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Abstract. Let X be a μ-symmetric Hunt process on a LCCB space E. For an open set G⊆ E, let τG be the exit time of X from G
and AG be the generator of the process killed when it leaves G. Let r : [0,∞[→ [0,∞[ and R(t) = ∫ t

0 r(s)ds.
We give necessary and sufficient conditions for EμR(τG) < ∞ in terms of the behavior near the origin of the spectral measure

of −AG. When r(t) = t l , l ≥ 0, by means of this condition we derive the Nash inequality for the killed process.
In the diffusion case this permits to show that the existence of moments of order l + 1 for τG implies the Nash inequality of

order p = l+2
l+1 for the whole process. The associated rate of convergence of the semi-group in L

2(μ) is bounded by t−(l+1).

Finally, we show for general Hunt processes that the Nash inequality giving rise to a convergence rate of order t−(l+1) of the
semi-group implies the existence of moments of order l + 1 − ε for τG, for all ε > 0.

Résumé. Soit X un processus de Hunt μ-symétrique à valeurs dans un espace LCCB E. Pour un ouvert G⊆ E, soit τG le temps de
sortie de G par X et AG le générateur du processus tué lorsqu’il quitte G. Soit r : [0,∞[→ [0,∞[ et R(t) = ∫ t

0 r(s)ds.
Nous établissons des conditions nécéssaires et suffisantes pour que EμR(τG) < ∞. Ces conditions sont données en termes du

comportement au voisinage de zéro de la mesure spectrale de −AG Dans le cas ou r(t) = t l , l ≥ 0, en utilisant ces conditions, à
partir de EμR(τG) < ∞ nous déduisons l’inégalité de Nash pour le processes tué.

Dans le cas d’un processus de diffusion cela permet de montrer que l’existence des moments d’ordre l + 1 pour τG implique
l’inégalité de Nash d’ordre p = l+2

l+1 pour le processus X. La vitesse de convergence du semi-groupe dans L2(μ) est donnée par

t−(l+1).
Finalement pour un processus de Hunt μ-symétrique à valeurs dans un espace LCCB nous montrons que l’inégalité de Nash

donnant lieu à la convergence du semi-groupe avec la vitesse t−(l+1) implique l’existence des moments d’ordre l + 1 − ε pour τG,
pour tout ε > 0.
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1. Introduction

In the recent literature on convergence rates for continuous time Markov processes, the link between functional in-
equalities and the integrability of hitting times has regained a new interest.

The most studied case is undoubtedly the exponential one. It is known since Carmona–Klein [5] that for a very
general Markov process with invariant probability μ and Dirichlet form (E,D(E)) on L

2(μ), the Poincaré inequality

μ
(
f 2) ≤ CP E(f,f ), f ∈D(E),μ(f ) = 0,
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implies the exponential μ-integrability of hitting times of open sets. The converse implication for reversible diffusions
can be deduced from the work of Down–Meyn–Tweedie [6]. In the particular case of linear diffusions, a simple proof
of the equivalence between Poincaré inequality and exponential integrability of hitting times, with explicit estimations,
was given in Loukianov, Loukianova and Song [10]. In a recent preprint by Cattiaux, Guillin and Zitt [4] the authors
show that for symmetric hypo-elliptic diffusions in R

n, both Poincaré inequality and exponential integrability of
hitting times are equivalent to the existence of Lyapunov functions.

Although the exponential case, at least for diffusion processes, is now fairly well understood, the sub-exponential,
and in particular the polynomial one, is less studied. To the best of our knowledge, the first work in this direction was
done by Mathieu [11]. For a diffusion driven by a logarithmically decreasing potential, he gives a bound for the first
moment of hitting times and relates this bound to some functional inequality.

More recently, the last chapter of [4] is devoted to the study of the relation between polynomial moments of hitting
times and the weak Poincaré inequality

μ
(
f 2) ≤ β(s)E(f,f ) + sΦ(f ), s > 0, f ∈ D(E),μ(f ) = 0, (1.1)

where

Φ :L2(μ) → [0,∞], Φ(cf ) = c2Φ(f ),∀c ∈ R, f ∈ L
2(μ). (1.2)

For uniformly strongly hypo-elliptic symmetric diffusions on R
n, using Lyapunov functions, the authors show that

the finiteness of polynomial moments vm(x) = Ex(T
m
U ), m ∈ N, TU = inf{t > 0: Xt ∈ U} for some bounded open

set U together with a local Poincaré inequality implies the weak Poincaré inequality with Φ(f ) = (Oscf )2 and with
rate-generating function β given by

β(s) = C

(
inf

{
u :μ

(
vm−1

1 + vm

< u

)
> s

})−1

. (1.3)

It is known since the work of Liggett [9] and its generalization by Röckner and Wang [14], and Wang [16], that the
weak Poincaré inequality (1.1) gives rise to the L

2-convergence of the semigroup

μ
(
(Ptf )2) ≤ ξ(t)

[
Φ(f ) + μ

(
f 2)], t > 0,μ(f ) = 0, f ∈ L

2(μ),

with speed at least

ξ(t) := inf
{
s > 0;−(1/2)β(s) log s ≤ t

}
.

When the weak Poincaré inequality is deduced as a consequence of the finiteness of the mth moment of hitting time,
one interesting question is the explicit dependence of ξ(t) on m. Unfortunately, the implicit form of β(s) in (1.3)
makes it difficult to obtain this dependence.

The aim of the present work is to describe more explicitly an inequality which corresponds to the finiteness of
polynomial moments of hitting times. It is well known (see [14]) that in the case β(s) = cs1−p with p > 1 and some
c > 0, the weak Poincaré inequality (1.1) is equivalent to the following Nash inequality of order p:

μ
(
f 2) ≤ CE1/p(f,f )Φ1/q(f ), f ∈D(E),μ(f ) = 0,

1

p
+ 1

q
= 1. (1.4)

In this article we show that the finiteness of polynomial (not necessarily integer) moments of hitting times is related
to the Nash inequality with explicit relation between the order of the moment, the order of the inequality and the
speed of convergence of the semigroup. Our result can be summarized in the following scheme: For any open set G,
let τG = inf{t ≥ 0: Xt /∈ G}, l ≥ 0. Then the following implication holds.

Eμτ l+1
G < ∞ for suitable G 	⇒ Nash inequality of order

l + 2

l + 1
, (1.5)
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where the functional Φ(f ) depends both on Eμτ l+1
G and on Osc(f ). On the other hand, for all l > 0 and any Φ

satisfying (1.2),

Nahs inequality of order
l + 2

l + 1
	⇒ Eμτ l+1−ε

G < ∞ (1.6)

for all ε > 0 and for all open G such that μ(Gc) > 0. Moreover it is well known since [9] that for symmetric semigroups,
the Nash inequality of order l+2

l+1 is equivalent to the following speed of convergence for the semigroup

μ
(
(Ptf )2) ≤ CΦ(f )t−(l+1), μ(f ) = 0, f ∈ L

2(μ).

