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Abstract. In this article we consider rough differential equations (RDEs) driven by non-geometric rough paths, using the concept
of branched rough paths introduced in (J. Differential Equations 248 (2010) 693–721). We first show that branched rough paths
can equivalently be defined as γ -Hölder continuous paths in some Lie group, akin to geometric rough paths. We then show that
every branched rough path can be encoded in a geometric rough path. More precisely, for every branched rough path X lying above
a path X, there exists a geometric rough path X̄ lying above an extended path X̄, such that X̄ contains all the information of X. As
a corollary of this result, we show that every RDE driven by a non-geometric rough path X can be rewritten as an extended RDE
driven by a geometric rough path X̄. One could think of this as a generalisation of the Itô–Stratonovich correction formula.

Résumé. Dans cet article, nous considérons des équations différentielles conduites par des trajectoires rugueuses non-
géométriques en utilisant le concept de trajectoire rugueuse ramifiée introduit dans (J. Differential Equations 248 (2010) 693–721).
Nous montrons d’abord que celles-ci peuvent être définies de manière équivalente comme une fonction γ -Hölderienne à valeurs
dans un certain groupe de Lie, comme c’est le cas pour les trajectoires rugueuses dites « géométriques » . Nous montrons ensuite
que toute trajectoire rugueuse ramifiée peut être encodée par une trajectoire rugueuse géométrique. Plus précisément, pour toute
trajectoire rugueuse ramifiée X définie au-dessus d’une trajectoire X, il existe une trajectoire rugueuse géométrique X̄ définie
au-dessus d’une trajectoire étendue X̄, de manière à ce que X̄ contienne toute l’information de X. Il en suit que toute équation
différentielle conduite par X peut être reformulée comme une équation différentielle modifiée conduite par X̄. On peut interpréter
ceci comme une généralisation de la formule de correction Itô–Stratonovich.
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1. Introduction

The so-called controlled differential equations have become an important class of dynamical systems throughout the
last half century, the most notable example being the Itô diffusions. Roughly speaking, these systems take the form

dYt =
∑

i

fi(Yt )dXi
t , Y0 = ξ, (1.1)

where X and Y are paths in vector spaces V and U respectively, with X = (Xi) and X0 = 0, and where the vector
fields fi :U → U are smooth non-linear functions. For simplicity, we will always assume that V and U are finite
dimensional, with V = R

d and U = R
e, so that there is a canonical identification between these spaces and their

duals.
For a path X of bounded variation, the notion of a solution is unambiguously defined using any variant of Riemann-

sum style integration. However, for a less regular X this isn’t always the case. For example, let X be a sample path of
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Brownian motion in R
d , which is (almost surely) γ -Hölder continuous, for every γ < 1/2. It is clear that the solution

Y depends on how one interprets the integral in (1.1). In particular, both Itô and Stratonovich integrals provide two
distinct notions of a solution. Another way of looking at it is that there is something missing from (1.1), namely, the
blueprint of how to construct integrals against dX. The theory of rough paths, first introduced by T. Lyons in [26],
provides an elegant way of encoding this missing ingredient.

Instead of viewing (1.1) as an equation controlled by X, one should recast it (formally speaking) as

dYt =
∑

i

fi(Yt )dXi
t , Y0 = ξ, (1.2)

an equation controlled by a path X, known as a rough path, that is an extension of X, taking values in a much bigger
(non-linear) space. The equation (1.2) is known as a rough differential equation (RDE). The extra components of X
provide the necessary information on how to interpret those integrals encountered in controlled differential equations,
hence they provide the information that was missing in (1.1). This interpretation has proved extremely useful in the
framework of Itô diffusions, most notably in illustrating the continuity properties of the Itô map.

However, when the driving path X has Hölder regularity γ ≤ 1/3, one must impose an extra condition to ensure that
equations like (1.1) can still be treated in the framework of rough paths. Namely, the integrals in (1.1) must obey “the
usual rules of calculus” in that, like Stratonovich integrals, they must satisfy the ordinary chain-rule and integration by
parts formulae, without any correction terms. This framework has been used, for example, in the analysis of equations
driven by fractional Brownian motion with Hurst parameter H > 1/4 [6,10,17].

In certain situations, the geometric framework is not an appropriate model for a stochastic system. For example,
in some financial models, an Itô type integral is more appropriate than Stratonovich, since the latter scheme requires
one to “look into the future.” More generally, it is often the case that natural approximations to stochastic integrals do
not converge to objects for which the usual change of variables formula holds. Indeed, discrete approximations to an
integral do not in general have any reason to satisfy the integration by parts formula exactly. While the resulting error
term would vanish when integrating smooth functions against each other, this does not always happen in the stochastic
case where integrands and integrators are typically very rough. The most famous example of this is of course the Itô
integral, however the phenomenon is also widespread in the world of non semi-martingales [3,4,13,19]. Thus, the
limiting objects from discretisation schemes are often non-geometric. Recently, M. Gubinelli introduced the notion of
a branched rough path, which is an extension of the original formulation, created to extend the scope of rough path
theory to such non-geometric situations [22].

As we will see below, this extension does actually not alter the fundamental theory of rough paths at all, but
merely requires that some additional components be added to the rough path X. Indeed, the main result of this article,
Theorem 1.9 below, shows that the solution to a differential equation driven by a branched rough path can always
be recovered as the solution to a (usually different) differential equation driven by a geometric rough path. Before
introducing branched rough paths, we will first give an overview of how geometric rough paths are used to solve
controlled differential equations.

1.1. Geometric rough paths

The missing ingredients contained in the rough path X can be interpreted as the iterated integrals of X. If X takes
values in V , then X takes values in T ((V )), the topological dual of the tensor product algebra T (V ), defined by

T (V ) = V ⊕ V ⊗2 ⊕ · · · .
Hence, T ((V )) can be identified with formal tensor series on V . The lowest order components, are simply the com-
ponents of X, in that

〈Xt , ei〉 = Xi
t ,

for i = 1, . . . , d , where ei is the ith basis vector of V . The higher order components are (formally) given by the iterated
integrals

〈Xt , ei1···in〉 def=
∫ t

0
· · ·

∫ r2

0
dXi1

r1
· · · dXin

rn
, (1.3)
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for i1, . . . , in = 1, . . . , d , where we use the shorthand ei1···in = ei1 ⊗ · · · ⊗ ein . Of course, this is only defined formally
since the above integrals cannot be constructed for an arbitrary X. Hence, one should think that a given rough path X
defines the integral on the right hand side of (1.3).

The concept of satisfying the “usual rules of calculus” is encapsulated by requiring that

〈Xt , ei1···in〉〈Xt , ej1···jm〉 = 〈Xt , ei1···in �� ej1···jm〉, (1.4)

for all tensors ei1···in , ei1···in and where �� denotes the shuffle product [30]. The shuffle product w �� v of two words
w,v is given the sum of all words that are obtained by combining and rearranging the words w,v whilst also preserving
their original orderings. For example,

ei �� ej = eij + eji ,

ei �� ejk = eijk + ejik + ejki ,

note that ekji does not appear in the second expression since it does not preserve the ordering jk. Hence, we have that,
for example

〈Xt , ei〉〈Xt , ej 〉 = 〈Xt , eij 〉 + 〈Xt , eji〉,
which, by substituting (1.3), gives the usual integration by parts formula. Hence, one should think of (1.4) as a
generalisation of the integration by parts formula to higher order iterated integrals.

Remark 1.1. It is well known that when X is smooth and the rough path X is constructed canonically using Riemann
integrals, then the identity (1.4) is always satisfied [8].

Of course, for a fixed t , the object Xt cannot be any element of the truncated tensor product algebra. Instead, Xt

lives in a special subset, which happens to be a Lie group, denoted by (G(V ),⊗), called the free nilpotent group, with
the group operation given by the tensor product. This is defined by

G(V )
def= expG(V ),

where G(V ) ⊂ T ((V )) is the space of formal Lie series generated by V and where exp is the tensor exponential. The
group G(V ) can equally be defined as the group-like elements or characters with respect to the shuffle product, which
ensures (1.4). These algebraic ideas will be made concise in Section 4.

When solving controlled differential equations, it is often more convenient to work with the increment δXst
def=

Xt − Xs instead of the path Xt . The same is true of rough paths, hence we define

Xst
def= X−1

s ⊗ Xt ,

where X−1
s denotes the group inverse of Xs . This yields the following definition, which is equivalent to the one given

in [18,26]:

Definition 1.2. A weak geometric rough path of regularity γ is a map X : [0, T ] × [0, T ] → T ((V )) satisfying the
following three conditions

1. 〈Xst , x �� y〉 = 〈Xst , x〉〈Xst , y〉, for every x, y ∈ T (V ),
2. Xst = Xsu ⊗ Xut ,
3. sups �=t |〈Xst ,w〉|/|t − s|γ |w| < ∞, for every w ∈ T (V ) with |w| ≤ N , where |w| denotes the number of letters

composing the word w, which we will refer to as the length of the word w.

Remark 1.3. There is a subtle difference between weak geometric rough paths and geometric rough paths [16]. In
this article we only refer to the weak kind and will henceforth omit the prefix.
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Remark 1.4. By definition of the group G(V ), we could equivalently say that a geometric rough path X is a function
X : [0, T ] × [0, T ] → G(V ) that satisfies properties 2 and 3.

Remark 1.5. One of the crucial properties of a geometric rough path X of regularity γ is that only finitely many
components actually matter. To be precise, let N be the larger integer such that Nγ ≤ 1, then one can show that all
components 〈Xst , ei1···in〉 for n > N are uniquely determined by those elements with n ≤ N , see [26], Theorem 2.2.1.
Intuitively, these larger components are “regular enough” to be defined in a canonical way. Moreover, we will see
that when solving a differential equation using X, the components with n > N become negligible in an expression
for the solution. For these reasons, one often defines a geometric rough path as taking values in the truncated group
G(N)(V ), defined by simply discarding those components of elements in G(V ) indexed by more than N letters. These
ideas will be made precise in Section 4. The intention of defining the geometric rough path in the above fashion is to
draw the connection between itself and the branched rough path, which will be introduced in the following subsection.

One simple example of a rough path is the canonical rough path constructed above a smooth. Since the works of
Chen [8], it has been known that if X is a smooth path, then the quantities given by

〈Xst , ei1···in〉 def=
∫ t

s

· · ·
∫ r2

s

dXi1
r1

· · · dXin
rn

,

do indeed satisfy the two algebraic relations given in the above definition.
To solve the RDE (1.1), we adopt the idea of controlled rough paths, introduced in [21]; the key observation is that

Y is locally controlled by the rough path X. We will illustrate this by assuming that 1/4 < γ ≤ 1/3, so that N = 3. As
usual, we assume that V = R

d , U = R
e and that f (Y )dX = ∑d

i=1 fi(Y )dXi , where the vector fields fi :Re → R
e

are smooth. We will denote by f α
i the αth coordinate of the vector field fi . Then (1.1) can be written in the integral

form

δYst =
∫ t

s

fi(Yv)dXi
v, (1.5)

where we omit the sum notation. If we perform a Taylor expansion of fi around Ys and repeatedly substitute (1.5)
back in to itself, then we formally obtain

δYst ≈ fi(Ys)

∫ t

s

dXi
v1

+ f
α1
j (Ys) ∂α1fi(Ys)

∫ t

s

∫ v1

s

dXj
v2

dXi
v1

+ f
α1
k (Ys) ∂α1f

α2
j (Ys) ∂α2fi(Ys)

∫ t

s

∫ v2

s

∫ v1

s

dXk
v3

dXj
v2

dXi
v1

+ 1

2
f

α1
k (Ys)f

α2
j (Ys) ∂α1α2fi(Ys)

∫ t

s

(∫ v3

s

dXk
v1

)(∫ v3

s

dXj
v2

)
dXi

v3
, (1.6)

where the error is of order |t − s|4γ and hence o(|t − s|) for |t − s| � 1. Now, all of the above integrals are components
of Xst . For instance,∫ t

s

dXi
v1

= 〈Xst , ei〉,
∫ t

s

∫ v1

s

dXj
v2

dXi
v1

= 〈Xst , eji〉,∫ t

s

∫ v2

s

∫ v1

s

dXk
v3

dXj
v2

dXi
v1

= 〈Xst , ekji〉.

The non-trivial term must be understood using the shuffle product. Indeed, the identity (1.4) guarantees that(∫ v3

s

dXk
v1

)(∫ v3

s

dXj
v2

)
= 〈Xst , ek〉〈Xst , ej 〉 = 〈Xst , ei �� ej 〉

= 〈Xst , ekj 〉 + 〈Xst , ejk〉,
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and hence we define∫ t

s

(∫ v3

s

dXk
v1

)(∫ v3

s

dXj
v2

)
dXi

v3

def= 〈Xst , ekji〉 + 〈Xst , ejki〉. (1.7)

It should then be clear that Y looks locally like X, in the sense that

δYst ≈
∑

ei1···in
Fei1···in (Ys)〈Xst , ei1···in〉,

where we sum over all basis elements ei1···in ∈ T (N)(V ) and where Fei1 ···in :Re → R
e are the coefficients from (1.6).

One then constructs Y over all of [0, T ] by sewing together the increments Yt −Ys over small intervals. The o(|t − s|)
terms disappear as we sum over smaller and smaller intervals.

1.2. Non-geometric rough paths

Whereas a geometric rough path lives in a tensor product algebra generated by V =R
d , a branched rough path lives in

the Hopf algebra generated by the set of rooted, labelled trees T with vertex decorations from the set {1, . . . , d}. This
space is known as the Connes–Kreimer Hopf algebra and was famously used in [9] in the context of renormalization
theory. In general, a Hopf algebra consists of a vector space H, equipped with a product · :H ⊗̃H →H and a coprod-
uct Δ :H → H ⊗̃H, see the standard textbook [31]. As an algebra, H will simply be the set of abstract polynomials,
where we consider the elements of T as commuting indeterminates. The product · is then the usual (commutative)
product between polynomials and the basis elements for the vector space H are simply all monomials in the indeter-
minates from T . We will frequently omit the product · from the notation, for instance writing τ1τ2 for the product
of τ1 and τ2. The coproduct Δ is the dual of a more interesting product 	, also known as the convolution product.
Much like the deconcatenation coproduct describes all ways of cutting apart a tensor, the coproduct Δ describes all
ways of cutting apart a tree. For an introduction to Hopf algebras aimed towards the Connes–Kreimer algebra, see the
monograph [29].

The following is a slight rewriting of the definition given in [22]:

Definition 1.6. A branched rough path of regularity γ is a map X : [0, T ]× [0, T ] →H∗ satisfying the following three
conditions

1. 〈Xst , h1h2〉 = 〈Xst , h1〉〈Xst , h2〉, for every h1, h2 ∈H.
2. Xst = Xsu 	 Xut or equivalently 〈Xst , h〉 = ∑

(h)〈Xsu, h
(1)〉〈Xut , h

(2)〉, where Δh = ∑
(h) h

(1) ⊗̃ h(2) and h ∈ H.
3. sups �=t |〈Xst , τ 〉|/|t − s|γ |τ | < ∞, for every τ ∈H, where |τ | counts the number of vertices in τ .

Remark 1.7. As was the case with geometric rough paths, for branched rough paths only finitely many components
〈Xst , τ 〉 actually matter. As always, let N be the largest integer such that Nγ ≤ 1, then the components 〈Xst , τ 〉 with
|τ | > N are determined by those with |τ | ≤ N [22] and moreover the components with |τ | > N never show up in
expressions for solutions of differential equations.

Remark 1.8. Here, we used the notation ⊗̃ for elements in the tensor product of H with itself. The reason for not
using the standard notation ⊗ is because the latter will be reserved for the tensor product within the tensor algebra
built over some vector space, as in Section 4.

Condition 1 confirms that the polynomial product plays the role of the shuffle product in H. That is, it picks out
some object h1h2 so that 〈X, h1h2〉 = 〈X, h1〉〈X, h2〉. The fact that this product is commutative in both theories is
a reflection of the fact that the usual product between smooth functions is commutative. Condition 2 is a natural
requirement of any iterated integral. Indeed, no matter how one defines an integral, it should always be linear with
respect to the integrand, and satisfy

∫ t

s
= ∫ u

s
+ ∫ t

u
. Condition 2 encapsulates this identity in our context, if we interpret

the components of X in the way described below. Condition 3 reflects the fact that the integral 〈Xst , τ 〉 should be |τ |
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times as regular as the underlying path X; it is a purely analytic condition, as opposed to the first two purely algebraic
conditions.

We will now illustrate the definition with the example of γ ∈ (1/4,1/3]. Here, we would have∫ t

s

dXi
v1

= 〈Xst , i〉,
∫ t

s

∫ v1

s

dXj
v2

dXi
v1

= 〈
Xst ,

j
i

〉
and∫ t

s

∫ v1

s

∫ v2

s

dXk
v3

dXj
v2

dXi
v1

= 〈
Xst ,

k
j
i

〉
,

as well as the branched object∫ t

s

(∫ v3

s

dXk
v1

)(∫ v3

s

dXj
v2

)
dXi

v3
= 〈

Xst ,
k j
i

〉
.

In general, components of X should be interpreted as in Remark 2.8 below. Essentially, every node corresponds to one
integration, with each incoming branch denoting a factor of the integrand.

In the above example, the only additional objects in our non-geometric rough path are the components correspond-
ing to . Contrary to the case of geometric rough paths, we cannot use the integration by parts formula to simplify
these further. As N increases (or γ decreases), a branched rough path becomes much larger than a geometric rough
path. For τ = j

i , Condition 2 becomes the familiar identity for the Lévy area〈
Xst ,

j
i

〉 = 〈
Xsu,

j
i

〉 + 〈
Xut ,

j
i

〉 + 〈Xsu, j〉〈Xut , i〉,
or in the language of the coproduct

Δ
j
i = j

i ⊗̃ 1 + 1 ⊗̃ j
i + j ⊗̃ i .

Let us again consider the solution to (1.1), now driven by a branched rough path X with 1/4 < γ ≤ 1/3. From (1.6),
we would have

Yt − Ys ≈
∑
τ

fτ (Ys)〈Xst , τ 〉, (1.8)

where we sum over all τ ∈ T3, or in the case of arbitrary γ , all τ ∈ TN , the set of τ ∈ T with |τ | ≤ N . Hence, the
idea of viewing the solution to (1.1) as an object that locally “looks like” X carries through nicely to the framework
of non-geometric rough paths. The coefficients fτ are known as the Butcher coefficients, in honour of J. Butcher who
was the first to represent solutions to ODEs as a series indexed by trees, which turned out to be a very fruitful approach
to the development of numerical methods for the solutions to ODEs [5,7,23].

