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Abstract. In this paper we study the almost sure conditional central limit theorem in its functional form for a class of random
variables satisfying a projective criterion. Applications to strongly mixing processes and nonirreducible Markov chains are given.
The proofs are based on the normal approximation of double indexed martingale-like sequences, an approach which has interest in
itself.

Résumé. Dans cet article, nous étudions le théorème central limite conditionnel presque sûr, ainsi que sa forme fonctionnelle,
pour des suites stationnaires de variables aléatoires réelles satisfaisant une condition de type projectif. Nous donnons des applica-
tions de ces résultats aux processus fortement mélangeants ainsi qu’à des chaînes de Markov nonirréductibles. Les preuves sont
essentiellement basées sur une approximation normale de suites doublement indexées de variables aléatoires de type martingale.
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1. Introduction

Let (ξi)i≥0 be a Markov chain admitting an invariant probability π . Let f be a real-valued function such that π(f 2) <

∞ and π(f ) = 0, and let Sn = f (ξ1)+· · ·+f (ξn). If the central limit theorem (CLT) holds for n−1/2Sn starting form
the initial distribution π , an interesting question is to know whether it remains true for another initial distribution ν.
Maxwell and Woodroofe [24] have given a projective criterion under which Sn satisfies the so-called conditional CLT,
which implies that the CLT holds for any initial distribution having a bounded density with respect to π . Necessary and
sufficient conditions for the conditional CLT are given in Dedecker and Merlevède [10], and Wu and Woodroofe [36].

The question is more delicate if ν is a Dirac mass at point x. One says that the CLT is quenched if it holds for almost
every starting point with respect to π . The quenched CLT implies the central limit theorem for the chain starting from
an invariant probability measure π , referred as annealed CLT. The same terminologies are used for the functional
central limit theorem (FCLT). For aperiodic Harris recurrent Markov chains, the quenched CLT question is solved by
using Proposition 18.1.2 in Meyn and Tweedie [28]. More precisely, for an aperiodic Harris recurrent Markov chain, if
the CLT holds for the initial distribution π , then it holds for any initial distribution, and hence for any starting point x

(see Proposition 3.1 in Chen [4] and its proof). In the nonirreducible setting, the situation is not so clear. For instance,
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an example of a Markov chain with normal transition operator satisfying the annealed CLT but not the quenched is
given at the end of Section 3 in Derriennic and Lin [12].

This question of the quenched CLT can be formulated in the more general context of stationary sequences: it means
that, on a set of measure one, the central limit theorem holds when replacing the usual expectation by the conditional
expectation with respect to the past σ -algebra. Some examples of stationary processes satisfying the CLT but not the
quenched CLT can be found in Volný and Woodroofe [35].

The first general results on the quenched CLT and FCLT are given in Borodin and Ibragimov [1]: in the Markov
chain setting, it says that the FCLT holds if there is a solution in L2(π) to the Poisson equation (see Gordin and
Lifschitz [20]); in a general setting it means that the FCLT is true under Gordin’s condition [18]. This result has
been improved by Derriennic and Lin [12,13], Zhao and Woodroofe [37], Cuny [5], Cuny and Peligrad [7], Cuny
and Volný [8], Volný and Woodroofe [34] and Merlevède et al. [26]. In a recent paper, Cuny and Merlevède [6] have
proved that the FCLT is quenched under the condition of Maxwell and Woodroofe [24].

All the papers cited above use a martingale approximation in L2. Consequently, the projective condition obtained
up to now are always expressed in terms of L2 norms of conditional expectations. In this paper, we prove the quenched
FCLT under a projective condition involving L1-norms, in the spirit of Gordin [19]. As a consequence, we obtain that
the FCLT of Doukhan et al. [14] for strongly mixing sequences is quenched. Note that Doukhan et al. [14] have
shown that their condition is optimal in some sense for the usual FCLT, so it is also sharp for the quenched FCLT. In
Section 3.1, we study the example of the nonirreducible Markov chain associated to an intermittent map. Once again,
we shall see through this example that our condition is essentially optimal.

Our main result, Theorem 2.1 below, is a consequence of the more general Proposition 4.1, where the conditions
are expressed in terms of conditional expectations of partial sums. The proof of this proposition is done via a blocking
argument followed by a two step martingale decomposition. We start with a finite number of consecutive blocks of
random variables. The sum in blocks are approximated by martingales. This decomposition introduces the need of
studying the normal approximation for a family of double indexed martingales. This approximation has interest in
itself and is presented in Section 6.

2. Results

Let (Ω, A,P) be a probability space, and T :Ω �→ Ω be a bijective bimeasurable transformation preserving the
probability P. An element A is said to be invariant if T (A) = A. We denote by I the σ -algebra of all invariant sets.
The probability P is ergodic if each element of I has measure 0 or 1.

Let F0 be a σ -algebra of A satisfying F0 ⊆ T −1(F0) and define the nondecreasing filtration (Fi )i∈Z by Fi =
T −i (F0). We assume that there exists a regular version PT |F0 of T given F0, and for any integrable random variable
f from Ω to R we write K(f ) = PT |F0(f ). Since P is invariant by T , for any integer k, a regular version PT |Fk

of T

given Fk is then obtained via PT |Fk
(f ) = K(f ◦T −k)◦T k . In the sequel, all the conditional expectations with respect

to Fk are obtained through these conditional probabilities. More precisely, we shall use the following notations:

E0(X) := E(X|F0) = K
(
X ◦ T −1) and Ek(X) := E(X|Fk) = K

(
X ◦ T −k−1) ◦ T k.

With these notations, E(f ◦ T 2|F0) = E(K(f ) ◦ T |F0) = K2(f ), and more generally, for any positive integer �,
E(f ◦ T �|F0) = K�(f ).

Let X0 be an F0-measurable, square integrable and centered random variable. Define the sequence X = (Xi)i∈Z

by Xi = X0 ◦ T i . Let Sn = X1 + · · · + Xn, and define the Donsker process Wn by Wn(t) = n−1/2(S[nt] + (nt −
[nt])X[nt]+1).

Let H∗ the space of continuous functions ϕ from (C([0,1]),‖ · ‖∞) to R such that x → |(1 + ‖x‖2∞)−1ϕ(x)| is
bounded. Our main result is the following:

Theorem 2.1. Assume that∑
k≥0

∥∥X0E0(Xk)
∥∥

1 < ∞, (2.1)
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then the series

η = E
(
X2

0|I
) + 2

∑
k>0

E(X0Xk|I) (2.2)

converges almost surely and in L1. Moreover, on a set of probability one, for any ϕ in H∗,

lim
n→∞ E0

(
ϕ(Wn)

) =
∫

ϕ(z
√

η)W(dz), (2.3)

where W is the distribution of a standard Wiener process. The convergence in (2.3) also holds in L1.

Note that the L1-convergence in (2.3) has been proved in Dedecker and Merlevède [10]. In this paper, we shall prove
the almost sure convergence. Various classes of examples satisfying (2.1) can be found in Dedecker and Rio [11].

This result has an interesting interpretation in the terminology of additive functionals of Markov chains. Let (ξn)n≥0
be a Markov chain with values in a Polish space S, so that there exists a regular transition probability Pξ1|ξ0=x . Let P

be the transition kernel defined by P(f )(x) = Pξ1|ξ0=x(f ) for any bounded measurable function f from S to R, and
assume that there exists an invariant probability π for this transition kernel, that is a probability measure on S such that
π(f ) = π(P (f )) for any bounded measurable function f from S to R. Let then L2

0(π) be the set of functions from
S to R such that π(f 2) < ∞ and π(f ) = 0. For f ∈ L2

0(π) define Xi = f (ξi). Notice that any stationary sequence
(Yk)k∈Z can be viewed as a function of a Markov process ξk = (Yi; i ≤ k), for the function g(ξk) = Yk .

In this setting the condition (2.1) is
∑

k≥0 π(|f P k(f )|) < ∞. Also, the random variable η defined in Theorem 2.1
is the limit almost surely and in L1 of n−1E(S2

n|ξ0), in such a way that η = η̄(ξ0). By stationarity, it is also the limit in
L1 of the sequence n−1E((X2 +· · ·+Xn+1)

2|ξ1), so that η̄(ξ0) = η̄(ξ1) almost surely. Consequently η̄ is an harmonic
function for P in the sense that π -almost surely P(η̄) = η̄.

In the context of Markov chain the conclusion of Theorem 2.1 is also known under the terminology of FCLT started
at a point. To rephrase it, let Px be the probability associated to the Markov chain started from x and let Ex be the
corresponding expectation. Then, for π -almost every x ∈ S, for any ϕ in H∗,

lim
n→∞ Ex

(
ϕ(Wn)

) =
∫

ϕ
(
z
√

η̄(x)
)
W(dz).

Moreover,

lim
n→∞

∫ ∣∣∣∣Ex
(
ϕ(Wn)

) −
∫

ϕ
(
z
√

η̄(x)
)
W(dz)

∣∣∣∣π(dx) = 0.

We mention that in Theorem 2.1 no assumption of irreducibility nor of aperiodicity is imposed. Under the additional
assumptions that the Markov chain is irreducible, aperiodic and positively recurrent, Chen [4] showed that the CLT
holds for the stationary Markov chain under the condition

∑
k≥0 π(f P k(f )) is convergent, and the quenched CLT

holds under the same condition by applying his Proposition 3.1.

Remark 2.2. Let us present an alternative condition to the criterion (2.1) in case where T is ergodic. We do not
require here X0 to be in L2 but only in L1. The so-called Gordin criterion in L1 is:

sup
n∈N

∥∥E0(Sn)
∥∥

1 < ∞ and lim inf
n→∞

E|Sn|√
n

< ∞. (2.4)

By Esseen and Janson [17], it is known that (2.4) is equivalent to the following L1-coboundary decomposition:

X0 = m0 + z0 − z0 ◦ T , (2.5)

where z0 ∈ L1 and m0 is a F0-measurable random variable in L2 such that E−1(m0) = 0 almost surely. Therefore,
the criterion (2.4) leads to the annealed CLT. Note that one can easily prove that the condition (3.2) of the next section
also implies (2.4). However, the condition (2.4) is not sufficient to get the annealed FCLT (see Volný and Samek [33]).
In addition, from Corollary 2 in Volný and Woodroofe [35], it follows that (2.4) is not sufficient to get the quenched
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CLT either. In Proposition 5.4 of Section 5.2, we shall provide an example of stationary process for which (2.1) holds
but (2.4) fails.

