
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2014, Vol. 50, No. 4, 1198–1212
DOI: 10.1214/13-AIHP549
© Association des Publications de l’Institut Henri Poincaré, 2014

Transience, recurrence and speed of diffusions with a
non-Markovian two-phase “use it or lose it” drift

Ross G. Pinsky

Department of Mathematics, Technion – Israel Institute of Technology, Haifa, 32000, Israel. url: http://www.math.technion.ac.il/~pinsky/

Received 18 October 2012; revised 3 February 2013; accepted 6 February 2013

Abstract. We investigate the transience/recurrence of a non-Markovian, one-dimensional diffusion process which consists of a
Brownian motion with a non-anticipating drift that has two phases – a transient to +∞ mode which is activated when the diffusion
is sufficiently near its running maximum, and a recurrent mode which is activated otherwise. We also consider the speed of a
diffusion with a two-phase drift, where the drift is equal to a certain non-negative constant when the diffusion is sufficiently near
its running maximum, and is equal to a certain positive constant otherwise.

Résumé. Nous étudions la transience/récurrence d’un processus de diffusion non-Markovien à une dimension, consistant en un
mouvement brownien avec une dérive non anticipative qui a deux phases – un mode transitoire à +∞ qui est activé quand la
diffusion est suffisamment proche du processus de son maximum, et un mode récurrent qui est activé dans le cas contraire. On
considère également la vitesse d’une diffusion avec une dérive à deux phases, où la dérive est égale à une certaine constante positive
lorsque la diffusion est suffisamment proche du processus de son maximum, et est égale à une certaine constante strictement positive
dans le cas contraire.

MSC: 60J60

Keywords: Diffusion process; Transience; Recurrence; Non-Markovian drift

1. Introduction and statement of results

Over the past fifteen years or so, there has been much interest in the study of the long term behavior of various random
walks with non-Markovian transition mechanisms, such as random walks in random environment, self-avoiding ran-
dom walk, edge or vertex reinforced random walks, and excited (so-called “cookie”) random walks. See, for example,
the monograph [13], and the survey articles [9] and [7], which include many references. Non-Markovian diffusion
processes analogous to excited random walks have also been studied (see [2,3,12]), as well as so-called Brown-
ian polymers, which are non-Markovian self-repelling diffusions, analogous to certain negatively reinforced random
walks (see [1,4,5,8]). In this paper we investigate the transience/recurrence of a non-Markovian, one-dimensional dif-
fusion process which consists of a Brownian motion with a non-anticipating drift that has two phases – a transient to
+∞ mode which is activated when the diffusion is sufficiently near its running maximum, and a recurrent mode which
is activated otherwise. We also consider the speed of a diffusion with a two-phase drift, where the drift is equal to a
certain non-negative constant when the diffusion is sufficiently near its running maximum, and is equal to a certain
positive constant otherwise.

Let bT (x) and bR(x) be continuous functions on R which satisfy∫
−∞

exp

(
−

∫ x

0
2bT (y)dy

)
dx = ∞,

∫ ∞
exp

(
−

∫ x

0
2bT (y)dy

)
dx < ∞; (1.1)
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−∞

exp

(
−

∫ x

0
2bR(y)dy

)
dx = ∞,

∫ ∞
exp

(
−

∫ x

0
2bR(y)dy

)
dx = ∞.

As is well known [10], the one-dimensional diffusion processes corresponding to the operators LT ≡ 1
2

d2

dx2 +bT (x) d
dx

and LR ≡ 1
2

d2

dx2 + bR(x) d
dx

are respectively transient to +∞ and recurrent. Let γ : [0,∞) → (0,∞) be a continuous
function satisfying

γ > 0, γ ′ < 1 and lim
x→∞

(
x − γ (x)

) = ∞.

For a continuous trajectory x(·) : [0,∞) → R, let x∗(t) = max0≤s≤t x(s) denote its running maximum. We define a
non-anticipating, non-Markovian drift b(t, x(·)) by

b
(
t, x(·)) =

{
bT

(
x(t)

)
, if x(t) > x∗(t) − γ

(
x∗(t)

)
;

bR
(
x(t)

)
, if x(t) ≤ x∗(t) − γ

(
x∗(t)

)
.

(1.2)

We consider the diffusion process X(t) that satisfies the stochastic differential equation

X(t) = x0 + W(t) +
∫ t

0
b
(
s,X(·))ds, (1.3)

where W(·) is a Brownian motion. Existence and uniqueness for this stochastic differential equation follow from
the standard theory for classical diffusion processes (see Section 3). We call the solution to (1.3) a diffusion with a
two-phase “use it or lose it” drift.

For example, the process X(t) might represent the price of a stock. As prices rise, people are encouraged to buy,
creating a certain trend represented by the transient drift. In addition to this underlying trend, there is a random
fluctuation represented by the Brownian motion. These random fluctuations might cause prices to slump. If the slump
becomes sufficiently large, it discourages buying, which creates a new weaker trend, represented by the recurrent drift.
When random fluctuations eventually result in prices rising to levels close to the previous high, the original stronger
trend reasserts itself.

We call γ the “down-crossing” function. For the majority of the paper, we will consider the case that the down-
crossing function γ is a constant. In this case, at any time t , the diffusion X(t) will run in the transient mode if and
only if X(t) > X∗(t) − γ , or equivalently, if and only if by time t the path X(·) has not down-crossed an interval of
length γ whose left hand endpoint is larger than or equal to X(t).

The various equivalent definitions of transience and recurrence for classical non-degenerate diffusion processes
hold for the diffusion with the two-phase drift. (This will be clear from the construction in Section 3.) We state here
the standard definitions, although we will use other equivalent definitions in the proofs. The diffusion with the two-
phase drift is recurrent if for any pair of points x0 and x1, the process starting at x0 almost surely returns to x1 at
arbitrarily large times. The diffusion with the two-phase drift is transient to +∞ if starting at any x0, the process
almost surely satisfies limt→∞ X(t) = ∞.