1.3. Converting non-geometric to geometric

The main objective of the article is to provide a translation between branched rough paths and geometric rough paths.
The first step is to rephrase branched rough paths in the language of geometric rough paths. For a geometric rough path,
Chen’s property is not a definition, but is a corollary from the definition Xst = X−1

s ⊗ Xt . However, for a branched
rough path, this is considered part of the definition. We will show that a branched rough path can equivalently be
defined as a path X : [0, T ] → GN , where (GN,	) is the (truncated) Lie group of characters in the Connes–Kreimer
Hopf algebra, satisfying

〈g, xy〉 = 〈g, x〉〈g, y〉,
for all x, y ∈ H. This allows us to define Xst = X−1

s 	Xt and hence guarantee Chen’s property from the definition. The
Lie group (GN,	) bears great similarity to the step N free nilpotent group, since it is the truncated set of characters
in H, and the step N free nilpotent group is the truncated set of characters in the tensor product algebra T (V ).
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Moreover, one obtains GN as the exp	 of the Lie algebra of so-called primitive elements, where exp	 is simply the
tensor exponential, with tensor products replaced with 	 products.

Unsurprisingly, it is easy to show that a geometric rough path is a type of branched rough path. The main result
of the article provides a surprising converse statement, namely that every branched rough path over a path can be
encoded in a geometric rough path. More precisely, for any branched rough path X above X there exists a geometric
rough path X̄ above X̄, where X̄ is an extension of X and X̄ contains all the information held in X.

The path X̄ will take values in BN , where we define Bn as the real vector space spanned by the set Tn. Clearly, one
can think of X as taking values in

B1
def= span{ i : i = 1, . . . , d} ∼= R

d .

Under this interpretation, X̄ is an extension of X in the sense that πB1(X̄) = X, where πV denotes projection onto V .
The geometric rough path X̄ lives in the truncated tensor product space

T (N)(BN) = span{τ1 ⊗ · · · ⊗ τn: τi ∈ TN and 1 ≤ n ≤ N}.
Thus, since τ is a basis vector of the underlying vector space BN , the object 〈X̄st , τ 〉 will actually denote a path
component of X̄, in that

〈X̄st , τ 〉 = δX̄τ
st ,

for all τ ∈ TN , as opposed to the original 〈Xst , τ 〉 which must be interpreted as a integral component, indexed by the
tree τ . Moreover, the tensor components must be interpreted as the iterated integrals

〈X̄st , τ1 ⊗ · · · ⊗ τn〉 def=
∫ t

s

· · ·
∫ v2

s

dX̄τ1
v1

· · · dX̄τn
vn

.

We will prove the following result. As always, γ ∈ (0,1) and N is the largest integer such that Nγ ≤ 1.

Theorem 1.9. Let X = (Xi)i=1,...,d be a path in R
d and X a γ -Hölder branched rough path in H such that 〈Xst , i 〉 =

δXi
st . Then there exists

1. a path X̄ = (X̄τ )τ∈TN
taking values in BN , with πB1(X̄) = X,

2. a γ -Hölder geometric rough path X̄ in T (N)(BN) satisfying 〈X̄st , τ 〉 = δX̄τ
st for each τ ∈ TN and

3. a graded morphism of Hopf algebras ψ :H → T (BN),

such that

〈Xst , h〉 = 〈
X̄st ,ψ(h)

〉
, (1.9)

for every h ∈H.

Before adding a few remarks, we will illustrate the result with the first non-trivial example.

Example 1.10. Consider the case where X ∈R
d with Hölder exponent 1/3 < γ ≤ 1/2, so that N = 2. The important

components of the branched rough path X above X are 〈X, i 〉 and 〈X,
k
j 〉, for all i, j, k = 1, . . . , d . The theorem

tells us that there exists a path

X̄ = (
X̄ i , X̄

k

j
)
i,j,k=1,...,d

,

where X̄ i = Xi for all i = 1, . . . , d and moreover there exists a geometric rough path X̄ above X̄. Since

B2
def= span

{
i ,

k
j : i, j, k = 1, . . . , d

}
,
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we can see that X̄ is defined on the (truncated) tenor product space B2 ⊕ B⊗2
2 . The map ψ tells us how to write X in

terms of X̄, for instance we have ψ( i ) = i and ψ(
j
i ) = j ⊗ i + j

i and therefore

〈Xst , i 〉 = 〈X̄st , i 〉 and
〈
Xst ,

j
i

〉 = 〈
X̄st , j ⊗ i + j

i

〉
.

Or in the more formal language

δXi
st = δX̄ i

st and
∫ t

s

∫ v1

s

dXj
v2

dXi
v1

=
∫ t

s

∫ v1

s

dX̄ j
v2

dX̄ i
v1

+ δX̄
j

i
st , (1.10)

for all i, j, k = 1, . . . , d . Note that even though Xi = X̄ i , the integrals defined on the left hand and right hand side of
the second equality in (1.10) are different, since the one on the left is defined by X and the one on the right is defined
by X̄.

This result relies on the Lyons–Victoir extension theorem of [28], which shows that every γ -Hölder path in a
quotient of the free nilpotent group G(N)(V ) can be extended to a γ -Hölder path in G(N)(V ). Since the extension
theorem of [27] is non-unique, the path X̄ is also non-unique. Moreover, there is a great deal of redundancy in X̄,
since it has many more components than X, however, this is the most convenient way to build a geometric rough path
containing all the information of X. The map ψ describes how the components of X should be split up amongst the
components of the tensor product algebra T (N)(BN). As we shall see, the fact that ψ is a Hopf algebra morphism is
crucial not only when obtaining X̄, but also when applying (1.9) further down the line.

Remark 1.11. In [25], the authors consider non-geometric rough path to be geometric rough paths without the as-
sumption of satisfying the shuffle product relation. They show that these non-geometric rough paths are in fact iso-
morphic to a special class of geometric rough paths, known as (p, q)-rough paths, living above a path in an extended
space. Hence, our result is an extension of this result, in the sense that the more general (and more useful) branched
rough paths can also be encoded in a geometric rough path living above a path in an extended space. Note however
that our result does not yield an isomorphism.

The main motivation behind Theorem 1.9 is that it allows us to rewrite an expression controlled by a branched
rough path as an expression controlled by a geometric rough path. In particular, we can use this to show that every
RDE driven by a branched rough path can be rewritten as another RDE driven by a geometric rough path.

Theorem 1.12 (Generalised Itô–Stratonovich correction). Let Y solve (1.1), driven by a branched rough path X.
Let X̄ and X̄ be as defined in Theorem 1.9. Then Y is also a solution to

dYt =
∑

τ∈TN

fτ (Yt )dX̄τ
t , (1.11)

driven by the geometric rough path X̄, where the vector fields fτ are defined by (3.12) with f
i
= fi (and can be seen,

for example in (1.8)).

Example 1.13. Returning back to the 1/4 < γ ≤ 1/3 example, if Y solves (1.1) driven by some X then we also have

dYt = fi(Yt )dX̄ i
t + (

f α
i ∂αfj

)
(Yt )dX̄

j
i + (

f α
k ∂αf

β
j ∂βfi

)
(Yt )dX̄

k
j
i

+ 1

2

(
f α

k f
β
j ∂α∂βfi

)
(Yt )dX̄

k j
i ,

driven by the geometric rough path X̄ found in Theorem 1.9, where we sum over all i, j, k = 1, . . . , d and

α,β = 1, . . . , e, noting that X̄
k j
i = X̄

j k
i . Even though X̄ i = Xi , one must distinguish between fi(Yt )dXi

t and
fi(Yt )dX̄ i

t , since the former is driven by X and the latter is driven by X̄.
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Remark 1.14. Although we call this a generalised Itô–Stratonovich correction, it is really more like a “Any non-
geometric integral”–“Particular class of geometric integral” correction. However, we are quite justified in giving
it this name. Suppose X was a non semi-martingale path for which there exists a branched rough path X above it
and also some kind of “Stratonovich” rough path X̄(1) above it, fractional Brownian motion with Hurst parameter
H > 1/4 being a good example [10]. As will be clear in the proof of Theorem 1.9, we can actually choose X̄ such that
the components above X are given by X̄(1) (or indeed any geometric rough path above X). Hence, the formula can
tell us what correction we get if we take an RDE driven by X and rewrite it using “Stratonovich” integrals, just as in
the usual Itô–Stratonovich correction formula.

The outline of the article is as follows. In Section 2 we define the algebraic concepts underlying branched rough
paths, including the Connes–Kreimer Hopf algebra. We then provide a definition of branched rough paths, equivalent
to that given in [22], that is more in line with the concept of a geometric rough path. In Section 3, we define solutions to
RDEs driven by branched rough paths, via the idea of controlled rough paths. In Section 4, we first recall the definition
of a geometric rough path. We then show that geometric rough paths fit easily in to the framework of branched rough
paths, before providing a proof of Theorem 1.9. In Section 5, we discuss the special case of RDEs driven by geometric
rough paths, before proving the generalised Itô–Stratonovich correction formula.

2. Hopf algebras and branched rough paths

2.1. Hopf algebras for probabilists

In this subsection we will give a non-specialist outline of what a Hopf algebra is and why it is a useful concept. For a
more detailed introduction, we recommend the notes [2,29] as well as the standard texts [1,31].

A Hopf algebra is a special kind of bialgebra, so we will first define the latter. A bialgebra arises naturally when
one algebra is in some sense acting on another. To this end, let H be a vector space and let H ∗ be another vector
space, acting linearly on h via the pairing 〈·, ·〉 :H ∗ ⊗̃ H → R. Suppose moreover that H is actually an algebra, with
some product · :H ⊗̃ H → H and unit element 1. In many natural situations, the space H ∗ is also an algebra, with
some other product 	 :H ∗ ⊗̃ H ∗ → H ∗ and a counit 1∗, which acts as the dual element of 1.

It is often advantageous to superimpose the structure from H ∗ onto H , so that we simply have a vector space H ∗
acting on a more structured space H . To be precise, the product 	 can be encoded into H by a map Δ :H → H ⊗̃ H

called a coproduct. The coproduct is the dual of 	 in the sense that

〈f 	 g,h〉 = 〈f ⊗̃ g,Δh〉, (2.1)

for every f,g ∈ H ∗ and h ∈ H . In other words, the action of f 	 g on h is determined by the action of f ⊗̃ g on the
coproduct of h. We will often use the notation

Δh =
∑
(h)

h(1) ⊗̃ h(2),

and in the sequel we will occasionally omit the summation notation. In this notation (2.1) can be written

〈f 	 g,h〉 =
∑
(h)

〈
f,h(1)

〉〈
g,h(2)

〉
.

The triple (H, ·,Δ) is then called a bialgebra, provided certain consistency relations between the product and coprod-
uct are satisfied.

Remark 2.1. Recall that, although both ⊗ and ⊗̃ are tensor products, we reserve the former for the product in the
tensor product algebra T (V ) and the latter simply to discriminate between the left and the right part of a coproduct.
If x, y are two elements in some algebra and f,g are two maps on that algebra, then we use the convention (f ⊗̃
g)(x ⊗̃ y) = f (x) ⊗̃ g(y).
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Suppose that some f ∈ H ∗ has an inverse f −1 ∈ H ∗, satisfying f 	f −1 = f −1 	 f = 1∗, of course there is always
at least one element in H ∗ with an inverse. Since we want all the structure of H ∗ to be contained in H , we must
encode an inverse map into H . In fact, we introduce a map S :H → H such that S∗ :H ∗ → H ∗ is the inverse map,
satisfying S∗f 	 f = f 	 S∗f = 1∗. The map S is called the antipode. But since we only want to work on H and not
H ∗, the dual requirement for S is that

(Id ⊗̃ S)Δh = (S ⊗̃ Id)Δh = 〈
1∗, h

〉
1,

for all h ∈ H , where Id :H → H is the identity map. The quadruple (H, ·,Δ,S) is called a Hopf algebra. Thus, a
Hopf algebra is nothing more than a bialgebra with an antipode.

A bialgebra is called graded if it can be decomposed into a direct sum of vector spaces

H =
⊕
n∈N

H(n),

satisfying the natural multiplication and comultiplication rules

H(n) · H(m) ⊂ H(n+m) and ΔH(n) ⊂
⊕

p+q=n

H(p) ⊗̃ H(q),

for any n ∈N. A graded Hopf algebra must satisfy the additional property

SH(n) ⊂ H(n),

for any n ∈ N. For any graded bialgebra, one can define a map | · | whose domain is given by some “natural” basis
elements of H , and which simply reads off the index n of the space H(n) in which the basis element lives.

A standard result in Hopf algebra theory states that every graded bialgebra H satisfying H0 = R is in fact a Hopf
algebra. That is, one can find an antipode for H . Moreover, every Hopf algebra has a unique antipode. See [1,11] for
details. To round off this subsection, we will give a simple example of a Hopf algebra. A more detailed exposition of
this example can be found in [2].

Example 2.2 (The algebra of differential operators). Consider the differential operator ∂i = ∂/∂xi for i = 1, . . . , d .
The set {∂i}di=1 generates an algebra H , where multiplication is given by composition of the operators and the unit 1
is given by the identity operator. To turn H into a Hopf algebra, we must find a coproduct and an antipode. As stated
above, coproducts arise naturally when an algebra H ∗ is acting linearly on H . To this end, let H ∗ be the space of
smooth function f :Rd →R and define the pairing

〈f,D〉 = (Df )(0),

for any D ∈ H . The space of smooth functions H ∗ can be turned into an algebra by introducing pointwise multiplica-
tion 	, and the counit 1∗ is simply the constant function f = 1. The coproduct Δ arises when we consider the action
of the product f 	 g on a differential operator D ∈ H . For instance, Leibniz rule tells us that

〈f 	 g, ∂i∂j 〉 = (
∂i∂j (fg)

)
(0) = ∂i∂jf (0)g(0) + ∂if (0) ∂j g(0) + ∂jf (0) ∂ig(0) + f (0) ∂i∂j g(0)

= 〈f ⊗̃ g, ∂i∂j ⊗̃ 1 + ∂i ⊗̃ ∂j + ∂j ⊗̃ ∂i + 1 ⊗̃ ∂i∂j 〉.

Hence, we can encode the action of f 	 g on ∂i∂j using the coproduct

Δ(∂i∂j ) = ∂i∂j ⊗̃ 1 + ∂i ⊗̃ ∂j + ∂j ⊗̃ ∂i + 1 ⊗̃ ∂i∂j .

Of course, one can use this same technique to decide how to define Δ(∂i1 · · · ∂in). Moreover, it is an easy exercise to
check that S1 = 1, S∂i = −∂i and more generally S(∂i1 · · ·∂in) = (−1)n∂i1 · · ·∂in defines an antipode on H .
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2.2. The Connes–Kreimer Hopf algebra

In this subsection we will define another important example of a Hopf algebra, called the Connes–Kreimer Hopf
algebra, which is a critical object in the theory of branched rough paths.

Let T be the set of all rooted trees with finitely many vertices, whose vertices are decorated by labels from the
alphabet {1, . . . , d}. Every element in T can be constructed recursively by attaching a collection of trees (of lower
order) to a new root. For example, the set of (undecorated) trees with three vertices or less is given by

T3 = {
, , ,

}
.

We can then construct all single vertex trees by attaching the empty tree 1 to a new root. We denote this by

[1]a = a,

for any a from the alphabet. All trees of two vertices can be constructed by attaching these trees to a new root

[ a]b = a
b .

For the trees of three vertices, we similarly have[ a
b

]
c
=

a
b
c .

The remaining tree in T3 is obtained by attaching a pair of single vertex trees to a root

[ a b]c = a b
c .

Indeed, every element in T can be written recursively as

[τ1τ2 · · · τm]a, (2.2)

for some smaller trees τ1, . . . , τm ∈ T ∪ {1} and some a from the alphabet. We will always assume that the order of
the branches in each tree does not matter, in the sense that [τ1 · · · τn]i = [τσ(1) · · · τσ(n)]i for all permutations σ of
{1, . . . , n}. For each [τ1 · · · τn]i , only one such representation appears in the set T .

Remark 2.3. In the rough path setting, rearranging branches in a tree corresponds to rearranging real-valued factors
in an integrand. Hence, this is quite a natural assumption to make.

The Connes–Kreimer Hopf algebra (H, ·,Δ,S) is the commutative polynomial algebra generated by the variables
T , equipped with a coproduct Δ :H →H ⊗̃H and an antipode S :H → H. Alternatively, we can view the set H as a
real vector space whose basis is the commutative monoid F ∪ {1} where F is given by

F = {
τ1 · · · τn : τi ∈ T , n ∈N

+}
.

Each monomial τ1 · · · τn can be thought of as an unordered forest, since the polynomial product is commutative.
Hence, a typical element of H is for example

1
2
3 + 6 3

1
2 − √

2 3
3 2

1 .

Remark 2.4. We could equally construct the Connes–Kreimer Hopf algebra H(A), using any countable alphabet A
in place of {1, . . . , d}. However, since {1, . . . , d} is the most commonly used choice, we reserve the notation H for this
particular alphabet.

The coproduct Δ is defined recursively. We first set Δ1 = 1 ⊗̃ 1, then for any [τ1 · · · τm]a ∈ T we set

Δ[τ1 · · · τm]a = [τ1 · · · τm]a ⊗̃ 1 +
∑

(τ1)···(τm)

(
τ

(1)
1 · · · τ (1)

m

) ⊗̃ [
τ

(2)
1 · · · τ (2)

m

]
a
, (2.3)
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where we use the Sweedler notation Δx = ∑
(x) x

(1) ⊗̃ x(2). In the sequel, we will often omit the summation sign and

simply write Δx = x(1) ⊗̃x(2). In Remark 2.9, we will see that the coproduct Δ has a nice combinatorial interpretation
when restricted to trees. We then extend Δ to all polynomials by requiring that it be linear and also a morphism with
respect to polynomial multiplication, that is

Δ(τ1 · · · τn) = Δτ1 · · ·Δτn,

for every τi ∈ T . It is often useful to consider the reduced coproduct Δ′ defined by Δ′x = Δx − 1 ⊗̃ x − x ⊗̃ 1. In any
coalgebra, the coproduct is required to be coassociative, which means that

(Δ ⊗̃ Id)Δ = (Id ⊗̃ Δ)Δ.