The implication (1.5) is proved only in the diffusion case, but (1.6) is valid for a very general Markov process. The
method to prove the first implication relies on the use of killed processes. We establish a condition for the existence of
general hitting time moments in terms of spectral properties of the killed process. This spectral condition generalizes
the well known equivalence “exponential moments ⇐⇒ spectral gap.”

Let us now give the precise statement of our results. X will be a μ-symmetric Hunt process on a locally compact
separable Hausdorff space E where μ is a bounded Radon measure (wlog we suppose that μ is a probability measure).
For an open set G ⊆ E, we put P G

t [A](x) = Px[Xt ∈ A; t < τG] for a measurable subset A of E. Denote AG the
infinitesimal generator of (P G

t ) in L
2
G(μ) = {f ∈ L

2(μ): f = 0 μ-a.s. on Gc} and let (EG
ξ , ξ ≥ 0) be its spectral

family.
It is known, see e.g. Friedman [7], or Loukianova, Loukianov and Song [10], that Eμ exp(λτG) < ∞; λ < λ0,

is equivalent to the fact that −AG has a spectral gap of width at least equal to λ0. It turns out that hitting time
moments generated by other functions than the exponential ones are still related with the spectral properties of −AG

in the following sense: Let r : [0,∞[→ [0,∞[, R(t) = ∫ t

0 r(s)ds and denote by Λr : [0,∞[→ [0,∞] the Laplace
transform of r :

∀ξ ≥ 0, Λr(ξ) =
∫ ∞

0
r(t)e−ξ t dt. (1.7)

We show in Theorem 2.2 that EμR(τG) < ∞ if and only if the spectral measure of −AG integrates Λr :

∀f :G→ R,‖f ‖∞ < ∞,

∫
[0,∞[

Λr(ξ)d
(
EG

ξ f, f
)
< ∞.

This condition on the spectral measure will be called in the sequel the r-spectral condition. Then we show how we can
derive in a very elementary way the Nash inequality for the killed process XG with the help of the spectral condition
specified by r(t) = t l (Proposition 2.6). In this case the corresponding rate of transience of the killed process, i.e. the
rate of convergence of P G

t to zero, is given by t−(l+1). All this is the content of Section 2, which is entirely devoted to
the study of the killed process.

In Section 3 we address the question how the polynomial spectral condition for the killed process (equivalently
the existence of polynomial moments of hitting times) can be used to derive the Nash inequality for the non-killed
process. In this section, our method applies only in the case when the Dirichlet form is local, i.e. in the diffusion case,
in the sense that X has a.s. continuous trajectories. But we do not need to suppose that the process is driven by a
stochastic differential equation.

In the one-dimensional diffusion case, from the existence of polynomial moments of order l + 1, l ≥ 0, we derive
the Nash inequality specified by p = l+2

l+1 without any further assumptions.
The multidimensional diffusion case is treated as well. Here we need an additional non-degeneracy condition on

the diffusion. Like in [4], we have to suppose that a local Poincaré inequality on some small domain holds. At the end
of this section we provide the example of a multidimensional diffusion for which our result holds.

Finally, in Section 4 we study the implication “Nash inequality 	⇒ polynomial moments.” The Nash inequality
gives an explicit α-mixing rate of the process, and then the main idea is to use this mixing rate in order to obtain a
deviation inequality to estimate Pμ(τG > t). This nice idea is borrowed from Cattiaux and Guillin [3]. As a conse-
quence, for all l > 0, the Nash inequality of order p = l+2

l+1 implies the existence of the polynomial moments of hitting
times of order l + 1 − ε, for any ε > 0. Note that the main tool of this section is the bound on the variance of the sum
of strictly mixing variables. This bound is only valid for l > 0, hence this is a technical hypothesis for the last section.
Note also that this last section is valid for general Hunt processes.
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2. Killed process

2.1. Modulated moments and spectral condition for the killed process

Consider a Hunt process X on a locally compact separable Hausdorff space E in the sense of Fukushima, Oshima,
Takeda [8]. Let μ be a Radon measure on E. Suppose that μ is bounded (wlog μ is supposed to be a probability
measure), everywhere dense in E, and that X is a μ-symmetric process. Let (Pt )t≥0 be the transition semigroup of X

with associated Dirichlet form (E,D(E)) on L
2(μ). We suppose that E is regular. Denote by Px the law of the process

X starting from x ∈ E. For an open set G⊆ E, set τG = inf{t ≥ 0: Xt /∈ G} the exit time of X from G. Throughout this
section we suppose τG < ∞ Pμ-almost surely. Introduce

P G
t [A](x) = Px[Xt ∈ A; t < τG], x ∈ G,

for a measurable subset A of E, and set

XG
t =

{
Xt, 0 ≤ t < τG,

Δ, t ≥ τG,

where we adjoin an extra point Δ to the space E. Δ plays the role of a cemetery, and we put P G
t (Δ, ·) = δΔ. Any

measurable function defined on E is extended in a natural way to E ∪ {Δ} by defining f (Δ) = 0. Then, according to
[8], XG is a Hunt process on the state space G∪ Δ, symmetric with respect to the measure IG · μ(dx), with transition
semi-group (P G

t )t≥0 on L
2
G(μ) = {f ∈ L

2(μ): f = 0 μ-a.s. on Gc}. We write AG for the infinitesimal generator of
(P G

t ) in L
2
G(μ): With

D
(
AG):

{
u ∈ L

2
G(μ): lim

t→0

P G
t u − u

t
exists in L

2
G(μ)

}
,

we define AGf for any f ∈D(AG) as follows

AGf = lim
t→0

P G
t f − f

t
in L

2
G(μ).

AG is a self-adjoint negative operator. Let us denote by (·, ·) the scalar product in L
2
G(μ) and by (EG

ξ , ξ ≥ 0) the
spectral family of −AG.

(EG
ξ , ξ ≥ 0) is a right-continuous and increasing family of projection operators such that for any bounded Borel

measurable function f defined on [0,∞[, the operator f (−AG) is given by

f
(−AG)u =

∫
[0,∞[

f (ξ)dEG
ξ u, u ∈ L

2
G(μ).

Moreover, for all u ∈ L
2
G(μ),

Idu =
∫

[0,∞[
dEG

ξ u, P G
t u = exp

(
tAG)u =

∫
[0,∞[

e−ξ t dEG
ξ u

and

−AGu =
∫

[0,∞[
ξ dEG

ξ u, u ∈ D
(
AG).

