)dη(x)

= 1

tα

∫ (
Xv(tx) − 1

)
η̂v(tx)dη(x)

+ 1

tα

∫ (
Xv(tx) − 1

)(
ψtv(x) − η̂v(tx)

)
dη(x).

We observe that the function fv = (Xv − 1)η̂v satisfies the regularity and growth conditions of Theorem 2.4 since
fv(x) is bounded and |fv(x)| ≤ 2|x| for |x| ≤ 1. Hence the first term converges to∫ (

Xv(x) − 1
)
η̂v(x)dΛ(x).
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The use of Corollary 4.5 shows that the second term has limit zero, hence the result follows from Remark 3.9.
Case α = 1. Using Corollary 3.8, we see that

t−1[k(tv) − 1 − i
〈
v, δ(t)

〉]
= [

tη(ψtv)
]−1[(

η
(
ψtv(Xtv − 1)

)− i
〈
v, δ(t)

〉)+ i
(
1 − η(ψtv)

)〈
v, δ(t)

〉]
= [

η(ψtv)
]−1[J11(t) + J12(t) + J13(t)

]
,

where

J11(t) = t−1
∫

V

(
η̂v(tx)

(
Xtv(x) − 1

)− it
〈v, x〉

1 + |tx|2
)

dη(x),

J12(t) = t−1
∫

V

(
ψtv(x) − η̂v(tx)

)(
Xtv(x) − 1

)
dη(x),

J13(t) = it−1(1 − η(ψtv)
)〈

v, δ(t)
〉
.

By Corollary 4.5,

lim
t→0+

J12(t) = 0. (18)

Next observe that the function f1(x) = η̂v(x)(Xv(x) − 1) − i 〈v,x〉
1+|x|2 satisfies the growth condition (7) in Theo-

rem 2.4. Indeed f1 is bounded and for |x| ≤ 1,∣∣f1(x)
∣∣ = ∣∣(̂ηv(x) − 1

)(
Xv(x) − 1

)∣∣+ ∣∣∣∣Xv(x) − 1 − i
〈v, x〉

1 + |x|2
∣∣∣∣

≤ 2|v| · |x| · ‖Xx − 1‖θ,ε,λ + 4
(|v| · |x|)2

≤ 8|v| · |x|1+λ+ε + 4
(|v| · |x|)2

,

where in the last step, we use the estimation

‖Xx − 1‖θ,ε,λ ≤ 4|x|min{1,λ+ε},

which can be shown by direct calculation. Thus by Theorem 2.4, we have that

lim
t→0+

J11(t) = Λ(f1) = C1(v). (19)

Now the left thing is to evaluate the term J13(t).
We first need to show the following properties of δ(t):

∣∣δ(t)∣∣≤ {
K�|t |, |t | ≥ 1

2 ;
K�|t log |t ||, |t | < 1

2 ,
(20)

with K� = c1 + 4A/ log 2 + ∫
|x|>1 |x|/(1 + |x|2)dΛ(x), c1 a constant and A given by Theorem 2.4. For |t | ≥ 1/2,

(20) is obvious.
For |t | < 1/2, we write∣∣δ(t)∣∣ ≤

∫
V

|tx|/(1 + |tx|2)dη(x)

=
∫

|x|≤1

|tx|
1 + |tx|2 dη(x) +

∫
1<|x|≤1/|t |

|tx|
1 + |tx|2 dη(x) +

∫
|x|>1/|t |

|tx|
1 + |tx|2 dη(x).
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The first integral is bounded by |t |. By Theorem 2.4, the third one, divided by |t |, converges to
∫
|x|>1

|x|
1+|x|2 dΛ(x) as

|t | tends to 0. Applying Theorem 2.4, we see that

∫
1<|x|≤1/|t |

|tx|
1 + |tx|2 dη(x) ≤ |t |

| log2 |t ||∑
k=0

2k+1η
(|x| ≥ 2k

)

≤ A|t |
| log2 |t ||∑

k=0

2k+12−k ≤ 4

log 2
A|t |∣∣log |t |∣∣.