One can check that this is true for both the coproduct and the reduced coproduct described above.
In any Hopf algebra, the antipode S :H →H is a morphism of bialgebras satisfying

M(Id ⊗̃ S)Δx = M(S ⊗̃ Id)Δx = x,

for any x ∈ H, where M is the multiplication map M(x ⊗̃ y) = xy. The existence of an antipode for H follows from
the fact that H is actually a graded bialgebra, we will define this grading below. For the Connes–Kreimer Hopf algebra
the antipode has been explicitly constructed in [9].

The Hopf algebra (H, ·,Δ,S) gives rise to a dual Hopf algebra (H∗, 	, δ,S∗). Since H is a countable vector
space, the elements in the topological dual H∗ can be identified with formal series of elements in H. In particular,
we identify elements in the basis F with elements in H∗ by the natural pairing 〈h1, h2〉 = δh1,h2 for h1, h2 ∈ F . The
co-unit 1∗ ∈H∗ is the map satisfying 〈1∗,1〉 = 1 and 〈1∗, τ1 · · · τn〉 = 0 for all τ1 · · · τn ∈F .

Remark 2.5. In the sequel, our notation will not distinguish between the unit and the co-unit, nor the basis F and its
dual elements F∗ (and likewise T and T ∗). However, it will always be clear from the context which we are referring
to.

The product 	 :H∗ ⊗̃H∗ → H∗, often referred to as convolution, is the dual of Δ, that is

〈f 	 g,h〉 def= 〈f ⊗̃ g,Δh〉 =
∑
(h)

〈
f,h(1)

〉〈
g,h(2)

〉
,

for any f,g ∈ H∗ and h ∈ H. It follows from the properties of the coproduct Δ (namely, coassociativity) that 	 pro-
vides H∗ with an associative algebra structure. Let T ∗ denote those elements in H∗ that correspond to dual elements
of T . Then for τ1, τ2 ∈ T ∗, the product τ1 	 τ2 can be interpreted as attaching τ1 to τ2. In particular, we have that

τ1 	 τ2 = τ1τ2 + τ1 	t τ2, (2.4)

where τ1 	t τ2 is the sum of all trees in T ∗ obtained by growing τ1 from a vertex of τ2. For example,

a 	t
b
c =

a
b
c + a b

c .

This is often referred to as the Grossman–Larson product, and was first discussed in [20]. The antipode S plays the
role of an inverse with respect to 	 in the space H∗, precisely as stated in Section 2.1. The dual coproduct δ :H∗ →
H∗ ⊗̃H∗ is likewise the dual of polynomial multiplication

〈δτ,h1 ⊗̃ h2〉 = 〈τ,h1h2〉.
Just as above, this endows H∗ with a coassociative coalgebra structure and it is a nice exercise to check that δ is a
morphism with respect to 	, as every coproduct should be.

The trees T give rise to a natural grading on H. For each τ ∈ T , we define |τ | to be the number of vertices in τ .
We extend | · | to all of F by

|τ1 · · · τn| = |τ1| + · · · + |τn|,
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for any τi ∈ T . If we let F(k) denote the set of τ1 · · · τm ∈ F with |τ1 · · · τm| = k and H(k) denote the real vector space
spanned by F(k), with H(0) =R, then we clearly have

H =
∞⊕

k=0

H(k).

One can easily check that this satisfies the right consistency conditions to ensure H is a graded Hopf algebra. We will
also make use of the truncated algebra

Hn =
n⊕

k=0

H(k)

and its basis elements Fn, containing all m ∈ F with |m| ≤ n. Keeping in line with this notation, we also define T(n)

as the set of τ ∈ T with |τ | = n and Tn as the set of τ ∈ T with |τ | ≤ n. Likewise, we denote by B, Bn and B(n) the
real vector spaces spanned by T , Tn and T(n), respectively.

Remark 2.6. It is natural to ask why one needs to consider polynomials of T rather than just the set of trees. Indeed,
for non-geometric rough paths, the trees are the important ingredients when solving an RDE. The reason we require
polynomials is that we would like to define a rough path as a functional on some algebra, and this algebra must be
big enough to include an element h1h2 such that

〈X, h1〉〈X, h2〉 = 〈X, h1h2〉.
This, in particular, allows us to write Chen’s property as a fundamental operation on the algebra H, described by the
coproduct Δ, rather than just an identity on the tree indexed components of X.

Remark 2.7. Let B be the vector space spanned by the set of trees T . This is clearly a subspace of H. The tensor
product algebra T (Rd) can easily be identified with the subspace of B, and hence H, spanned by the linear trees. This
is achieved by identifying

ea ⊗ eb
∼= a

b , ea ⊗ eb ⊗ ec
∼=

a
b
c ,

and so forth, for any a, b, c = 1, . . . , d . In the sequel, we will refer to this identification via the inclusion map
ι :T (Rd) → H. In light of this, we should think of the Hopf algebra H as being an extension of the tensor prod-
uct algebra over the same index set. As discussed in the introduction, the extra branched objects are required to
encode a non-trivial product that cannot be described by objects in the tensor product algebra alone.

Remark 2.8. The definition (2.3) is indeed quite a natural one. If X were a smooth path in R
d then we could build the

branched rough path X canonically, by setting

〈Xst , i 〉 = δXi
st and

〈
Xst , [τ1 · · · τn]i

〉 = ∫ t

s

〈Xsr , τ1〉 · · · 〈Xsr , τn〉dXi
r .

Using the properties of a path integral, namely, linearity with respect to the integrand and the adjacent interval
property

∫ t

s
= ∫ u

s
+ ∫ t

u
, one can recursively show that〈

Xst , [τ1 · · · τn]i
〉 = 〈

Xsu, [τ1 · · · τn]i
〉

+
∑

(τ1)···(τn)

(〈
Xsu, τ

(1)
1

〉 · · · 〈Xsu, τ
(1)
n

〉) ∫ t

u

〈
Xur , τ

(2)
1

〉 · · · 〈Xur , τ
(2)
n

〉
dXi

r

or in other words,〈
Xst , [τ1 · · · τn]i

〉 = 〈
Xsu ⊗̃ Xut ,Δ[τ1 · · · τn]i

〉
, (2.5)
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with Δ satisfying (2.3). Hence, (2.5) is an extension of Chen’s property to more complicated looking integrals.

Remark 2.9. When restricted to linear trees (or tensor products), the coproduct Δ is known as deconcatenation,
since it decomposes tensors into subtensors that can be concatenated into the original expression. There is a similar
interpretation for Δ on all of H, which is described by cuts of a tree. We will say that the pair (τ1 · · · τm) ⊗̃ τ0 is an
admissible cut of τ ∈ T , if one can obtain τ by attaching the trees τ1, . . . , τm to the nodes of τ0. We then have the
interpretation

Δτ =
∑
(τ )

τ (1) ⊗̃ τ (2),

where we sum over all admissible cuts τ (1) ⊗̃τ (2), with τ (1) and τ (2) playing the roles of (τ1 · · · τm) and τ0 respectively.
For example, we have that

Δ
a b
c = 1 ⊗̃ a b

c + ( a b) ⊗̃ c + a ⊗̃ b
c + b ⊗̃ a

c + a b
c ⊗̃ 1.

In particular, we always have that Δτ = 1 ⊗̃ τ + τ ⊗̃1+ τ 1 ⊗̃ τ 2, where τ 1 ⊗̃ τ 2 is shorthand for the sum over all non-
trivial admissible cuts of τ . In the sequel, we will frequently omit the sum in the fashion. Each term τ 1 ⊗̃ τ 2 ∈ F ⊗̃ T
and we have that |τ 1| + |τ 2| = |τ |, recalling that | · | simply counts the number of vertices in a forest or tree. This
observation will be crucial in the sequel.

2.3. Group-like and primitive elements

We will denote by Hom(H,R) those elements in H∗ that are also homomorphisms with respect to polynomial multi-
plication ·, that is, f ∈ Hom(H,R) if and only if

〈f,h1h2〉 = 〈f,h1〉〈f,h2〉. (2.6)

These are also known as the characters of H. It is easy to check that Hom(H,R) can be identified with the group-like
elements, defined by

G(H) = {
g ∈ H∗: δg = g ⊗̃ g

}
.

In particular, the equality (2.6) holds if and only if

〈δg,h1 ⊗̃ h2〉 = 〈g,h1h2〉 = 〈g,h1〉〈g,h2〉 = 〈g ⊗̃ g,h1 ⊗̃ h2〉,
for all h1, h2 ∈ H. The reason G(H) is called the set of group-like elements is because it is indeed a group. For the
Connes–Kreimer Hopf algebra, this is often referred to as the Butcher group [23].

Proposition 2.10. The pair (G(H), 	) is a group with inverses given by g−1 def= S∗g, where S∗ is the adjoint of the
antipode.

Proof. Standard result for Hopf algebras and an easy exercise. �

The group property of Hom(H,R) is one of the main motivations behind Hopf algebras and in particular explains
the role of the antipode. Indeed, the concept of a Hopf algebra is often introduced as the linearisation of a group.

If we were to replace H with the tensor product space T (V ) over the vector space V = R
d , then we could equiv-

alently characterise each group-like elements as the exponential of a Lie polynomial [30], Theorem 1.4. Remarkably,
the same construction works in this setting too. We define the bracket [·, ·]	 :H∗ ×H∗ →H∗ by

[h1, h2]	 = h1 	 h2 − h2 	 h1, (2.7)
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which one can easily check is a Lie bracket. We define the set of δ-primitives as

P(H) = {
h ∈H∗: δh = 1 ⊗̃ h + h ⊗̃ 1

}
, (2.8)

where 1 is the co-unit in H∗. In the context of Lie algebras, this condition is often stated as 〈h,xy〉 = 〈1, x〉〈h,y〉 +
〈h,x〉〈1, y〉 and the elements are known as derivations. As suggested by the notation, P(H) is a Lie algebra with
respect to [·, ·]	 and has a very natural basis in H∗.

Proposition 2.11. The set P(H) is a Lie algebra with bracket [·, ·]	 and moreover

P(H) = B,

where B is the real vector space spanned by the dual trees T ∗.

Proof. It is easy to check that P(H) is a Lie algebra. To check that P(H) = B, first let τ ∈ T ∗, then by definition

δτ =
∑

x1,x2∈F0

〈τ, x1x2〉x1 ⊗̃ x2,

where F0 = F ∪ {1} and where we identify x1 ⊗̃ x2 with the corresponding element in H∗ ⊗̃ H∗. But clearly,
〈τ, x1x2〉 = 0 unless x1 = 1 or x2 = 1 (but not both). It follows that

δτ =
∑
x1∈F

〈τ, x1〉(x1 ⊗̃ 1 + 1 ⊗̃ x1) = τ ⊗̃ 1 + 1 ⊗̃ τ,

and hence B ⊆ P(H). To prove the reverse statement, suppose h ∈ P(H) and that

h = u + v,

where u ∈ B and v ∈ B⊥, which is the vector space spanned by 1 and all non-trivial products τ1 · · · τn ∈ F∗ with
n ≥ 2. Since u ∈ P(H), it follows that v = h − u ∈ P(H). Thus,

1 ⊗̃ v + v ⊗̃ 1 = δv = 〈v,1〉1 ⊗̃ 1 +
∑

τ1···τn

〈v, τ1 · · · τn〉δ(τ1 · · · τn),

where we only sum over those τ1 · · · τn ∈ F∗ with n ≥ 2. By definition of δ(τ1 · · · τn), this equals

〈v,1〉1 ⊗̃ 1 +
∑

τ1···τn

〈v, τ1 · · · τn〉
∑
(i,j)

τi1 · · · τip ⊗̃ τj1 · · · τjq , (2.9)

where we sum over all subsets {i1, . . . , ip}, {j1, . . . , jq} of {1, . . . , n}. However, each term τi1 · · · τip ⊗̃ τj1 · · · τjq (with
p,q �= 0) can only appear once in the expression (2.9), hence there can be no cancellations. Since these terms (as well
as 1 ⊗̃ 1) are basis elements of H∗ ⊗̃H∗, we must have that 〈v,1〉 = 0 and 〈v, τ1 · · · τn〉 = 0 for all τ1 · · · τn ∈ F with
n ≥ 2. It follows that P(H) ⊆ B. �

Let h be the space of all h ∈ H∗ with 〈h,1〉 = 0 and let H = 1 + h. Just as in the tensor product algebra case, the
spaces h and H are diffeomorphic via the exponential map exp	 :h → H given by

exp	 h =
∑
k≥0

h	k

k! ,

where h	k = h 	 h	(k−1). Likewise we can define its inverse, the logarithmic map by

log	(1 + h) =
∑
k≥1

(−1)k−1 h	k

k
,
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for any 1 + h ∈ H . See [29] for further details. This allows us to classify the group-like elements as being the expo-
nential of a Lie element.

Proposition 2.12. For any g ∈ h, we have that g ∈ G(H) if and only if g = exp	 h for some h ∈ P(H).

Proof. The proof is identical to the tensor product algebra case [30], Theorem 3.2. �

2.4. Branched rough paths

We define the truncated group-like elements GN(H), obtained from G(H) by quotienting out the ideal

∞⊕
k=N+1

H∗
(k),

hence we identify all elements τ1 · · · τn ∈ F∗ such that |τ1 · · · τn| ≥ N +1, with zero. From Proposition 2.12, it follows
that GN(H) is diffeomorphic to the real vector space TN and is therefore a Lie group. This Lie group plays precisely
the same role as the step N free nilpotent group in the geometric theory of rough paths. Indeed, the definition for
branched rough paths follows naturally from that of geometric rough paths.

Let X = (Xi) be a path in R
d with Hölder regularity γ ∈ (0,1). As always, we reserve the symbol N for the largest

integer such that Nγ ≤ 1.

Definition 2.13. A map X : [0, T ] → GN(H) is called a γ -Hölder branched rough path if it satisfies

sup
s �=t

|〈Xst , τ 〉|
|t − s|γ |τ | < ∞, (2.10)

for every τ ∈ HN and where Xst
def= X−1

s 	 Xt . If 〈Xst , i 〉 = δXi
st for each i = 1, . . . , d , then we call X a branched

rough path above X.

We see that the generalised version of Chen’s property, or Condition 2 of the Introduction, is immediate from the
definition, since we have

Xsu 	 Xut = (
X−1

s 	 Xu

)
	
(
X−1

u 	 Xt

) = Xst . (2.11)

Moreover, Definition 2.13 is clearly equivalent to the original definition in [22] and also stated in the introduction. In
particular, Condition 1 from the original definition can be reformulated as Xst ∈ GN(H) for each s, t ∈ [0, T ].

Remark 2.14. As we shall see, the solution to an RDE only depends on the increment Xst rather than the path Xt ,
hence there is no need to specify the initial value of the path X0.

Remark 2.15. In Definition 2.13, to justify calling X a γ -Hölder path, it should satisfy d(Xs ,Xt ) ≤ C|t − s|γ for
some metric d . This can be achieved using homogeneous norms. For the step N free nilpotent group, as with any
Carnot group, one can show that all “norms” that are sub-additive and homogeneous with respect to the natural
dilation of the group are equivalent [28]. This does not quite work with GN(H), since it is not a Carnot group with
respect to the right dilation. To be precise, we see that

GN(H) = exp	

(
N⊕

k=0

B(k)

)
,

where B(k) is the vector space spanned by T(k). If yk ∈ B(k), then the natural dilation on GN(H) is given by

δt exp	(y1 + · · · + yN) = exp	

(
ty1 + t2y2 + · · · + tNyN

)
.
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In particular, in the case of a smooth path X whose branched rough path X is given by the corresponding iterated
integrals, if we multiplied X by t , then we would obtain a factor of t |τ | infront of 〈X, τ 〉, so it is clear that this is the
right choice of dilation. On the other hand, the only way GN(H) could be a Carnot group is if we let all of BN have
the same grade, which would lead to useless norms. The correct notion is to view GN(H) as a homogeneous group, as
defined in [15]. A homogeneous group G is a Lie group whose Lie algebra is graded, and hence comes with a natural
dilation. A (non-smooth) homogeneous norm on G is then a map ‖ · ‖ :G → [0,∞) that is continuous with respect to
the manifold topology of G and satisfies the homogeneity property ‖δtg‖ = |t |‖g‖, where δt is the natural dilation of
G (along with other standard conditions). It is easy to show that all homogeneous norms on G are equivalent. In the
case of GN(H), one can show that all homogeneous norms are equivalent to the natural homogeneous norm

‖g‖GN(H) =
∑

τ∈TN

∣∣〈log	 g, τ 〉∣∣1/|τ |
.

Moreover, it is easy to verify that the map X : [0, T ] → (GN(H),‖ · ‖GN(H)) is γ -Hölder continuous if and only if
condition (2.10) is satisfied. We can therefore equivalently define a branched rough path as a γ -Hölder path taking
values in (GN(H),‖ · ‖GN(H)).

As with classical rough paths, one can show that every branched rough path X can be canonically extended to a
γ -Hölder continuous path taking values in G(H), courtesy of the sewing map [21,22]. In more generality, branched
rough paths also extend the idea of an almost multiplicative functional, in the following way. One calls X̃ an almost
branched rough path if∣∣〈X̃st − X̃su 	 X̃ut 〉

∣∣ = o
(|t − s|),

for all s, t ∈ [0, T ], with |t − s| � 1. And moreover, we have the following

Proposition 2.16. For every almost branched rough path X̃, there exists a unique branched rough path X of regularity
γ such that∣∣〈Xst − X̃st , τ 〉∣∣ = o

(|t − s|),
for all s, t ∈ [0, T ] and τ ∈ TN .

Proof. See [22], Theorem 7.7. �

Although we will not explicitly use the notion of an almost branched rough path, we include the definition to
illustrate that all of the important tools for multiplicative functionals are still present in the setting of branched rough
paths.

3. Controlled rough paths and solving RDEs

In this section we recall the definition of a controlled rough path, first defined in [21] and later extended to branched
rough paths in [22]. We show how one can define rough integrals and moreover solutions to RDEs using this simple
concept.