The above integrals can be understood in a weak sense, that is, for all u,v ∈ L
2
G(μ),

(
f

(−AG)u,g
(−AG)v) =

∫
[0,∞[

f (ξ)g(ξ)d
(
EG

ξ u, v
)
. (2.1)
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Actually, the bounded variation function ξ → (EG
ξ u,u) is only increasing on the spectrum of −AG and its discontinuity

points are eigenvalues of −AG. Denote by EG the Dirichlet form associated with −AG on L
2
G(μ). We have

EG(u, v) =
∫

[0,∞[
ξ d

(
EG

ξ u, v
)

for all u,v ∈ D(EG) = {f ∈ L
2
G(μ):

∫
[0,∞[ ξ d(EG

ξ f, f ) < ∞}. Let HG
ξ be the image space of EG

ξ .

Proposition 2.1. Under the condition τG < ∞ almost surely, we have HG
0 = {0}.

Proof. HG
0 is invariant under P G

t for all t > 0. Indeed, using EG
λEG

0 = EG
0 ∀λ ≥ 0 we see that ∀u ∈ HG

0 , ∀t ≥ 0

P G
t u =

∫
[0,∞[

e−ξ t dEG
ξ u = e0EG

0 u = u.

For all v ≥ 0, bounded, limt→∞ P G
t v = limt→∞ E[v(Xt )1t<τG ] = 0 and hence (u, v) = (P G

t u, v) = (u,P G
t v) →

0, t → ∞. Positive bounded functions being dense in L
2, we conclude that u = 0. �

Since EG
0 = 0, one has

∫
[0,∞[ f (ξ)dEG

ξ u = ∫
]0,∞[ f (ξ)dEG

ξ u. In what follows we give necessary and sufficient
conditions for the existence of arbitrary moments of τG in terms of the behavior near the origin of the spectral mea-
sure dEG

ξ . Let r : [0,+∞[→ [0,+∞[ be some measurable function, and denote Λr : [0,∞[→ [0,∞] its Laplace
transform:

∀ξ ≥ 0, Λr(ξ) =
∫ ∞

0
r(t)e−ξ t dt. (2.2)

Instead of hitting time moments, we consider more generally modulated moments defined by
∫ τG

0 r(t)f (Xt )dt . Denote
by Bb(G) ⊂ L

2
G(μ) the space of Borel-measurable and bounded real functions which vanish μ-almost surely on Gc .

Let R(t) = ∫ t

0 r(s)ds and ‖ · ‖1 := ‖ · ‖L1(μ).

Theorem 2.2. The following four conditions are equivalent:

1. EμR(τG) < ∞;
2. For all f ∈ Bb(G), x → f (x) ×Ex

∫ τG
0 r(t)f (Xt )dt ∈ L1(IG · μ(dx));

3. For all f ∈ Bb(G),
∫
[0,∞[ Λr(ξ)d(EG

ξ f, f ) < ∞;

4. For all f ∈ Bb(G),
∫ ∞

0 r(t)‖P G
t/2f ‖2 dt < ∞.

Moreover, for any f ∈ Bb(G),∥∥∥∥f ×E·
∫ τG

0
r(t)f (Xt )dt

∥∥∥∥
1
=

∫
[0,∞[

Λr(ξ)d
(
EG

ξ f, f
) =

∫ ∞

0
r(t)

∥∥P G
t/2f

∥∥2 dt. (2.3)

Definition 2.3. In the sequel the condition 3 of Theorem 2.2 will be called the r-spectral condition for the killed
process.

Proof of Theorem 2.2. The equivalence 1 ⇐⇒ 2 is obvious. The following calculus yields 2 ⇐⇒ 3 ⇐⇒ 4 and
the equality (2.3) for positive bounded functions.(

f,E·
∫ τG

0
r(t)f (Xt )dt

)
=

(
f,

∫ ∞

0
r(t)P G

t f (·)dt

)
=

∫ ∞

0
r(t)

(
f,P G

t f
)

dt

=
∫ ∞

0
r(t)

∥∥P G
t/2f

∥∥2 dt =
∫ ∞

0
r(t)

(
f,

∫
[0,∞[

e−ξ t dEG
ξ f

)
dt
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=
∫ ∞

0
r(t)

∫
[0,∞[

e−ξ t d
(
EG

ξ f, f
)

dt =
∫

[0,∞[

∫ ∞

0
r(t)e−ξ t dt d

(
EG

ξ f, f
)

=
∫

[0,∞[
Λr(ξ)d

(
EG

ξ f, f
)
.

If EμR(τG) < ∞ and f is only bounded, we have

Ex

∫ τG

0
r(t)f (Xt )dt =

∫ ∞

0
r(t)P G

t f (x)dt, μ(dx)-almost surely,

which follows from Fubini’s theorem and the fact that μ(dx)-almost surely, (t,ω) �→ r(t)f (Xt (ω))1t<τG(ω) ∈
L

1(Px(dω) ⊗ dt), since

Ex

∫ ∞

0
1t<τGr(t)

∣∣f (Xt )
∣∣dt ≤ ‖f ‖∞ExR(τG) < ∞, μ(dx)-almost surely.

A second application of Fubini’s theorem implies that(
f,

∫ ∞

0
r(t)P G

t f (·)dt

)
=

∫ ∞

0
r(t)

(
f,P G

t f
)

dt,

which follows from the product integrability of (t, x) �→ f (x)P G
t f (x)r(t) with respect to dtμ(dx) which in turn is

granted by the following upper bound.(
|f |,

∫ ∞

0
r(t)

∣∣P G
t f (·)∣∣dt

)
≤

(
|f |,

∫ ∞

0
r(t)P G

t |f |(·)dt

)
≤ ‖f ‖2∞EμR(τG).

This shows that 2 implies 3 and 4 as well as the equalities of (2.3). �

Remark 1. Note that the equivalence between points 3 and 4 of Theorem 2.2 remains true for the non-killed process,
after removing the spectral projection on the 0-eigenspace. More precisely, we have for all bounded measurable
functions f such that μ(f ) = 0,∫

]0,∞[
Λr(ξ)d(Eξf,f ) =

∫ ∞

0
r(t)‖Pt/2f ‖2 dt.

Example 2.4. Consider the case r(t) = t l , l ≥ 0. We have for ξ ≥ 0 Λr(ξ) = Γ (l + 1)ξ−(l+1). Hence

Eμτ l+1
G < ∞ ⇐⇒

∫
[0,∞[

ξ−(l+1) d
(
EG

ξ f, f
)
< ∞, (2.4)

for all f non-negative and bounded. In the next section we will explain how to use the spectral condition to obtain
functional inequalities for XG and then for X.