3. Applications

As a consequence of Theorem 2.1, we obtain the following corollary for a class of weakly dependent sequences. We
first need some definitions.

Definition 3.1. For a sequence Y = (Yi)i∈Z, where Yi = Y0 ◦T i and Y0 is an F0-measurable and real-valued random
variable, let for any k ∈ N,

αY(k) = sup
t∈R

∥∥E(1Yk≤t |F0) − E(1Yk≤t )
∥∥

1.

Definition 3.2. Recall that the strong mixing coefficient of Rosenblatt [31] between two σ -algebras F and G is defined
by α(F , G) = supA∈F ,B∈G |P(A ∩ B) − P(A)P(B)|. For a strictly stationary sequence (Yi)i∈Z of real valued random
variables, and the σ -algebra F0 = σ(Yi, i ≤ 0), define then

α(0) = 1 and α(k) = 2α
(

F0, σ (Yk)
)

for k > 0. (3.1)

Between the two above coefficients, the following relation holds: for any positive k, αY(k) ≤ α(k). In addition, the
α-dependent coefficient as defined in Definition 3.1 may be computed for instance for many Markov chains associated
to dynamical systems that fail to be strongly mixing in the sense of Rosenblatt (see Section 3.1).

Definition 3.3. A quantile function Q is a function from ]0,1] to R+, which is left-continuous and nonincreasing. For
any nonnegative random variable Z, we define the quantile function QZ of Z by QZ(u) = inf{t ≥ 0: P(|Z| > t) ≤ u}.

Definition 3.4. Let μ be the probability distribution of a random variable X. If Q is an integrable quantile function,
let Mon(Q,μ) be the set of functions g which are monotonic on some open interval of R and null elsewhere and such
that Q|g(X)| ≤ Q. Let F (Q,μ) be the closure in L1(μ) of the set of functions which can be written as

∑L
�=1 a�f�,

where
∑L

�=1 |a�| ≤ 1 and f� belongs to Mon(Q,μ).

Corollary 3.5. Let Y0 be a real-valued random variable with law PY0 , and Yi = Y0 ◦ T i . Let Q be a quantile function
such that

∑
k≥0

∫ αY(k)

0
Q2(u)du < ∞. (3.2)

Let Xi = f (Yi) − E(f (Yi)), where f belongs to F (Q,PY0). Then (2.1) is satisfied and consequently, the conclusion
of Theorem 2.1 holds.

To prove that (3.2) implies (2.1), it suffices to apply Proposition A.3 with m = q = 1 of Merlevède and Rio [27].
Notice that if (α(k))k≥0 is the usual sequence of strong mixing coefficients of the stationary sequence (Xi)i∈Z as

defined in (3.1), then it follows from Corollary 3.5 that if

∑
k≥0

∫ α(k)

0
Q2|X0|(u)du < ∞, (3.3)

then the conclusion of Theorem 2.1 holds. Hence the weak invariance principle of Doukhan et al. [14] is also quenched.
We refer to Theorem 2 in Doukhan et al. [14] and to Bradley [2] for a discussion on the optimality of the condi-
tion (3.3).
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3.1. Application to functions of Markov chains associated to intermittent maps

For γ in ]0,1[, we consider the intermittent map Tγ from [0,1] to [0,1], which is a modification of the Pomeau–
Manneville map [30]:

Tγ (x) =
{

x(1 + 2γ xγ ) if x ∈ [0,1/2[,
2x − 1 if x ∈ [1/2,1].

Recall that Tγ is ergodic (and even mixing in the ergodic theoretic sense) and that there exists a unique Tγ -invariant
probability measure νγ on [0,1], which is absolutely continuous with respect to the Lebesgue measure. We denote
by Lγ the Perron–Frobenius operator of Tγ with respect to νγ . Recall that for any bounded measurable functions
f and g, νγ (f · g ◦ Tγ ) = νγ (Lγ (f )g). Let (Yi)i≥0 be a Markov chain with transition Kernel Lγ and invariant
measure νγ .

Definition 3.6. A function H from R+ to [0,1] is a tail function if it is nonincreasing, right continuous, converges
to zero at infinity, and x → xH(x) is integrable. If μ is a probability measure on R and H is a tail function, let
Mon∗(H,μ) denote the set of functions f : R → R which are monotonic on some open interval and null elsewhere
and such that μ(|f | > t) ≤ H(t). Let F ∗(H,μ) be the closure in L1(μ) of the set of functions which can be written
as

∑L
�=1 a�f�, where

∑L
�=1 |a�| ≤ 1 and f� ∈ Mon∗(H,μ).

Corollary 3.7. Let γ ∈ (0,1/2) and (Yi)i≥1 be a stationary Markov chain with transition kernel Lγ and invariant
measure νγ . Let H be a tail function such that∫ ∞

0
x
(
H(x)

)(1−2γ )/(1−γ ) dx < ∞. (3.4)

Let Xi = f (Yi) − νγ (f ) where f belongs to F ∗(H, νγ ). Then (2.1) is satisfied and the conclusion of Theorem 2.1
holds with

η = νγ

((
f − νγ (f )

)2) + 2
∑
k>0

νγ

((
f − νγ (f )

)
f ◦ T k

γ

)
. (3.5)

Proof. To prove this corollary, it suffices to see that (3.4) implies (3.2). For this purpose, we use Proposition 1.17 in
Dedecker et al. [9] stating that there exist two positive constant B,C such that, for any n > 0, Bn(γ−1)/γ ≤ αY(n) ≤
Cn(γ−1)/γ , together with their computations page 817. �

In particular, if f is BV and γ < 1/2, we infer from Corollary 3.7 that the conclusion of Theorem 2.1 holds with η

defined by (3.5). Note also that (3.4) is satisfied if H is such that H(x) ≤ Cx−2(1−γ )/(1−2γ )(ln(x))−b for x large
enough and b > (1 − γ )/(1 − 2γ ). Therefore, since the density hνγ of νγ is such that hνγ (x) ≤ Cx−γ on (0,1], one
can easily prove that if f is positive and nonincreasing on (0, 1), with

f (x) ≤ C

x(1−2γ )/2| ln(x)|d near 0 for some d > 1/2,

then (3.4) and the quenched FCLT hold. Notice that when f is exactly of the form f (x) = x−(1−2γ )/2, Gouëzel [21]
proved that the central limit theorem holds for

∑n
i=1(f (Yi)−νγ (f )) but with the normalization

√
n ln(n). This shows

that the condition (3.4) is essentially optimal for the quenched CLT with the normalization
√

n.

4. Some general results

In this section we develop sufficient conditions imposed to conditional expectations of partial sums for the validity of
the quenched CLT and FCLT.

For any positive integers i and p, define S
(i)
p = Spi − Sp(i−1).
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4.1. A quenched CLT

Let us introduce the following three conditions under which the quenched central limit theorem holds:

C1 lim
m→∞ lim sup

p→∞
1√
mp

m+1∑
i=2

E0
∣∣E(i−2)p

(
S(i)

p

)∣∣ = 0 a.s.

C2 there exists a T -invariant r.v. η that is F0-measurable and such that

lim
m→∞ lim sup

p→∞
E0

∣∣∣∣∣
m∑

i=1

1

mp
E(i−1)p

((
S(i+1)

p

)2) − η

∣∣∣∣∣ = 0 a.s.,

lim
m→∞ lim sup

p→∞
E0

∣∣∣∣∣
m∑

i=1

1

mp
E(i−1)p

((
S(i)

p + S(i+1)
p

)2) − 2η

∣∣∣∣∣ = 0 a.s.

C3 for each ε > 0 lim
m→∞ lim sup

p→∞
1

m

m∑
i=1

1

p
E0

((
S(i)

p

)21|S(i)
p |/√p>ε

√
m

) = 0 a.s.

Proposition 4.1. Assume that C1, C2 and C3 hold. Then, on a set of probability one, for any continuous and bounded
function f ,

lim
n→∞ E0

(
f

(
n−1/2Sn

)) =
∫

f (x
√

η)g(x)dx,

where g is the density of a standard normal.

This proposition is designed especially for the proof of Theorem 2.1. Notice that in the expression E(i−2)p(S
(i)
p ) of

condition C1 there is a gap of p variables between S
(i)
p and the variables used for conditioning. This gap is important

for weakening the dependence and is essentially used in the proof of Theorem 2.1.

Proof of Proposition 4.1. The result will follow from Proposition 4.2 below, for double indexed arrays of random
variables:

Proposition 4.2. Assume that (Yn,m,i)i≥1 is an array of random variables in L2 adapted to an array (Gn,m,i)i≥1 of
nested sigma fields. Let En,m,i denote the conditional expectation with respect to Gn,m,i . Suppose that

lim
m→∞ lim sup

n→∞

m+1∑
i=2

E
∣∣En,m,i−2(Yn,m,i)

∣∣ = 0, (4.1)

and that there exists σ 2 ≥ 0 such that

lim
m→∞ lim sup

n→∞
E

∣∣∣∣∣
m∑

i=1

En,m,i−1
(
Y 2

n,m,i+1

) − σ 2

∣∣∣∣∣ = 0 (4.2)

and

lim
m→∞ lim sup

n→∞
E

∣∣∣∣∣
m∑

i=1

En,m,i−1
(
(Yn,m,i + Yn,m,i+1)

2) − 2σ 2

∣∣∣∣∣ = 0. (4.3)

Assume in addition that for each ε > 0

lim
m→∞ lim sup

n→∞

m+1∑
i=1

E
(
Y 2

n,m,i1|Yn,m,i |>ε

) = 0. (4.4)
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Then for any continuous and bounded function f ,

lim
m→∞ lim sup

n→∞

∣∣∣∣∣E
(

f

(
m∑

i=1

Yn,m,i

))
− E

(
f (σN)

)∣∣∣∣∣ = 0,

where N is a standard Gaussian random variable.

Before proving Proposition 4.2, let us show how it leads to Proposition 4.1. Let m be a fixed positive integer less
than n. Set p = [n/m]. We apply Proposition 4.2 to the sequence Yn,m,i = S

(i)
p /

√
mp and the filtration Gn,m,i = Fip .