3.1. Controlled rough paths

A crucial step in the theory of geometric rough paths is defining the integral of a one-form along a geometric rough
path [26]. For α :Rd → L(Rd ,R) and a geometric rough path X above X ∈ R

d , in order to define
∫

α(X)dX one
needs to impose a Lip(β) condition on α, which states that for j = 1, . . . ,N , there exists αj :Rd → L((Rd)⊗j ,R)

such that α1 = α and

αj (Xt ) =
N−j∑
i=0

αi+j (Xs)
(
Xi

st

) + Rj (Xs,Xt ), (3.1)
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where Xi
st is the component of Xst in (Rd)⊗i and the remainders Rj satisfy |Rj (ξ, η)| ≤ M|ξ − η|β−j . In particular,

from the j = 1 case we see that

α(Xt ) − α(Xs) =
N−1∑
i=1

αi+1(Xs)
(
Xi

st

) + R1(Xs,Xt ), (3.2)

and hence the increment of α(X) is (locally) controlled by X. The expression (3.2) leads directly to a definition of an
almost multiplicative functional Ỹ which is subsequently extended to define

∫
α(X)dX. The conditions on the higher

order αj given in (3.1) are required to ensure that Ỹ actually is an almost multiplicative functional and thus prove that
the map X �→ ∫

α(X)dX is continuous in the p-var topology.
In the theory of controlled rough paths, the construction of integrals is more-or-less the same, except for that fact

that one-forms are replaced with any object that satisfies a condition like (3.1). In particular let X be a branched rough
path above X and suppose Z : [0, T ] → R satisfies

δZst =
∑

h∈FN−1

Zh
s 〈Xst , h〉 + RZ

st , (3.3)

where |RZ
st | ≤ C|t − s|Nγ and the coefficients Zh : [0, T ] → R. It is clear that the integral

∫ t

s
Zr dXi

r should be ap-
proximated by the expression

Z̃st = Zs〈Xst , i 〉 +
∑

h∈FN−1

Zh
s

〈
Xst , [h]i

〉 = ∑
h∈F0

N−1

Zh
s

〈
Xst , [h]i

〉
, (3.4)

for |t − s| � 1 where we denote Z1
s = Zs and F0

N−1 =FN−1 ∪ {1}, since one would expect∫ t

s

dXi
r = 〈Xst , i 〉 and

∫ t

s

〈Xsr , h〉dXi
r = 〈

Xst , [h]i
〉
.

This idea is formalised by the sewing map. The sewing map is essentially the same as the map which extends an
almost multiplicative functional to an (approximately equal) multiplicative functional.

Lemma 3.1 (Sewing map). For any Z̃ : [0, T ] × [0, T ] → R, if

|Z̃st − Z̃su − Z̃ut | ≤ C|t − u|p|u − s|q, (3.5)

for some p + q > 1, then there exists a unique remainder terms r : [0, T ] × [0, T ] → R such that Z̃st + rst is the
increment of a path and |rst | = o(|t − s|). That is, there is some Y : [0, T ] →R such that

δYst = Z̃st + rst ,

for all s, t ∈ [0, T ]. Moreover, it follows immediately that

δYst = lim
P→0

∑
[u,v]∈P

Z̃uv,

for any sequence of partitions P with mesh-size tending to zero.

Just as in (3.1), one needs conditions on the coefficients Zh
s to ensure that Z̃ defined in (3.4) satisfies (3.5). The

most convenient way of defining these controlled objects Z along with their coefficients Zh is to consider them as one
object Z : [0, T ] → HN−1, by setting

〈1,Zt 〉 = Zt and 〈h,Zt 〉 = Zh
t ,

for all h ∈FN−1. In the sequel we use the notation F0
n =Fn ∪ {1} and similarly for T 0

n .
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Definition 3.2. Let X be a γ -Hölder branched rough path. An X-controlled rough path is a path Z : [0, T ] → HN−1
satisfying

〈h,Zt 〉 = 〈Xst 	 h,Zs〉 + Rh
st , (3.6)

for each h ∈ F0
N−1, where |Rh

st | ≤ C|t − s|(N−|h|)γ . When 〈1,Zt 〉 = Z, we say that Z is a controlled rough path
above Z.

Note that when h = 1 and 〈1,Z〉 = Z, the expression (3.6) can be written

δZst =
∑

h∈FN−1

〈h,Zs〉〈Xst , h〉 + R1
st ,

just as suggested in (3.3). It is clear that (3.6) is simply the H counterpart of the Lip(β) condition (3.1).

Remark 3.3. We can easily adapt this to the situation in which the coefficients of the “controlled object” take values
in R

e rather than R. In this case we have Z : [0, T ] → (HN−1)
e where (HN−1)

e denotes the eth cartesian power of
HN−1. Hence, the coefficients 〈h,Z〉 take values in R

e and we denote the ith component by 〈h,Z〉i .

Let Z be an X-controlled rough path above Z, then we can use Z to define the integral
∫

Z dXi , for any 1 ≤ i ≤ d .
It is an easy exercise to check that the condition (3.6) ensures that

Z̃st =
∑

h∈F0
N−1

〈h,Zs〉
〈
Xst , [h]i

〉
satisfies (3.5). From the sewing lemma, it follows that there exists a unique remainder r with |rst | = o(|t − s|) such
that Z̃st + rst is the increment of a path. Naturally, this increment is chosen as a definition of the integral∫ t

s

Zr dXi
r

def= Z̃st + rst = lim
P→0

∑
[u,v]∈P

Z̃uv, (3.7)

for any partition P of [s, t]. Hence, we have defined a map which sends a controlled rough path Z to a path
∫

Z dXi .
This map can be extended to I : Z �→ ∫

Z dXi , where
∫

Z dXi is a controlled rough path above
∫

Z dXi . To define∫
Z dXi , we simply specify 〈h,

∫
Z dXi〉 for all dual basis elements h ∈ F∗

N−1 ∪ {1}. Firstly, we let 〈1,
∫ t

0 Zr dXi
r〉 be

the unique (up to an additive constant) path satisfying〈
1,

∫ t

0
Zr dXi

r

〉
−

〈
1,

∫ s

0
Zr dXi

r

〉
=

∫ t

s

Zr dXi
r,

and then define the coefficients by〈
[τ1 · · · τn]i ,

∫ t

0
Zr dXi

r

〉
= 〈τ1 · · · τn,Zt 〉,

for all [τ1 · · · τn]i ∈ TN−1 with i fixed and〈
τ1 · · · τn,

∫ t

0
Zt dXi

r

〉
= 0 otherwise.

More generally, if Z = (Z1, . . . ,Zd) where each Zi is an X-controlled rough path above Zi , then we can define an
X-controlled rough path

∫
Z · dX above

∫
Z · dX, where Z = (Z1, . . . ,Zd). To do this, we set〈

1,

∫ t

s

Zr · dXr

〉
=

d∑
i=1

〈
1,

∫ t

s

Zi
r dXi

r

〉
,
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with coefficients〈
[τ1 · · · τn]i ,

∫ t

0
Zr · dXr

〉
= 〈

h,Zi
t

〉
for all [τ1 · · · τn]i ∈ TN−1 and each 1 ≤ i ≤ d and〈

τ1 · · · τn,

∫ t

0
Zr · dXr

〉
= 0 otherwise.

For verification that
∫

Z dXi satisfies (3.6) and hence actually is a controlled rough path, see [22], Theorem 8.5.

Remark 3.4. Since the definition of
∫

Z dXi depends on how we define a controlled rough path above Z, it makes
more sense to use the controlled rough path notation

∫
Z dXi .

Not only are controlled rough paths stable under the integration map, but they are also stable under composition by
smooth functions. We will demonstrate this for a controlled rough path Z : [0, T ] → (HN−1)

e and a smooth function
φ :Re →R

e. We first introduce the notation

Dnφ(u): (v1, . . . , vn) =
e∑

α1,...,αn=1

∂α1 · · ·∂αnφ(u)v
α1
1 · · ·vαn

n ,

where u,vi ∈ R
e , v

j
i denotes the j th component of vi . We define a controlled rough path φ(Z) : [0, T ] → (HN−1)

e

above φ(Z) using a Taylor expansion. In particular, we have that

φ(Zt ) − φ(Zs) =
N−1∑
n=1

1

n!D
nφ(Zs):

(〈h1,Zs〉, . . . , 〈hn,Zs〉
)〈Xst , h1 · · ·hn〉 + R

φ
st , (3.8)

where we sum over all hi ∈ F with |h1| + · · · + |hn| ≤ N − 1 and |Rφ
st | ≤ C|t − s|Nγ . It is clear that the controlled

rough path φ(Z) should have 〈1, φ(Zs)〉 = φ(Zs) and coefficients

〈
h,φ(Z)s

〉 = N−1∑
n=1

∑
h1···hn=h

1

n!D
nφ(Zs):

(〈h1,Zs〉, . . . , 〈hn,Zs〉
)
,

where we sum over all h1, . . . , hn appearing in (3.8) such that h1 · · ·hn = h. For verification that φ(Z) satisfies (3.6),
see [22].

Example 3.5. As an exercise, we will calculate
∫ t

s
F (X)dXi , where F :Rd → R

d is a smooth function and X has a
branched rough path X above it. Firstly, since X is clearly an X-controlled rough path, we can define F(X). We set
〈1,F (Xt )〉 = F(Xt ) and〈

β1· · · βm,F (Xt )
〉 = ∂β1 · · ·∂βmF (Xt ),

for all β1· · · βm∈ FN−1 and 〈h,F (Xt )〉 = 0 otherwise. We then have∫ t

s

F (Xr)dXi
r = F(Xs)〈Xst , i 〉

+
N−1∑
m=1

∑
β1··· βm∈FN−1

〈
β1· · · βm,F (Xs)

〉〈
Xst , [ β1· · · βm]i

〉 + o
(|t − s|)

=
N∑

m=0

d∑
β1,...,βm=1

∂β1 · · · ∂βmF (Xs)

m!
〈
Xst , [ β1· · · βm]i

〉 + o
(|t − s|),
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where in the last line we have used the symmetry of the expression to replace
∑

β1··· βm∈FN
, the unordered sum, with∑d

β1,...,βm=1 1/m!.

The set of X-controlled rough paths is easily seen to be a vector space. One can turn it into a Banach space, denoted
QX(Re), by introducing the norm

‖Z‖QX(Re) = |Z0| +
∑

h∈FN−1

∥∥Rh
∥∥

(N−|h|)γ ,

where ‖f ‖(N−|h|)γ = sups �=t
|fst |

|t−s|(N−|h|)γ . The Banach space QX(Re) turns out to be the right environment in which to
solves RDEs.

3.2. Solving rough DEs

The foremost example of a controlled rough path is the solution to an RDE. We will consider the equation

δYst =
∫ t

s

f (Yr) · dXr with Y0 = ξ, (3.9)

for every s, t ∈ [0, T ], where X = (Xi) ∈ R
d and f (Y ) · dX = ∑d

i=1 fi(Y )dXi . The vector fields fi :Re → R
e are

assumed to be as smooth as required. To solve this RDE, we must specify a branched rough path X above X. In [22],
solutions to (3.9) are defined by lifting the problem to the space of X-controlled rough paths.

Definition 3.6. A path Y : [0, T ] → R
e with Y0 = ξ is a solution to (3.9) if and only if there exists an X-controlled

rough path Y above Y satisfying

Yt − Ys =
∫ t

s

f (Yr ) · dXr (3.10)

for every s, t ∈ [0, T ].

One can define the fixed point map M :QX(Re) → QX(Re) by (MY)t = ∫ t

0 f (Yr ) · dXr . Since QX(Re) is a
Banach space, we can apply standard fixed point arguments on M to obtain existence and uniqueness results for
(3.10). In particular, if the vector fields fi have N continuous and bounded derivatives, then global solutions exist for
any initial condition. Moreover, if the vector fields have N + 1 continuous and bounded derivatives then the solution
is unique [22], Theorem 8.8. Throughout the sequel, we will always assume the vector fields are smooth enough to
guarantee existence and uniqueness of solutions.

In this article we are more concerned with the structure of RDEs, and would like an explicit representation of the
controlled rough path solution to (3.10). In particular, it is easy to see that a controlled rough path Y is a solution if
and only if

δYst =
〈
1,

∫ t

s

f (Yr ) · dXr

〉
and 〈[τ1 · · · τn]i ,Ys

〉 = 〈
[τ1 · · · τn]i ,

∫ s

0
f (Yr ) · dXr

〉
,

for all [τ1 · · · τn]i ∈ T ∗
N−1 with i = 1, . . . , d and

〈τ1 · · · τm,Ys〉 = 0,
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for all non-trivial products τ1 · · · τm ∈ F	
N \ T 	

N . Using the definition of
∫

f (Y) · dX, we can refine the condition on
the coefficients to 〈 i ,Ys〉 = fi(Ys) and〈[τ1 · · · τn]i ,Ys

〉 = 〈
τ1 · · · τn, fi(Ys)

〉
=

∑
σ∈sym(n)

Dnfi(Ys)

n! :
(〈τσ(1),Ys〉, . . . , 〈τσ(n),Ys〉

)
= Dnfi(Ys):

(〈τ1,Ys〉, . . . , 〈τn,Ys〉
)
, (3.11)

where we sum over all permutations σ of {1, . . . , n}. It follows that we can always write the coefficients as 〈τ,Yt 〉 =
fτ (Yt ) where fτ :Re → R

e is some smooth function determined by f and its derivatives. For instance,

〈 j k
i ,Ys〉 = D2fi(Ys):

(〈 j ,Ys〉, 〈 k ,Ys〉
) = D2fi : (fj , fk)(Ys).

In the sequel, we will always reserve {fτ }τ∈T ∗ for the family of functions satisfying the recurrence

f[τ1···τn]i = Dnfi : (fτ1, . . . , fτn), (3.12)

for some specified {f
i
}i=1,...,d . We also extend the family to any h ∈H∗ by

fh
def= 〈h,1〉Id +

∑
τ∈T

〈h, τ 〉fτ , (3.13)

where Id :Re →R
e is the identity map. It also follows that

fτ1···τn = 0,

for all non-trivial products τ1 · · · τn ∈ F∗
N \ T ∗

N . Moreover, if f
i

= fi , then we have that fh(Yt ) = 〈h,Yt 〉 for all
h ∈H∗

N .

Remark 3.7. There is a conflict of notation here, if h = 1 is the co-unit then from (3.13) we have f1 = Id, so that
f1(Yt ) = 〈1,Yt 〉. This is not to be confused with the vector field f1 in the original RDE. Since never actually refer to
f1 for the co-unit 1, the reader should not be concerned. Indeed, it is simply included to make the definition (3.13)
consistent.

By exploiting some algebraic properties of the coefficients fτ , we can obtain an explicit formula for 〈1,Y〉 = Y . In
the following proposition we define a controlled rough path Y : [0, T ] → (HN)e , with an extra layer of components
〈τ1 · · · τn,Y〉 for |τ1 · · · τn| = N , these extra components serve no purpose other than to facilitate the definition of
〈1,Y〉. It is not hard to see that these extra components become important when considering the fixed point equation
Y =MY.

Proposition 3.8. Y : [0, T ] → (HN)e with 〈1,Y〉 = Y is the unique controlled rough path solution to (3.10) if and
only if

δYst =
∑

τ∈TN

fτ (Ys)〈Xst , τ 〉 + rst , (3.14)

where |rst | = o(|t − s|) and the coefficients of Y are given by 〈τ1 · · · τn,Yt 〉 = fτ1···τn(Yt ) for all τ1 · · · τn ∈ F∗
N , with

f
i
= fi for i = 1, . . . , d .

Remark 3.9. This proposition is particularly useful when one wants to understand how the solution depends explicitly
on the vector fields and the rough path. In particular, it can be used to easily show how introducing redundancies in
the vector fields {fi} leads to the solution only depending on certain components of the rough path X. These types of
results have been discussed in [26], in the context of geometric rough paths.
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In order to show that Y constructed by (3.14) with 〈τ1 · · · τn,Yt 〉 = fτ1···τn(Yt ) is a solution, we must first show that
it is a controlled rough path.

Lemma 3.10. Suppose Y : [0, T ] → (HN)e with 〈1,Y〉 = Y satisfies (3.14) and 〈τ1 · · · τn,Yt 〉 = fτ1···τn(Yt ) for all
τ1 · · · τn ∈F∗

N with f
i
= fi . Then Y is an X-controlled rough path.

Proof. We must check the consistency condition (3.6) to ensure that Y is a controlled rough path. The assumption
(3.14) ensures the condition holds for h = 1, so it is sufficient to prove the condition for all τ ∈ T ∗

N , since the coef-
ficients vanish on non-trivial products. We will assume the consistency condition holds for all of T ∗

k and prove the
condition for τ = [τ1 · · · τn]i where n ≥ 0 and τi ∈ T ∗

k . We have that〈[τ1 · · · τn]i ,Yt

〉 − 〈
Xst 	 [τ1 · · · τn]i ,Ys

〉
= Dnfi(Yt ):

(〈τ1,Yt 〉, . . . , 〈τn,Yt 〉
) −

∑
ρ∈F0

N

〈Ys , ρ〉〈Xst ⊗̃ [τ1 · · · τn]i ,Δρ
〉

= Dnfi : (fτ1 , . . . , fτn)(Yt ) −
∑

ρ∈T 0
N

fρ(Ys)
〈
Xst ⊗̃ [τ1 · · · τn]i ,Δρ

〉
.

Now, by a Taylor expansion on Dnfi , we obtain

Dnfi(Yt ): (fτ1 , . . . , fτn)(Yt )

=
N∑

m=n

1

(m − n)!D
mfi(Ys):

(
fτ1(Yt ), . . . , fτn(Yt ), δYst , . . . , δYst

) + R
f
st , (3.15)

where the term δYst appears m − n times and∣∣Rf
st

∣∣ ≤ C|δYst |N−m ≤ C|t − s|(N−n)γ .