(Here by convention, when | log2 |t || is not an integer, the summands are for all k no larger than | log2 |t ||.) Then (20)
follows. Combining (20) with Lemma 4.6 we obtain

lim
t→0+

J13(t) = 0. (21)

By relations (18), (19) and (21), we have

lim
t→0+

k(tv) − 1 − i〈v, δ(t)〉
|t | = C1(v). �

Proof of Theorem 1.1. In view of the continuity theorem, it is enough to justify that the characteristic functions of
the normalized sums Sx

n converge pointwise to a function which is continuous at zero and to show full nondegeneracy
of the corresponding law. The convergence follows easily from the asymptotic expansion of k(tv) at t = 0 given by
Theorem 4.2. Also if α ∈ [0,2], using formula (5) for Cα(v), the nondegeneracy proof is based on ReCα(v) < 0 for
v �= 0 and is the same as in [5], since, using Theorem 2.4, suppΛ is not contained in a hyperplane and Δv �= 0 is
α-homogeneous. If α > 2, the argument is the same as in [5] and is based on the order 2 differentiability of k(t),
since for t �= 0 r(Ptv) < 1, which follows from Theorem 3.4. The invertibility of I − z∗ follows from the fact that
r(z∗) = r(z) < 1, which is itself a consequence of r(z) = limn→∞(E(|M|n))1/n ≤ limn→∞(E(|Mn · · ·M1|))1/n =
κ(1) < 1. �

5. On the limit laws of the normalized Birkhoff sums

Here we use the results of [22] in order to give more precise formulas for Cα(v) defined by (5). For a Radon measure
ρ we denote by ρ̆ the push-forward of ρ by the symmetry x → −x. We recall from Section 2 that the ρα(μ̄)-stationary
probability measure σα on Sd−1 was defined by Λ = cσα ⊗ �α with c > 0. In order to write detailed formulas for Δv

(v ∈ V \ {0}) we need to distinguish two cases I and II. In case I, [supp μ̄] and [supp μ̄]∗ have no invariant convex
cone and we have Δv = c∗(v)σ ∗

α ⊗ �α where c∗(v) > 0 if v �= 0 and σ ∗
α is the unique ρα(μ̄∗)-stationary probability

measure on Sd−1. In case II, there are two extremal ρα(μ̄∗)-stationary measures on Sd−1, σ ′
α and σ ′′

α , which are
symmetric of each other (hence σ ′′

α = σ̆ ′
α) and which are supported by the two [supp μ̄]∗-minimal subsets of Sd−1.

Then, using Theorem C of [22], we get that there exists two nonnegative functions c′(v), c′′(v) such that

Δv = c′(v)
(
σ ′

α ⊗ �α
)+ c′′(v)

(
σ ′′

α ⊗ �α
)

and c∗(v) = c′(v) + c′′(v) > 0 for v �= 0.

Proposition 5.1. With the above notations we have, if α ∈ (0,1) ∪ (1,2):
In case I, Δv(Λ̃

1) = rαc∗(v), where rα = (σ ∗
α ⊗ �α)(Λ̃1) < 0, c∗(v) > 0 if v �= 0, c∗(v) is α-homogeneous, and

c∗(−v) = c∗(v). In particular the stable limit law for Sx
n is symmetric.

In case II, Δv(Λ̃
1) = c′(v)γα + c′(−v)γ α , where γα = (σ ′

α ⊗ �α)(Λ̃1), Reγα < 0, c∗(v) = c′(v) + c′(−v) > 0 if
v �= 0, and c′(v) is α-homogeneous.
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Proof. In view of the above observations, it remains to study c∗(v), σ ∗
α , c′(v), c′′(v). This follows from Proposi-

tion 2.5, in particular from the relations

Δtv = tαΔv for t > 0 and Δ−v = Δ̆v.

In case I, using Δv = c∗(v)(σ ∗
α ⊗ �α) and the symmetry of Δv , Δ−v , we get that σ ∗

α is symmetric and c∗(v) =
c∗(−v). The symmetry of σ ∗

α gives that rα = (σ ∗
α ⊗ �α)(Λ̃1) is real and the condition ReCα(v) < 0 gives rα < 0.

In case II, the symmetry of Δv , Δ−v gives:

c′(−v)
(
σ ′

α ⊗ �α
)+ c′′(−v)

(
σ ′′

α ⊗ �α
)= c′(v)

(
σ̆ ′

α ⊗ �α
)+ c′′(v)

(
σ̆ ′′

α ⊗ �α
)
.