Example 2.5. Consider the case r(t) = eλt , λ > 0. We have

Λr(ξ) = 1

ξ − λ
, if ξ > λ, Λr(ξ) = +∞ otherwise.

Put

λ0 = sup
{
λ > 0,EμeλτG < ∞}

.

We obtain that
∫
]0,λ0[ dEG

ξ = 0, i.e. spectral measure does not charge ]0, λ0[.
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2.2. Polynomial spectral condition and Nash inequality for the killed process

In [9], Liggett introduced the following Nash inequality for a Dirichlet form E(f,f ) associated to a linear operator
generating a strongly continuous Markovian semigroup with invariant probability measure μ.

μ
((

f − μ(f )
)2) ≤ CE1/p(f,f )Φ1/q(f ), f ∈ D(E). (2.5)

Here 1 < p,q < ∞ with 1/p +1/q = 1, C is a positive constant, and Φ :L2(μ) → [0,∞] satisfies Φ(cf ) = c2Φ(f ),
for any c ∈ R and f ∈ L

2(μ). It is shown in [9] that if in addition Φ(Ptf ) ≤ Φ(f ) ∀f ∈ L
2(μ),∀t > 0, then the

inequality (2.5) is equivalent to

∃C > 0,
∥∥Pt(f ) − μ(f )

∥∥2
2 ≤ C

Φ(f )

tq−1
(2.6)

for all f ∈ L
2(μ) and t > 0. If the semi-group of X is conservative, symmetric and ergodic, μ(f ) = E0f . Hence we

will consider the following form of the Nash inequality:

∥∥f − E0(f )
∥∥2 ≤ CE1/p(f,f )Φ1/q(f ), f ∈ D(E). (2.7)

Let us point out again that for the killed process the semi-group is not conservative, transient, and E0 = 0. The
following proposition shows that the condition EIGμτ l+1

G < ∞ implies the Nash inequality in the form (2.7) for the
killed process.

Proposition 2.6. Let l ≥ 0 and suppose that Eμτ l+1
G < ∞. Let

Φ(f ) =
∫

[0,∞[
ξ−(l+1) d

(
EG

ξ f, f
)
, f ∈ L

2
G(μ). (2.8)

Then the Nash inequality (2.7) holds for the killed process with p = l+2
l+1 and q = l + 2. Furthermore, Φ satisfies

Φ(f ) ≤ 1
Γ (l+2)

‖f ‖2∞Eμτ l+1
G .

Proof. In virtue of Theorem 2.2, the condition Eμτ l+1
G < ∞ is equivalent to∫

[0,∞[
ξ−(l+1) d

(
EG

ξ f, f
)
< ∞, (2.9)

for all bounded f ∈ Bb(G). Let f ∈ D(EG). Suppose that p−1 + q−1 = 1 and write, using Hölder’s inequality:

‖f − E0f ‖2 = ‖f ‖2 =
∫

[0,∞[
d
(
EG

ξ f, f
) =

∫
[0,∞[

ξ1/pξ−1/p d
(
EG

ξ f, f
)

≤
(∫

[0,∞[
ξ d

(
EG

ξ f, f
))1/p

×
(∫

[0,∞[
ξ−q/p d

(
EG

ξ f, f
))1/q

= E1/p
G (f )Φ1/q(f ),

where

Φ(f ) =
∫

[0,∞[
ξ−q/p d

(
EG

ξ f, f
)
.

Now we choose p and q in such a way that

Φ(f ) =
∫

[0,∞[
ξ−(l+1) d

(
EG

ξ f, f
)
.



1220 E. Löcherbach, O. Loukianov and D. Loukianova

This choice is given by p = l+2
l+1 and q = l + 2. Finally we obtain for all f ∈ D(EG)

‖f − E0f ‖2 ≤ EG(f )(l+1)/(l+2) × Φ1/(l+2)(f ),

where Φ satisfies Φ(cf ) = c2Φ(f ) for any c ∈R and Φ(f ) < ∞ for all bounded f . Also

Φ
(
P G

t f
) =

∫
[0,∞[

ξ−(l+1)e−2ξ t d
(
EG

ξ f, f
) ≤ Φ(f ). �

Remark 2. Since the proof of the above Proposition 2.6 uses only the condition (2.9), we deduce from this the follow-
ing: If for the non-killed process the spectral condition∫

]0,∞[
ξ−(l+1) d(Eξf,f ) < ∞ (2.10)

holds for all f ∈ Bb such that μ(f ) = 0, then the Nash inequality (2.7) holds, with Φ(f ) = ∫
]0,∞[ ξ

−(l+1) d(Eξf,f )

and q = l + 2.
However, in general, it is difficult to find sufficient conditions, expressed in terms of the generator of the process,

ensuring condition (2.10) for the non-killed process, whereas conditions ensuring EμτG
l+1 < ∞ are by now classical,

for suitable choices of the set G, see Section 3.3 below.

3. Polynomial moments and Nash inequality for the non-killed process

In this section we show how polynomial modulated moments are related to the Nash inequality for the non-killed
process. The result can be summarized as follows. For all l > 0, for all ε > 0 we have: “integrability of moments of
order l + 1 	⇒ Nash inequality giving rise to L

2 convergence of the semigroup with speed t−(l+1) 	⇒ existence of
moments of order l + 1 − ε.”

For the second implication we work under the general conditions of Section 2. For the first implication “moments
imply Nash” we work in the diffusion case only. In dimension 1, no hypothesis on the diffusion is imposed. In higher
dimension, however, we need a non-degeneracy condition which is a local Poincaré inequality (see the comments in
Remark 5).

3.1. Polynomial moments 	⇒ Nash inequality. One-dimensional diffusion case

In this subsection we show that the Nash inequality for a killed diffusion process on R implies the Nash inequality
for the non-killed process. Fix some a ∈ R and let G− =]−∞, a[, G+ =]a,∞[. We use some well-known techniques
which are specific to the one-dimensional case.

Since X is a diffusion, it possesses a scale function S and a corresponding speed measure m, see e.g. Revuz and
Yor [12], Chapter VII. We suppose that X is recurrent. This implies that limx→±∞ S(x) = ±∞. Note moreover that
m charges any non-empty open set. Denote by dS the measure induced by S(x). Let F(x) be a real function on R. We
shall write dF � dS, if there exists a function f (x) in L

1
loc(dS) such that

∫ b

a

f (x)dS(x) = F(b) − F(a), ∀a < b.