Our first result concerns the case in which the transient drift is constant: bT (x) ≡ b > 0, and the recurrent drift bR

satisfies a regularity condition; namely, that the drift bR ∨ 0 is also a recurrent drift. In this case, the diffusion with the
two-phase drift is always recurrent.

Theorem 1. Assume that the down-crossing function γ is constant. Let the transient drift be constant: bT (x) ≡ b > 0,
and assume that the recurrent drift bR is such that the drift bR ∨ 0 is also recurrent. That is, assume that the condition
satisfied by bR in (1.1) is also satisfied by bR ∨ 0. Then the diffusion with the two-phase drift is recurrent.

Remark. Note that the diffusion with the two-phase drift is recurrent even if the recurrent drift bR is just border line
recurrent – for example, if for sufficiently large x, bR(x) = 1

2x
is the drift of the radial part of a two-dimensional

Brownian motion.

Maintaining the constant transient drift, but choosing the recurrent drift bR to take on very large positive values at
most locations, and compensating to insure recurrence by having it take on even much larger negative values at other
locations, we can construct a diffusion with such a two-phase drift that is transient.
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Theorem 2. Assume that the down-crossing function γ is constant. Let the transient drift be constant: bT (x) = b > 0.
There exists a recurrent drift bR such that the corresponding diffusion with the two-phase drift is transient.

We continue to assume that the down-crossing function γ is constant. As noted above, b(t,X(·)) = bT (X(t)) if
and only if by time t , the path X(·) has not down-crossed an interval of length γ whose left hand endpoint is larger
than or equal to X(t). Now if the transient diffusion corresponding to LT is such that it almost surely eventually stops
making down-crossings of length γ , then the diffusion in the two-phase environment will eventually stop making
down-crossings of length γ and will eventually be driven just by the transient drift; consequently, it will be transient.
In [11] we proved the following result.

Theorem P2. Consider the diffusion process corresponding to the operator LT .

(i) If bT (x) ≤ 1
2γ

logx + 1
γ

log(2) x for sufficiently large x, then the diffusion almost surely makes γ -down-crossings
for arbitrarily large times;

(ii) If bT (x) ≥ 1
2γ

logx + k
γ

log(2) x, for some k > 1 and for sufficiently large x, then the diffusion almost surely
eventually stops making down-crossings of size γ .

In light of Theorem P2 and the paragraph preceding it, in the case of a constant down-crossing function γ , if bT

satisfies the condition in part (ii) of the theorem, then the diffusion with the two-phase drift is transient, regardless of
what the recurrent drift bR is.

Continuing with a constant down-crossing function γ , we now let the recurrent diffusion be Brownian motion, that
is, bR ≡ 0, and determine what the threshold growth rate is on bT that distinguishes between transience and recurrence
for the diffusion with the two-phase drift.

Theorem 3. Assume that the down-crossing function γ is constant. Let the recurrent diffusion be Brownian motion:
bR ≡ 0.

(i) If bT (x) ≤ 1
2γ

log(2) x + 1
2γ

log(3) x, for large x, then the diffusion with the two-phase drift is recurrent;

(ii) If bT (x) ≥ 1
2γ

log(2) x + k
2γ

log(3) x, for large x, where k > 1, then the diffusion with the two-phase drift is tran-
sient.

Remark. In light of Theorem P2 and Theorem 3, it follows that if the down-crossing function γ is constant, the
recurrent diffusion is Brownian motion, and the transient diffusion has drift bT satisfying

1

2γ
log(2) x + k

2γ
log(3) x ≤ bT (x) ≤ 1

2γ
logx + 1

γ
log(2) x

for large x and some k > 1, then the diffusion with the two-phase drift will be transient, and will alternate infinity
often between the recurrent and the transient regimes.

We now consider the case that the recurrent diffusion is Brownian motion: bR ≡ 0, that the transient drift is con-
stant: bT (x) ≡ b, but we allow the down-crossing function γ to grow with x. We determine the threshold growth
rate on the down-crossing function that distinguishes between transience and recurrence for the diffusion with the
two-phase drift.

Theorem 4. Let the recurrent diffusion be Brownian motion: bR ≡ 0, and let the transient drift be constant:
bT (x) ≡ b.

(i) If the down-crossing function γ satisfies γ (x) ≤ 1
2b

log(2) x + 1
2b

log(3) x, for large x, then the diffusion with the
two-phase drift is recurrent;

(ii) If the down-crossing function γ satisfies γ (x) ≥ 1
2b

log(2) x + k
2b

log(3) x, for large x, where k > 1, then the
diffusion with the two-phase drift is transient.
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We now make one minor and one more significant change in the setup we have used until now. The minor change
is that the diffusion coefficient will be a constant a > 0 instead of 1. The more significant change is that the two-phase
drift b(t, x(·)) will be given by (1.2), with γ > 0 constant, with the transient drift bT replaced by the constant b ≥ 0,
and with the recurrent drift bR replaced by the constant c > 0. (The case b > 0 and c ∈ (0, b) is more in keeping with
the main theme of this paper; namely introducing a slowdown when the process has strayed too far from its running
maximum.) The limiting case c = ∞, described below, is interesting. Thus, we will consider the operator

L = 1

2
a

d2

dx2
+ b

(
t,X(·)) d

dx
,

where b
(
t,X(·)) =

{
b ≥ 0, if X(t) > X∗(t) − γ ;
c > 0, if X(t) ≤ X∗(t) − γ .

(1.4)

The next theorem gives the speed of the diffusion in this two-phase drift.

Theorem 5. Consider the diffusion in the two-phase drift corresponding to the operator L in (1.4). The speed of the
diffusion X(t) with the two-phase drift is given by

lim
t→∞

X(t)

t
=

{(
c(e2bγ /a−1)

c(e2bγ /a−1)+(b−c)(1−e−2bγ /a)

)
b a.s., if b > 0;

ca
2γ c+a

a.s., if b = 0.