Now, by the inductive hypothesis we have that

fτj
(Yt ) =

∑
σj ∈T 0

N

fσj
(Ys)〈Xst 	 τj , σj 〉 + R

τj

st ,

where |Rτj

st | ≤ C|t − s|(N−|τj |)γ and by assumption we have that

δYst =
∑

λj ∈TN

fλj
(Ys)〈Xst , λj 〉 + r

j
st ,

where |rj
st | = o(|t − s|). If we substitute these into (3.15), we obtain

N∑
m=n

1

(m − n)!D
mfi(Ys):

(
fσ1(Ys), . . . , fσn(Ys), fλ1(Ys), . . . , fλm−n(Ys)

)
× 〈Xst 	 τ1, σ1〉 · · · 〈Xst 	 τn, σn〉〈Xst , λ1 · · ·λm−n〉 + Rτ

st , (3.16)

where we sum over all σj ∈ TN (since σj = 1 vanishes) and λj ∈ TN and where Rτ
st is the sum of all terms that contain

at least one factor from the set {Rτ1
st , . . . ,R

τn
st ,R

f
st , r

1
st , . . . , r

m−n
st }. Hence,∣∣Rτ

st

∣∣ ≤ C max
1≤j≤n

(|t − s|(N−|τj |)γ ) + C|t − s|(N−n)γ ≤ C|t − s|(N−|[τ1···τn]i |)γ , (3.17)
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where the bound on the second term follows from the fact that n ≤ |τ1| + · · · + |τn| ≤ |[τ1 · · · τn]i |. On the other hand,
we have that

∑
ρ∈T 0

N

fρ(Ys)
〈
Xst ⊗̃ [τ1 · · · τn]i ,Δρ

〉 = N−1∑
m=n

∑
ρ1,...,ρm

1

m!f[ρ1···ρm]i (Ys)
〈
Xst ⊗̃ [τ1 · · · τn]i ,Δ[ρ1 · · ·ρm]i

〉
where we sum over ρi ∈ TN with |ρ1| + · · · + |ρm| ≤ N − 1, since only those ρ ∈ T with ρ = [ρ1 · · ·ρm]i for m ≥ n

will not vanish. Note that the factor of 1/m! appears since all rearrangements of the ρi in [ρ1 · · ·ρm] produce the
same ρ. Using the recurrence (3.12), this expands to

N−1∑
m=n

∑
ρ1,...,ρm

1

m!D
mfi(Ys):

(
fρ1(Ys), . . . , fρm(Ys)

)〈
Xst ⊗̃ [τ1 · · · τn]i ,Δ[ρ1 · · ·ρm]i

〉
.

But we also have that〈
Xst ⊗̃ [τ1 · · · τn]i ,Δ[ρ1 · · ·ρm]i

〉 = 〈
Xst , ρ

(1)
1 · · ·ρ(1)

m

〉〈
τ1 · · · τn, ρ

(2)
1 · · ·ρ(2)

m

〉
.

It follows that∑
ρ1,...,ρm

1

m!D
mfi(Ys):

(
fρ1(Ys), . . . , fρm(Ys)

)〈
Xst ⊗̃ [τ1 · · · τn]i ,Δ[ρ1 · · ·ρm]i

〉
=

∑
ρ1,...,ρm

1

m!D
mfi(Ys):

(
fρ1(Ys), . . . , fρm(Ys)

)
× 〈

Xst , ρ
(1)
1 · · ·ρ(1)

m

〉〈
τ1 · · · τn, ρ

(2)
1 · · ·ρ(2)

m

〉
=

∑
ρ1,...,ρm

1

m!D
mfi(Ys):

(
fρ1(Ys), . . . , fρm(Ys)

)
×

(
m

n

)〈
Xst , ρ

(1)
1 · · ·ρ(1)

n ρn+1 · · ·ρm

〉〈
τ1 · · · τn, ρ

(2)
1 · · ·ρ(2)

n

〉
. (3.18)

In the last equality we have used the fact that each term in 〈τ1 · · · τn, ρ
(2)
1 · · ·ρ(2)

m 〉 will vanish unless ρ
(2)
j = 1 for some

choice of m − n terms from the product ρ
(2)
1 · · ·ρ(2)

m . But since the function Dmfi(Ys): (fρ1 , . . . , fρm) is symmetric

in ρ1, . . . , ρm and we are summing over all ρ1, . . . , ρm, we can assume without loss of generality that ρ
(2)
j = 1 for

n + 1 ≤ j ≤ m, provided we include the combinatorial factor
(
m
n

)
. Of course, it follows that for each n + 1 ≤ j ≤ m,

the only term remaining from the sum ρ
(1)
j ⊗̃ ρ

(2)
j is ρj ⊗̃ 1.

Now, since 〈τ1 · · · τn, ρ
(2)
1 · · ·ρ(2)

n 〉 = 1 if and only if 〈τj , ρ
(2)
ij

〉 = 1 for any permutation (i1, . . . , in) of {1, . . . , n}
and every j = 1, . . . , n, we can write (3.18) as∑

ρ1,...,ρm

1

m!D
mfi : (fρ1 , . . . , fρm)(Ys)

×
(

m

n

)〈
Xst , ρ

(1)
1 · · ·ρ(1)

n ρn+1 · · ·ρm

〉 ∑
(i1,...,in)

〈
τ1, ρ

(2)
i1

〉 · · · 〈τn, ρ
(2)
in

〉
=

∑
ρ1,...,ρm

n!
m!D

mfi :
(
fρ1 , . . . , fρm(Ys)

)
×

(
m

n

)〈
Xst , ρ

(1)
1 · · ·ρ(1)

n ρn+1 · · ·ρm

〉〈
τ1, ρ

(2)
1

〉 · · · 〈τn, ρ
(2)
n

〉
, (3.19)
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where in the first line we sum over all permutations (i1, . . . , in). If we set

(ρ1, . . . , ρm) = (σ1, . . . , σn, λ1, . . . , λm−n),

then by comparing (3.16) with (3.19) and using the fact that n!
m!

(
m
n

) = 1
(m−n)! we see that〈[τ1 · · · τn]i ,Yt

〉 − 〈
Xst 	 [τ1 · · · τn]i ,Ys

〉 = Rτ
st ,

and the estimate (3.17) proves the result. �

Proof of Proposition 3.8. We will first prove the “if” statement. Define Y as in Lemma 3.10, then Y is indeed an
X-controlled rough path. Now, from (3.11), we have that 〈τ,Yt 〉 = 〈τ, (MY)t 〉 for all τ ∈ T ∗

N , so to show Y is the
unique solution, it suffices to show that

δYst =
〈
1,

∫ t

s

f (Yr ) · dXr

〉
.

By the definition, we have that〈
1,

∫ t

s

f (Yr ) · dXr

〉

=
d∑

i=1

∑
τ1···τn∈FN−1

Dnfi(Ys):
(〈τ1,Ys〉, . . . , 〈τn,Ys〉

)〈
Xst , [τ1 · · · τn]i

〉 + r̃st

=
d∑

i=1

∑
τ1···τn∈FN−1

Dnfi : (fτ1 , . . . , fτn)(Ys)
〈
Xst , [τ1 · · · τn]i

〉 + r̃st

=
d∑

i=1

∑
τ1···τn∈FN−1

f[τ1···τn]i (Ys)
〈
Xst , [τ1 · · · τn]i

〉 + r̃st , (3.20)

where |r̃st | = o(|t − s|). However, by setting τ = [τ1 · · · τn]i , we can rewrite the sum

∑
τ∈TN

=
d∑

i=1

∑
τ1···τn∈FN−1

.

We obtain〈
1,

∫ t

s

f (Yr ) · dXr

〉
=

∑
τ∈TN

fτ (Ys)〈Xst , τ 〉 + r̃st . (3.21)

But from (3.14), it follows that〈
1,

∫ t

s

f (Yr ) · dXr

〉
− δYst = r̃st − rst ,

and since the left hand side is an increment and the right hand side is o(|t − s|), the left hand side must be identically
zero.

For the “only if” statement, suppose Y is the unique solution to (3.10) with 〈1,Y〉 = Y . Then since 〈[τ1 · · · τn]i ,
Yt 〉 = 〈[τ1 · · · τn]i , (MY)t 〉, it follows from (3.11) (and the preceding argument) that 〈τ1 · · · τn,Yt 〉 = fτ1···τn(Yt ) for
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all τ1 · · · τn ∈ F∗
N with f

i
= fi for i = 1, . . . , d . Note that (3.21) also holds for the solution Y, since the identity only

relies on the coefficients 〈τ,Y〉 satisfying (3.12). It follows that

δYst =
〈
1,

∫ t

s

f (Yr ) · dXr

〉
=

∑
τ∈TN

fτ (Ys)〈Xst , τ 〉 + r̃st .

This proves (3.14) and hence completes the proof. �

Example 3.11. Let us consider the RDE with linear vector fields,

δYst =
d∑

i=1

∫ t

s

ViYr dXi
r , (3.22)

where Vi ∈ L(Re,Re). Since the vector fields are smooth, the solution Y must take the form (3.14), where Y = 〈1,Y〉
and the coefficients satisfy 〈[τ ]i ,Ys〉 = Vi〈τ,Ys〉 for any [τ ]i ∈ TN and 〈τ1 · · · τm,Ys〉 = 0 for any non-trivial product
of τi ∈ T . Hence, we have that

δYst =
N∑

n=1

∑
a

(Van · · ·Va1Ys)
〈
Xst , τ

an···a1
〉 + rst ,

where we sum over all vectors a = (a1, . . . , an) ∈ {1, . . . , d}n and we use the shorthand for linear trees τan···a1 =
[τan···a2 ]a1 . If we use the injection map ι :T (Rd) →H defined in Remark 2.7, then we have

δYst =
N∑

n=1

∑
a

(Van · · ·Va1Ys)
〈
Xst , ι(ean ⊗ · · · ⊗ ea1)

〉 + rst ,

which coincides with the standard Davie solution [12,18], defined in the case of a geometric rough path. In our case,
the “branched” components only influence the solution through terms involving second order derivatives of the vector
field, which always vanish. This is a good example of how to use Proposition 3.8 to show which components of the
rough paths actually count towards the solution, as mentioned in Remark 3.9.

4. Geometric rough paths

Let V be some real Banach space. Let T (V ) = ⊕∞
i=0 V ⊗i be the tensor product algebra of V , with the convention

V ⊗0 = R. We will call T (n)(V ) = ⊕n
i=0 V ⊗i the step-n truncated tensor algebra. The vector space T (V ) can be

viewed as a Hopf algebra, by adding the shuffle product �� and the deconcatenation coproduct Δ̄. The existence of
an antipode for this bialgebra is guaranteed by the fact that it is graded, with zeroth grade equal to R. The shuffle
product is defined in the following way, let ea = ea1 ⊗ · · · ⊗ ean and eb = eb1 ⊗ · · · ⊗ ebm then

ea �� eb =
∑

c∈Shuf(a,b)

ec,

where c ∈ Shuf(a, b) if and only if c is a permutation of the index sequence (a, b) = (a1, . . . , an, b1, . . . , bm) which
preserves the original ordering of the index sequences a and b respectively. The coproduct Δ̄ is defined by

Δ̄ec =
∑

(a,b)=c

ea ⊗̃ eb.

The dual Hopf algebra T ((V )) is the space of formal series of tensors, equipped with the concatenation product ⊗
and the coproduct δ̄, that are dual to Δ̄ and �� respectively. We likewise have T ((V )) = ⊕∞

i=0(V
∗)⊗i (allowing for
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formal series) and the truncation, T (n)((V )) which can clearly be identified with T (n)(V ). More details on the above
construction can be found, for instance, in [30].

We define a Lie bracket on T ((V )) using the commutator

[x, y]⊗ = x ⊗ y − y ⊗ x, (4.1)

for any x, y ∈ T ((V )). Define the sequence of vector spaces Wi(V ) by W1(V ) = V and Wi+1(V ) = [V,Wi(V )]⊗ for
i ≥ 1. We call S a formal Lie series if S can be written as a formal sum

S =
∑
i≥1

Si,

where each Si ∈ Wi(V ) is some Lie polynomial. We will denote the vector space of formal Lie series by G(V ), clearly
G(V ) is a subspace of T ((V )). We similarly denote the step-n free Lie algebra by

G(n)(V ) =
n⊕

i=1

Wi(V ),

which is the level-n truncation of G(V ). We define the group

G(V ) = exp
(
G(V )

)
,

as the image of G(V ) under the exponential map, defined by

exp(x) =
∑
k≥0

x⊗k

k! .

We similarly define the step-n free nilpotent group as

G(n)(V ) = exp
(
G(n)(V )

)
.

Clearly, we have that G(n)(V ) ⊂ T (n)(V ). Moreover, it is well known that G(V ) coincides with the group-like objects,
in that g ∈ G(V ) if and only if δ̄g = g ⊗̃ g, the proof of this statement can be found in [30]. It follows that G(n)(V )

is the step-n truncation of the group-like objects. Since δ̄ is dual to ��, this group-like property can be equivalently
stated as

〈g, x〉〈g, y〉 = 〈g, x �� y〉, (4.2)

for every g ∈ G(V ) and x, y ∈ T (V ).
The group G(n)(V ) can be equipped with a subadditive homogeneous norm ‖ · ‖G(n)(V ) :G(n)(V ) → [0,∞) as

defined in [28]. One can show that all such norms are equivalent, and in particular all such norms are equivalent to

ρ(x) =
n∑

k=1

‖�k‖1/k,

where x = exp(�1 + · · · + �n) with �i ∈ Wi(V ) and where ‖ · ‖ denotes the Euclidean norm [28]. A path X : [0, T ] →
G(n)(V ) is called γ -Hölder continuous if and only if

sup
s �=t

‖Xst‖G(n)(V )

|t − s|γ < ∞, (4.3)

where Xst = X−1
s ⊗ Xt . These ingredients allow us to define rigorously a geometric rough path.
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Definition 4.1. Fix γ ∈ (0,1) and let N be the largest integer such that Nγ ≤ 1. A path X : [0, T ] → G(N)(V ) of
Hölder exponent γ is called a geometric rough path.

In light of Remark 1.5, one can easily check that this definition of geometric rough paths is equivalent to the defini-
tion given in the Introduction. In particular, by the equivalence of norms, the regularity condition (4.3) is synonymous
with the statement

sup
s �=t

|〈Xst , ei1···ik 〉|
|t − s|kγ

< ∞, (4.4)

for any word ei1···ik . Hence, we also see that the regularity condition for a geometric rough path is identical to that of
a branched rough path.

It turns out that every γ -Hölder path in a Banach space V can be extended to a path X̄ taking values in G(N)(V ).
That is, every path has a geometric rough path lying above it. This is a particular case of the following theorem proved
in [28]. If K is a normal subgroup of G(N)(V ), we define the quotient homogeneous norm on the quotient group
G(N)(V )/K by

‖g ⊗ K‖G(N)(V )/K = inf
k∈K

‖g ⊗ k‖G(N)(V ).

Theorem 4.2 (Lyons–Victoir extension). Let γ ∈ (0,1) such that γ −1 /∈ N \ {0,1}. Suppose K is a normal subgroup
of G(N)(V ). If X is a γ -Hölder continuous path in the quotient G(N)(V )/K , then there exists a γ -Hölder continuous
path X̄ taking values in G(N)(V ) and satisfying

πG(N)(V )/K(X̄) = X,

where π denotes the projection map.

Remark 4.3. The restriction γ −1 /∈ N \ {0,1} is a necessary one and a counter example can be found in [32]. Hence,
all our results in this chapter actually assume γ ∈ (0,1) with γ −1 /∈ N.

Example 4.4. To give an idea of the type of situation in which this theorem applies, let X be a geometric rough path
in T (N)(Rd), lying above a path X ∈ R

d and suppose we would like to add a new path component Xd+1 to X, by
setting X̄ = (X,Xd+1). The extension theorem tells us that there exists a geometric rough path X̄ above X̄ that agrees
with X on the subspace T (N)(Rd) ⊂ T (N)(Rd+1). To be precise, we set

X̂t = exp
(
log Xt + xd+1

t ed+1
)
.

This is an element in T (N)(Rd+1) and one can easily check that it is γ -Hölder in the quotient space G(N)(Rd+1)/K ,
where K = expL and L is the Lie ideal generated by[

ed+1,R
d
]
⊗ = span{ed+1 ⊗ ej − ej ⊗ ed+1: j = 1, . . . , d}. (4.5)

In particular, under the quotient norm we can effectively ignore all bracket terms involving ed+1, and the γ -Hölder
property then follows from the fact that X is γ -Hölder in G(N)(Rd). Theorem 4.2 tells us that we can add the missing
ed+1 components to obtain a geometric rough path X̄ on T (N)(Rd+1).

Remark 4.5. Although the proof of Theorem 4.2, as stated in [26], appears to require the axiom of choice, the map
X �→ X̄ can actually be defined constructively (and hence the map is measurable). In particular, this implies that the
components of X̄ can be built explicitly from the components of X.
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4.1. Geometric rough paths are branched rough paths

It should be no surprise that a geometric rough path is a special kind of branched rough path. As mentioned in
Remark 2.7 the tensor algebra T (Rd) can be identified with the subspace of H spanned by the linear trees. Given a
geometric rough path X̄, the idea is to extend X̄ from this subspace of linear trees to a branched rough path X defined
on the whole of H. To perform this extension, we simply replace H products with �� products. That is, we set

〈Xst , h〉 = 〈
X̄st , φg(h)

〉
, (4.6)

for every h ∈HN , where the map φg :H → T (Rd) is defined by the rules φg(1) = 1 ,

φg

([h]i
) = φg(h) ⊗ ei and φg(h1h2) = φg(h1) �� φg(h2),

for h,h1, h2 ∈H and ei is the ith canonical basis vector in R
d . For example, we have

φg( a b) = eab + eba and φg

( a b
c

) = eabc + ebac,

where eab = ea ⊗ eb and so forth.

Proposition 4.6. If X̄ is a γ -Hölder geometric rough path defined on T (N)(Rd) and X is defined by (4.6), then X is
a γ -Hölder branched rough path on H.

This also provides a way to test the geometricity of a branched rough path. In particular, a branched rough path is
geometric if and only if the identity

〈Xst , h〉 = 〈
Xst , ιφg(h)

〉
,

holds for every h ∈ HN , where ι :T (Rd) → H is the inclusion map that identifies each tensor in T (Rd) with its
corresponding linear tree in H. Before proving the proposition, we need an important lemma. The map φg is clearly
a morphism from · to ��. What is less clear is that it is also a morphism of coproducts Δ and Δ̄ and hence a Hopf
algebra morphism. This is crucial in guaranteeing that X constructed above satisfies the right algebraic conditions.