We also replace the expectation E by the conditional expectation E0 (recall that all the conditional expectations of
functions of T with respect to F0 are obtained through the regular conditional probability PT |F0), and σ 2 by the
nonnegative F0-measurable random variable η. With these notations, the conditions C1, C2 and C3 imply that (4.1),
(4.2), (4.3) and (4.4) hold almost surely. It follows from Proposition 4.2 that, on a set of probability one, for any
continuous and bounded function f ,

lim
m→∞ lim sup

n→∞

∣∣∣∣∣E0

(
f

(
n−1/2

m[n/m]∑
i=1

Xi

))
−

∫
f (x

√
η)g(x)dx

∣∣∣∣∣ = 0,

where g is the density of a standard normal. Proposition 4.1 will then follow if we can prove that for any ε > 0,

lim
m→∞ lim sup

n→∞
P0

(∣∣∣∣∣
n∑

i=1

Xi −
m[n/m]∑

i=1

Xi

∣∣∣∣∣ ≥ ε
√

n

)
= 0 a.s. (4.5)

With this aim, we notice that

P0

(∣∣∣∣∣
n∑

i=1

Xi −
m[n/m]∑

i=1

Xi

∣∣∣∣∣ ≥ ε
√

n

)
≤ P0

(
m2 max

1≤i≤n
X2

i ≥ ε2n
)

and therefore (4.5) holds by relation (7.2) in Lemma 7.1 applied to Zi = X2
i . It remains to prove Proposition 4.2.

Proof of Proposition 4.2. For any positive integer i, let

Un,m,i = Yn,m,i + En,m,i(Yn,m,i+1) − En,m,i−1(Yn,m,i). (4.6)

To ease the notation, we shall drop the first two indexes (the pair n,m) when no confusion is possible. With this
notation,

Yi = Ui − Ei (Yi+1) + Ei−1(Yi),

and since we have telescoping sum,

m∑
i=1

Yi =
m∑

i=1

Ui + E0(Y1) − Em(Ym+1).

Notice that for any i ∈ {1,m + 1} and any ε > 0,

E
(∣∣Ei−1(Yi)

∣∣2) ≤ ε2 + E
(
Y 2

i 1|Yi |>ε

)
. (4.7)

Therefore by condition (4.4),

lim
m→∞ lim sup

n→∞
E

((
En,m,m(Yn,m,m+1)

)2 + (
En,m.0(Yn,m,1)

)2) = 0. (4.8)
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The theorem will be proven if we can show that the sequence (Un,m,i)i≥1 defined by (4.6) satisfies the conditions of
Theorem 6.1. We first notice that Ei−1(Ui) = Ei−1(Yi+1). Hence condition (6.1) is clearly satisfied under (4.1). On
an other hand,

Var(Ui |Gi−1) = Ei−1
(
Y 2

i + 2YiEi (Yi+1)
) + Ei−1

((
Ei (Yi+1)

)2) − (
Ei−1(Yi)

)2

− 2
(
Ei−1(Yi)

)(
Ei−1(Yi+1)

) − (
Ei−1(Yi+1)

)2
. (4.9)

Notice that for any ε > 0

m∑
i=1

E
((

Ei−1(Yi+1)
)2) ≤ ε

m∑
i=1

E
∣∣Ei−1(Yi+1)

∣∣ + ε

m∑
i=1

E
(|Yi+1|1|Yi+1|>ε

) +
m∑

i=1

E
(
Y 2

i+11|Yi+1|>ε

)

≤ ε

m∑
i=1

E
∣∣Ei−1(Yi+1)

∣∣ + 2
m+1∑
i=2

E
(
Y 2

i 1|Yi |>ε

)
. (4.10)

Similarly, for any ε > 0,

m∑
i=1

E
∣∣(Ei−1(Yi)

)(
Ei−1(Yi+1)

)∣∣ ≤ ε

m∑
i=1

E
∣∣Ei−1(Yi+1)

∣∣ + 2
m+1∑
i=1

E
(
Y 2

i 1|Yi |>ε

)
.

In addition since Ei−1(Y
2
i + 2YiEi (Yi+1)) = Ei−1((Yi + Yi+1)

2) − Ei−1(Y
2
i+1), the conditions (4.2) and (4.3) imply

that

lim
m→∞ lim sup

n→∞
E

∣∣∣∣∣
m+1∑
i=1

En,m,i−1
(
Y 2

n,m,i + 2Yn,m,iEn,m,i(Yn,m,i+1)
) − σ 2

∣∣∣∣∣ = 0. (4.11)

Starting from (4.9) and considering (4.10), (4.1) and (4.11), it follows that condition (6.2) will be satisfied provided
that (4.1) and (4.4) hold and

lim
m→∞ lim sup

n→∞
E

∣∣∣∣∣
m∑

i=1

(
En,m,i−1

((
En,m,i(Yn,m,i+1)

)2) − (
En,m,i−1(Yn,m,i)

)2)∣∣∣∣∣ = 0. (4.12)

To prove (4.12), we first write that

m∑
i=1

(
Ei−1

((
Ei (Yi+1)

)2) − (
Ei−1(Yi)

)2) = Em(Ym+1))
2 − (

E0(Y1)
)2

−
m∑

i=1

((
Ei (Yi+1)

)2 − Ei−1
((

Ei (Yi+1)
)2))

.

By (4.8), it follows that (4.12) will hold if we can show that

lim
m→∞ lim sup

n→∞
E

∣∣∣∣∣
m∑

i=1

((
En,m,i(Yn,m,i+1)

)2 − En,m,i−1
((

En,m,i(Yn,m,i+1)
)2))∣∣∣∣∣ = 0. (4.13)

This follows from an application of Lemma 6.2 with

dn,m,i = (
En,m,i(Yn,m,i+1)

)2 − En,m,i−1
((

En,m,i(Yn,m,i+1)
)2)

.
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Indeed

m∑
i=1

E
(|dn,m,i |

) ≤ 2
m+1∑
i=1

E
(
Y 2

n,m,i

)
,

and by Lemma 6.3, for any ε > 0,

m∑
i=1

E
(|dn,m,i |1|dn,m,i |>8ε2

) ≤ 2
m∑

i=1

E
((

En,m,i(Yn,m,i+1)
)21(En,m,i (Yn,m,i+1))

2>4ε2

)

≤ 2
m∑

i=1

E
(
Y 2

n,m,i+11|En,m,i (Yn,m,i+1)|>2ε

) ≤ 4
m+1∑
i=1

E
(
Y 2

n,m,i1|Yn,m,i |>ε

)
.

So condition (6.15) holds by using (4.2) and (4.4).
It remains to prove that (6.3) holds. Clearly this can be achieved by using (4.4) combined with Lemma 6.3. �

4.2. Finite dimensional convergence

For 0 < t1 < · · · < td ≤ 1, define the function πt1,...,td from C([0,1]) to Rd by πt1,...,td (x) = (x(t1), x(t2) −
x(t1), . . . , x(td) − x(td−1)). For any a in Rd define the function fa from Rd to R by fa(x) = 〈a, x〉 = ∑d

i=1 aixi .

Proposition 4.3. Assume that C1, C2 and C3 hold. Then, on a set of probability one, for any continuous and bounded
function h, for any a ∈ Qd and any t1, t2, . . . , td rational numbers such that 0 < t1 < · · · < td ≤ 1,

lim
n→∞ E0

(
h ◦ fa ◦ πt1,...,td (Wn)

) =
∫

h ◦ fa ◦ πt1,...,td (z
√

η)W(dz), (4.14)

where W is the distribution of a standard Wiener process.

Proof. Since
⋃∞

d=1 Qd is countable, it suffices to prove that for any a ∈ Rd and any t1, t2, . . . , td rational numbers
such that 0 < t1 < · · · < td ≤ 1, on a set of probability one, for any continuous and bounded function h, the conver-
gence (4.14) holds. With this aim, for any � ∈ {1, . . . , d}, we set t� = r�/s� where r� and s� are positive integers. Let
cd = ∏d

�=1 s�. Rewrite t� = b�/cd . The b�’s are then positive integers such that 0 < b1 < · · · < bd ≤ cd . Let m be a
fixed positive integer and let p = [n/(mcd)]. Notice that for any � ∈ {1, . . . , d},

[nt�] − mb� < mpb� ≤ [nt�] + 1.

Therefore for any reals a1, . . . , ad , with the convention that t0 = 0 and b0 = 0,

∣∣∣∣∣
d∑

�=1

a�

[nt�]∑
i=[nt�−1]+1

Xi −
d∑

�=1

a�

pmb�∑
i=pmb�−1+1

Xi

∣∣∣∣∣ ≤
d∑

�=1

|a�|
(p+1)mb�∑
i=pmb�+1

|Xi |.

Using (7.2) of Lemma 7.1, we infer that for any � ∈ {1, . . . , d} and every ε > 0,

lim
n→∞ P0

(
|a�|√

n

(p+1)mb�∑
i=pmb�+1

|Xi | > ε

)
= 0 a.s.