Remark. Let d(b, c, γ, a) ≡ c(e2bγ /a−1)

c(e2bγ /a−1)+(b−c)(1−e−2bγ /a)
. In the case c ∈ (0, b), we call d(b, c, γ, a) the damping co-

efficient. It gives the fractional reduction in speed between a classical diffusion with drift b and the slowed down
diffusion with two-phase drift – b when the process is less than distance γ from its running maximum, and c when
the process is at least distance γ from its running maximum. Of course, it is clear that d(b, c, γ, a) must always fall
between c

b
and 1 when c ∈ (0, b). We make the following observations:

1. When b → ∞, the damping coefficient d(b, c, γ, a) converges to 1 exponentially in b;
2. When γ → ∞, d(b, c, γ, a) converges to 1 exponentially in γ ;
3. When c → 0, the damping coefficient d(b, c, γ, a) converges to 0 linearly in c;
4. When c → 0 and γ → ∞, the damping coefficient d(b, c, γ, a) converges to 1 (respectively, converges to 0, remains

bounded away from 0 and 1) if c exp(
2bγ
a

) converges to ∞ (respectively, converges to 0, remains bounded away
from 0 and ∞);

5. When c → 0 and b → ∞, the damping coefficient d(b, c, γ, a) converges to 0 if c exp(
2bγ
a

) remains bounded.
Otherwise, the damping coefficient converges to 0 (respectively, converges to 1, remains bounded away from 0 and
1) if c exp(2bγ /a)

b
converges to 0 (respectively, converges to ∞, remains bounded away from 0 and ∞).

6. The limiting case c = ∞ corresponds to the situation in which the value X∗(t) − γ serves as a reflecting barrier
for X(t); thus, the process can never stray farther than a distance γ from its running maximum. The drift is always
equal to b, but the reflecting barrier at X∗(t) − γ speeds the process up. In the case b > 0, we have

d(b,∞, γ, a) = e2bγ /a − 1

e2bγ /a + e−2bγ /a − 2
= 1 + 1 − e−2bγ /a

e2bγ /a + e−2bγ /a − 2
.

In the case b = 0, we have a Brownian motion that is never allowed to stray farther than a distance γ from its
running maximum; its speed is a

2γ
.

In Section 2, we present some preliminary information on down-crossings. In Section 3, we give an explicit rep-
resentation of the diffusion with a two-phase drift in terms of classical diffusions. In Section 4 we give a workable
analytic criterion for transience/recurrence which depends on an auxiliary discrete time, increasing Markov process.
Sections 5–9 give the proofs of Theorems 1–5.
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2. Preliminaries concerning down-crossings

From the definition of the down-crossing function γ , it follows that x − γ (x) is increasing. Define the stopping time
σγ on continuous paths x(·) : [0,∞) → R with the standard filtration Ft = σ(x(s): 0 ≤ s ≤ t) by

σγ = inf
{
t ≥ 0: ∃s < t with x(t) ≤ x(s) − γ

(
x(s)

)} = inf
{
t ≥ 0: x(t) = x∗(t) − γ

(
x∗(t)

)}
.

The equality above follows from the fact that x − γ (x) is increasing. Let

Lγ = x∗(σγ );
Kγ = x(σγ ) = x∗(σγ ) − γ

(
x∗(σγ )

)
.

In the case that the down-crossing function γ is constant, σγ is the first time that the path x(·) completes a down-
crossing of an interval of length γ . The interval that was down-crossed is [Kγ ,Lγ ]. In [11], for γ constant, Lγ was
called the γ -down-crossed onset location. In this paper, we will use this terminology also for variable γ . We will call
σγ the first γ -down-crossed time. For use a bit later, let τa = inf{t ≥ 0: x(t) = a} denote the first hitting time of the
point a.

Consider now the one-dimensional diffusion process Y(t) which corresponds to the operator LT and which is
transient to +∞. Denote probabilities for the process starting from x by Px . Fixing a point z0, let

uT (x) =
∫ x

z0

exp

(
−

∫ y

z0

2bT (r)dr

)
dy. (2.1)

(The formula in the theorem below is independent of z0, but this specification of z0 will be useful later on.) The
following result was proved in [11].

Theorem P1. For the diffusion process corresponding to LT , and for constant γ , the distribution of the γ -down-
crossed onset location Lγ is given by

Px

(
Lγ > x + y

) = exp

(
−

∫ x+y

x

u′
T (z)

uT (z) − uT (z − γ )
dz

)
, y > 0.

Remark 1. In [11], where the notation is a bit different from here, the mathematical definition of σγ , and consequently
also of Lγ , were written incorrectly. From the verbal description in [11], it is clear that the intended definition of Lγ

is the one given here. All the proofs in [11] are based on the correct definitions given here.

Remark 2. Theorem P2 in Section 1 was proved in [11] as an application of Theorem P1.

The same method of proof used to prove Theorem P1 can be used in the case of variable γ to obtain a corresponding
formula for the distribution of Lγ .

Proposition 1. For the diffusion process corresponding to LT , and for variable γ , the distribution of the γ -down-
crossed onset location Lγ is given by

Px

(
Lγ > x + y

) = exp

(
−

∫ x+y

x

u′
T (z)

uT (z) − uT (z − γ (z))
dz

)
, y > 0.

3. A representation for diffusion with two-phase drift

Consider the diffusion X(t) with the two-phase drift starting from x0. Up until the first γ -down-crossed time σγ , the
process is exactly the Y(·)-process corresponding to the operator LT and starting from x0. We have X(σγ ) = Y(σγ ) =
Kγ and X∗(σγ ) = Y ∗(σγ ) = Lγ , with Lγ distributed as in Proposition 1. Let

τ̂Lγ = inf
{
t ≥ 0: X(σγ + t) = Lγ

}
.
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Then σγ + τ̂Lγ is the first time after σγ that the process X(·) returns to its running maximum Lγ . Let ZR,z,T (t) be

the diffusion starting from z and corresponding to the operator LR,z,T = 1
2

d2

dx2 + bR,z,T (x) d
dx

, where

bR,z,T (x) =
{

bR(x), x ≤ z;
bT (x), x > z.