The function f (x) will be denoted dF
dS

(x). Introduce then the function spaces

F =
{
F ∈ L

2(m): dF � dS,
dF

dS
∈ L

2(dS)

}
,

F]a,∞[ = {
F ∈ F : F(x) = 0, x ≤ a

}
, (3.1)

F]−∞,a[ = {
F ∈ F : F(x) = 0, x ≥ a

}
.
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We do not assume that dS and m are absolutely continuous with respect to the Lebesgue measure. We cite the following
theorem from [10].

Theorem 3.1 ([10]). The diffusion X is m-symmetric. The Dirichlet space associated with X is the function space F
given by (3.1), and the Dirichlet form has the expression

E(F,F ) =
∫ ∞

−∞

(
dF

dS

)2

(x)dS(x), F ∈F .

The restriction of the Dirichlet form E on F]a,∞[ is the Dirichlet form E]a,∞[ associated with the semigroup
(P

]a,∞[
t )t≥0 of the process X killed when it exits ]a,∞[. The killed process X]a,∞[ is symmetric with respect to

the measure I]a,∞[ · m(dx).
The same is true (with obvious modifications) for E]−∞,a[.

The proof of this theorem is given in [10].
We can now state the Nash inequality for the non-killed process X. For a ∈ R introduce the hitting time Ta =

inf{t ≥ 0,Xt = a}. We write μ(·) = 1
m(R)

m(·) for the renormalized speed measure.

Theorem 3.2. Let l > 0. Suppose that for some a ∈R

∫ +∞

−∞
ExT

l+1
a m(dx) < ∞. (3.2)

Then there exists a functional Φ :L2(μ) → [0,+∞] such that the Nash inequality

μ
((

F − μ(F)
)2) ≤ E1/p(F,F )Φ1/q(F ), F ∈F , (3.3)

holds with p = l+2
l+1 and q = l + 2. The functional Φ satisfies Φ(cF) = c2Φ(F) for all c ∈ R, F ∈ L

2(μ), and
Φ(PtF ) ≤ Φ(F) for all t > 0. Moreover, there exists a finite constant C > 0 such that

Φ(F) ≤ C‖F − μ(F)‖2∞ ∀F ∈ L
2. (3.4)

Remark 3. Note also that

Φ(F) ≤ C
(

sup
R

F − inf
R

F
)2 = COsc(F )2. (3.5)

Proof. Fix a point a ∈ R. Then the variational formula for the variance gives for all F ∈F ,

∫ +∞

−∞
(
F(x) − μ(F)

)2
μ(dx) ≤

∫ +∞

−∞
(
F(x) − F(a)

)2
μ(x)

=
∫ a

−∞
(
F(x) − F(a)

)2
μ(dx) +

∫ +∞

a

(
F(x) − F(a)

)2
μ(dx).

Write

F−(x) = (
F(x) − F(a)

)
1{x<a}, F+(x) = (

F(x) − F(a)
)
1{x>a}.

Then F− ∈ F]−∞,a[ and F+ ∈ F]a,∞[. Hence we can apply Proposition 2.6 for both G− =]−∞, a[, G+ =]a,∞[.
Denote

E]−∞,a[ = E− and E]a,+∞[ = E+
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and

Φ−(u) =
∫

[0,∞[
ξ−(l+1) d

(
EG−

ξ u,u
)
, and Φ+(u) =

∫
[0,∞[

ξ−(l+1) d
(
EG+

ξ u,u
)
.

Then, with p = l+2
l+1 and q = l + 2,

∫ a

−∞
(
F(x) − F(a)

)2
μ(dx) +

∫ +∞

a

(
F(x) − F(a)

)2
μ(dx)

≤ E1/p
− (F−)Φ

1/q
− (F−) + E1/p

+ (F+)Φ
1/q
+ (F+)

= Φ
1/q
− (F−)

(∫ a

−∞

(
dF

dS

)2

(t)dS(t)

)1/p

+ Φ
1/q
+ (F+)

(∫ +∞

a

(
dF

dS

)2

(t)dS(t)

)1/p

≤ (
Φ

1/q
− (F−) + Φ

1/q
+ (F+)

)(∫ +∞

−∞

(
dF

dS

)2

(t)dS(t)

)1/p

= E1/p(F )Φ
1/q
a (F ),

where

Φa(F ) = (
Φ

1/q
− (F−) + Φ

1/q
+ (F+)

)q
.

The above result holds for any a ∈R. Hence we can put

Φ(F) = sup
t≥0

inf
a∈RΦa(PtF ). (3.6)

Then Φ(cF) = c2Φ(F) and Φ(PtF ) ≤ Φ(F) are trivially satisfied. It remains to show that under the conditions of
the theorem, Φ satisfies (3.4). In virtue of Theorem 2.2,

Φ−(F−) = 1

Γ (l + 1)

∫
R

1]−∞,a[(x)
(
F(x) − F(a)

) ×Ex

∫ Ta

0
sl × (

F(Xs) − F(a)
)

dsμ(dx)

≤ 4

Γ (l + 2)

∥∥F − μ(F)
∥∥2

∞
∫
R

1]−∞,a[(x)ExT
l+1
a μ(dx). (3.7)

In the same way,

Φ+(F+) ≤ 4

Γ (l + 2)

∥∥F − μ(F)
∥∥2

∞
∫
R

1]a,∞[(x)ExT
l+1
a μ(dx),

and thus, with q = l + 2,

Φa(F ) ≤ 2q 4

Γ (l + 2)
‖F − μ(F)‖2∞EμT l+1

a .

We deduce, using ‖PtF‖∞ ≤ ‖F‖∞ and μ(PtF ) = μ(F) that

inf
a

Φa(PtF ) ≤ 2q 4

Γ (l + 2)

∥∥PtF − μ(PtF )
∥∥2

∞ inf
a∈REμT l+1

a

≤ C
∥∥F − μ(F)

∥∥2
∞,
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where

C = 2l+2 4

Γ (l + 2)
inf
a∈REμT l+1

a ,

and this implies (3.4). �

Remark 4. If the Nash inequality (3.3) holds with a functional Φ satisfying the properties of Theorem 3.2, then Liggett
[9], Theorem 2.2, shows that

∥∥PtF − μ(F)
∥∥2

2 ≤ C
Φ(F)

t l+1
, F ∈ F .

Hence under the assumption of integrability of l + 1-moments of hitting times we obtain a polynomial decay of the
transition semigroup Pt of X at the same rate t−(l+1).

3.2. Polynomial moments 	⇒ Nash inequality. General diffusion case

In this section we come back to the general conditions of Section 2 and consider the μ-symmetric Hunt process X on
the LCCB space E such that μ(E) = 1, with semigroup (Pt )t≥0 and associated Dirichlet form (E,D(E)) on L

2(μ).