In addition,∣∣∣∣∣
d∑

�=1

a�

(
Wn(t�) − Wn(t�−1)

) −
d∑

�=1

a�(S[nt�] − S[nt�−1])
∣∣∣∣∣ ≤ 2

d∑
�=1

|a�| max
1≤i≤n

|Xi |,
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implying once again by (7.2) in Lemma 7.1 that

lim
n→∞n−1/2E0

(∣∣∣∣∣
d∑

�=1

a�

(
Wn(t�) − Wn(t�−1)

) −
d∑

�=1

a�(S[nt�] − S[nt�−1])
∣∣∣∣∣
)

= 0 a.s. (4.15)

From the preceding considerations, it remains to prove that, on a set of probability one, for any continuous and
bounded function f ,

lim
m→∞ lim sup

n→∞

∣∣∣∣∣E0

(
f

(
n−1/2

d∑
�=1

a�

pmb�∑
i=pmb�−1+1

Xi

))
− E0

(
f (σdN)

)∣∣∣∣∣ = 0, (4.16)

where σ 2
d = η

∑d
�=1 a2

� (t� − t�−1) and N is a standard Gaussian random variable independent of F0. With this aim,
we write that

d∑
�=1

a�

pmb�∑
i=pmb�−1+1

Xi =
d∑

�=1

a�

mb�∑
i=mb�−1+1

S(i)
p =

mbd∑
k=1

λm,d,kS
(k)
p ,

where λm,d,k = ∑d
�=1 a�1mb�−1+1≤k≤mb�

. Hence to prove (4.16), it suffices to apply Proposition 4.2 to the random

variables Yn,m,i = (mpcd)−1/2λm,d,iS
(i)
p and the filtration Gn,m,i = Fip , by replacing the expectation E by E0. The

conditions (4.1) and (4.4) are verified by using respectively C1 and C3. To verify (4.2) and (4.3) with σ 2 = σ 2
d =

η
∑d

�=1 a2
� (t� − t�−1), we proceed as follows. For (4.2), we write that

E0

∣∣∣∣∣
mbd∑
i=1

En,m,i−1
(
Y 2

n,m,i+1

) − σ 2
d

∣∣∣∣∣ = E0

∣∣∣∣∣ 1

mpcd

d∑
�=1

a2
�

mb�∑
i=mb�−1+1

E(i−1)p

((
S(i+1)

p

)2) − σ 2
d

∣∣∣∣∣
≤

d∑
�=1

a2
�E0

∣∣∣∣∣ 1

mpcd

mb�∑
i=mb�−1+1

E(i−1)p

((
S(i+1)

p

)2) − η(t� − t�−1)

∣∣∣∣∣.
Since t� = b�/cd , we obtain that

E0

∣∣∣∣∣
mbd∑
i=1

En,m,i−1
(
Y 2

n,m,i+1

) − σ 2
d

∣∣∣∣∣ ≤
d∑

�=1

a2
�b�

cd

E0

∣∣∣∣∣ 1

mpb�

mb�∑
i=1

E(i−1)p

((
S(i+1)

p

)2) − η

∣∣∣∣∣
+

d∑
�=1

a2
�b�−1

cd

E0

∣∣∣∣∣ 1

mpb�−1

mb�−1∑
i=1

E(i−1)p

((
S(i+1)

p

)2) − η

∣∣∣∣∣.
Condition (4.2) is then proved by using the first part of C2. Using similar arguments, we prove (4.3) by using the
second part of C2. �

4.3. A quenched invariance principle

Let us define the maximal version of C3. For k ≤ l, let S̄k,l = maxk≤i≤l |Si − Sk|.

C4 for any ε > 0 lim
m→∞ lim sup

p→∞
1

m

m∑
i=1

1

p
E0

(
S̄2

(i−1)p,ip1|S̄(i−1)p,ip |/√p>ε
√

m

) = 0 a.s.
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Proposition 4.4. Assume that C1, C2 and C4 hold. Then, on a set of probability one, for any continuous and bounded
function f from C([0,1]) to R,

lim
n→∞ E0

(
f (Wn)

) =
∫

f (x
√

η)W(dx),

where W is the distribution of a standard Wiener process.

Proof. In this proof, m will always denote a positive integer. Since C4 implies C3, it follows that Proposition 4.3
holds. In what follows, we shall prove that the process {Wn(t), t ∈ [0,1]} is almost surely tight, that is, for any ε > 0,

lim
m→∞ lim sup

n→∞
P0

(
sup

|t−s|≤m−1

∣∣Wn(t) − Wn(s)
∣∣ > ε

)
= 0 almost surely. (4.17)

By standard arguments, (4.17) together with Proposition 4.3 imply Proposition 4.4.
According to Inequality (25) in Brown [3], to prove (4.17) it suffices to show that, for any ε > 0,

lim
m→∞ lim sup

n→∞

m∑
i=1

P0

(
sup

(i−1)m−1<t≤im−1

∣∣Wn(t) − Wn

(
(i − 1)m−1)∣∣ > ε

)
= 0 a.s. (4.18)

Since supt∈[0,1] |Wn(t) − n−1/2S[nt]| = n−1/2 max1≤i≤n |Xi |, by using (7.2) of Lemma 7.1, it follows that (4.18) is
equivalent to

lim
m→∞ lim sup

n→∞

m∑
i=1

P0

(
sup

(i−1)m−1<t≤im−1

∣∣S[nt] − S[n(i−1)m−1]
∣∣ > ε

√
n
)

= 0 a.s. (4.19)

Let p = [n/m], and note that, for any nonnegative integer i, [nim−1] − i < pi ≤ [nim−1]. It follows that, for any
integer i in [1,m],

sup
(i−1)m−1<t≤im−1

∣∣S[nt] − S[n(i−1)m−1]
∣∣ ≤ S̄(i−1)p,ip + 1√

n

[n(i−1)m−1]∑
k=[n(i−1)m−1]−m

|Xk| + 1√
n

[nim−1]∑
k=[nim−1]−m

|Xk|.

Using (7.2) of Lemma 7.1, we infer that

lim
n→∞

1√
n

[n(i−1)m−1]∑
k=[n(i−1)m−1]−m

E0
(|Xk|

) = 0 a.s.

Hence, (4.18) holds as soon as

lim
m→∞ lim sup

n→∞

m∑
i=1

P(S̄(i−1)p,ip > ε
√

n|F0) = 0 a.s.,

which holds under C4. �

5. Proof of Theorem 2.1 and additional comments

5.1. Proof of Theorem 2.1

We first prove that the series η = E(X2
0|I) + 2

∑
k>0 E(X0Xk|I) converges almost surely and in L1. With this aim, it

suffices to prove that∑
k≥1

∥∥E(X0Xk|I)
∥∥

1 < ∞. (5.1)
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From Claim 1(b) in Dedecker and Rio [11], E(X0Xk|I) = E(E(X0Xk|F−∞)|I) almost surely, where F−∞ =⋂
k∈Z

Fk . Hence∥∥E(X0Xk|I)
∥∥

1 ≤ ∥∥E(X0Xk|F−∞)
∥∥

1 ≤ ∥∥X0E0(Xk)
∥∥

1,

which proves (5.1) by using (2.1).
We turn now to the rest of the proof.

Proposition 5.1. If (2.1) holds, then C1, C2 and C4 hold, with η defined in (2.2). In addition the conclusion of
Proposition 4.4 also holds for f in H∗.

Proof. We first prove that the following reinforced version of C2 holds:

C∗
2 there exists a T -invariant r.v. η that is F0-measurable and such that

for any integer i ≥ 1 lim
n→∞ E0

∣∣∣∣1

n
E(i−1)n

((
S(i)

n

)2) − η

∣∣∣∣ = 0 a.s. and

for any integer i ≥ 1 lim
n→∞ E0

∣∣∣∣1

n
E(i−1)n

((
S(i)

n + S(i+1)
n

)2) − 2η

∣∣∣∣ = 0 a.s.

More precisely, we shall prove that C∗
2 holds with η defined in (2.2). We shall only prove the first part of C∗

2, the
proof of the second part being similar. For any positive integer N ,

(S
(i)
n )2

n
= 1

n

in∑
j=(i−1)n+1

X2
j + 2

n

in−1∑
j=(i−1)n+1

(in−j)∧N∑
l=1

XjXj+l + Ri,N . (5.2)

Firstly,

E0
(∣∣E(i−1)n(Ri,N )

∣∣) ≤ 1

n

in∑
j=(i−1)n+1

E0

( ∑
l>j+N

∣∣XjEj (Xl)
∣∣).

Let Zj,N = ∑
l>j+N |XjEj (Xl)| and note that, by assumption, Zj,N = Z0,N ◦T j belongs to L1. Applying the ergodic

theorem in relation (7.1) of Lemma 7.1 we obtain that

lim
n→∞

1

n

in∑
j=(i−1)n+1

E0(Zj,N ) = E(Z0,N |I) a.s.

Hence,

lim sup
n→∞

E0
(∣∣E(i−1)n(Ri,N )

∣∣) ≤ E(Z0,N |I) a.s.

and consequently

lim
N→∞ lim sup

n→∞
E0

(∣∣E(i−1)n(Ri,N )
∣∣) = 0 a.s. (5.3)

Next, let

ηN = E
(
X2

0|I
) + 2

N∑
k=1

E(X0Xk|I)
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and

ηN,K = E
(
X2

01|X0|2≤K |I
) + 2

N∑
k=1

E(X0Xk1|X0Xk |≤K |I).

By the ergodic theorem for stationary sequences,

lim
n→∞

∣∣∣∣∣ηN,K − 1

n

in∑
j=(i−1)n+1

X2
j 1|Xj |2≤K − 2

n

in−1∑
j=(i−1)n+1

(in−j)∧N∑
l=1

XjXj+l1|Xj Xj+l |≤K

∣∣∣∣∣ = 0 a.s. (5.4)

and by the ergodic theorem in relation (7.1) of Lemma 7.1 applied with Zj = X2
j 1|Xj |2>K and with Zj =∑N

l=1 |XjXj+l |1|Xj Xj+l |>K ,

lim
K→∞ lim sup

n→∞
E0

(
1

n

in∑
j=(i−1)n+1

X2
j 1|Xj |2>K + 2

n

in−1∑
j=(i−1)n+1

(in−j)∧N∑
l=1

|XjXj+l |1|Xj Xj+l |>K

)
= 0 a.s. (5.5)

Using (5.4), (5.5) and the dominated convergence theorem, it follows that

lim
n→∞ E0

(∣∣∣∣∣ηN − 1

n

in∑
j=(i−1)n+1

X2
j − 2

n

in−1∑
j=(i−1)n+1

(in−j)∧N∑
l=1

XjXj+l

∣∣∣∣∣
)

= 0 a.s. (5.6)

The first part of condition C∗
2 follows from (5.2), (5.3) and (5.6), and the fact that limN→∞ ηN = η almost surely.

Next, we prove that C1 holds. With this aim, we first notice that it suffices to prove that for any integer i ≥ 2,

lim
n→∞ E

(|X0||I
)
E0

(∣∣∣∣E(i−2)n

(
S

(i)
n√
n

)∣∣∣∣
)

= 0 a.s.

Indeed, on the invariant set where E(|X0||I) = 0 almost surely, the random variables Xi ’s are equal to zero almost
surely. Now, using the same arguments as in the proof of Lemma 7.1, we can prove that E(|X0||I) = E(E(|X0||I)|F0)

almost surely. Hence, for any integer i ≥ 2,

E
(|X0||I

)
E0

(∣∣E(i−2)n

(
S(i)

n

)∣∣) = E0
(∣∣E(i−2)n

(
E

(|X0||I
)
S(i)

n

)∣∣) a.s.