Remark 4.7. There is a well known “universality” result [14], which states the following. Let K be any Hopf algebra
and let {Li :K → K}i=1,...,d be any collection of 1-cocycles with respect to the coproduct, then there exists a Hopf
algebra morphism ζ :H → K satisfying

ζ
([τ1 · · · τn]i

) = Li ◦ ζ(τ1 · · · τn),

for any [τ1 · · · τn]i ∈ T . By taking K = T (V ) and Li(ej1···jn) = ej1···jni , we see that the map ζ is precisely φg . However,
in our case it is not too difficult to simply check that the map φg is indeed a Hopf algebra morphism and we include
this in Lemma 4.8.

For the following, recall that F(n) is all τ1 · · · τk ∈ F with |τ1| + · · · + |τk| = n and that H(n) is the vector space
spanned by F(n) and also that Fn is all τ1 · · · τk ∈F with |τ1| + · · · + |τk| ≤ n.

Lemma 4.8. We have that

Δ̄φg(h) = (φg ⊗̃ φg)Δh, (4.7)

for every h ∈H.

Proof. When applied to any h ∈ H(1), the identity (4.7) is clear, so assume the claim holds on all h ∈ H(n), we will
prove that the claim holds for F(n+1) and hence H(n+1). If h ∈F(n+1), then h = [h1]i for some h1 ∈F(n) or h = h1h2
for h1 ∈ F(p), h2 ∈ F(q) for p + q = n. In the first case,

Δ̄φg

([h1]i
) = Δ̄

(
φg(h1) ⊗ ei

) = (
φg(h1) ⊗ ei

) ⊗̃ 1 + (
Δ̄φg(h1)

) ⊗ (1 ⊗̃ ei).
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By the inductive assumption, Δ̄φg(h1) = (φg ⊗̃ φg)Δh1. If Δh1 = h
(1)
1 ⊗̃ h

(2)
1 , then we obtain

φg

([h1]i
) ⊗̃ 1 + (φg ⊗̃ φg)

(
h

(1)
1 ⊗̃ h

(2)
1

) ⊗ (1 ⊗̃ ei)

= (φg ⊗̃ φg)
([h1]i ⊗̃ 1 + h

(1)
1 ⊗̃ [

h
(2)
1

]
i

) = (φg ⊗̃ φg)Δ[h1].
In the second case,

Δ̄φg(h1h2) = Δ̄
(
φg(h1) �� φg(h2)

) = (
Δ̄φg(h1)

) �� (
Δ̄φg(h2)

)
,

where we have used the fact that Δ̄ is a morphism with respect to �� . By the inductive assumption, we obtain

(φg ⊗̃ φg)(Δh1) �� (φg ⊗̃ φg)(Δh2) = (φg ⊗̃ φg)(Δh1 · Δh2) = (φg ⊗̃ φg)Δ(h1h2),

where, in the first equality we have used the fact that φg is a �� morphism and Δ is a · morphism. This proves (4.7). �

Proof of Proposition 4.6. From (4.6), the path X is only defined through the incremental object Xst . Hence, we must
first check that Xt t = 1 and that

Xst = Xsu 	 Xut , (4.8)

for every s, u, t ∈ [0, T ]. The first claim follows from the fact that X̄t t = 1 and that φ∗
g1 = 1, where φ∗

g is the adjoint
of φg and 1 is the counit. To check (4.8), notice that

〈Xsu 	 Xut , h〉 = 〈Xsu ⊗̃ Xut ,Δh〉 = 〈
X̄su ⊗̃ X̄ut , (φg ⊗̃ φg)Δh

〉
.

Applying Lemma 4.8, the above equals〈
X̄su ⊗̃ X̄ut , Δ̄φg(h)

〉 = 〈
X̄su ⊗ X̄ut , φg(h)

〉 = 〈
X̄st , φg(h)

〉 = 〈Xst , h〉.
The regularity condition (2.10) for a branched rough path follows easily from the fact that φg(τ) is, for every τ ∈ T , a

linear combination in (Rd)⊗|τ |. Hence, the regularity of 〈Xst , τ 〉 will follow from (4.4). We finally check that Xt
def= X0t

takes values in the truncated group-like elements GN(H). Since φg is a morphism with respect to · and �� , we have
that

〈Xt , h1h2〉 = 〈
X̄t , φg(h1h2)

〉 = 〈
X̄t , φg(h1) �� φg(h2)

〉
,

for any h1, h2 ∈H with |h1| + |h2| ≤ N . Since X̄ is geometric and hence group-like, (4.2) yields〈
X̄t , φg(h1) �� φg(h2)

〉 = 〈
X̄t , φg(h1)

〉〈
X̄t , φg(h2)

〉 = 〈Xt , h1〉〈Xt , h2〉.
Hence, X takes values in GN(H). �

4.2. Branched rough paths are geometric rough paths

The main result of this subsection provides a converse to Proposition 4.6, namely, for a given branched rough path X
lying above a path X, we can construct a geometric rough path X̄ lying above a higher dimensional path X̄, in such a
way that X̄ contains all the information of X. Hence, every branched rough path can be viewed as a geometric rough
path, living in an extended space.

Before stating the main result, we first need some notation. As above, let B,Bn be the real vector spaces spanned
by T ,Tn respectively, then we can then define the tensor product algebras T (B), T (Bn) exactly as above. In T (B)

(and T (Bn)), the elements of T (Tn) are indivisible objects with respect to the coproduct Δ̄, that is

Δ̄τ = 1 ⊗̃ τ + τ ⊗̃ 1,
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for any τ ∈ T . Moreover, the basis elements of T (B) are tensors of the form τ1 ⊗ · · · ⊗ τk , for τi ∈ T and similarly
for T (Bn). As usual, we denote the truncated tensor algebra by

T (N)(B) =
N⊕

k=0

B⊗k and T (N)(Bn) =
N⊕

k=0

B⊗k
n . (4.9)

Every tensor product space can be equipped with the usual grading which counts the number of non-trivial factors in
each tensor product. However, we equip T (B) (and T (Bn)) with a grading that does not ignore the individual grading
of the trees. That is, we have

|τ1 ⊗ · · · ⊗ τn| = |τ1| + · · · + |τn|, (4.10)

where |τi | is the H grading that counts the number of vertices in τi . Hence, we have the decomposition

T (B) =
∞⊕

m=0

T (B)(m),

where T (B)(m) is the vector space spanned by the tensors τ1 ⊗ · · · ⊗ τk for τi ∈ T with |τ1| + · · · + |τk| = m, with the
convention T (B)(0) =R.

We will construct a path X̄ taking values in the vector space BN . Since B1 ∼=R
d , to say that X̄ is an extension of X

means that πB1(X̄) = X. The geometric rough path X̄ will be built in the space T (N)(BN) defined by (4.9), satisfying
〈X̄st , τ 〉 = δX̄τ

st for each τ ∈ TN . Moreover, the tensor components must be interpreted (formally) as candidates for
the iterated integrals

〈X̄st , τ1 ⊗ · · · ⊗ τn〉 def=
∫ t

s

· · ·
∫ v2

s

dX̄τ1
v1

· · · dX̄τn
vn

,

which cannot be defined in the usual Riemann sense.
Recall that H has the decomposition

H =
∞⊕

m=0

H(m),

where H(m) is the vector space spanned by F(m), the set of all τ1 · · · τk ∈F with |τ1|+· · ·+|τk| = m. The construction
of X̄ relies on the following graded morphism of Hopf algebras, that is, a linear map ψ :H(m) → T (B)(m) for each
m ∈N, which is a morphism with respect to products and coproducts.

Lemma 4.9. There exists a graded morphism of Hopf algebras ψ : (H, ·,Δ) → (T (B),�� , Δ̄) satisfying

ψ(τ) = τ + ψn−1(τ ), (4.11)

for any τ ∈ Tn, where ψn−1 denotes the projection of ψ onto T (Bn−1).

To illustrate the property (4.11), consider the following example. In the unlabelled case d = 1, we will see that

ψ
( ) = + 2 ⊗ ⊗ + 2 ⊗ .

Thus, we have

ψ
( ) = + ψ2

( )
,

where

ψ2
( ) = πT (B2)ψ

( ) = πT (B2)

( + 2 ⊗ ⊗ + 2 ⊗ )
= 2 ⊗ ⊗ + 2 ⊗ .
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Notice that ψ2 describes all the ways of cutting apart the tree , this is essentially how ψ is defined in general.

Proof of Lemma 4.9. We will construct ψ on each H(n). For n = 1, the condition (4.11) forces

ψ( a) = a,

for each a = 1, . . . , d . Hence, ψ :H(1) → B1 = T (B)(1), and it is trivial to check that ψ is a morphism of Hopf
algebras. Suppose that we have constructed such a map on H(k), for all 1 ≤ k ≤ n − 1. We will now construct an
extension of ψ to F(n) and hence H(n). Elements in F(n) are either τ ∈ Tn or products of elements in F(p) and F(q)

for p + q = n. We will firstly extend ψ to Tn.
Let τ ∈ Tn with Δτ = τ 1 ⊗̃ τ 2 + 1 ⊗̃ τ + τ ⊗̃ 1, for some τ ∈ Tn, where we sum over the non-trivial parts τ 1, τ 2.

We define

ψn−1(τ ) = ψ
(
τ 1) ⊗ τ 2. (4.12)

We then set ψ(τ) = ψn−1(τ ) + τ . To complete the extension we set

ψ(h1h2) = ψ(h1) �� ψ(h2),

for h1h2 ∈ F(n) with h1 ∈ F(p) and h2 ∈ F(q). By construction, ψ satisfies (4.11) and is a graded morphism of algebras
on F(n), hence we only need that

(ψ ⊗̃ ψ)Δh = Δ̄ψ(h), (4.13)

for all h ∈F(n). For τ ∈ Tn, we have that

Δ̄ψ(τ) = Δ̄
(
ψ

(
τ 1) ⊗ τ 2 + τ

) = Δ̄
(
ψ(τ1) ⊗ τ 2) + τ ⊗̃ 1 + 1 ⊗̃ τ. (4.14)

It is easy to see that

Δ̄
(
ψ

(
τ 1) ⊗ τ 2) = (

ψ
(
τ 1) ⊗ τ 2) ⊗̃ 1 + (

Δ̄ψ
(
τ 1)) ⊗ (

1 ⊗̃ τ 2).
Since τ 1 ∈ F(n−1), the inductive hypothesis implies that (4.14) equals(

ψ
(
τ 1) ⊗ τ 2 + τ

) ⊗̃ 1 + (ψ ⊗̃ ψ)
(
Δτ 1) ⊗ (

1 ⊗̃ τ 2) + 1 ⊗̃ τ.

Using the notation, (Δ′ ⊗̃ Id)Δ′τ = τ 11 ⊗̃ τ 12 ⊗̃ τ 2, the above equals

ψ(τ) ⊗̃ 1 + ψ
(
τ 11) ⊗̃ (

ψ
(
τ 12) ⊗ τ 2) + 1 ⊗̃ (

ψ
(
τ 1) ⊗ τ 2) + ψ

(
τ 1) ⊗̃ τ 2 + 1 ⊗̃ τ. (4.15)

On the other hand, using the notation (Id ⊗̃ Δ′)Δ′τ = τ 1 ⊗̃ τ 21 ⊗̃ τ 22, we have that

(ψ ⊗̃ ψ)Δτ = ψ(τ) ⊗̃ 1 + 1 ⊗̃ ψ(τ) + ψ
(
τ 1) ⊗̃ (

ψ
(
τ 21) ⊗ τ 22 + τ 2).

Hence, it is sufficient to check that

ψ
(
τ 11) ⊗̃ (

ψ
(
τ 12) ⊗ τ 2) = ψ

(
τ 1) ⊗̃ ψ

(
τ 21) ⊗ τ 22. (4.16)

But, from the coassociativity of the coproduct (and hence the reduced coproduct), we have that

τ 11 ⊗̃ τ 12 ⊗̃ τ 2 = (
Δ′ ⊗̃ Id

)
Δ′τ = (

Id ⊗̃ Δ′)Δ′τ = τ 1 ⊗̃ τ 21 ⊗̃ τ 22

and (4.16) clearly follows. The fact that (4.13) holds for the product h1h2 follows easily from the inductive hypothesis,
and the fact that Δ̄ and Δ are morphisms with respect to �� and · respectively. �

We can now state the main result of this section.
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Theorem 4.10. Let X = (Xi)i=1,...,d be a path in R
d and X a γ -Hölder continuous branched rough path satisfying

〈Xt , i 〉 = Xi
t . Then there exists

1. a path X̄ = (X̄τ )τ∈TN
taking values in the vector space BN and satisfying πB1(X̄) = X,

2. a γ -Hölder geometric rough path X̄ in T (N)(BN) satisfying 〈X̄st , τ 〉 = δX̄τ
st for each τ ∈ TN ,

such that

〈Xst , h〉 = 〈
X̄st ,ψ(h)

〉
, (4.17)

for every h ∈HN and where ψ is the map constructed in Lemma 4.9.

The idea behind the proof is to construct X̄ iteratively, using the extension Theorem 4.2. The first part of the
iteration is to extend the path X. To start the iteration, we define the intermediate extension X̂(1) : [0, T ] → G(N)(B1)

by

X̂(1)
t = exp

(
d∑

i=1

〈Xt , i 〉 i

)
. (4.18)

Hence, we have that 〈X̂(1)
t , i 〉 = 〈Xt , i 〉 and〈

X̂(1)
t , a1 ⊗ · · · ⊗ ak

〉 = 1

k! 〈Xt , a1 · · · ak〉,

for ai = 1, . . . , d and k ≤ N . All we have done is extend X by adding the purely symmetric tensor components. Let
K1 be the normal subgroup of G(N)(B1) defined by

K1 = exp
(
W2(B1) ⊕ · · · ⊕ WN(B1)

)
,

or equivalently, let K1 = expL1, where L1 is the Lie ideal generated by

[B1,B1]⊗ def= span{ i ⊗ j − j ⊗ i : i, j = 1, . . . , d}. (4.19)

In general, the path X̂(1)
t is not a γ -Hölder continuous path in the group G(N)(B1), but it is in the quotient group

G(N)(B1)/K1. Indeed, we have that∥∥(
X̂(1)

s

)−1 ⊗ X̂(1)
t

∥∥
G(N)(B1)/K1

= inf
k∈K1

∥∥(
X̂(1)

s

)−1 ⊗ X̂(1)
t ⊗ k

∥∥
G(N)(B1)

, (4.20)

and by the Baker–Campbell–Hausdorff formula,

(
X̂(1)

s

)−1 ⊗ X̂(1)
t = exp

(
d∑

i=1

(〈Xt , i 〉 − 〈Xs , i 〉
)

i

)
⊗ exp(�)

= exp

(
d∑

i=1

〈Xst , i 〉 i

)
⊗ exp(�),

where � ∈ L1. Hence, taking k = exp(−�), we can bound (4.20) by∥∥∥∥∥exp

(
d∑

i=1

〈Xst , i 〉 i

)∥∥∥∥∥
G(N)(B1)

≤ C

d∑
i=1

∣∣〈Xst , i 〉
∣∣ ≤ C|t − s|γ ,

which proves the claim for X̂(1). We can therefore apply the extension theorem to X̂(1), in particular it follows that
there exists a γ -Hölder continuous path X̄(1) ∈ G(N)(B1) such that

πG(N)(B1)/K1

(
X̄(1)

) = X̂(1),
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which simply means that 〈X̄(1)
st , i 〉 = 〈X̂(1)

st , i 〉 = δXst for all i = 1, . . . , d .

Remark 4.11. We should mention that one can actually choose any geometric rough path X̄(1) above X. We only use
the choice of X̄(1) provided by the extension theorem as it will work for every X.

The second part of the iteration relies on a generalisation of the following well-known (and easily verified) fact.
Namely, that the difference between two area processes over a common path is equal to the increment of another path.
In our case, for each a, b = 1, . . . , d there exists a path

X̄
a
b : [0, T ] →R such that δX̄

a
b

st = 〈Xst ,
a
b 〉 − 〈

X̄(1)
st , a ⊗ b

〉
, (4.21)

where X̄(1)
st = (X̄(1)

s )−1 ⊗ X̄(1)
t and the path is unique up to an additive constant. We add X̄ as another component of a

new path X̂(2) : [0, T ] → T (N)(B2). To be precise, we define

X̂(2)
t = exp

(
log X̄(1)

t +
d∑

a,b=1

X̄
a
b

t
a
b

)
.

Hence, X̂(2) satisfies〈
X̂(2)

t ,
a
b

〉 = X̄
a
b

t , (4.22)

for all a, b = 1, . . . , d ,〈
X̂(2)

t , τ1 ⊗ · · · ⊗ τk

〉 = 1

k!
〈
X̂(2)

t , τ1
〉 · · · 〈X̂(2)

t , τk

〉
,

for all tensors τ1 ⊗ · · · ⊗ τk ∈ T (N)(B2) \ T (N)(B1), and X̂(2) is an extension of X̄1, in the sense that

πT (N)(B1)

(
X̂(2)

) = X̄(1).

We then repeat the first step, by finding the right quotient group and re-applying the extension theorem. To this end,
for any integer 1 ≤ n ≤ N , we define Ln as the Lie ideal generated by the set

[B(n),Bn]⊗ def= span{τ1 ⊗ τ2 − τ2 ⊗ τ1: τ1, τ2 ∈ T with |τ1| = n and |τ2| ≤ n} (4.23)

in the free Lie algebra G(N)(Bn). In particular, Ln contains all brackets in G(N)(Bn) with at least one factor from B(n).
In order to construct meaningful quotients, we require the following lemma.

Lemma 4.12. For each 1 ≤ n ≤ N , Kn = exp(Ln) is a normal subgroup of G(N)(Bn).

Proof. The statement is an elementary result in the theory of Lie algebras, see [24], Theorem 3.22, for instance. �

After this step, we will obtain a geometric rough path X̄(2) above the path

X̄(2) = (
Xi, X̄

j
k: i, j, k = 1, . . . , d

)
,

and from (4.21), it follows that X̄(2) contains the information held in the components 〈X, τ 〉 for all τ ∈ T2. Hence, if

we repeat this procedure, we eventually obtain a geometric rough path X̄ def= X̄(N), containing all the information of
held in the components of X.