Assumption 3.3. Assume that the Dirichlet form (E,D(E)) is regular and admits a carré du champ Γ .

Following Bouleau and Hirsch [1], Proposition 4.1.3, this means that there exists a unique positive symmetric and
continuous bilinear form from D(E) ×D(E) into L

1(μ), denoted by Γ and called the carré du champ operator, such
that ∀f,g,h ∈D(E) ∩L

∞,

E(f h,g) + E(gh,f ) − E(h,fg) =
∫

hΓ (f,g)dμ. (3.8)

Assumption 3.4. Assume that the Dirichlet form (E,D(E)) is local.

In this case, by [1], Proposition 6.1.1,

∀f ∈ D(E), E(f,f ) = 1

2

∫
E
Γ (f,f )dμ.

Note that the locality of the form is equivalent to assume that the process X is a diffusion process, in the sense that X

has a.s. continuous trajectories, see Theorem 4.5.1 of [8].

Assumption 3.5. Assume that E is recurrent, i.e. 1 ∈ D(E) and E(1,1) = 0.

Recall the definition of the spaces Dp , p ≥ 2, similar to the definition of Sobolev spaces, ([1], Definition 6.2.1):

Dp = {
f ∈ D(E) ∩L

p;Γ (f,f )1/2 ∈ L
p
}

and, for f ∈Dp ,

‖f ‖Dp
= ‖f ‖Lp + ‖Γ (f,f )1/2‖LP .

The following proposition is proved in [1] (Proposition 6.2.3).

Proposition 3.6. Let p,q, r ≥ 2 with 1
p

+ 1
q

= 1
r
. Then

f ∈Dp and g ∈Dq 	⇒ fg ∈Dr and ‖fg‖Dr
≤ ‖f ‖Dp

‖g‖Dq
.
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For any set G and any r > 0 we set Gr = {x ∈ E: dist(x,G) < r}. Under Assumptions 3.3, 3.4 and 3.5 the following
theorem holds:

Theorem 3.7. Let l > 0. Suppose there exists an open subset G⊂ E and r > 0 such that μ(Gr \ Ḡ) > 0 and such that
the following conditions are satisfied.

1. For A ∈ {Gr , Ḡc},

Eμτ l+1
A < ∞.

2. μ satisfies a local Poincaré inequality in restriction to Gr \ Ḡ, i.e.∫
Gr\Ḡ

f 2 dμ ≤ CP (G, r)

∫
Gr\Ḡ

Γ (f,f )dμ

for all f ∈D(E) such that
∫
Gr\Ḡ f dμ = 0.

3. There exists a regularized indicator function u ∈ D(E) associated to the sets G and Gr such that 0 ≤ u ≤ 1, u ≡ 1
on Ḡ, u ≡ 0 on Gc

r , which verifies

C(u, r) := ∥∥Γ (u,u)
∥∥∞ < ∞. (3.9)

Then there exists a functional Φ :L2(μ) → [0,∞] such that the following Nash inequality holds.
For any f ∈D(E) with μ(f ) = 0,

μ
(
f 2) ≤ E1/p(f,f )Φ1/q(f ), (3.10)

where p = (l + 2)/(l + 1) and q = l + 2. Φ satisfies Φ(af ) = a2Φ(f ) for all a ∈ R and Φ(Ptf ) ≤ Φ(f ) for all
t ≥ 0, f ∈ L

2(μ). Moreover,

Φ(f ) ≤ 2q/p
[
1 + C(u, r)CP (G, r)

]q/p 1

Γ (l + 2)
× Osc(f )2[(

Eμτ l+1
Gr

)1/q + (
Eμτ l+1

Ḡc

)1/q]q
. (3.11)

Proof. Let f ∈ D(E) with μ(f ) = 0. Let

c = 1

μ(Gr \ Ḡ)

∫
Gr\Ḡ

f dμ.

The use of this constant will become clear in formula (3.16) later. By the variational definition of the variance, we
have that∫

f 2(x)μ(dx) ≤
∫ (

f (x) − c
)2

μ(dx).

Denote f̃ = f − c and let u be the regularized indicator of G. Write f̃ = f̃ u + f̃ (1 − u). Using Proposition 3.6, since
u ∈ D∞ and f̃ ∈D2 =D(E), we have f̃ u ∈D(E). Hence both f̃ u and f̃ (1 − u) belong to D(E). Now we can write∫

E

(
f̃ (x)

)2
μ(dx) =

∫
E

(
f̃ u + f̃ (1 − u)

)2
(x)μ(dx)

≤ 2

[∫
E
(f̃ u)2(x)μ(dx) +

∫
E

(
f̃ (1 − u)

)2
(x)μ(dx)

]

= 2

[∫
Gr

(f̃ u)2(x)μ(dx) +
∫
Ḡc

(
f̃ (1 − u)

)2
(x)μ(dx)

]
.
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In a first step, we want to apply the Nash inequality on Gr . For that sake, note that f̃ u ∈D(E) and its quasicontinuous
modification is zero on Gc

r . (For the definition of quasicontinuity, we refer the reader to Chapter 2.1 of [8].) Hence by
(4.3.1) of [8], f̃ u ∈ D(EGr ). Therefore, we introduce

ΦGr (f̃ ) =
∫

[0,∞[
ξ−(l+1) d

(
E
Gr

ξ f̃ u, f̃ u
)

and obtain, applying Proposition 2.6,∫
Gr

(f̃ u)2(x)μ(dx) ≤ [
EGr (f̃ u, f̃ u)

]1/p[
ΦGr (f̃ )

]1/q

≤ E1/p(f̃ u, f̃ u)
[
ΦGr (f̃ )

]1/q
, (3.12)

where the first inequality follows from Proposition 2.6, and the second since EGr is just the restriction of the Dirichlet
form E to FGr .

In the same way, f̃ (1 − u) ∈D(EḠc ). Introducing

Φ Ḡc

(f̃ ) =
∫

[0,∞[
ξ−(l+1) d

(
EḠc

ξ f̃ (1 − u), f̃ (1 − u)
)
,

we obtain∫
Ḡc

(
f̃ (1 − u)

)2
(x)μ(dx) ≤ E1/p

(
f̃ (1 − u), f̃ (1 − u)

)[
Φ Ḡc

(f̃ )
]1/q

. (3.13)

In order to control E(f̃ u, f̃ u) and E(f̃ (1 −u), f̃ (1 −u)), we use (Proposition 6.2.3 of [1] and Cauchy–Schwarz) that

Γ (f̃ u, f̃ u) ≤ 2
(
Γ (f̃ , f̃ ) + f̃ 2Γ (u,u)

)
. (3.14)

By the locality of the form, it is classical to show that Γ (f̃ , f̃ ) = Γ (f,f ) and Γ (u,u) = 0 on Ḡ and Gc
r . Hence,

E(f̃ u, f̃ u) = 1

2

∫
Gr

Γ (f̃ u, f̃ u)dμ

≤
∫
E
Γ (f,f )dμ +

∫
Gr\Ḡ

f̃ 2(x)Γ (u,u)(x)μ(dx)

≤
∫
E
Γ (f,f )μ(dx) + C(u, r)

∫
Gr\Ḡ

f̃ 2(x)μ(dx),

which implies that

E(f̃ u, f̃ u) ≤ 2E(f,f ) + C(u, r)

∫
Gr\Ḡ

f̃ 2(x)μ(dx).