Since σ ′
α and σ ′′

α = σ̆ ′
α are supported by disjoint sets, we have c′(−v) = c′′(v). Also since γα = (σ ′

α ⊗ �α)(Λ̃1), we
have (σ ′′

α ⊗ �α)(Λ̃1) = (σ̆ ′
α ⊗ �α)(Λ̃1) = γ α .

The homogeneity of c∗(v), c′(v) follows from the relation Δtv = tαΔv if t > 0. �

Few informations on the constant c, which enters in the expression of Cα(v), seem to be available in the literature
for d > 1. See [13,21] for d = 1. Furthermore, in order to deal with estimation problems in extreme value analysis
of generalized GARCH models (see [37]), we need to have control on the function Cα(v). To go further, we use
the results of [22]; hence we complete the notations already introduced. For s ∈ [0, s∞) we denote by ν∗

s the unique
probability on Pd−1 which satisfies(

ν∗
s ⊗ �s

)
P ∗ = κ(s)

(
ν∗
s ⊗ �s

)
and we write p(s) = ∫ |〈x̄, ȳ〉|s dνs(x̄)dν∗

s (ȳ). We consider the function es on Pd−1 (or Sd−1) given by

p(s)es(x̄) =
∫ ∣∣〈x̄, ȳ〉∣∣s dν∗

s (ȳ),

so that νs(es) = 1.
We know from [22], Theorem 2.6, that es is continuous, positive and that the function fs on V defined by fs(v) =

es(v̄)|v|s satisfies P̄ fs = κ(s)fs .
In case II, there exist two probability measures θs (resp. θ∗

s ) on Sd−1, which are symmetric to each other and are
extremal solutions of the equation(

θs ⊗ �s
)
P̄ = κ(s)

(
θs ⊗ �s

) (
resp.

(
θ∗
s ⊗ �s

)
P̄∗ = κ(s)

(
θ∗
s ⊗ �s

))
.

We denote these solutions by σs,+, σs,−(resp. σ ′
s , σ

′′
s ). We define c+, c− by cσα = c+σα,+ + c−σα,−.

Define the function es,+ on Sd−1 by

p(s)es,+(x̄) =
∫

〈x̄, ȳ〉s+ dσ ′
s(ȳ),

where 〈x̄, ȳ〉+ = sup(〈x̄, ȳ〉,0). So that σs,+(es,+) = 1, and the function fs,+ on V given by fs,+(v) = es,+(v̄)|v|s
satisfies P̄ fs,+ = κ(s)fs,+.

We will use the quantities d = c+ − c−, d∗(v) = c′(v) − c′(−v). For θ ≥ 0 we will also consider the Banach
space Cθ already introduced in Section 3, and the weak topology on its dual space, a space which consists of the
finite measures on V with finite moment of order θ . This topology will be called weak topology of order θ . With the
notations of Section 2, we consider the law η′ of the random variable R − Q, where

R = Q +
∞∑

k=1

M1M2 · · ·MkQk+1.

This measure η′ plays an important role in the discussion of Cα(v), due to the following proposition, first part of
which extends previous results of [6,13].
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Proposition 5.2. With the above notations, we have for 0 < s < α:(
η − η′)(fs) = (

1 − κ(s)
)
η(fs)

(
resp.

(
η − η′)(fs,+) = (

1 − κ(s)
)
η(fs,+)

)
.

The function (α − s)η(fs) (resp. (α − s)η(fs,+)) extends analytically to [0, α + δ] and

lim
s→α−(α − s)η(fs) = m−1

α

(
η − η′)(fα) = c(

resp. lim
s→α−(α − s)η(fs,+) = m−1

α

(
η − η′)(fα,+) = c+

)
.

In particular, if τ is a probability on V and μ = τ ⊗ μ̄ on H = V �G, then c (resp. c+) depends continuously on τ

in the weak topology of order α.