Proof of Theorem 4.10. Throughout the proof, we will denote X̄(n)
st = (X̄(n)

s )−1 ⊗ X̄(n)
t . Proceeding by induction, we

will prove that, for each integer n ≥ 1, there exists a γ -Hölder continuous path X̄(n) : [0, T ] → G(N)(Bn) such that

〈Xst , h〉 = 〈
X̄(n)

st ,ψ(h)
〉
, (4.24)
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for every h ∈ Hn. For n = 1, we know from the introductory argument that such a construction is possible. Hence,
assume the claim holds for some n ≥ 1. We will now construct X̄(n+1) and show that (4.24) holds in the n + 1 case.
We will first show that for every τ ∈ T(n+1) there exists a path X̄τ : [0, T ] → R such that

δX̄τ
st = 〈Xst , τ 〉 − 〈

X̄(n)
st ,ψn(τ )

〉
, (4.25)

unique up to an additive constant, this path will allow us to define X̄(n+1). Without loss of generality, let τ = [h], for
some h ∈ F(n), where we omit the label of the root. We have that〈

Xst , [h]〉 = 〈
Xsu, [h]〉 + 〈

Xut , [h]〉 + 〈
Xsu, h

1〉〈Xut ,
[
h2]〉, (4.26)

where Δh = h1 ⊗̃ h2 + 1 ⊗̃ h + h ⊗̃ 1 and we omit the summation. By hypothesis, we have that〈
Xsu, h

1〉〈Xut ,
[
h2]〉 = 〈

X̄(n)
su ,ψ

(
h1)〉〈X̄(n)

ut ,ψ
([

h2])〉,
since h1 and [h2] are elements of Hn. Moreover, by definition of ψ , we have that

ψ
(
h1) ⊗̃ ψ

([
h2]) = (ψ ⊗̃ ψ)Δ′[h] = Δ′ψ

([h]),
where Δ′ is the reduced coproduct. This yields the identity〈

Xsu, h
1〉〈Xut ,

[
h2]〉 = 〈

X̄(n)
st ,ψn

([h])〉 − 〈
X̄(n)

su ,ψn

([h])〉 − 〈
X̄(n)

ut ,ψn

([h])〉,
combining this with (4.26), we obtain〈

Xst , [h]〉 − 〈
X̄(n)

st ,ψn

([h])〉 = 〈
Xsu, [h]〉 − 〈

X̄(n)
su ,ψn

([h])〉 + 〈
Xut , [h]〉 − 〈

X̄(n)
ut ,ψn

([h])〉.
Setting τ = [h], this implies the existence of X̄τ for each τ ∈ T(n+1), satisfying (4.25). We include this path in our
construction by defining the intermediate extension X̂(n+1) of X̄(n), setting

X̂(n+1)
t = exp

(
log X̄(n)

t +
∑

τ∈T(n+1)

X̄τ
t τ

)
. (4.27)

Hence, X̂(n+1) : [0, T ] → G(N)(Bn+1) and satisfies 〈X̂(n+1)
t , τ 〉 = X̄τ

t for all τ ∈ T(n+1),

〈
X̂(n+1)

t , τ1 ⊗ · · · ⊗ τm

〉 = 1

m!
〈
X̂(n+1)

t , τ1
〉 · · · 〈X̂(n+1)

t , τm

〉
,

for all τ1 ⊗ · · · ⊗ τm ∈ T (N)(Bn+1) \ T (N)(Bn) and X̂(n+1) is an extension of X̄(n) is the sense that

πT (N)(Bn)

(
X̂(n+1)

) = X̄(n).

We then have the following crucial fact, which we shall verify in the sequel.

Lemma 4.13. For each n ≤ N − 1, the intermediate extension X̂(n+1) is a γ -Hölder continuous path in the quotient
group G(N)(Bn+1)/Kn+1.

Thus, from the extension Theorem 4.2, we know that there exists a γ -Hölder path X̄(n+1) : [0, T ] → G(N)(Bn+1)

satisfying

πG(N)(Bn+1)/Kn+1

(
X̄(n+1)

) = X̂(n+1).
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We will now check that X̄(n+1) satisfies (4.24) for the basis elements Fn+1 and hence Hn+1. Firstly, suppose h ∈ Fn,
then ψ(h) ∈ T (N)(Bn), which follows from the fact that ψ is graded. Moreover, since X̄(n+1) agrees with X̄(n) on
T (N)(Bn), we have that

〈Xst , h〉 = 〈
X̄(n)

st ,ψ(h)
〉 = 〈

X̄(n+1)
st ,ψ(h)

〉
,

which proves the claim for Fn. It is clear that every element in F(n+1) is either a tree [h] for some h ∈ F(n) or a
product h1h2 for h1, h2 ∈Fn. For the tree case, we have the identity〈

X̄(n+1)
st , [h]〉 = 〈(

X̄(n+1)
s

)−1 ⊗ X̄(n+1)
t , [h]〉 = 〈(

X̂(n+1)
s

)−1 ⊗ X̂(n+1)
t , [h]〉 = δX̄

[h]
st , (4.28)

where we have used the facts that X̄(n+1) and X̂(n+1) coincide on [h] and that 〈X̂(n+1)
t , [h]〉 = X̄

[h]
t and 〈(X̂(n+1)

s )−1,

[h]〉 = −X̄
[h]
s . And by definition,

δX̄
[h]
st = 〈

Xst , [h]〉 − 〈
X̄(n)

st ,ψn

([h])〉 = 〈
Xst , [h]〉 − 〈

X̄(n+1)
st ,ψn

([h])〉,
where the last equality follows from the fact that ψn([h]) ∈ T (N)(Bn), on which X̄(n+1) and X̄(n) agree. Combining
this with (4.28), the claim follows from the condition ψ([h]) = [h] + ψn([h]). For the product case,

〈Xst , h1h2〉 = 〈Xst , h1〉〈Xst , h2〉 = 〈
X̄(n)

st ,ψ(h1)
〉〈

X̄(n)
st ,ψ(h2)

〉
.

Since X̄(n) is geometric, the above equals〈
X̄(n)

st ,ψ(h1) �� ψ(h2)
〉 = 〈

X̄(n+1)
st ,ψ(h1) �� ψ(h2)

〉 = 〈
X̄(n+1)

st ,ψ(h1h2)
〉
,

where the first equailty follows from the fact that ψ(h1) �� ψ(h2) ∈ T (N)(Bn), on which X̄(n) and X̄(n+1) coincide
and the second follows from the fact that ψ is a morphism with respect to multiplication. �

Proof of Lemma 4.13. By the Baker–Campbell–Hausdorff formula, we have that

X̂(n+1)
st := (

X̂(n+1)
s

)−1 ⊗ X̂(n+1)
t

= exp

( ∑
τ∈T(n+1)

−X̄τ
s τ + �1

)
⊗ (

X̄(n)
s

)−1 ⊗ X̄(n)
t ⊗ exp

( ∑
τ∈T(n+1)

X̄τ
t τ + �2

)

= exp

( ∑
τ∈T(n+1)

−X̄τ
s τ + �1

)
⊗ X̄(n)

st ⊗ exp

( ∑
τ∈T(n+1)

X̄τ
t τ + �2

)

= X̄(n)
st ⊗ exp

( ∑
τ∈T(n+1)

δX̄τ
st τ

)
⊗ exp(�3),

where �1, �2 are linear combinations of brackets between log X̄(n) and T(n+1) and are therefore in the ideal Ln+1, and
where �3 is a linear combination of brackets between log X̄(n), T(n+1), �1 and �2 and is therefore also in Ln+1. By
taking k = exp(−�3), we therefore have that∥∥X̂(n+1)

st

∥∥
G(N)(Bn+1)/Kn+1

= inf
k∈Kn+1

∥∥∥∥X̄(n)
st ⊗ exp

( ∑
τ∈T(n+1)

δX̄τ
st τ

)
⊗ exp(�3) ⊗ k

∥∥∥∥
G(N)(Bn+1)

≤
∥∥∥∥X̄(n)

st ⊗ exp

( ∑
τ∈T(n+1)

δX̄τ
st τ

)∥∥∥∥
G(N)(Bn+1)

≤ ∥∥X̄(n)
st

∥∥
G(N)(Bn+1)

+
∥∥∥∥exp

( ∑
τ∈T(n+1)

δX̄τ
st τ

)∥∥∥∥
G(N)(Bn+1)

,
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where in the last inequality we have used the sub-additivity property of ‖ · ‖G(N)(Bn+1)
. For the first term, using the

equivalence of norms on G(N)(Bn), we have that

∥∥X̄(n)
st

∥∥
G(N)(Bn+1)

≤ C

N∑
m=1

∑
{τ1,...,τm}⊂Tn+1

∣∣〈log X̄(n)
st , τ1 ⊗ · · · ⊗ τm

〉∣∣1/m

= C

N∑
m=1

∑
{τ1,...,τm}⊂Tn

∣∣〈log X̄(n)
st , τ1 ⊗ · · · ⊗ τm

〉∣∣1/m

≤ C
∥∥X̄(n)

st

∥∥
G(N)(Bn)

≤ C|t − s|γ ,

since X̄(n) is a γ -Hölder continuous path in G(N)(Bn). For the second term, we have that∥∥∥∥exp

( ∑
τ∈T(n+1)

δX̄τ
st τ

)∥∥∥∥
G(N)(Bn+1)

≤ C
∑

τ∈T(n+1)

∣∣δX̄τ
st

∣∣.
And by definition,∣∣δX̄τ

st

∣∣ = ∣∣〈Xst , τ 〉 − 〈
X̄(n)

st ,ψn(τ )
〉∣∣ ≤ ∣∣〈Xst , τ 〉∣∣ + ∣∣〈X̄(n)

st ,ψn(τ )
〉∣∣

≤ ∣∣〈Xst , τ 〉∣∣ + C
∥∥X̄(n)

st

∥∥
G(N)(Bn)

≤ C|t − s|γ .

This completes the proof. �

Remark 4.14. Throughout the construction, we have ignored the fact that the path elements 〈X̄, τ 〉 actually have
γ |τ |-Hölder regularity, rather than just γ . Hence, for each component 〈X̄, τ1 ⊗ · · · ⊗ τn〉 with |τ1| + · · · + |τn| > N ,
there will be a canonical choice, given by defining the component as a Young integral.

If branched rough paths can be written as geometric rough paths, then we should be able to import some of the tools
from geometric rough paths to the world of branched rough paths. The following result tells us that the extension The-
orem 4.2 can also be used on branched rough paths, for a special but very useful class of extension. Namely, if we have
a branched rough path X1 above a path X = (X1, . . . ,Xd) and an extended path X̄ = (X1, . . . ,Xd, X̄d+1, . . . , X̄e),
then there exists a branched rough path X2 above X̄ which agrees with X1 on the X components.

Corollary 4.15. Let H1,H2 be the Connes–Kreimer Hopf algebras generated by the alphabets A1 and A2 respec-
tively, where A1 ⊂A2, so that H1 is a sub Hopf algebra of H2. Let X = (Xi)i∈A1 and X̄ = (X̄i)i∈A2 be two γ -Hölder
continuous paths with X̄i = Xi when i ∈ A1. Let X1 be a branched rough path on H1 with 〈X1

st , i 〉 = δXi
st for each

i ∈ A1. Then there exists a branched rough path X2 on H2 with 〈X2
st , i 〉 = δX̄i

st for each i ∈ A2 and X2 is an
extension of X1 in the sense that〈

X2
st , h

〉 = 〈
X1

st , h
〉
, (4.29)

for every h ∈H1.

Proof. Without loss of generality, assume A1 = {1, . . . , d} and A2 = {1, . . . , d + 1}, so that X = (X1, . . . ,Xd) and
X̄ = (X1, . . . ,Xd,Xd+1). Let B1

N and B2
N be the vector spaces spanned by the trees |τ | ≤ N , with vertex decorations

from A1, A2 respectively. Let ψ1 :H1 → T (B1
N) be the map constructed in Lemma 4.9 and similarly for ψ2 :H2 →

T (B2
N). Clearly, we have that ψ1(h) = ψ2(h) for h ∈ H1. From Theorem 4.10, we know that there exists a geometric

rough path X̄1 on T (N)(B1
N) satisfying〈

X1
st , h

〉 = 〈
X̄1

st ,ψ
1(h)

〉
.
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Now define X̂1 : [0, T ] → T (N)(B2
N) by

X̂1
t = exp

(
log X̄1

t + X̄d+1
t d + 1

)
.

Using the same techniques employed in Lemma 4.13, one can show that X̂1 is a γ -Hölder continuous path in the
quotient group G(N)(B2

N)/K , where K = expL and L is the Lie ideal in T (N)(B2
N) generated by [B2

N, d + 1]. From
the Lyons–Victoir extension Theorem 4.2, there exists a γ -Hölder path X̄2 : [0, T ] → G(N)(B2

N) satisfying〈
X̄2

st , u
〉 = 〈

X̂1
st , u

〉
,

for all u ∈ T (N)(B1
N) and 〈X̄2

st , d + 1〉 = δXd+1
st . We then define X2 in H2 by〈

X2
st , h

〉 = 〈
X̄2

st ,ψ
2(h)

〉
.

It follows from the properties and ψ2 that X2 is indeed a branched rough path. Now, let h ∈ H1 then we have that〈
X2

st , h
〉 = 〈

X̄2
st ,ψ

2(h)
〉 = 〈

X̄2
st ,ψ

1(h)
〉 = 〈

X̂1
st ,ψ

1(h)
〉 = 〈

X̄1
st ,ψ

1(h)
〉 = 〈Xst , h〉,

which proves (4.29). Moreover, because ψ2( d + 1) = d + 1, we have that〈
X2

st , d + 1

〉 = 〈
X̄2

st , d + 1

〉 = δX̄d+1,

which shows that X2 is a branched rough path above X̄ and hence completes the proof. �

5. Conversion formula

If Y is the solution to the controlled rough path equation (3.10) with 〈1,Y〉 = Y , then from Proposition 3.8 we have
that

δYst =
∑

τ∈TN

fτ (Ys)〈Xst , τ 〉 + rst , (5.1)

where the coefficients fτ (Ys) = 〈τ,Ys〉 are determined by (3.12) with f
i
= fi . In Section 4, we saw that for every

branched rough X, there exists a geometric rough path X̄ taking values in T (N)(BN) and satisfying

〈Xst , τ 〉 = 〈
X̄st ,ψ(τ)

〉
,

where ψ is the map derived in Lemma 4.9. If we apply this transformation to (5.1), we see that∑
τ∈TN

fτ (Ys)〈Xst , τ 〉 =
∑

σ∈UN,N

fψ∗(σ )(Ys)〈X̄st , σ 〉, (5.2)

where ψ∗ :T ((BN)) → H∗ is the adjoint of ψ , where fψ∗(σ ) = ∑
τ 〈ψ∗(σ ), τ 〉fτ and where

UN,n = {τ1 ⊗ · · · ⊗ τk: τi ∈ Tn with k ≤ N} (5.3)

is the set of basis tensors for T (N)(Bn). Since Y appears to be controlled by X̄, it is natural to ask whether Y solves
an RDE driven by the geometric rough path X̄, providing a generalised Itô–Stratonovich conversion formula. In
Section 5.1 we provide a criterion to determined when expressions controlled by a geometric rough path are solutions
to RDEs driven by that geometric rough path. In Section 5.2, namely in Theorem 5.8 we derive the Itô–Stratonovich
conversion formula.
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5.1. Geometric RDEs

Let X̄ be a branched rough path above X̄ ∈R
d satisfying

〈X̄st , h〉 = 〈
X̄st , ιφg(h)

〉
, (5.4)

for each h ∈ HN , where ι :T (Rd) → H is the inclusion map. Hence, X̄ is a geometric (branched) rough path. Let Y

be a controlled rough path solution to the RDE

dYt = f (Yt ) · dX̄t , (5.5)

driven by a geometric rough path X̄, where f (Y ) · dX̄ = ∑d
i=1 fi(Y )dX̄i and the vector fields fi :Re → R

e are
smooth. From Proposition 3.8, we have that

δYst =
∑

τ∈TN

fτ (Ys)〈Xst , τ 〉 + rst , (5.6)

where |rst | = o(|t − s|) and the coefficients fτ satisfy the recurrence relation (3.12) with f
i
= fi . The geometric

constraint (5.4) allows us to rewrite δYst as an expression controlled by only the linear trees in HN , which we identify
with the basis elements of T (N)(Rd). To be precise,∑

τ∈TN

fτ (Ys)〈X̄st , τ 〉 =
∑

σ∈UN,1

fφ∗
g(σ )(Ys)〈X̄st , ισ 〉,

where φ∗
g :T ((Rd)) → H∗ is the adjoint of φg , where fφ∗

g(σ ) = ∑
τ 〈φ∗

g(σ ), τ 〉fτ and

UN,1 = {ev1 ⊗ · · · ⊗ evk
: vi = 1, . . . , d and k ≤ N} (5.7)

denotes the basis tensors of T (N)(Rd). Note that only those terms in the subspace T (N)(Rd) appear, since all branched
trees are in the kernel of φ∗

g .

Remark 5.1. From (5.3), we have

UN,1 = { v1 ⊗ · · · ⊗ vk : vi = 1, . . . , d and k ≤ N}
∼= {ev1 ⊗ · · · ⊗ evk

: vi = 1, . . . , d and k ≤ N},
so that (5.7) is not an abuse of notation.

We can use this representation to develop another recurrence formula, to characterise those expressions controlled
by geometric rough paths that are solutions to a given RDE.

Proposition 5.2. Let X̄ be a geometric (branched) rough path above X̄. Then Ȳ with 〈1, Ȳ〉 = Y is the controlled
rough path solution to

dYt = f (Yt ) · dX̄t , (5.8)

driven by X̄ if and only if 〈τ, Ȳt 〉 = fτ (Yt ) as defined above and

δYst =
∑

σ∈UN,1

Fσ (Ys)〈X̄st , ισ 〉 + rst , (5.9)

where |rst | = o(|t − s|) and where the coefficients Fσ are defined by the recurrence Fei
= fi and

Fev1⊗···⊗evn
= Fev1

· DFev2⊗···⊗evn
, (5.10)

for any vi = 1, . . . , d and any n ≤ N .
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Remark 5.3. Since each Fev1⊗···⊗evk
:Re → R

e, the identity (5.10) should be interpreted as

Fev1⊗···⊗evn
(Y )i = Fev1

(Y )j ∂jFev2⊗···⊗evn
(Y )i ,

for each i = 1, . . . , e, where Fσ (Y )i denotes the ith component.