The role of u and 1 − u being symmetric, we get in the same way

E
(
f̃ (1 − u), f̃ (1 − u)

) ≤ 2E(f,f ) + C(u, r)

∫
Gr\Ḡ

f̃ 2(x)μ(dx),

with the same constant C(u, r). Putting things together, we conclude that

∫
E
f 2(x)μ(dx) ≤

(
2E(f,f ) + C(u, r)

∫
Gr\Ḡ

f̃ 2(x)μ(dx)

)1/p

Ψ 1/q(f ), (3.15)
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where

Ψ (f ) = ([
ΦGr (f̃ )

]1/q + [
Φ Ḡc

(f̃ )
]1/q)q

.

It remains to treat the term∫
Gr\Ḡ

f̃ 2(x)μ(dx).

It is here that we need the fact that
∫
Gr\Ḡ f̃ (x)μ(dx) = 0, by definition of the constant c. Now we can apply the local

Poincaré inequality in order to deduce that∫
Gr\Ḡ

f̃ 2(x)μ(dx) ≤ CP (G, r)

∫
Gr\Ḡ

Γ (f,f )dμ. (3.16)

Coming back to (3.15) we conclude that∫
E
f 2(x)μ(dx) ≤ [

2 + 2C(u, r)CP (G, r)
]1/pE(f,f )1/pΨ 1/q(f ).

Putting

Φ(f ) := [
2 + 2C(u, r)CP (G, r)

]q/p sup
t≥0

Ψ (Ptf ), (3.17)

the result now follows, provided we show that Φ satisfies the desired properties. It is evident that Φ(cf ) = c2Φ(f )

and Φ(Ptf ) ≤ Φ(f ).
In virtue of Theorem 2.2,

ΦGr (f̃ ) = 1

Γ (l + 1)

∫
Gr

f̃ (x)u(x) ×Ex

∫ τGr

0
sl × (f̃ u)(Xs)dsμ(dx).

This implies that for bounded f , since 0 ≤ u(·) ≤ 1, and by definition of the constant c,

ΦGr (f̃ ) ≤ 1

Γ (l + 2)
Osc(f )2

Eμτ l+1
Gr

.

In the same way,

Φ Ḡc

(f̃ ) ≤ 1

Γ (l + 2)
Osc(f )2

Eμτ l+1
Ḡc ,

since ‖f − c‖∞ ≤ Osc(f ). Observing that Osc(Ptf ) ≤ Osc(f ) concludes our proof. �

Remark 5.

1. Sometimes it is convenient to replace Condition 2 of Theorem 3.7, assuming that a local Poincaré inequality holds,
by the following weaker condition. Suppose that E = R

d and let λd be Lebesgue’s measure on R
d . We suppose

that G and Gr are relatively compact, that λd(∂Ḡ) = λd(∂Gr ) = 0 and that μ ∼ λd with locally bounded Radon–

Nikodym densities dμ

dλd and dλd

dμ
. Then it is sufficient to assume the following weaker condition:

There exists � ⊂R
d a smooth bounded open connected domain such that Gr \ G⊂ � and∫

Gr\Ḡ
f 2 dλd ≤ CP

∫
�

Γ (f,f )dλd, (3.18)

for all f ∈D(E) such that
∫
Gr\Ḡ f dλd = 0.



Hitting times and Nash 1227

2. Condition (3.18) is not very restrictive and follows from non-degeneracy of the diffusion, for example if Hörman-
der’s condition is satisfied. Indeed, Wang [17], Lemma 2.3, shows that (3.18) holds in the following case. Take
a smooth function V such that

∫
eV dλd = 1. Let Yi, i = 1, . . . , n, be a family of smooth bounded vector fields

satisfying the Hörmander condition. Consider

A =
n∑

i=1

(
Y 2

i + (divμ Yi)Yi

)
,

where divμ Yi = ∑d
k=1 Y k

i ∂kV + ∂Y k
i

∂xk
. Then (3.18) holds for any relatively compact open set G and any finite r > 0.

3.3. Example

We continue the discussion of Remark 5 and give an example of a process X defined in terms of its generator A which
satisfies all conditions needed for Theorem 3.7. We take E=R

d , a smooth function V such that
∫

eV dλd = 1 and put
μ = eV λd . Then we define an operator L on D(L) = C∞

c (Rd) by

Lf = 1

2
Δf + 1

2
∇V ∇f.

This operator L defined on D(L) is symmetric in L
2(μ). Hence we can define for all f,g ∈ D(L),

E(f, g) = −
∫

gLf dμ.

It is classical to show, see e.g. Example 1.3.4 of Bouleau and Hirsch [1], that E is closable. Let us denote (E,D) the
closure of (E,D(L)) and let A be the generator of E . Then −A is a positive self-adjoint extension of −L, called the
Friedrichs extension of L. It is standard to show that (E,D) is a Dirichlet form for which Condition 3 of Theorem 3.7
is trivally satisfied.

When identifying with the classical form

Lf = 1

2

∑
j,k

aj,k ∂j ∂kf +
∑

k

bk ∂kf

we find b = 1
2∇V and a ≡ I (the identity matrix). Thus, being in the uniform elliptic case, Condition 2 is satisfied for

any open relatively compact set G, see e.g. Wang [17].
Finally, concerning the moment condition 1, suppose that for some r > d

2 + 1 + l, and M > 0,

V (x) = −2r ln |x|, |x| > M.