Then the distribution of {X(σγ + t),0 ≤ t ≤ τ̂Lγ }, conditioned on Kγ = X(σγ ) = z and Lγ = X∗(σγ ) = a, is that
of {ZR,z,T (t),0 ≤ t ≤ τa}. Of course, X(σγ + τ̂Lγ ) = X∗(σγ + τ̂Lγ ) = Lγ . Starting from time σγ + τ̂Lγ , when the
process has returned to its running maximum, X again looks like the Y process, until it again performs a γ -down-
crossing, at which point it becomes a ZR,z,T process for appropriate z until it returns to its running maximum, and
everything is repeated again.

In light of the above description, X(t) can be represented as follows. For each x ∈ R and each n ≥ 1, let Yn,x(·)
be a diffusion process corresponding to the operator LT and starting from x. Make the processes independent for
different pairs (n, x). Similarly, for each z ∈ R and each n ≥ 1, let ZR,z,T ,n(·) be a diffusion process corresponding
to the operator LR,z,T and starting from z. Make the processes independent for different pairs (n, z) and independent
of the Yn,x processes. Let σn,x

γ denote the first γ -down-crossing time for the process Yn,x , and let τ
n,z
a denote the

first hitting time of a for the process ZR,z,T ,n. Let L
γ

0 = x0 and then by induction, for n ≥ 1, define L
γ
n to be the

γ -down-crossed onset location for Yn,L
γ

n−1 . For n ≥ 1, let K
γ
n correspond to L

γ
n as Kγ corresponds to Lγ . Then X(·)

can be represented as

X(t) = Y 1,x0(t), 0 ≤ t ≤ σ 1,x0
γ ;

(3.1)
X(t) = ZR,K

γ

1 ,T ,1(t), σ 1,x0
γ ≤ t ≤ σ 1,x0

γ + τ
1,K

γ

1

L
γ

1
,

and for n ≥ 2,

X

(
n−1∑
j=1

σ
j,L

γ

j−1
γ +

n−1∑
j=1

τ
j,K

γ
j

L
γ
j

+ t

)
= Yn,L

γ
n−1(t), 0 ≤ t ≤ σ

n,L
γ

n−1
γ ;

(3.2)

X

(
n∑

j=1

σ
j,L

γ

j−1
γ +

n−1∑
j=1

τ
j,K

γ
j

L
γ
j

+ t

)
= ZR,K

γ
n ,T ,n(t), 0 ≤ t ≤ τ

n,K
γ
n

L
γ
n

.

From the above representation, it is clear that existence and uniqueness for (1.3) follows from the standard theory for
classical diffusion processes.

At those times s when X(s) is running as a Yn,L
γ

n−1(·)-process, for some n ≥ 1, we will say that X(·) is in the
Y -mode, and at those times s when X(s) is running as a ZR,K

γ
n ,T ,n(·)-process, for some n ≥ 1, we will say that X(·)

is in the Z-mode. We denote by Px0 probabilities corresponding to the diffusion X(t) with the two-phase drift starting
from x0, and by Ex0 the corresponding expectation.

Note that {Lγ
n }∞n=0 is a monotone increasing Markov process whose transition distribution from a state x is the

distribution of Lγ in Proposition 1. That is, the transition probability measure p(x, ·) is given by

p
(
x, [x + y,∞)

) = exp

(
−

∫ x+y

x

u′
T (z)

uT (z) − uT (z − γ (z))
dz

)
, for y ≥ 0. (3.3)

We will use the notation P L
x0

to denote probabilities for this discrete time Markov process and will denote the
corresponding expectation by EL

x0
. The times {Lγ

n }∞n=0 will be called “regeneration” points for X(·) because the

Px0 -distribution of {X(
∑n−1

j=1 σ
j,L

γ

j−1
γ + ∑n−1

j=1 τ
j,K

γ
j

L
γ
j

+ t),0 ≤ t < ∞} given that L
γ

n−1 = a is the same as the Pa-

distribution of {X(t),0 ≤ t < ∞}.
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4. A transience/recurrence criterion

From the construction in Section 3, the well-known equivalent alternative conditions for transience/recurrence, which
hold for standard non-degenerate diffusion processes [10], are easily seen to hold for diffusions with a two-phase drift.
Since it is clear that the process is either transient to +∞ or recurrent, we can use the following criterion:

Transience: for some pair of points z0 < x0, one has Px0(τz0 = ∞) > 0;
(4.1)

Recurrence: for some pair of points z0 < x0, one has Px0(τz0 = ∞) = 0.

We choose the point z0 so that z0 < x0 − γ (x0). Then it follows from the representation of the process X(·) that
at time τz0 the process is in the Z-mode. Using this with the regeneration structure noted at the end of the previous
section, it follows that

Px0(τz0 = ∞) = EL
x0

G
({

L
γ
n

}∞
n=1

)
, (4.2)

where for any non-decreasing sequence {an}∞n=1 satisfying a1 ≥ x0, we define

G
({an}∞n=1

) =
∞∏

n=1

P
R,an−γ (an),T

an−γ (an) (τan < τz0), (4.3)

and where P
R,z,T
z denotes probabilities for a ZR,z,T -processes starting at z. From (4.2) we conclude that Px0(τz0 =

∞) = 0 if and only if G({Lγ
n }∞n=1) = 0 a.s. P L

x0
; thus, from (4.3) we have

Px0(τz0 = ∞) = 0 if and only if
∞∑

n=1

(
P

R,L
γ
n −γ (L

γ
n ),T

L
γ
n −γ (L

γ
n )

(τz0 < τL
γ
n
)
) = ∞ a.s. P L

x0
. (4.4)

As is well known [10], the function v(x) ≡ P
R,z,T
x (τz0 < τz+c), for z0 ≤ x ≤ z+c, satisfies LR,z,T v = 0 in (z0, z)∪

(z, z + c), v(z0) = 1, v(z + c) = 0, v(z−) = v(z+), and v′(z−) = v′(z+). Solving this, one finds that P
R,z,T
z (τz0 <

τz+c) = v(z) is given by

P R,z,T
z (τz0 < τz+c)

= exp(− ∫ z

z0
(2bR)(y)dy)

∫ z+c

z
dy exp(− ∫ y

z
2bT (r)dr)∫ z

z0
dy exp(− ∫ y

z0
2bR(r)dr) + exp(− ∫ z

z0
(2bR)(y)dy)

∫ z+c

z
dy exp(− ∫ y

z
2bT (r)dr)

. (4.5)

Analogous to uT in (2.1), define the function

uR(x) =
∫ x

z0

exp

(
−

∫ y

z0

2bR(r)dr

)
dy. (4.6)

We then rewrite the somewhat unwieldy equation (4.5), which would become a lot more unwieldy below, in the form

P R,z,T
z (τz0 < τz+c) = u′

R(z)(uT (z + c) − uT (z)) exp(
∫ z

z0
2bT (y)dy)

uR(z) + u′
R(z)(uT (z + c) − uT (z)) exp(

∫ z

z0
2bT (y)dy)

. (4.7)

From (4.1), (4.4) and (4.7), we obtain the following transience/recurrence criterion for the diffusion with the two-
phase drift.