Remark 5.4. One can also define X̄-controlled rough paths for a geometric X̄ on T (N)(Rd). These are similarly
defined as paths Ȳ : [0, T ] → T (N−1)(Rd) satisfying the consistency condition

〈v, Ȳt 〉 = 〈X̄st ⊗ v, Ȳs〉 + Rv
st ,

for every tensor v and where |Rv
st | ≤ C|t −s|(N−|v|)γ . The new recurrence condition (5.10) is then simply the analogue

of the branched rough path recurrence (3.12) in a geometric controlled rough path setting. In particular, one could
also read Proposition 5.2 as: The geometric controlled rough path Ȳ : [0, T ] → T N(Rd) is a controlled rough path
solution to (5.8) with 〈1, Ȳ〉 = Y if and only if Y satisfies (5.9) where the coefficients 〈σ, Ȳt 〉 = Fσ (Yt ) are determined
by the recurrence (5.10) with Fei

= fi . However, since we can already define geometric rough paths as a special class
of branched rough paths, we see no need for this extra definition.

Remark 5.5. Naturally, we can apply Proposition 5.2 to any geometric (branched) rough path X̄ above a path X̄,
where X̄ takes values in an arbitrary vector space V . For instance, in the next subsection we will have X̄ taking
values in BN , as constructed in Theorem 4.10. In this case, the condition (5.9) looks like

δYst =
∑

σ∈UN,N

Fσ (Ys)〈X̄st , σ 〉 + rst ,

where UN,N is defined by (5.3) and where Fσ satisfy

Fτ1⊗···⊗τn = Fτ1 ⊗ DFτ2⊗···⊗τn ,

for all τ1 ⊗ · · · ⊗ τn ∈ UN,N .

Before proving the proposition, we need the following lemma, which highlights a useful property of the functions
fτ . This lemma will be used in both this subsection and the next. As usual, we will use the notation fh = 〈h,1〉Id +∑

τ 〈h, τ 〉fτ for any h ∈ H∗.

Lemma 5.6. We have that

Dqfh: (fλ1, . . . , fλq ) = f(λ1···λq)	h,

for any λ1, . . . , λq ∈ T ∗ and any h ∈ H∗.

Remark 5.7. In this article we only ever require Lemma 5.6 in the case q = 1. However, we include the general
statement as it highlights a striking algebraic feature of the coefficients fh. In particular, the algebraic structure of
the rough path X is twinned with another algebraic structure on the coefficients of the solution.

Proof of Proposition 5.2. We will first prove the “only if” statement. From Proposition (3.8), we know that the
controlled rough path solution Ȳ to (5.8) with 〈1, Ȳ〉 = Y satisfies

δYst =
∑

τ∈TN

fτ (Ys)〈X̄st , τ 〉 + rst ,

where |rst | = o(|t − s|) and has coefficients 〈τ, Ȳt 〉 = fτ (Yt ). Since X̄ is geometric, we also know that

δYst =
∑

σ∈UN,1

fφ∗
g(σ )(Ys)〈X̄st , ισ 〉 + rst .
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Therefore, since fφ∗
g(ei ) = f

i
= fi , it suffices to check that fφ∗

g(σ )(Ys) satisfies (5.10) for each tensor σ ∈ UN,1.

Firstly, from Lemma 4.8, we know that (φg ⊗̃ φg)Δ = Δ̄φg . Using the dual of this expression, we obtain

φ∗
g(σ1 ⊗ σ2) = φ∗

g(σ1) 	 φ∗
g(σ2),

for any σ1, σ2 ∈ T (N)(Rd). In particular,

φ∗
g(ev1 ⊗ · · · ⊗ evn) = φ∗

g(ev1) 	 φ∗
g(ev2 ⊗ · · · ⊗ evn) = ev1 	 φ∗

g(ev2 ⊗ · · · ⊗ evn).

Combining this with Lemma 5.6, we obtain

fφ∗
g(ev1⊗···⊗evn ) = fev1	φ∗

g(ev2⊗···⊗evn )

= fev1
· Dfφ∗

g(ev2⊗···⊗evn )

= fφ∗
g(ev1 ) · Dfφ∗

g(ev2⊗···⊗evn ).

This proves the claimed recurrence. For the “if” statement, suppose Y satisfies (5.9), with coefficients Fσ satisfying
the recurrence (5.10). Let fτ be the coefficients defined by (3.12) with f

i
= fi . Since both Fσ and fφ∗

g(σ ) satisfy
(5.10), with Fei

= fφ∗
g(ei ) we must have Fσ = fφ∗

g(σ ) for all σ ∈ UN,1. Then, using the same calculation as above, we
have that

δYst −
∑

τ∈TN

fτ (Ys)〈X̄st , τ 〉 = δYst −
∑

σ∈UN,1

fφ∗
g(σ )(Ys)〈X̄st , ισ 〉

= δYst −
∑

σ∈UN,1

Fσ (Ys)〈X̄st , ισ 〉 = rst .

It follows from Proposition 3.8 that Ȳ is the controlled rough path solution to (5.8). Hence, upon proving Lemma 5.6,
this completes the proof. �

Proof of Lemma 5.6. First note that if h is a non-trivial product then certainly (λ1 · · ·λq) 	 h is a linear combination
of non-trivial products. Hence, we can restrict our attention to those h ∈ H∗ that are linear combinations of elements
in T ∗, since fτ1···τn = 0 all non-trivial products τ1 · · · τn ∈ F∗ \ T ∗. Moreover, since fτ1+···+τn = fτ1 + · · · + fτn , the
claim will follow from

Dqfτ : (fλ1 , . . . , fλq ) = f(λ1···λq)	τ ,

for all λ1, . . . , λq, τ ∈ T ∗.
We will prove the claim by induction. The claim clearly holds for τ = i and any λ1, . . . , λq ∈ T ∗, since this is

simply the recurrence (3.12). Suppose the claim holds for τ ∈ T ∗
m and all λ1, . . . , λq ∈ T ∗ we will prove the claim for

τ ∈ T ∗
m+1 and all λ1, . . . , λq ∈ T ∗. Without loss of generality, let τ = [τ1 · · · τn]i for τj ∈ Tm. Firstly, by the recurrence

(3.12), we have that

Dqf[τ1···τn]i : (fλ1 , . . . , fλq ) = Dq
(
Dnfi : (fτ1 · · ·fτn)

)
: (fλ1 , . . . , fλq ).

If we apply the Leibniz formula then the above equals∑
p,p1,...,pn

(
q

p,p1, . . . , pn

)
Dp+nfi :

(
fλ1, . . . , fλp , u

p1
1 , . . . , u

pn
n

)
, (5.11)

where
(

q
p,p1,...,pn

) = q!
p!p1!···pn! and where we sum over all partitions p + p1 + · · · + pn = q and where

u
pi

i = Dpi fτi
: (fλi

1
, . . . , fλi

pi
),
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using the notation

(λ1, . . . , λq) = (
λ1, . . . , λp,λ1

1, . . . , λ
1
p1

, . . . , λn
1, . . . , λn

pn

)
.

Since τi ∈ Tm, it follows by the induction hypothesis that u
pi

i = f(λi
1···λi

pi
)	τi

. Hence, (5.11) equals

∑
λ̃1,...,λ̃n

(〈(
λ1

1 · · ·λ1
p1

)
	 τ1, λ̃1

〉 · · · 〈(λn
1 · · ·λn

p1

)
	 τn, λ̃n

〉)
×

(
q

p,p1, . . . , pn

)
Dp+nfi : (fλ1, . . . , fλp , fλ̃1

, . . . , fλ̃n
)

=
∑

λ̃1,...,λ̃n

(〈(
λ1

1 · · ·λ1
p1

)
	 τ1, λ̃1

〉 · · · 〈(λn
1 · · ·λn

p1

)
	 τn, λ̃n

〉)
×

(
q

p,p1, . . . , pn

)
f[λ1···λpλ̃1···λ̃n]i , (5.12)

where we sum over all partitions p + p1 + · · · + pn = q and all λ̃i ∈ T . On the other hand, we have that

f(λ1···λq)	[τ1···τn]i =
∑
σ∈T

〈
(λ1 · · ·λq) 	 [τ1 · · · τn]i , σ

〉
fσ . (5.13)

By eliminating those terms that will vanish, this equals∑
ρ1,...,ρn+p

1

(n + p)!
〈
(λ1 · · ·λq) ⊗̃ [τ1 · · · τn]i ,Δ[ρ1 · · ·ρn+p]i

〉
f[ρ1···ρn+p]i ,

where we sum over all ρi ∈ TN and the factor 1
(n+p)! appears due to the fact that [ρ1 · · ·ρn+p]i is identical for different

arrangements of the ρi . By definition, we have that

N∑
p=0

〈
(λ1 · · ·λq) ⊗̃ [τ1 · · · τn]i ,Δ[ρ1 · · ·ρn+p]i

〉
= 〈

λ1 · · ·λq,ρ
(1)
1 · · ·ρ(1)

n+p

〉〈
τ1 · · · τn, ρ

(2)
1 · · ·ρ(2)

n+p

〉
.

Now, each of these terms will vanish unless ρ
(2)
i = 1 for exactly p factors in ρ

(2)
1 · · ·ρ(2)

n+p . Moreover, since we are

summing over all ρi , the expression must be symmetric in the ρi . In particular, we can assume that ρ
(2)
i = 1 for

1 ≤ i ≤ p, provided we include the combinatorial factor
(
n+p
p

)
. Of course, this implies ρ

(1)
i ⊗̃ ρ

(2)
i = ρi ⊗̃ 1 for

1 ≤ i ≤ p. Hence, (5.13) equals

∑
ρ1,...,ρn+p

1

(n + p)!
(

n + p

p

)〈
λ1 · · ·λq,ρ1 · · ·ρpρ

(1)
p+1 · · ·ρ(1)

p+n

〉〈
τ1 · · · τn, ρ

(2)
p+1 · · ·ρ(2)

p+n

〉
f[ρ1···ρn+p].

By the symmetry of the expression, we can also simplify this to

∑
ρ1,...,ρn+p

n!
(n + p)!

(
n + p

p

)〈
λ1 · · ·λq,ρ1 · · ·ρpρ

(1)
p+1 · · ·ρ(1)

p+n

〉〈
τ1, ρ

(2)
p+1

〉 · · · 〈τn, ρ
(2)
p+n

〉
f[ρ1···ρn+p]

=
∑

ρ1,...,ρn+p

1

p!
〈
λ1 · · ·λq,ρ1 · · ·ρpρ

(1)
p+1 · · ·ρ(1)

p+n

〉〈
τ1, ρ

(2)
p+1

〉 · · · 〈τn, ρ
(2)
p+n

〉
f[ρ1···ρn+p].
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Repeating the same idea on the other factors, this equals∑
ρ1,...,ρn+p

1

p!
(

q

p

)
〈λ1 · · ·λp,ρ1 · · ·ρp〉〈λp+1 · · ·λq,ρ

(1)
p+1 · · ·ρ(1)

p+n

〉〈
τ1, ρ

(2)
p+1

〉 · · · 〈τn, ρ
(2)
p+n

〉
f[ρ1···ρn+p]

=
∑

ρ1,...,ρn+p

(
q

p

)
〈λ1, ρ1〉 · · · 〈λp,ρp〉〈λp+1 · · ·λq,ρ

(1)
p+1 · · ·ρ(1)

p+n

〉〈
τ1, ρ

(2)
p+1

〉 · · · 〈τn, ρ
(2)
p+n

〉
f[ρ1···ρn+p].

Let p1 + · · · + pn = q − p be some partition and let (λp+1, . . . , λq) = (λ1
1, . . . , λ

1
p1

, . . . , λn
1, . . . , λ

n
pn

). Then it also
follows from the symmetry of the expression that the above equals∑

ρ1,...,ρn+p

(
q

p

)(
q − p

p1, . . . , pn

)
〈λ1, ρ1〉 · · · 〈λp,ρp〉〈λ1

1 · · ·λ1
p1

, ρ
(1)
p+1

〉 · · · 〈λn
1 · · ·λn

pn
, ρ

(1)
p+n

〉
× 〈

τ1, ρ
(2)
p+1

〉 · · · 〈τn, ρ
(2)
p+n

〉
f[ρ1···ρn+p]

=
∑

ρp+1,...,ρn+p

(
q

p,p1, . . . , pn

)〈(
λ1

1, . . . , λ
1
p1

)
	 τ1, ρp+1

〉 · · · 〈(λn
1, . . . , λ

n
pn

)
	 τn,ρp+n

〉
× f[λ1···λpρp+1···ρp+n],

where we sum over all partitions p+p1 +· · ·+pn = q . We see that (5.13) equals (5.12), which proves the induction. �

5.2. Itô–Stratonovich correction

We can now state and prove the generalised correction formula. In the following, let f (Y ) · dX = ∑d
i=1 fi(Y )dXi

for smooth vector fields fi :Re → R
e. As usual, let fτ be defined by the recurrence (3.12) with f

i
= fi and fh =

〈h,1〉Id + ∑
τ∈T 〈h, τ 〉fτ for any h ∈H∗. Finally, let X̄, X̄ be as in Theorem 4.10.

Theorem 5.8. Let Y with 〈1,Y〉 = Y be the controlled rough path solution to the RDE

dYt = f (Yt ) · dXt, (5.14)

driven by a branched rough path X over X. Then Y also solves the RDE

dYt = f̄ (Yt ) · dX̄t , (5.15)

driven by X̄, where f̄ (Y ) · dX̄ = ∑
τ∈TN

fτ (Y )dX̄τ .

Proof. As in (5.2), we have that∑
τ∈TN

fτ (Ys)〈Xst , τ 〉 =
∑

σ∈UN,N

fψ∗(σ )(Ys)〈X̄st , σ 〉.

Therefore, as stated in Remark 5.5, if we can show that the coefficients fψ∗(σ ) satisfy

fψ∗(τ1⊗···⊗τn) = fψ∗(τ1) · Dfψ∗(τ2⊗···⊗τn),

for all τ1 ⊗ · · · ⊗ τn ∈ UN,N then Proposition 5.2 implies that Y also solves the RDE

dYt =
∑

τ∈TN

fψ∗(τ )(Yt )dX̄τ
t , (5.16)

driven by the geometric rough path X̄. From the definition of ψ found in (4.12), one can easily check that ψ∗(τ ) = τ ,
so that (5.15) and (5.16) are indeed the same RDE.
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From Lemma 4.9, we know that (ψ ⊗ ψ)Δ = Δ̄ψ , the dual of this statement implies that

ψ∗(τ1 ⊗ · · · ⊗ τn) = ψ∗(τ1) 	 ψ∗(τ2 ⊗ · · · ⊗ τn)

=
∑

σ1∈TN

〈
ψ(σ1), τ1

〉(
σ1 	 ψ∗(τ2 ⊗ · · · ⊗ τn)

)
.

In light of this, the theorem follows almost immediately from Lemma 5.6, where we take λ1 · · ·λq = σ1 and h =
σ2 	 · · · 	 σn. We have that

fψ∗(τ1⊗···⊗τn) =
∑

σ1∈TN

〈
ψ(σ1), τ1

〉
fσ1	ψ

∗(τ2⊗···⊗τn)

=
∑

σ1∈TN

〈
ψ(σ1), τ1

〉
fσ1 · Dfψ∗(τ2⊗···⊗τn)

= fψ∗(τ1) · Dfψ∗(τ2⊗···⊗τn).

This proves the recurrence (5.10) and hence completes the proof. �

Remark 5.9. As with the geometric rough path X̄, there is some redundancy in the extended vector field f̄ . In fact, it
is in general possible to choose another geometric rough path X̂, such that Y also solves an RDE driven by X̂ that
features fewer vector fields. For example, if 1/3 < γ ≤ 1/2, we have that

δYst = fi(Ys)〈X̄st , i 〉 + f α
j (Ys) ∂αfi(Ys)〈X̄st , j ⊗ i 〉

+ f α
j (Ys) ∂αfi(Ys)

〈
X̄st ,

j
i

〉 + rst ,

for |rst | = o(|t − s|). Let us now define 〈X̂, i 〉 = 〈X̄, i 〉 and

〈X̂, j ⊗ i 〉 = 〈
X̄, j ⊗ i + j

i − i
j

〉
,

for all i, j = 1, . . . , d , and finally, we set

〈X̂, ij〉 def= 〈
X̄,

j
i + i

j

〉
for all i ≤ j . Since we have only changed the higher order components of X̄ by adding an anti-symmetric 2γ -Hölder
path, X̂ remains geometric. Moreover, we see that

δYst = fi(Ys)〈X̂st , i 〉 + f α
j (Ys) ∂αfi(Ys)〈X̂st , j ⊗ i 〉

+ 1

2

(
f α

l (Ys) ∂αfk(Ys) + f α
k (Ys) ∂αfl(Ys)

)〈X̂st , kl〉 + rst .

Hence, Y solves the RDE

dYt = fi(Yt )dX̂i
t + 1

2

(
f α

l (Yt ) ∂αfk(Yt ) + f α
k (Yt ) ∂αfl(Yt )

)
dX̂kl,

where we only sum over k ≤ l. This is clearly a simpler RDE than the one obtained in Theorem 5.8, since we sum over
a smaller index set than T2. It is also more reminiscent of the usual Itô–Stratonovich correction.

To put this another way, suppose X is a Brownian motion, or indeed any path for which there is a canonical geomet-
ric rough path lying above it [17,18]; in the case of Brownian motion, this corresponds to constructing Stratonovich
integrals. If the extension X̄ were constructed using this canonical geometric rough path above X, then we would
recover the classical Itô–Stratonovich correction. In particular, the antisymmetric part 1

2 〈X̄st ,
j
i − i

j 〉 would vanish
and the symmetric part 1

2 〈X̄st ,
j
i + i

j 〉 would be the quadratic variation.
The simplification is quite easy in the case N = 2, but the procedure becomes much more complicated for larger

N , and we can see no natural method of generalising this simplification for larger N .
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