Then Veretennikov’s condition (see Veretennikov [15])〈
b(x), x/|x|〉 ≤ −r/|x|, |x| ≥ M,

is fulfilled. Under this condition for K > M , τ = inf{t ≥ 0; |Xt | ≤ K}, any x ∈ R
d and all ε ∈]0,2r − d − 2l − 2[,

Exτ
l+1 ≤ C(1 + |x|2l+2+ε), ([15], Theorem 3) and Eμτ l+1 < ∞. As a consequence, if we define

G := {x: |x| < K},
then Condition 1 is satisfied for A = Ḡc. For A = Gr = {x: |x| < K + r}, Condition 1 is always satisfied, since Gr is
bounded and the diffusion uniformly elliptic, which implies that τGr possesses exponential moments, see Friedman
[7]. As a consequence, the Nash inequality holds for all p > p∗ where

p∗ = 1 + 1

r − d/2
.
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On the other hand, Theorem 3 of Balaji and Ramasubramanian [2], with A(x) = 1,B(x) = d,C(x) = −2r shows
that for all p > r −d/2+1 and |x| > K , Exτ

p = ∞. This shows clearly, that we are not in the case where the Poincaré
inequality holds. Moreover, the Nash inequality does not hold any more for all p < p∗, see Theorem 4.1 below, where

p∗ = 1 + 1

r − d/2 + 1
.

4. Polynomial moments under Nash inequality

In Section 3, we have shown that for diffusions, the existence of polynomial moments of hitting times implies the
Nash inequality.

We now address the inverse question: Does Nash inequality imply the existence of moments? The answer is yes, at
least if the functional Φ satisfies (3.4).

All statements of this section hold true under the general conditions of Section 2, for a conservative Hunt process
which is μ-symmetric, with μ a probability measure. Let l > 0.

Theorem 4.1. Suppose that Nash inequality holds with p = l+2
l+1 and with Φ such that (3.4) holds. Then for all ε > 0

and for any open set G such that μ(Gc) > 0,

Eμτ l+1−ε
G < ∞.

The idea of the proof is not new and follows ideas exposed in Section 3 of Cattiaux and Guillin [3].
In the following, C denotes a constant that might change from occurrence to occurrence. For integrable f we write

f̃ = f − μ(f ). By [9], we know that under the conditions of Theorem 4.1,

Varμ(Ptf ) ≤ Ct−(l+1)Φ(f ) ≤ Ct−(l+1) Osc(f )2.

This implies that the stationary process Xt under Pμ is strongly mixing, and by symmetry, its mixing coefficient is
bounded by

α(t) ≤ C

(
t

2

)−(l+1)

= Ct−(l+1).

The main step of the proof of Theorem 4.1 is the following deviation inequality.

Proposition 4.2. Fix t ≥ 1 and let V be such that ‖V ‖∞ = 1. Then for any λ > 0,

Pμ

(∣∣∣∣1

t

∫ t

0
V (Xs)ds − μ(V )

∣∣∣∣ ≥ 4λ

)
≤ C

[
λ−(l+2) ∨ λ−2(l+1)

]
t−(l+1).

Proof. We mimic the proof of Proposition 4.5 of Cattiaux and Guillin [3], by making use of moment bounds for sums
of strongly mixing sequences obtained by Rio [13]. Let n = [t] be the integer part of t , n ≥ 1, since t ≥ 1. Then

∫ t

0
Ṽ (Xs)ds =

n∑
k=1

Yk, where Yk =
∫ kt/n

(k−1)t/n

Ṽ (Xs)ds.

(Yj ) is a Pμ-stationary sequence of strongly mixing centered random variables satisfying |Yj | ≤ 2 t
n

, with mixing
coefficients ᾱ(k), k ≥ 0, which can be upper bounded for all k ≥ 2 by

ᾱ(k) = α

(
(k − 1)

t

n

)
≤ C(k − 1)−(l+1)

(
t

n

)−(l+1)

≤ C(k − 1)−(l+1). (4.1)
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Here, in the last inequality we have used that t/n ≥ 1. We write Ỹj = Yj/(2t/n) and apply the inequality (6.19b) of
[13] to Sn = ∑n

k=1 Ỹk , with a = l + 1. So we obtain for any r ≥ 1,

Pμ

(∣∣∣∣1

t

∫ t

0
V (Xs)ds − μ(V )

∣∣∣∣ ≥ 4λ

)
= Pμ

(∣∣∣∣∣
n∑

k=1

Yk

∣∣∣∣∣ ≥ 4λt

)

= Pμ

(|Sn| ≥ 4(λn/2)
) ≤ 4

(
1 + λ2n2

4rs2
n

)−r/2

+ 2ncr−1
(

4r

λn

)l+2

,

where s2
n = ∑n

i=1
∑n

j=1 |Cov(Ỹi , Ỹj )|. Using Corollaire 1.1 of [13] we can control this sum of covariances as follows

s2
n ≤ 4

n∑
k=1

∫ 1

0

[
α−1(u) ∧ n

]
Q2

k(u)du, where

a−1(u) = inf
{
k ∈ N; ᾱ(k) ≤ u

} =
∑
i≥0

1ᾱ(i)>u, a−1(u) ∧ n =
n−1∑
i=0

1ᾱ(i)>u,

and where Qk(u) is the inverse function of H
Ỹk

(t) = P(|Ỹk| > t). Since |Ỹk| ≤ 1 for all k ≤ n, Q2
k(u) ≤ 1, and thus

(see [13], p. 15),

s2
n ≤ 4n

∫ 1

0

[
a−1(u) ∧ n

]
du ≤ 4n

∞∑
i=0

ᾱ(i).

Since l > 0, this last series converges (compare to (4.1)), and we obtain s2
n ≤ Cn for some constant C > 0. As a

consequence,

Pμ

(∣∣∣∣1

t

∫ t

0
V (Xs)ds − μ(V )

∣∣∣∣ ≥ 4λ

)
≤ 4

(
1 + λ2n2

4Crn

)−r/2

+ 2ncr−1
(

4r

λn

)l+2

≤ 4

(
λ2n

4Cr

)−r/2

+ 2cr−1
(

4r

λ

)l+2

n−(l+1).

Finally we choose r = 2(l + 1) and use that

n−(l+1) =
(

t

n

)l+1

t−(l+1) ≤ 2l+1t−(l+1),

where we have used that t/n ≤ 2, which follows from n ≥ 1, since t ≥ 1. Thus we get the result. �

Proof of Theorem 4.1. We apply the above deviation inequality with V = 1Gc and use that

{τG > t} ⊂
{

1

t

∫ t

0
V (Xs)ds = 0

}
⊂

{
1

t

∣∣∣∣
∫ t

0
Ṽ (Xs)ds

∣∣∣∣ ≥ μ
(
Gc

)}
.

Hence∫
μ(dx)Px(τG > t) ≤ Pμ

(
1

t

∣∣∣∣
∫ t

0
Ṽ (Xs)ds

∣∣∣∣ ≥ μ
(
Gc

)) ≤ Ct−(l+1),

whence for every ε > 0 “small,” Eμτ l+1−ε
G < ∞ . �
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