Proposition 2. Define

H(s) = u′
R(s − γ (s))(uT (s) − uT (s − γ (s))) exp(

∫ s−γ (s)

z0
2bT (y)dy)

uR(s − γ (s)) + u′
R(s − γ (s))(uT (s) − uT (s − γ (s))) exp(

∫ s−γ (s)

z0
2bT (y)dy)

. (4.8)
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Let {Lγ
n }∞n=0 be the monotone increasing Markov process with L

γ

0 = x0 and transition probability measure p(x, ·)
given by (3.3). If

∞∑
n=0

H
(
L

γ
n

) = ∞ a.s., (4.9)

then the diffusion with the two-phase drift is recurrent. Otherwise, it is transient.

5. Proof of Theorem 1

By the Ikeda–Watanabe comparison theorem [6], if we prove recurrence for the diffusion with the two-phase drift
whose recurrent drift bR is replaced by the drift bR ∨ 0, then original diffusion with the two-phase drift is also
recurrent. By assumption, the drift bR ∨ 0 is also a recurrent drift. Thus, we may assume without loss of generality
that the recurrent drift bR is non-negative.

Since bT ≡ b, we have from (2.1) that

uT (x) = 1

2b

(
1 − exp

(−2b(x − z0)
))

.

Using this along with the fact that γ is constant, we have

(
uT (s) − uT

(
s − γ (s)

))
exp

(∫ s−γ (s)

z0

2bT (y)dy

)
= 1

2b

(
1 − exp(−2bγ )

) ≡ cb,γ , (5.1)

and thus the formula for H(s) in (4.8) simplifies to

H(s) = cb,γ u′
R(s − γ )

uR(s − γ ) + cb,γ u′
R(s − γ )

. (5.2)

From (4.6), it follows that uR is increasing, and by the assumption that bR is non-negative, it follows that u′
R is

non-increasing. Thus, H is non-increasing.
We also have

u′
T (z)

uT (z) − uT (z − γ (z))
= 1

cb,γ exp(2bγ )
≡ 1

db,γ

, (5.3)

and thus the increment measure p(x, x + A), A ⊂ [0,∞), corresponding to the transition probability measure p(x, ·)
in (3.3) for the Markov process {Lγ

n }∞n=0 is independent of x and is equal to the exponential density with parame-
ter 1

db,γ
. Consequently, L

γ
n − L

γ

0 is the sum of n IID exponential random variables with the above parameter, and
thus

lim
n→∞

L
γ
n

n
= db,γ a.s. (5.4)

Using (5.4) along with the fact that H is non-increasing, if we show that
∑∞

n=1 H((db,γ + 1)n) = ∞, then it follows
that

∑∞
n=1 H(L

γ
n ) = ∞ a.s., and consequently, from Proposition 2 we conclude that the diffusion with the two-phase

drift is recurrent. Since u′
R is non-increasing and uR is increasing, it is easy to see from (5.2) that

∑∞
n=1 H((db,γ +

1)n) = ∞ if and only if
∑∞

n=1 Ĥ ((db,γ + 1)n) = ∞, where Ĥ = u′
R(s−γ )

uR(s−γ )
. Since Ĥ is monotone, it follows that∑∞

n=1 Ĥ ((db,γ + 1)n) = ∞ if and only if
∫ ∞ u′

R(s)

uR(s)
ds = ∞, that is, if and only if lims→∞ uR(s) = ∞. But this last

inequality holds from (4.6) and (1.1) since bR is a recurrent drift.
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6. Proof of Theorem 2

As in the proof of Theorem 1, the random variables {Lγ
n −L

γ

n−1}∞n=1 are IID and distributed according to the exponen-

tial distribution with parameter 1
db,γ

, and the function H is given by (5.2). In order to show transience, by Proposition 2,

we need to show that
∑∞

n=0 H(L
γ
n ) < ∞ with positive probability. Recalling (4.6) and (1.1), to complete the proof,

we will construct a function uR which satisfies uR > 0, u′
R > 0 and limx→∞ uR(x) = ∞, and for which the above

sum is almost surely finite. (The corresponding drift bR will then be given by − u′′
R

2uR
.)

For j ≥ 2, define the interval Ij = [x0 −γ +j, x0 −γ +j + 1
j2 ]. Without loss of generality, assume that x0 −γ +2 ≥

0. We now show that

P L
x0

(
L

γ
n − γ ∈

∞⋃
j=2

Ij

)
≤ c

n2
(6.1)

for some c > 0. The distribution of L
γ
n − x0 is that of the sum of n IID exponential random variables with parameter

λ ≡ 1
db,γ

. Thus, its density function is λnxn−1

(n−1)! exp(−λx), x ≥ 0. For an appropriate constant C > 1, we then have for
n ≥ 3,

P L
x0

(
L

γ
n − γ ∈

∞⋃
j=2

Ij

)
=

∞∑
j=2

∫
Ij

λnxn−1

(n − 1)! exp(−λx)dx

≤ C

∫ ∞

0

λnxn−3

(n − 1)! exp(−λx)dx = Cλ3

(n − 1)(n − 2)
. (6.2)

Now (6.1) follows from (6.2).
We now construct a positive, strictly increasing C2-function uR whose derivative on R − ⋃∞

j=2 Ij is uniformly

bounded, and which satisfies uR(x) ≥ x2, for x ≥ 2. (Of course, to have this quadratic growth, u′
R must get very

large at certain places on
⋃∞

j=2 Ij .) By the law of large numbers, limn→∞ L
γ
n

n
= db,γ a.s. By (6.1) and the lemma of

Borel–Cantelli, P L
x0

(L
γ
n − γ ∈ ⋃∞

j=2 Ij i.o.) = 0. Using the facts noted in this paragraph, we conclude that

∞∑
n=0

H
(
L

γ
n

) =
∞∑

n=0

cb,γ u′
R(L

γ
n − γ )

uR(L
γ
n − γ ) + cb,γ u′

R(L
γ
n − γ )

< ∞ a.s.