Now

1√
n

E0
(∣∣E(i−2)n

(
E

(|X0||I
)
S(i)

n

)∣∣)

≤ E0

(∣∣∣∣∣E(i−2)n

((
1

n

(i−1)n∑
k=(i−2)n+1

|Xk| − E
(|X0||I

))S
(i)
n√
n

)∣∣∣∣∣
)

+ 1

n3/2

(i−1)n∑
k=(i−2)n+1

E0
(∣∣E(i−2)n

(|Xk|S(i)
n

)∣∣). (5.7)

Using the fact that F0 ⊆ F(i−2)n for any i ≥ 2, and applying Cauchy–Schwarz’s inequality conditionally to F0, the
first term on right hand in (5.7) is smaller than

E
1/2
0

((
1

n

(i−1)n∑
k=(i−2)n+1

|Xk| − E
(|X0||I

))2)
E

1/2
0

((
S

(i)
n√
n

)2)
. (5.8)



A quenched weak invariance principle 885

By C∗
2,

lim
n→∞ E0

((
S

(i)
n√
n

)2)
= η a.s. (5.9)

Since X0 belongs to L2, proceeding as in the proof of (5.6), we obtain that

lim
n→∞ E0

((
1

n

(i−1)n∑
k=(i−2)n+1

|Xk| − E
(|X0||I

))2)
= 0 a.s. (5.10)

From (5.8), (5.9) and (5.10), we infer that the first term on right hand in (5.7) converges to 0 almost surely as n tends
to infinity.

Now, for any integer k belonging to ](i − 2)n, (i − 1)n],
1√
n

E0
(∣∣E(|Xk|S(i)

n |F(i−2)n

)∣∣) ≤ 1√
n

E0
(∣∣E(|Xk|S(i)

n |Fk

)∣∣)

≤ 1√
n

E0

( ∞∑
i=k+1

∣∣XkEk(Xi)
∣∣).

Let Zk = ∑∞
i=k+1 |XkEk(Xi)| and note that, by assumption, Zk = Z0 ◦ T k belongs to L1. It follows that the second

term on the right-hand side of (5.7) is smaller than n−3/2 ∑(i−1)n
k=(i−2)n+1 E0(Zk), which converges almost surely to 0

as n tends to infinity, by the ergodic theorem in relation (7.1) of Lemma 7.1. Hence C1 is proved.
We turn now to the proof of C4. With this aim, we shall prove the following reinforcement of it:

C∗
4 lim

k→∞ lim sup
n→∞

max
1≤i≤k

E0

(
S̄2

(i−1)n,in

n

(
1 ∧ S̄(i−1)n,in√

nk

))
= 0 a.s.

To prove C∗
4, we shall use the following maximal inequality, which is a conditional version of the inequality given in

Proposition 1(a) of Dedecker and Rio [11].

Proposition 5.2. For any k < l and λ ≥ 0 let Γk,l(λ) = {S̄k,l > λ}. The following inequality holds

E0
(
(S̄k,l − λ)2+

) ≤ 8
l∑

i=k+1

E0
(
X2

i 1Γk,i (λ)

) + 16
l∑

i=k+1

E0
(∣∣Xi1Γk,i (λ)Ei (Sl − Si)

∣∣).
Let us continue the proof of C∗

4. Note first that

E0

(
S̄2

(i−1)n,in

n

(
1 ∧ S̄(i−1)n,in√

nk

))
≤ 2εE0

(
S̄2

(i−1)n,in

n

)
+ 4

n
E0

(
(S̄(i−1)n,in − ε

√
nk)2+

)
.

From Proposition 5.2 with λ = 0, we obtain that

E0

(
S̄2

(i−1)n,in

n

)
≤ 8

n

in∑
k=(i−1)n+1

E0
(
X2

k

) + 16

n

in∑
k=(i−1)n+1

E0(Zk),

and, by the ergodic theorem in relation (7.1) of Lemma 7.1,

lim sup
n→∞

max
1≤i≤k

E0

(
S̄2

(i−1)n,in

n

)
≤ 8E

(
X2

0|I
) + 16E(Z0|I) a.s. (5.11)
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Hence C∗
4 will be proved if, for any ε > 0,

lim
k→∞ lim sup

n→∞
max

1≤i≤k

1

n
E0

(
(S̄(i−1)n,in − ε

√
nk)2+

) = 0 a.s. (5.12)

Applying Proposition 5.2, we infer that, for any positive integer N ,

E0
(
(S̄(i−1)n,in − ε

√
nk)2+

) ≤ 4

n

in∑
j=(i−1)n+1

E0
(
X2

j 1Γ(i−1)n,in(ε
√

nk)

)

+ 8

n

in∑
j=(i−1)n+1

(in−j)∧N∑
l=1

E0
(|XjXj+l |1Γ(i−1)n,in(ε

√
nk)

)

+ 8

n

in∑
j=(i−1)n+1

E0(Zj,N ), (5.13)

where Zj,N = ∑
l>j+N |XjEj (Xl)|. Since by (2.1), Zj,N = Z0,N ◦ T j belongs to L1, the ergodic theorem in rela-

tion (7.1) of Lemma 7.1 gives: for any positive integer i,

lim
n→∞

1

n

in∑
j=(i−1)n+1

E0(Zj,N ) = E(Z0,N |I) a.s.

and consequently,

lim
N→∞ lim sup

n→∞
max

1≤i≤k

1

n

in∑
j=(i−1)n+1

E0(Zj,N ) = 0 a.s. (5.14)

Now, for any positive M and any 0 ≤ l ≤ N ,

1

n

in∑
j=(i−1)n+1

E0
(|XjXj+l |1Γ(i−1)n,in(ε

√
nk)

) ≤ M

ε2k
E0

(
S̄2

(i−1)n,in

n

)

+ 1

n

in∑
j=(i−1)n+1

E0
(|XjXj+l |1|Xj Xj+l |>M

)
. (5.15)

According to (5.11), we have that

lim
k→∞ lim sup

n→∞
max

1≤i≤k

M

ε2k
E0

(
S̄2

(i−1)n,in

n

)
= 0 a.s. (5.16)

Next, by the ergodic theorem in relation (7.1) of Lemma 7.1, for any positive integer i,

lim
n→∞

1

n

in∑
j=(i−1)n+1

E0
(|XjXj+l |1|Xj Xj+l |>M

) = E
(|X0Xl |1|X0Xl |>M |I

)
a.s.

and consequently

lim
M→∞ lim sup

k→∞
lim sup
n→∞

max
1≤i≤k

1

n

in∑
j=(i−1)n+1

E0
(|XjXj+l |1|Xj Xj+l |>M

) = 0 a.s. (5.17)
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Gathering (5.13), (5.14), (5.15), (5.16) and (5.17), we infer that (5.12) holds. This ends the proof of C∗
4. Then, on

a set of probability one, for any continuous and bounded function ϕ from C([0,1]) to R, (2.3) follows by applying
Proposition 4.4. To prove that (2.3) also holds for ϕ in H∗, it suffices to notice that since (2.1) implies C∗

4, it en-
tails in particular that almost surely, the sequence (n−1 max1≤k≤n S2

k )n≥1 is uniformly integrable for the conditional
expectation with respect to F0. �

Proof of Proposition 5.2. It is exactly the same as to get (3.12) in the paper by Dedecker and Rio [11], with the only
difference that the expectation is replaced by the conditional expectation with respect to F0. �

5.2. Some remarks on martingale approximations

The aim of this subsection is to point out that the conditions C1, C2 and C3 are satisfied if there is an almost sure
conditional martingale approximation in L2. This is another way to see that our conditions C1, C2 and C3 lead to
sharp sufficient conditions for the quenched CLT.

From the proof of Theorem 5.1, we see that, if X1 is a martingale difference, that is E(X1|F0) = 0 a.s., then the
conditions C1, C∗

2 and C∗
4 are satisfied. The following claim is then easily deduced.

Claim 5.3. Let X0 and d0 be two F0-measurable, centered and square integrable random variables with E(d0 ◦
T |F0) = 0 a.s., and let Xi = X0 ◦ T i and di = d0 ◦ T i . Let Sn = X1 + · · · + Xn and Mn = d1 + · · · + dn.

1. If

lim
n→∞

1

n
E0

(
(Sn − Mn)

2) = 0 almost surely,

then the conditions C1, C2 and C3 are satisfied with η = E(d2
0 |I).

2. If

lim
n→∞

1

n
E0

(
max

1≤k≤n
(Sk − Mk)

2
)

= 0 almost surely, (5.18)

then the conditions C1, C2 and C4 are satisfied with η = E(d2
0 |I).

In particular, if the condition of Maxwell and Woodroofe [24] is satisfied

∑
n>0

‖E0(Sn)‖2

n3/2
< ∞, (5.19)

then it follows from Cuny and Merlevède [6] that (5.18) holds, so that the conditions C1, C2 and C4 are satisfied. We
already know from Peligrad and Utev [29] that the Maxwell and Woodroofe condition is sharp in some sense for the
FCLT, and therefore for the quenched FCLT also. This shows that the conditions C1, C2 and C4 are essentially sharp
for the quenched FCLT.