Proof. We denote ŝ = max(s,1), K1 = sup{es(v̄); s ∈ [0, α+δ], v̄ ∈ Sd−1} and take ε ∈ (0,1) such that 0 < s ≤ α−ε.
Since fs(v) = es(v̄)|v|s , Proposition 2.1 gives that fs(R) is dominated on [0, α − ε] by K1E(1 + |R|α−ε) < +∞.
Hence η(fs) = E(fs(R)) defines a continuous function on [0, α). The same argument is valid for η′(fs) = E(fs(R −
Q)). With the notations of Section 2, we have R = Q + MR1, where R1 is independent of (Q,M) and has the same
law as R. It follows η − η′ = η − ηP̄ , hence on [0, α),(

η − η′)(fs) = η(fs) − η(P̄ fs) = (
1 − κ(s)

)
η(fs),

(α − s)η(fs) = α − s

1 − κ(s)

(
η − η′)(fs).

Using the strict convexity of κ(s) given by Proposition 2.2, we know that

lim
s→α−

α − s

1 − κ(s)
= 1

mα

and 1 − κ(s) �= 0 for s �= 0, α,

hence α−s
1−κ(s)

defines a continuous function on [0, α + δ]. On the other hand, we have (η − η′)(fs) = E(fs(R) −
fs(R − Q)). But from above, we have p(s)fs(v) = ∫ |〈v, ȳ〉|s dν∗

s (y), hence

p(s)
∣∣fs(v) − fs

(
v′)∣∣≤ ŝ

∣∣v − v′∣∣s ,
p(s)

∣∣fs(R) − fs(R − Q)
∣∣≤ ŝ|Q|s ≤ max(α + δ,1)

(
1 + |Q|α+δ

)
.

Hence fs(R) − fs(R − Q) is dominated on [0, α + δ] by the P-integrable function max(1, α + δ)(1 + |Q|α+δ). It
follows that (η − η′)(fs) is well defined as an analytical function on [0, α + δ] and gives the required extension of
(α − s)η(fs) to [0, α + δ].

Next we are going to prove the formula

lim
s→α−(α − s)η(fs) = c.

The proof is similar to the calculation of the limit of Ĉs(v) in the proof of Proposition 2.5, hence we give only a
sketch.

Denote Hs(t) = ∫
es(v̄)1[t,∞)(|v|)dη(v) for s ∈ [0, α], t ∈ (0,∞). Then we will get that

η(fs) =
∫

es(v̄)|v|s dη(v) =
∫

V

(∫ |v|

0
sts−1 dt

)
es(v̄)dη(v)

=
∫ ∞

0
sts−1Hs(t)dt.

Observe that for s ∈ [0, α], t ∈ (0,∞), |Hs(t)| ≤ K1 < ∞. If we denote ηt = tα(t−1.η), then

tαHs(t) =
∫

1[1,∞)

(|v|)es(v̄)dηt (v).
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By Theorem 2.4, the equicontinuity of the family es(v̄), and the fact that es(v̄) is bounded by K1 with Λ-negligible
discontinuities, we get for t large,

tαHs(t) = cσα(es)�
α(1,∞) + εs(t) = cα−1σα(es) + εs(t),

where εs(t) = o(1) as t → ∞ uniformly in s ∈ [0, α]. As before, we take a function ρ(s) on [0, α), which satisfies

lim
s→α−

ρ(s) = +∞, lim
s→α−

(α − s)ρs(s) = 0, lim
s→α−

ρs−α(s) = 1.

Now we decompose the integral (α − s)η(fs):

(α − s)η(fs) = (α − s)

∫ ρ(s)

0
sHs(t)t

s−1 dt

+ (α − s)

∫ ∞

ρ(s)

st−α+s−1cα−1σα(es)dt + (α − s)

∫ ∞

ρ(s)

cs(t)t
−α+s−1 dt.

The first term and the third term tend to zero, and the second term tends to c. So we get that lims→α−(α − s)η(fs) = c.
The same proof gives the corresponding formula lims→α−(α − s)η(fs,+) = c+.
In order to show the last assertion, we use the formula mαc = (η−η′)(fα) and we observe that (η−η′)(fα) = η(τ̄ )

with τ̄ (v) = ∫
(fα(v) − fα(v − q))dτ(q). We note the following four properties of τ̄ , η:

∣∣τ̄ (v)
∣∣≤ K1

∫
|q|α dτ(q),∣∣τ̄ (v) − τ̄

(
v′)∣∣≤ 2K1 max(α,1)

∣∣v − v′∣∣α,∫
|v|ε dη(v) ≤ C

∫
|q|ε dτ(q) with C = E

(
1 +

∞∑
k=1

|M1 · · ·Mk|ε
)

< ∞,

if lim
n→∞ τn = τ, then lim

n→∞ηn = η.