7. Proof of Theorem 3

Since bR = 0, we have from (4.6) that uR(x) = x − z0. Also, γ is constant. Thus, from (4.8), we have

H(s) =
∫ s

s−γ
dy exp(− ∫ y

s−γ
2bT (r)dr)

s − γ − z0 + ∫ s

s−γ
dy exp(− ∫ y

s−γ
2bT (r)dr)

. (7.1)

By comparison, it suffices to consider the case that

bT (x) = 1

2γ
log(2) x + k

2γ
log(3) x

for x ≥ z0, with z0 large enough so that log(3) z0 is defined. We need to show transience for k > 1 and recurrence for
k = 1. In what follows, we will always assume that k ≥ 1.

We have

(y − s + γ ) log(j)(s − γ ) ≤
∫ y

s−γ

log(j) r dr ≤ (y − s + γ ) log(j) s, s − γ ≤ y ≤ s. (7.2)
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Thus,

γ − o(1/log s)

log(2) s + k log(3) s
≤

∫ s

s−γ

dy exp

(
−

∫ y

s−γ

2bT (r)dr

)

≤ γ

log(2)(s − γ ) + k log(3)(s − γ )
, as s → ∞. (7.3)

From (7.1) and (7.3) we conclude that there exist constants C1,C2 > 0 such that

C1

s log(2) s
≤ H(s) ≤ C2

s log(2) s
for large s. (7.4)

We now investigate the growth rate of the Markov process {Lγ
n }∞n=0. Recall that given L

γ

j = x, the distribution of

L
γ

j+1 − L
γ

j is the distribution given in (3.3). From (2.1) we have

u′
T (x)

uT (x) − uT (x − γ )
= exp(− ∫ x

z0
2bT (r)dr)∫ x

x−γ
dy exp(− ∫ y

z0
2bT (r)dr)

= exp(− ∫ x

x−γ
2bT (r)dr)∫ x

x−γ
dy exp(− ∫ y

x−γ
2bT (r)dr)

. (7.5)

From (7.2) and the definition of bT , we have

c1

(logx)(log(2) x)k
≤ exp

(
−

∫ x

x−γ

2bT (r)dr

)
≤ c2

(logx)(log(2) x)k
for large x

for constants c1, c2 > 0. Using this with (7.3) and (7.5), we conclude that there exist constants C3,C4 > 0 such that

C3

(logx)(log(2) x)k−1
≤ u′

T (x)

uT (x) − uT (x − γ )
≤ C4

(logx)(log(2) x)k−1
for large x. (7.6)

We now prove recurrence in the case that k = 1. Let {xn}∞n=0 be a sequence of positive numbers with x0 sufficiently
large so that the bound in (7.6) holds for x ≥ x0, and let sn = ∑n

j=0 xj . We have
∫ sn
sn−1

1
log z

dz ≥ xn

log sn
. Using this with

(7.6) and (3.3), we have

P L
x0

(
L

γ
n − L

γ

n−1 ≤ xn|Lγ

n−1 ≤ sn−1
) ≥ 1 − exp

(
− C3xn

log sn

)
, n ≥ 1. (7.7)

Fix a large number M . With x0 as above, we wish to select the sequence {xn}∞n=0 so that

C3xn

log sn
= 2 log(n + M) for n ≥ 1. (7.8)

We suppress the dependence of this sequence on M in the sequel. For the sequence {xn}∞n=0 satisfying (7.8), it follows
from (7.7) that

P L
x0

(
L

γ
n ≤ sn for all n

) ≥ 1 −
∞∑

n=1

1

(n + M)2
. (7.9)

Now (7.8) is a difference equation corresponding to the differential equation

C3S
′(t)

logS(t)
= 2 log(t + M), t ≥ 1. (7.10)
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Integrating, it follows that

C3S(t)

logS(t)
≤ 2(t + M)

(
log(t + M) − 1

) + c (7.11)

for some constant c. If one substitutes 3
C3

(t + M)(log(t + M))2 for S(t) in the left hand side of (7.11), one finds that
the resulting expression is larger than the right hand side of (7.11) for large t . Since the left hand side of (7.11) is
increasing as a function of S(t) (for S(t) ≥ e), it follows that S(t) ≤ 3

C3
(t + M)(log(t + M))2, for sufficiently large t .

It then follows that the solution {sn}∞n=0 to (7.8) satisfies

sn ≤ ŝn ≡ C(n + M)
(
log(n + M)

)2
, n ≥ 1 (7.12)

for some C > 0.
Now from (7.9) and (7.12) we can conclude that with probability at least 1 − ∑∞

n=1
1

(n+M)2 , we have L
γ
n ≤

C(n + M)(log(n + M))2, for all n. However, this is not good enough to prove recurrence when k = 1. In fact
though, from (7.7), (7.9) and (7.12), we conclude that with probability at least 1 − ∑∞

n=1
1

(n+M)2 , {Lγ
n }∞n=1 is no

larger than {L̂γ
n }∞n=1, where L̂

γ
n = x0 + ∑n

i=1 Ẑi , and {Ẑn}∞n=1 is a sequence of independent random variables with

Ẑn ∼ Exp(
C3

log ŝn
). By Kolmogorov’s strong law and (7.12), it follows that L̂

γ
n∑n

j=1 log ŝj
almost surely converges to 1

C3
.