We mention that the Maxwell and Woodroofe condition and our condition (2.1) are of independent interests. For
instance, when applied to strongly mixing sequences the condition (5.19) leads to sub-optimal results as pointed
out in Merlevède et al. [25]. Obviously, the same remark is true when we apply it to α-dependent sequences as
defined in Section 3. More precisely, this gives the condition:

∑
k≥0(k + 1)−1/2(

∫ αY(k)

0 Q2(u)du)1/2 < ∞ instead
of (3.2). Hence, when applied to nonnecessarily bounded functions of the Markov chain associated to the intermittent
map given in Section 3.1, the criterion (5.19) is satisfied as soon as f belongs to F ∗(H, νγ ) and H is such that
H(x) ≤ Cx−2(1−γ )/(1−2γ )(ln(x))−b for x large enough and b > 2(1 − γ )/(1 − 2γ ). Recall that by condition (3.2),
we only need b > (1 − γ )/(1 − 2γ ). In addition, Point (v) of the main theorem in Durieu and Volný [16] shows that
one can find a stationary sequence (Xi)i∈Z adapted to an increasing and stationary filtration (Fi )i∈Z in such a way
that the condition (5.19) holds but X0E0(Sn) does not converge in L1 and so the condition (2.1) fails. Analyzing the
examples given in their paper, one can also prove that there are stationary sequences for which (2.1) holds but (5.19)
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does not. We can even say more: there are stationary sequences for which (2.1) holds but not (5.19), neither the
Gordin criterion (2.4), nor the Hannan–Heyde condition are satisfied. Recall that the Hannan–Heyde condition is the
following:

E(X0|F−∞) = 0 a.s. and
∑
n≥0

∥∥E0(Xn) − E−1(Xn)
∥∥

2 < ∞, (5.20)

where F−∞ = ⋂
k∈Z

Fk .
In what follows (Ω, A,μ) is a probability space and T :Ω → Ω a bijective bimeasurable transformation preserving

the measure μ. Then (Ω, A,μ,T ) is called a dynamical system. We refer to Sinaı̆ [32] for a precise definition of the
entropy of a dynamical system, and for the properties of dynamical systems with positive entropy. The proof of the
next proposition is given in the Appendix.

Proposition 5.4. Let (Ω, A,μ,T ) be an ergodic dynamical system with positive entropy. Let F ⊂ A be a T -invariant
σ -algebra, i.e. F ⊂ T −1(F ) and let Fi = T −i (F ). There exists a F0-measurable and centered function f in L2 such
that, setting Xi = f ◦ T i , the condition (2.1) is satisfied but the conditions (2.4), (5.19) and (5.20) fail.

To be complete, note that a stationary sequence can be constructed in such a way that (2.4) holds but the condi-
tion (2.1) fails (see Section 5.2 in Durieu and Volný [16]). Moreover, a stationary sequence can be constructed in such
a way that the condition (5.20) holds but the condition (2.1) fails (see Theorem 1 in Durieu [15]).

6. Normal approximation for double indexed arrays and auxiliary results

There are many situations when we are dealing with double indexed sequences of random variables. For instance
at each point in the two dimensional space we start a random walk. Our motivation for this section comes from the
fact that in our blocking procedure we introduce a new parameter, the number of blocks, m, that is kept fixed at the
beginning.

The next theorem treats the martingale approximation for double arrays of random variables.

Theorem 6.1. Assume that (Un,m,i)i≥1 is an array of random variables in L2 adapted to an array (Gn,m,i)i≥1 of
nested sigma fields. Let En,m,i denote the conditional expectation with respect to Gn,m,i . Suppose that

lim
m→∞ lim sup

n→∞
E

∣∣∣∣∣
m∑

i=1

En,m,i−1(Un,m,i)

∣∣∣∣∣ = 0, (6.1)

there exists σ 2 ≥ 0 such that

lim
m→∞ lim sup

n→∞
E

∣∣∣∣∣
m∑

i=1

Var(Un,m,i |Gn,m,i−1) − σ 2

∣∣∣∣∣ = 0, (6.2)

and for each ε > 0

lim
m→∞ lim sup

n→∞

m∑
i=1

E
(
U2

n,m,i1|Un,m,i |>ε

) = 0. (6.3)

Then for any continuous and bounded function f ,

lim
m→∞ lim sup

n→∞

∣∣∣∣∣E
(

f

(
m∑

i=1

Un,m,i

))
− E

(
f (σN)

)∣∣∣∣∣ = 0, (6.4)

where N is a standard Gaussian variable.
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Proof. For any i ≥ 1, let dn,m,i = Un,m,i − En,m,i−1(Un,m,i). By condition (6.1), the theorem will follow if we can
prove that (6.4) holds with

∑m
i=1 dn,m,i replacing

∑m
i=1 Un,m,i . If σ 2 = 0 the theorem is trivial. So we can assume

without loss of generality that σ 2 = 1. In the rest of the proof, in order to ease the notations, we shall drop the first
two indexes (n,m), keeping them only when it is necessary to avoid confusion. Let ε and M be positive reals fixed
for the moment. For any i ≥ 1, let

Vi =
i∑

�=1

E�−1
(
d2
�

)
and Yi = di1|di |≤ε1Vi≤M.

Notice first that

P

(
m∑

i=1

di �=
m∑

i=1

Yi

)
≤ P

(
max

1≤i≤m
di > ε

)
+ P(Vm > M)

≤ 1

ε2

m∑
i=1

E
(
d2
i 1|di |>ε

) + 1

M

(
1 + E

∣∣∣∣∣
m∑

i=1

Var(Ui |Gi−1) − 1

∣∣∣∣∣
)

.

Hence using Lemma 6.3, we get that

P

(
m∑

i=1

di �=
m∑

i=1

Yi

)
≤ 12

ε2

m∑
i=1

E
(
U2

i 1|Ui |>ε/4
) + 1

M

(
1 + E

∣∣∣∣∣
m∑

i=1

Var(Ui |Gi−1) − 1

∣∣∣∣∣
)

.

Therefore using (6.3) and (6.2), it follows that for all ε > 0,

lim sup
m→∞

lim sup
n→∞

P

(
m∑

i=1

dn,m,i �=
m∑

i=1

Yn,m,i

)
≤ 1

M
. (6.5)

We notice now that since Ei−1(di) = 0 a.s. and Vi is Gi−1-measurable,

m∑
i=1

Ei−1(Yi) =
m∑

i=1

1Vi≤MEi−1(di1|di |>ε).

Therefore by Lemma 6.3,

E

∣∣∣∣∣
m∑

i=1

Ei−1(Yi)

∣∣∣∣∣ ≤ 12

ε

m∑
i=1

E
(
U2

i 1|Ui |>ε/4
)
,

implying, by using (6.3), that for all positive reals ε and M ,

lim
m→∞ lim sup

n→∞
E

∣∣∣∣∣
m∑

i=1

Ei−1(Yi)

∣∣∣∣∣ = 0. (6.6)

Considering (6.5) and (6.6), the theorem will follow if we can show that for any continuous bounded function f ,

lim
M→∞ lim sup

ε→0
lim sup
m→∞

lim sup
n→∞

∣∣∣∣∣E
(

f

(
m∑

i=1

d∗
n,m,i

))
− E

(
f (N)

)∣∣∣∣∣ = 0, (6.7)

where

d∗
n,m,i = Yn,m,i − En,m,i−1(Yn,m,i).
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Let

s2
n,m =

m∑
i=1

E
(
d∗2
n,m,i

)
,

and notice that for any δ > 0, E(|d∗
n,m,i |2+2δ) < ∞, i = 1,2, . . . . Hence, by the first theorem stated in Heyde and

Brown [22], it follows that for any δ ∈]0,1],

sup
x∈R

∣∣∣∣∣P
(

m∑
i=1

d∗
n,m,i ≤ x

)
− P(snN ≤ x)

∣∣∣∣∣
≤ Kδ

{
s−2−2δ
n,m

(
E

(∣∣d∗
n,m,i

∣∣2+2δ) + E

∣∣∣∣∣
m∑

i=1

En,m,i−1
((

d∗
n,m,i

)2) − s2
n,m

∣∣∣∣∣
1+δ)}1/(3+2δ)

, (6.8)

where Kδ is a positive constant depending only on δ. Assume now that we can prove that there exists a δ in ]0,1] such
that for any positive reals ε and M ,

lim sup
m→∞

lim sup
n→∞

m∑
i=1

E
(∣∣d∗

n,m,i

∣∣2+2δ) ≤ u(ε) (6.9)

and

lim sup
m→∞

lim sup
n→∞

E

∣∣∣∣∣
m∑

i=1

En,m,i−1
((

d∗
n,m,i

)2) − 1

∣∣∣∣∣
1+δ

≤ v(M), (6.10)

where u(·) and v(·) are positive functions defined on R+ such that v(·) does not depend on ε, limx→0 u(x) = 0 and
limx→∞ v(x) = 0. Then starting from (6.8) and noticing that (6.10) also implies that for any positive reals ε and M ,
and

lim sup
m→∞

lim sup
n→∞

∣∣s2
n,m − 1

∣∣1+δ ≤ v(M), (6.11)

we infer that (6.7) will hold. Indeed, by standard arguments, we will get (6.7) for every continuous function f with
compact support and then (6.7) for every continuous and bounded function f by using the fact that every probability
measure is tight. Hence, to end the proof of the theorem, it remains to prove that (6.9) and (6.10) hold. With this aim,
we first notice that

m∑
i=1

E
(∣∣d∗

i

∣∣2+2δ) ≤ 4(2ε)2δ

m∑
i=1

E
(
d2
i

) ≤ 4(2ε)2δ

(
1 + E

∣∣∣∣∣
m∑

i=1

Var(Ui |Gi−1) − 1

∣∣∣∣∣
)

.