In the last property the limits are taken in weak topology and ηn is the stationary measure corresponding to τn.
The continuity of c depending on τ follows since if τn converges to τ in the weak topology of order α, then if

τ̄n(v) = ∫
(fα(v) − fα(v − q))dτn(q), the first two properties above imply the dominated convergence of τ̄n to τ̄ , and

the last one gives the convergence of ηn(τ̄n) to η(τ̄ ).
The proofs of the first two formulae are based on the definition of τ̄ . The third formula follows from Proposition 2.1.
For the last property, we know that, because of the third property, the sequence ηn is relatively compact in the weak

topology. If Pn is the convolution operator on V corresponding to μn = τn ⊗ μ̄, and if the subsequence ηnk
converges

weakly to η1, then ηnk
Pnk

converges weakly to η1P . Hence η1P = η1, η1 = η and ηn converges weakly to η. The
analogous result for c+ follows from a corresponding argument. �

The formula Cα(v) = αmαΔv(Λ̃
1) can be made more explicit as follows

Proposition 5.3. With the above notations, for α ∈ (0,2), α �= 1, we have:
In case I: Cα(v) = −mα

Γ (1−α)
α

p(α)cc∗(v) cos απ
2 .

In case II: Cα(v) = −mα
Γ (1−α)

α
p(α)(cc∗(v) cos απ

2 − idd∗(v) sin απ
2 ). In particular, Cα(v) is real if and only if

c+ = c−.

Proof. We use the classical formula (see [27]):∫ ∞

0

eitx − 1

xα+1
dx = −Γ (1 − α)

α
|t |αe−iαπ/2 if 0 < α < 1, t > 0.
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If t < 0, the value of the corresponding integral is the complex conjugate of the above integral; for 1 < α < 2, the

same result is valid for the integral
∫∞

0
eitx−1−itx

xα+1 dx instead of the left hand side of the formula.

In case I, the definition of Δv(Λ̃
1) gives for 0 < α < 1:

Δv

(
Λ̃1)= cc∗(v)

∫ (
Xȳ (t x̄) − 1

)
1(0,∞)(t)1[1,∞)

(
t ′
)

dσα(x̄)dσ ∗
α (ȳ)d�α(t)d�α

(
t ′
)
.

We note that α�α(1,∞) = 1 and by the symmetry property of σα,σ ∗
α :

p(α) = 2
∫

〈x̄, ȳ〉α+ dσα(x̄)dσ ∗
α (ȳ).

Then we get:

αΔv

(
Λ̃1) = cc∗(v)

∫
dσα(x̄)dσ ∗

α (ȳ)

∫ ∞

0

eit〈x̄,ȳ〉 − 1

tα+1
dt

= −Γ (1 − α)

α
cc∗(v)

(
eiαπ/2 + e−απ/2)∫ 〈x̄, ȳ〉α+ dσα(x̄)dσ ∗

α (ȳ)

= −Γ (1 − α)

α
cc∗(v)p(α) cos

απ

2
.

The stated formula follows and remains valid for 1 < α < 2.
In case II, the calculation is similar, using the definitions of c, d, c∗(v), d∗(v).
In case I, Cα(v) = αmαΔv(Λ̃

1) is real, as the above formula shows.
In case II, the formula gives that Cα(v) is real if and only if dd∗(v) = 0 for any v �= 0, i.e. (c+ − c−)(c′(v) −

c′(−v)) = 0.
If v ∈ supp(σ ′

α), the convex cone generated by supp(σ ′
α) is invariant under supp(μ∗

v). It follows that the mea-
sures ηv,Δv are supported by this cone, hence c′(v) > 0, c′(−v) = 0, and c′(v) − c′(−v) > 0. Then the condition
(c+ − c−)(c′(v) − c′(−v)) = 0 for any v �= 0 is equivalent to c+ = c−. �

For t > 0, we consider the automorphism ut of H defined by ut (h) = (tb, g) where h = (b, g), and we write ut (μ)

for the push-forward of μ by ut .
If μ satisfies condition C and η is the corresponding stationary measure we denote:

Λ(μ) = lim
x→0+

x−α(x.η), Λ(t) = Λ
(
ut (μ)

)
,

and we write c(t), c+(t), c−(t),Cα(v, t) for the quantities c, c+, c−,Cα(v) associated with ut (μ). Furthermore, let τ0
be a probability on V such that

∫ |q|α+δ dτ0(q) < ∞,

τt = (1 − t)τ0 + t τ̆0, μt = τt ⊗ μ̄
(
t ∈ [0,1])

and denote also by ct+, ct−, ct ,Ct
α(v) the quantities c+, c−, c,Cα(v) associated with μt . We see that μt satisfies con-

dition C, since μ̄ satisfies condition i-p and d > 1. In the following corollary we gather some consequence of the
above propositions, which give information on the above quantities.

Corollary 5.4. For t ∈ R∗, we have Λ(t) = t.Λ. If t > 0, then c(t) = tαc, c+(t) = tαc+, Cα(v, t) = tαCα(v).
If the law of Q is symmetric, then c+ = c− and Cα(v) is real.
Furthermore ct+, ct−, ct ,Ct

α(v) depend continuously on t . In particular, if supp μ̄ preserves the proper convex
cone C ⊂ V and τ0(C) = 1, then the values of ct+ − ct− for t ∈ [0,1] fill the interval [−c0+, c0+]. If α < 1 and suppμ

preserves the proper convex cone X ⊂ V , then the limiting law of n−1/αSx
n is supported on X.

Proof. The assertions for Λ(t), c(t), c+(t), c−(t) follow directly from the definitions. The formula Cα(v) =
αmαΔv(Λ̃

1) implies Cα(v, t) = tαCα(v). If the law of Q is symmetric, the formula R = Q +∑∞
k=1 M1 · · ·MkQk+1
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implies the symmetry of the law η of R, hence Λ = limx→0+ x−α(x.η) is also symmetric; it follows that c+ = c− and
Cα(v) is real.

Since τt depends continuously on t in the weak topology of order α, Proposition 5.2 implies that ct , ct+,Ct
α(v)

depend continuously on t ∈ [0,1]. If τ0(C) = 1 and t = 0, then supp(τ0 ⊗ μ̄) preserves C, hence c0+ > 0, c0− = 0 and
c0+ − c0− > 0, c1+ − c1− = −c0+ < 0. Then the continuity of ct+ − ct− implies that all values in the interval [−c0+, c0+] are
taken by ct+ − ct−. If suppμ preserves the cone X and x ∈ X, we have Xx

n ∈ X, hence by convexity n−1/αSx
n ∈ X.

Then, if α < 1, the limiting law of n−1/αSx
n given by Theorem 1.1 is supported by X. �

In order to illustrate Theorem 1.1, we consider, as in [17], the following example where d = 2, μ = pδh +p′δh′ , and
0 < p < 1, h = ρ

( cos θ
sin θ

− sin θ
cos θ

)
, h′ = [(

λ
0

0
λ′
)
, b
]

with θ /∈ Qπ , ρ > 0, 0 < λ′ < 1 < λ, b �= 0. Then s∞ = ∞, logκ(s)

is convex on [0,∞[ and if ρ is sufficiently small, L(μ̄) = κ ′(0) < 0. Since h′ is proximal and h is an irrational
similarity, condition i-p is satisfied by [supp μ̄]. Since θ /∈ Qπ , the limit set of [supp μ̄] is equal to S1 and we are
in case I of Proposition 5.1. If α ∈ [0,2] with α �= 1, we get that the limit law of the normalized Birkhoff sum is
symmetric and has Fourier transform eαmαcrαc∗(v), where c > 0, rα < 0 and c∗(v) = |v|αc∗(v) is positive for v �= 0.

If α = 1, the corresponding limit law is of Cauchy type, with Fourier transform ecm1r1|v|c∗(v), where cm1r1 < 0,
c∗(v) > 0.
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