Using this with (7.12), it follows that {L̂γ
n }∞n=1 almost surely grows on the order n logn. Consequently, with probabil-

ity at least 1 − ∑∞
n=1

1
(n+M)2 , {Lγ

n }∞n=0 grows on an order no larger than n logn. Using this with (7.4), it follows that∑∞
n=0 H(L

γ
n ) = ∞, with probability at least 1 − ∑∞

n=1
1

(n+M)2 . But as M is arbitrary, we conclude that this occurs
with probability one, and thus by Proposition 2, we conclude that the diffusion with the two-phase drift is recurrent.

We now assume that k > 1 and prove transience. Chose x0 sufficiently large so that the bound in (7.6) holds for
x ≥ x0. From (7.6) and (3.3), we have

P L
x0

(
L

γ

n+1 − L
γ
n ≥ x|Lγ

n

) ≥ exp

(
− C4x

(logL
γ
n )(log(2) L

γ
n )k−1

)
. (7.13)

Thus, it follows from the law of large numbers that

lim
n→∞

1

n

∣∣∣∣
{
j ≤ n: L

γ

j+1 − L
γ

j ≥ (logL
γ

j )(log(2) L
γ

j )k−1

C4

}∣∣∣∣ ≥ e−1, a.s. (7.14)

The above inequality states that, asymptotically, at least the fraction 1
e of the increments L

γ

j+1 − L
γ

j will be of

size at least
(logL

γ
j )(log(2) L

γ
j )k−1

C4
. As such, it provides a lower bound on the growth rate of {Lγ

n }∞n=0. Since the function
(logy)(log(2) y)k−1

C4
is increasing in y, the “worst case” scenario resulting in the least growth would occur if out of the first

n increments, the first [n
e ] increments satisfied the above condition, and the rest did not. We can thus get a lower bound

on the growth rate as follows. Making sure that x0 > e, so that log(2) x0 > 0, let {xn}∞n=0 be the sequence defined by

xn+1 = (log sn)(log(2) sn)
k−1

C4
, n ≥ 0, (7.15)

where sn = ∑n
j=0 xj . Then it follows from (7.14) that

P
γ
x0

(
L

γ
n ≥ s[n/(2e)] for all large n

) = 1. (7.16)

As we did in the recurrent case, we analyze the growth rate of {sn}∞n=0 by looking at the growth rate of the differ-
ential equation associated with the above difference equation for {sn}∞n=0. The differential equation is

S′(t)
(logS(t))(log(2) S(t))k−1

= 1

C4
.
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Integrating this, the leading order term on the left is S(t)

(logS(t))(log(2) S(t))k−1 , and thus, for large S(t), we have

2S(t)

(logS(t))(log(2) S(t))k−1
≥ 1

C4
t + c (7.17)

for some constant c. If one substitutes 1
2C4

t (log t)(log(2) t)k−1 for S(t) in (7.17), one finds that the resulting expression
is smaller than the right hand side of (7.17) for large t . Since the left hand side of (7.17) is increasing as a function of
S(t) (for S(t) sufficiently large), it follows that S(t) ≥ 1

2C4
t (log t)(log(2) t)k−1, for sufficiently large t . It then follows

that the solution {sn}∞n=0 to (7.15) satisfies

sn ≥ Cn(logn)
(
log(2) n

)k−1
, n ≥ 3 (7.18)

for some C > 0. We conclude from (7.16) and (7.18) that

P
γ
x0

(
L

γ
n ≥ C0n(logn)

(
log(2) n

)k−1 for all large n
) = 1 (7.19)

for some C0 > 0. From (7.19) and (7.4), it follows that
∑∞

n=0 H(L
γ
n ) < ∞ a.s., and thus by Proposition 2, we conclude

that the diffusion with the two-phase drift is transient.

8. Proof of Theorem 4

By comparison, it suffices to consider the case that γ (x) = 1
2b

log(2) x + k
2b

log(3) x, for x ≥ x0, with x0 large enough
so that log(3) x0 is defined. We need to show recurrence in the case that k = 1, and transience in the case that k > 1.

Since bT ≡ b, we have similar to (5.1),

(
uT (s) − uT

(
s − γ (s)

))
exp

(∫ s−γ (s)

z0

2bT (y)dy

)
= 1

2b

(
1 − exp

(−2bγ (s)
))

. (8.1)

Since bR = 0, we have from (4.6) that uR(x) = x − z0. Thus, from (4.8) we have

H(s) = 1 − exp(−2bγ (s))

2b(s − z0 − γ (s)) + 1 − exp(−2bγ (s))
. (8.2)

Since γ (s) = o(s), we conclude from (8.2) that there exist constants C1,C2 > 0 such that

C1

s
≤ H(s) ≤ C2

s
for large s. (8.3)

We now investigate the growth rate of the Markov process {Lγ
n }∞n=0. Recall that given L

γ

j = x, the distribution of

L
γ

j+1 −L
γ

j is the distribution given in (3.3). Since bT ≡ b, we have from (2.1) that uT (x) = 1
2b

(1−exp(−2b(x−z0))).

Thus,

u′
T (z)

uT (z) − uT (z − γ (z))
= 2b

exp(2bγ (z)) − 1
.

Plugging into this equation the formula for γ (z) given above, we have

u′
T (z)

uT (z) − uT (z − γ (z))
= 2b

(log z)(log(2) z)k − 1
. (8.4)

It was shown in the proof of Theorem 3 that if (7.6) holds, then {Lγ
n }∞n=0 grows at least on the order n logn(log(2) n)k−1.

Thus, comparing (8.4) with (7.6), it follows that in the case at hand {Lγ
n }∞n=0 grows at least on the order
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n logn(log(2) n)k . The same method of proof used to prove that if (7.6) holds with k = 1, then {Lγ
n }∞n=0 grows on

an order no larger than n logn, also shows that if (7.6) holds with k > 1, then {Lγ
n }∞n=0 grows on an order no larger

than n logn(log(2) n)k−1. Thus, again comparing (8.4) with (7.6), it follows that in the case at hand {Lγ
n }∞n=0 grows

on an order no larger than n logn(log(2) n)k . We conclude that {Lγ
n }∞n=0 grows exactly on the order n logn(log(2) n)k .