Hence, using condition (6.2), (6.9) follows with u(ε) = 4(2ε)2δ . It remains to prove (6.10). With this aim, using the
convexity inequality: (a + b)p ≤ 2p−1(ab + bp) (p ≥ 1, a > 0 and b > 0), we first write that

E

∣∣∣∣∣
m∑

i=1

Ei−1
((

d∗
i

)2) − 1

∣∣∣∣∣
1+δ

≤ 2δE

∣∣∣∣∣
m∑

i=1

Ei−1
(
Y 2

i

) − 1

∣∣∣∣∣
1+δ

+ 2δE

∣∣∣∣∣
m∑

i=1

(
Ei−1(Yi)

)2

∣∣∣∣∣
1+δ

. (6.12)

Now, since Vn,m,i is Gn,m,i−1-measurable and En,m,i−1(dn,m,i) = 0 a.s., we infer that

E

(
m∑

i=1

(
Ei−1(Yi)

)2

)1+δ

≤ E

((
m∑

i=1

(
Ei−1(di1|di |>ε)

)2

)(
m∑

k=1

1Vk≤MEk−1
(
d2
k

))δ)

≤ Mδ

m∑
i=1

E
(
d2
i 1|di |>ε

)
.
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Hence by Lemma 6.3,

E

(
m∑

i=1

(
Ei−1(Yi)

)2

)1+δ

≤ 12Mδ
m∑

i=1

E
(
U2

i 1|Ui |>ε/4
)
. (6.13)

On the other hand, using again the fact that Vn,m,i is Gn,m,i−1-measurable and also that Vn,m,i ≤ Vn,m,i+1, we derive
that

E

∣∣∣∣∣
m∑

i=1

Ei−1
(
Y 2

i

) − 1

∣∣∣∣∣
1+δ

≤ E

((
1 +

m∑
i=1

1Vi≤MEi−1
(
d2
i

))δ∣∣∣∣∣1 −
m∑

k=1

1Vk≤MEk−1
(
d2
k 1|dk |≤ε

)∣∣∣∣∣
)

≤ (M + 1)δ
m∑

i=1

E
(
d2
i 1|di |>ε

) + (M + 1)δE

∣∣∣∣∣1 −
m∑

k=1

1Vk≤MEk−1
(
d2
k

)∣∣∣∣∣
≤ (M + 1)δ

m∑
i=1

E
(
d2
i 1|di |>ε

) + (M + 1)δE

∣∣∣∣∣
m∑

k=1

Ek−1
(
d2
k

) − 1

∣∣∣∣∣
+ (M + 1)δE

∣∣∣∣∣1Vm>M

m∑
k=1

Ek−1
(
d2
k

)∣∣∣∣∣.
Therefore,

E

∣∣∣∣∣
m∑

i=1

Ei−1
(
Y 2

i

) − 1

∣∣∣∣∣
1+δ

≤ (M + 1)δ
m∑

i=1

E
(
d2
i 1|di |>ε

) + 2(M + 1)δE

∣∣∣∣∣
m∑

k=1

Ek−1
(
d2
k

) − 1

∣∣∣∣∣
+ (M + 1)δ

M

(
1 + E

∣∣∣∣∣
m∑

k=1

Ek−1
(
d2
k

) − 1

∣∣∣∣∣
)

,

which together with Lemma 6.3 and the fact that Ek−1(d
2
k ) = Var(Uk|Gk−1) imply that

E

∣∣∣∣∣
m∑

i=1

Ei−1
(
Y 2

i

) − 1

∣∣∣∣∣
1+δ

≤ 12(M + 1)δ
m∑

i=1

E
(
U2

i 1|Ui |>ε/4
) + 2(M + 1)δE

∣∣∣∣∣
m∑

k=1

Var(Uk|Gk−1) − 1

∣∣∣∣∣
+ (M + 1)δ

M

(
1 + E

∣∣∣∣∣
m∑

k=1

Var(Uk|Gk−1) − 1

∣∣∣∣∣
)

. (6.14)

Starting from (6.12) and considering the bounds (6.13) and (6.14) together with the conditions (6.2) and (6.3), we
then infer that (6.10) holds for any δ ∈]0,1[ with v(M) = M−1(M + 1)δ . This ends the proof of (6.7) and then of the
theorem. �

Lemma 6.2. Assume that (dn,m,i)i≥1 is an array of random variables in L2 adapted to an array (Gn,m,i)i≥1 of nested
sigma fields, and such that for any i ≥ 1, En,m,i−1(dn,m,i) = 0 almost surely. Suppose that

lim
m→∞ lim sup

n→∞

m∑
i=1

E
(|dn,m,i |1|dn,m,i |>ε

) = 0 and
m∑

i=1

E|dn,m,i | < K (6.15)

for some positive constant K . Then

lim
m→∞ lim sup

n→∞
E

∣∣∣∣∣
m∑

i=1

dn,m,i

∣∣∣∣∣ = 0.
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Proof. Let ε > 0, and let for any i ≥ 1,

d ′
n,m,i = dn,m,i1|dn,m,i |≤ε and d ′′

n,m,i = dn,m,i1|dn,m,i |>ε.

With this notation and since En,m,i−1(dn,m,i) = 0 almost surely,

m∑
i=1

dn,m,i =
m∑

i=1

(
d ′
n,m,i − En,m,i−1

(
d ′
n,m,i

)) +
m∑

i=1

(
d ′′
n,m,i − En,m,i−1

(
d ′′
n,m,i

))
.

Since

E
∣∣(d ′′

n,m,i − En,m,i−1
(
d ′′
n,m,i

))∣∣ ≤ 2E
(|dn,m,i |1|dn,m,i |>ε

)
,

by using the first part of (6.15), the lemma will follow if we can prove that

lim
ε→0

lim sup
m→∞

lim sup
n→∞

E

∣∣∣∣∣
m∑

i=1

(
d ′
n,m,i − En,m,i−1

(
d ′
n,m,i

))∣∣∣∣∣ = 0. (6.16)

With this aim, it suffices to notice that

E

(
m∑

i=1

(
d ′
n,m,i − En,m,i−1

(
d ′
n,m,i

)))2

≤
m∑

i=1

E
(
d ′
n,m,i

)2 ≤ ε

m∑
i=1

E|dn,m,i |,

showing that (6.16) holds under (6.15). �

Lemma 6.3. Let X be a real random variable and F a sigma-field. For any p ≥ 1 and any ε > 0,

E
(|X|p1|E(X|F )|>2ε

) ≤ 2E
(|X|p1|X|>ε

)
, (6.17)

and setting Y = X − E(X|F ),

E
(|X|p1|Y |>3ε

) ≤ 2E
(|X|p1|X|>ε

)
and E

(|Y |p1|Y |>4ε

) ≤ 3 × 2pE
(|X|p1|X|>ε

)
. (6.18)

Proof. We first write that

|X|p1|E(X|F )|>2ε ≤ |X|p1|X|>ε + εp1|E(X|F )|>2ε. (6.19)

Notice now that {|E(X|F )| > 2ε} ⊆ {|E(X1|X|>ε)|F )| > ε}, implying that

εp1|E(X|F )|>2ε ≤ ∣∣E(X1|X|>ε|F )
∣∣p ≤ E

(|X|p1|X|>ε|F
)
, (6.20)

starting from (6.19), using (6.20) and taking the expectation, (6.17) follows. To prove the first part of (6.18), we start
by writing that

|X|p1|Y |>3ε ≤ |X|p1|X|>ε + εp1|E(X|F )|>2ε,

and we use (6.20). To prove the second part of (6.18), we first notice that for any positive reals a, b and ε, (a +
b)p1a+b>4ε ≤ 2pap1a>2ε + 2pbp1b>2ε . Therefore

E
(|Y |p1|Y |>4ε

) ≤ 2pE
(|X|p1|X|>2ε

) + 2pE
(|X|p1|E(X|F )|>2ε

)
.

The second part of (6.18) then follows by using (6.17). �
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7. Ergodic theorem

We gather below the ergodic theorems used in this paper. We keep the notations of Section 2 and we define F∞ =∨
k∈Z

Fk .

Lemma 7.1. Let Z be a F∞-measurable real-valued random variable in L1. Define Zk = Z ◦T k for any k in Z. Then

1

n

n∑
i=1

E0(Zi) → E(Z|I) almost surely and in L1, (7.1)

and

1

n
E0

(
max

1≤i≤n
|Zi |

)
→ 0 almost surely and in L1. (7.2)

Proof. By definition of the operator K (see the beginning of Section 2),

1

n

n∑
i=1

E0(Zi) = 1

n

n∑
i=1

Ki(Z).

Applying the Dunford–Schwartz ergodic theorem (see for instance Krengel [23]) we obtain that (K(Z) + · · · +
Kn(Z))/n converges almost surely and in L1 to some g ∈ L1. We prove now that g = E(Z|I). Let N ∈ N. De-
fine Z0,N = E(Z|FN) and Zk,N = Z0,N ◦ T k for any k in Z. From the stationarity of the sequence (Zk,N )k∈Z and the
invariance of E(Z0,N |I), we have∥∥∥∥∥E(Z0,N |I) − 1

n

n∑
k=1

Zk,N

∥∥∥∥∥
1

=
∥∥∥∥∥E(Z0,N |I) − 1

n

−N∑
k=1−(n+N)

Zk,N

∥∥∥∥∥
1

.

Both this equality and the L1-ergodic theorem imply that E(Z0,N |I) is the limit in L1 of a sequence of F0-measurable
random variables. Hence E(E(Z0,N |I)|F0) = E(Z0,N |I) almost surely. Therefore, noticing that for any i ∈ N,
E0(Zi) = E0(Zi,N ) and using, once again, the L1-ergodic theorem, we derive that

lim sup
n→∞

∥∥∥∥∥1

n

n∑
i=1

E0(Zi) − E(Z0,N |I)

∥∥∥∥∥
1

≤ lim sup
n→∞

∥∥∥∥∥1

n

n∑
i=1

Zi,N − E(Z0,N |I)

∥∥∥∥∥
1

= 0.

Hence the proof will be complete if we show that limN→∞ ‖E(Z0,N |I) − E(Z|I)‖1 = 0. Notice that∥∥E(Z0,N |I) − E(Z|I)
∥∥

1 ≤ ∥∥E(Z|FN) − Z
∥∥

1.

Therefore since (E(Z|FN))N≥1 is an uniformly integrable martingale, and Z is F∞-measurable, the desired conver-
gence follows by the martingale convergence theorem.

We turn now to the proof of (7.2). With this aim, we notice that for any N > 0,

1

n
E0

(
max

1≤i≤n
|Zi |

)
≤ N

n
+ 1

n

n∑
i=1

E0
(|Zi |1|Zi |>N

)
.

By using (7.1), n−1 ∑n
i=1 E0(|Zi |1|Zi |>N) converges to E(|Z|1|Z|>N |I) almost surely and in L1, as n tends to infinity.

Therefore

lim
N→∞ lim sup

n→∞
1

n

n∑
i=1

E0
(|Zi |1|Zi |>N

) = 0 almost surely and in L1,

which ends the proof of (7.2). �
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Appendix

This section is devoted to the proof of Proposition 5.4. We shall see that it follows from a slight modification of the
example given in Section 5.4 in Durieu and Volný [16].

We consider the ergodic dynamical system (Ω, A,μ,T ) with positive entropy, the sequence (ei)i∈Z of independent
identically distributed (i.i.d.) Rademacher random variables with parameter 1/2, and the σ -algebra F0 as described at
the beginning of Section 4.1 in Durieu and Volný [16]. Now, for any positive integer k, we define

Nk = 4k, ρk = 1

4k
, θk = 1

k2k
, εk = 1

k243k
, (A.1)

and we consider mutually disjoint sets (Ak)k∈Z by using their Lemma 2 with 2Nk instead of Nk , and the sequences
(ρk) and (εk) defined above. In addition to being disjoint, the sets (Ak)k∈N∗ are such that

(i) 2
3ρk ≤ μ(Ak) ≤ ρk for all k ∈ N∗;

(ii) for all k ∈ N∗ and all i, j ∈ {0, . . . ,2Nk}, μ(T −iAk�T −jAk) ≤ εk .

The function f is then defined as

f =
∑
k≥1

fk1Ak
with fk = θk

2Nk∑
j=Nk+1

e−j . (A.2)

The function f defined in (A.2) is centered, F0-measurable and, since
∑

k≥1 θ2
k Nkρk < ∞, it belongs to L2 (see

Proposition 7 in Durieu and Volný [16]).
Let now Xi = f ◦ T i for any i ∈ Z. This sequence is adapted to the stationary and nondecreasing sequence of

σ -algebras (Fi )i∈Z where Fi = T −i (F0). Let us first prove that the sequence (Xi)i∈Z satisfies the condition (2.1).
With this aim, we first emphasize some additional important properties of (ei)i∈Z and of (Ak)k∈Z. First, the sequence
(ei)i∈Z is adapted to (Fi )i∈Z and E(ei |F0) = ei1i≤0 almost surely. Second, for all k and i, 1Ak

◦T i is F0-measurable.
Finally, the ei ’s and the 1Ak

’s are independent for all i and k. As in relation (4) in Durieu and Volný [16], we then
write that for any i ∈ N,

E(Xi |F0) =
∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1T −i (Ak)
1i≤j

=
∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1Ak
1i≤j +

∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j (1T −i (Ak)\Ak
− 1Ak\T −i (Ak)

)1i≤j . (A.3)

Using item (ii) above, and the fact that the ej ’s are bounded by one, we obtain

∑
i≥0

∥∥∥∥∥
∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1i≤j (1T −i (Ak)\Ak
− 1Ak\T −i (Ak)

)

∥∥∥∥∥
2

≤
∑
k≥1

Nk∑
i=0

θkNk

(
μ

(
T −i (Ak)�Ak

))1/2 +
∑
k≥1

θk

2Nk∑
i=Nk+1

2Nk∑
j=i

(
μ

(
T −i (Ak)�Ak

))1/2

≤ 2
∑
k≥1

θkNk(Nk + 1)
√

εk. (A.4)

Since, by (A.1),
∑

k≥1 θkN
2
k

√
εk < ∞, in order to prove that (2.1) holds, it is enough to show that

∑
i≥0

∥∥∥∥∥f
∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1Ak
1i≤j

∥∥∥∥∥
1

< ∞. (A.5)
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By disjointness of the Ak’s,

∑
i≥0

∥∥∥∥∥f
∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1Ak
1i≤j

∥∥∥∥∥
1

=
∑
i≥0

∥∥∥∥∥
∑
k≥1

θ2
k

( 2Nk∑
j=Nk+1

ei−j 1i≤j

)( 2Nk∑
�=Nk+1

e−�

)
1Ak

∥∥∥∥∥
1

=
∑
i≥0

∥∥∥∥∥
∑
k≥1

1i≤Nk
θ2
k

( 2Nk∑
j=Nk+1

ei−j

)( 2Nk∑
�=Nk+1

e−�

)
1Ak

∥∥∥∥∥
1

+
∑
i≥0

∥∥∥∥∥
∑
k≥1

1Nk+1≤i≤2Nk
θ2
k

(2Nk∑
j=i

ei−j

)( 2Nk∑
�=Nk+1

e−�

)
1Ak

∥∥∥∥∥
1

. (A.6)

Now, by independence between the ei ’s and the 1Ak
’s,

∑
i≥0

∥∥∥∥∥
∑
k≥1

1i≤Nk
θ2
k

( 2Nk∑
j=Nk+1

ei−j

)( 2Nk∑
�=Nk+1

e−�

)
1Ak

∥∥∥∥∥
1

≤
∑
i≥0

∑
k≥1

1i≤Nk
θ2
k

∥∥∥∥∥
( 2Nk∑

j=Nk+1

ei−j

)( 2Nk∑
�=Nk+1

e−�

)∥∥∥∥∥
1

μ(Ak).

Since the ei ’s are i.i.d., centered and with variance one, we have

∥∥∥∥∥
( 2Nk∑

j=Nk+1

ei−j

)( 2Nk∑
�=Nk+1

e−�

)∥∥∥∥∥
1

≤
∥∥∥∥∥

2Nk∑
j=Nk+1

ei−j

∥∥∥∥∥
2

∥∥∥∥∥
2Nk∑

�=Nk+1

e−�

∥∥∥∥∥
2

≤ Nk.

The second term in the right-hand side of (A.6) can be handled similarly. So overall, we infer that

∑
i≥0

∥∥∥∥∥f
∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1Ak
1i≤j

∥∥∥∥∥
1

≤ 2
∑
k≥1

θ2
k N2

k ρk,

which is finite according to (A.1). This ends the proof of (A.5) and then of the fact that the sequence (Xi)i∈Z satisfies
the condition (2.1).

Let us prove now that the condition (2.4) fails for the sequence (Xi)i∈Z defined above. With this aim, we shall
prove that

sup
K∈N

∥∥E0(SNK
)
∥∥

1 = ∞. (A.7)

Starting from (A.3) and using (A.4), it suffices to prove that

sup
K∈N

∥∥∥∥∥
NK∑
i=1

∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1i≤j 1Ak

∥∥∥∥∥
1

= ∞. (A.8)

Let K ≥ 3. By disjointness of the Ak’s and by independence between the ei ’s and the 1Ak
’s, it follows that

∥∥∥∥∥
NK∑
i=1

∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1i≤j 1Ak

∥∥∥∥∥
1

=
∑
k≥1

θkμ(Ak)E

∣∣∣∣∣
2Nk∑

j=Nk+1

NK∑
i=1

ei−j 1i≤j

∣∣∣∣∣.
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Therefore∥∥∥∥∥
NK∑
i=1

∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1i≤j 1Ak

∥∥∥∥∥
1

≥
K−1∑
k=1

θkμ(Ak)E

∣∣∣∣∣
2Nk−1∑

�=(Nk+1−NK)∨0

e−�

NK∑
i=1

1i≥Nk+1−�1i≤2Nk−�

∣∣∣∣∣.
Notice now that for any k ∈ {1, . . . ,K − 1}, Nk + 1 − NK ≤ NK−1 + 1 − NK ≤ 0 and for any � ≥ 0, 2Nk − � ≤ NK

(since 2Nk − NK ≤ 2NK−1 − NK ≤ 0). Hence∥∥∥∥∥
NK∑
i=1

∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1i≤j 1Ak

∥∥∥∥∥
1

≥
K−1∑
k=1

θkμ(Ak)E

∣∣∣∣∣Nk

Nk∑
�=0

e−� +
2Nk−1∑

�=Nk+1

(2Nk − �)e−�

∣∣∣∣∣.
Next, by using the Marcinkiewicz–Zygmund’s inequality together with item (i) above, we get that there exists a
positive constant A such that

∥∥∥∥∥
NK∑
i=1

∑
k≥1

θk

2Nk∑
j=Nk+1

ei−j 1i≤j 1Ak

∥∥∥∥∥
1

≥ A

K−1∑
k=1

θkρkE

(
N2

k

Nk∑
�=0

e2−� +
2Nk−1∑

�=Nk+1

(2Nk − �)2e2−�

)1/2

≥ A

K−1∑
k=1

θkρkN
3/2
k ≥ A ln(K − 1),

which proves (A.8) and therefore (A.7).
Let us prove now that the condition (5.19) fails for the sequence (Xi)i∈Z defined above. Following the computations

page 339 in Durieu and Volný [16], it suffices to prove that

∑
n≥1

1

n3/2

(∑
k≥1

12Nk≤nθ
2
k N3

k ρk

)1/2

= ∞. (A.9)

Since Nk = 4k , using (A.1), we get that

∑
k≥1

12Nk≤nθ
2
k N3

k ρk =
[(lnn−ln 2)/(2 ln 2)]∑

k=1

4k

k2
≥ C

n

(lnn)2
,

where C is a positive constant. This shows (A.9) and then that (5.19) fails.
Let us prove now that the Hannan–Heyde condition (5.20) fails for the sequence (Xi)i∈Z defined above. With this

aim, we first notice that

E(Xi |F0) − E(Xi |F−1) = e0

∑
k≥1

θk

2Nk∑
j=Nk+1

1T −i (Ak)
1i=j .

Proceeding as in (A.3) and since
∑

k≥1 θkNk
√

εk < ∞, it suffices to prove that

∑
i≥1

∥∥∥∥∥
∑
k≥1

θk

2Nk∑
j=Nk+1

1i=j 1Ak

∥∥∥∥∥
2

= ∞. (A.10)

But, by disjointness of the Ak’s,

∑
i≥1

∥∥∥∥∥
∑
k≥1

θk

2Nk∑
j=Nk+1

1i=j 1Ak

∥∥∥∥∥
2

=
∑
i≥1

(∑
k≥1

θ2
k

( 2Nk∑
j=Nk+1

1i=j

)2

μ(Ak)

)1/2

.
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Therefore, since Nk = 22k ,

∑
i≥1

∥∥∥∥∥
∑
k≥1

θk

2Nk∑
j=Nk+1

1i=j 1Ak

∥∥∥∥∥
2

=
∑
�≥0

22(�+1)∑
i=22�+1

(∑
k≥1

θ2
k

(
22k+1∑

j=22k+1

1i=j

)2

μ(Ak)

)1/2

≥
∑
�≥0

22�+1∑
i=22�+1

(∑
k≥1

θ2
k

(
22k+1∑

j=22k+1

1i=j

)2

μ(Ak)

)1/2

=
∑
�≥0

22�+1∑
i=2�+1

(
θ2
� μ(A�)

)1/2 ≥
√

2√
3

∑
�≥0

22�θ�
√

ρ�,

which does not converge according to (A.1). This ends the proof of (A.10) and then of the fact that the sequence
(Xi)i∈Z does not satisfy the Hannan–Heyde condition (5.20).
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