Using this with (8.3), it follow from Proposition 2 that the diffusion with the two-phase drift is recurrent if k = 1 and
transient if k > 1.

9. Proof of Theorem 5

Recall that the first γ -down-crossed time for the process X(t) is given by

σγ = inf
{
t ≥ 0: ∃s < t with X(t) ≤ X(s) − γ

(
X(s)

)} = inf
{
t ≥ 0: X(t) = X∗(t) − γ

(
X∗(t)

)}
,

and is a stopping time. Recall that X∗(σγ ) has been denoted by Lγ and that

τ̂Lγ = inf
{
t ≥ 0: X(σγ + t) = Lγ

}
is the first time after σγ that the process X(·) returns to its running maximum Lγ . Thus, the process X(·) increases
from x0 to Lγ from time 0 to time σγ + τ̂Lγ . At the regeneration point Lγ at time σγ + τ̂Lγ , everything begins anew
according to the same rules, and also, according to the same distribution, since the two phases of the drift are constants
and thus independent of location. If follows from this and the law of large numbers, and the standard technique to go
from stopping times to deterministic times, that

lim
t→∞

X(t)

t
= Ex0L

γ − x0

Ex0(σγ + τ̂Lγ )
a.s. (9.1)

We will prove the theorem for the case b > 0. After the proof, we briefly comment on the change needed to treat
the case b = 0. Recall from the construction in Section 3 that X(t) is in the Y -mode up until time σγ . Then from
time σγ until time σγ + τ̂Lγ it is in the Z-mode. Under the assumption of the theorem, the Y -mode corresponds to
Brownian motion with a constant drift b. It follows from Doob’s optional stopping theorem that X(t ∧σγ )−b(t ∧σγ )

is a martingale. Taking expectations, we obtain

Ex0X(σγ ∧ t) = x0 + bEx0σγ ∧ t. (9.2)

There exists a constant p0 > 0 such that a Brownian motion with constant drift b and starting from any x has proba-
bility p0 of downcrossing the interval [x − γ, x] within one unit of time. Thus, it follows that there exists a constant
c0 ∈ (0,1) such that

Px0(σγ > t) ≤ ct
0 for t ≥ 1. (9.3)

We have

Ex0

(
X(σγ ∧ t);σγ > t

) = Ex0

(
X(t);σγ > t

) ≤ (
Ex0X

2(t)
)1/2(Px0(σγ > t)

)1/2
. (9.4)

By comparison, X(t) under Px0 is stochastically dominated by x0 + √
aW(t) + bt , where W is a standard Brownian

motion; thus,

Ex0X
2(t) ≤ x2

0 + at + b2t + 2x0bt. (9.5)

Letting t → ∞ in (9.2), and using (9.3)–(9.5), we obtain

Ex0X(σγ ) = x0 + bEx0σγ . (9.6)
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In the case at hand, where the diffusion coefficient is a instead of 1, the function uT is given by
∫ x

z0
exp(−∫ y

z0

2b
a

dt)=
a
2b

(1 − exp(− 2b
a

(x − z0))). Similar to (5.1) and (5.3), it follows that under Ex0 , Lγ − x0 is distributed according to an
exponential distribution with parameter 2b

a exp(2bγ /a)−1 ; thus

Ex0L
γ = x0 + a(exp(2bγ /a) − 1)

2b
. (9.7)

Using (9.6) and (9.7), along with the fact that Lγ = X(σγ ) + γ , we have

Ex0σγ = 1

b

(
a(exp(2bγ /a) − 1)

2b
− γ

)
. (9.8)

We now evaluate Ex0 τ̂Lγ . From the definition of the process and the fact that the two drift phases are constants and
thus independent of location, it follows that under Ex0 , the distribution of τ̂Lγ is the distribution of the first hitting time

of γ by the diffusion process starting at 0 and corresponding to the operator La;c,0,b ≡ 1
2a d2

dx2 + bc,0,b(x) d
dx

, where

bc,0,b(x) is equal to b when x > 0 and is equal to c when x ≤ 0. Let E
a;c,0,b
0 denote the expectation for this diffusion

starting from 0. So

Ex0 τ̂Lγ = E
a;c,0,b
0 τγ . (9.9)

We have E
a;c,0,b
0 τγ = limN→∞ E

a;c,0,b
0 τγ ∧ τ−N . As is well-known [10], E

a;c,0,b
0 τγ ∧ τ−N = vN(0), where vN

solves the equation

La;c,0,bvN = −1 in (−N,0) ∪ (0, γ );
vN(−N) = vN(γ ) = 0;
vN

(
0−) = vN

(
0+)

, v′
N

(
0−) = v′

N

(
0+)

.

Solving this, we obtain

vN(y) =
{

aAN

2c

(
exp

( 2cN
a

) − exp
(− 2cy

a

)) − y+N
c

, −N ≤ y ≤ 0;
aDN

2b

(
exp

(− 2bγ
a

) − exp
(− 2by

a

)) + γ−y
b

, 0 ≤ y ≤ γ ,

where

AN =
(

γ

b
+ N

c
+ a(b − c)

2b2c

(
1 − exp

(
−2bγ

a

)))/(
a

2c

(
exp

(
2cN

a

)
− 1

)
+ a

2b

(
1 − exp

(
−2bγ

a

)))
;

DN = AN + 1

b
− 1

c
.

From this we obtain

E
a;c,0,b
0 τγ = lim

N→∞vN(0) = γ

b
+ a(b − c)

2b2c

(
1 − exp

(
−2bγ

a

))
,

and thus from (9.9),

Ex0 τ̂Lγ = γ

b
+ a(b − c)

2b2c

(
1 − exp

(
−2bγ

a

))
. (9.10)

The theorem for the case b > 0 now follows from (9.1), (9.7), (9.8) and (9.10).
In the case b = 0, to calculate the right hand side of (9.1), one computes Ex0L

γ and Ex0 τ̂Lγ by the same method
used above in the case b > 0. To compute Ex0σγ , one uses the martingale X2(σγ ∧ t)−σγ ∧ t . instead of the martingale
X(t ∧ σγ ) − b(t ∧ σγ ).
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