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Abstract. We encode the genealogy of a continuous-state branching process associated with a branching mechanism Ψ – or Ψ -
CSBP in short – using a stochastic flow of partitions. This encoding holds for all branching mechanisms and appears as a very
tractable object to deal with asymptotic behaviours and convergences. In particular we study the so-called Eve property – the
existence of an ancestor from which the entire population descends asymptotically – and give a necessary and sufficient condition
on the Ψ -CSBP for this property to hold. Finally, we show that the flow of partitions unifies the lookdown representation and the
flow of subordinators when the Eve property holds.

Résumé. Nous construisons la généalogie d’un processus de branchement à espace d’états et temps continus associé à un méca-
nisme de branchement Ψ – ou Ψ -CSBP – à l’aide d’un flot stochastique de partitions. Cette construction est valable quel que soit le
mécanisme de branchement et permet de définir un objet remarquablement efficace pour étudier les comportements asymptotiques
et les convergences. En particulier, nous étudions la propriété d’Eve – l’existence d’un ancêtre dont descend asymptotiquement
toute la population – et donnons une condition nécessaire et suffisante sur le Ψ -CSBP pour que cette propriété soit vérifiée. Fina-
lement, nous montrons que le flot de partitions unifie la représentation lookdown et le flot de subordinateurs lorsque la propriété
d’Eve est vérifiée.
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1. Introduction

A continuous-state branching process (CSBP for short) is a Markov process (Zt , t ≥ 0) that takes its values in [0,+∞]
and fulfils the branching property: for all z, z′ ∈ [0,+∞], (Zt +Z′t , t ≥ 0) is a CSBP, where (Zt , t ≥ 0) and (Z′t , t ≥ 0)

are two independent copies started from z and z′ respectively. Such a process describes the evolution of an initial
population size Z0, and the branching property implies that two disjoint subpopulations have independent evolutions.
To alleviate notation, we will implicitly consider an initial population size Z0 = 1. A CSBP has a Feller semigroup
entirely characterized by a convex function Ψ called its branching mechanism, so we will write Ψ -CSBP to designate
the corresponding distribution. The Feller property entails the existence of a càdlàg modification, still denoted (Zt , t ≥
0) and thus allows to define the lifetime of Z as the stopping time

T := inf
{
t ≥ 0: Zt /∈ (0,∞)

}
with the convention inf ∅=∞. The denomination lifetime is due to the simple fact that both 0 and ∞ are absorbing
states.
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The process Z can be seen as the total-mass of a measure-valued process (mt , t ∈ [0,T)) on [0,1] (or any com-
pact interval), started from the Lebesgue measure on [0,1] and such that for all x ∈ [0,1], (mt ([0, x]), t ≥ 0) and
(mt ((x,1]), t ≥ 0) are two independent Ψ -CSBP corresponding to the sizes of the subpopulations started from [0, x]
and (x,1] respectively. The process m is called a measure-valued branching process or Ψ -MVBP for short. Note that
when ZT =∞, the measure is no longer finite and therefore we set mT =�, see Section 2.3 for further details.

Definition 1.1. We say that the branching mechanism Ψ satisfies the Eve property if and only if there exists a random
variable e in [0,1] such that

mt (dx)

mt ([0,1]) −→t↑T
δe(dx) a.s. (1)

in the sense of weak convergence of probability measures. The r.v. e is called the primitive Eve of the population.

This property means that a fraction asymptotically equal to 1 of the population descends from a single individual
located at e as t gets close to the lifetime T. This property seems to have never been studied before, except by
Tribe [26] in the case of the Feller diffusion with a spatial motion. From the branching property, we will show that
e is necessarily uniform[0,1], when the Eve property is verified. The goal of the present paper is to study this Eve
property in connection with the genealogy of the Ψ -CSBP. Note that the complete classification of the asymptotic
behaviour of mt (dx)

mt ([0,1]) will be provided in a forthcoming work [12].
A CSBP describes the evolution of the population size, but does not provide clear information on the genealogy.

In recent years, several approaches have been proposed to study the genealogical structure: one can cite the historical
superprocess of Dawson and Perkins [10], the continuum random tree introduced by Aldous in [1], the Lévy trees of
Le Gall, Le Jan and Duquesne [13,23], we also refer to [5,16,17] for the genealogy of related population models. This
paper presents a new object, called a stochastic flow of partitions associated with a branching mechanism, that unifies
two well-known approaches: the flow of subordinators of Bertoin and Le Gall [4] and the lookdown representation
of Donnelly and Kurtz [11]. Let us mention that this object focuses on the genealogical structure, and does not pay
attention to the genetic types carried by the individuals: hence it would not be appropriate to deal with more elaborate
models incorporating mutations or spatial motions. We first introduce this object and its relationships with these two
representations, before presenting the connection with the Eve property.

As mentioned above, the population size does not define in itself the genealogy. Therefore we start from a càdlàg
Ψ -CSBP (Zt , t ∈ [0,T)) and enlarge the probability space in order to add more information to this process. This
is achieved by defining a random point process P with values in [0,T)×P∞, where P∞ stands for the space of
partitions of the integers N. To each jump (t,�Zt ) of the CSBP is associated a point (t, �t ) in P such that the random
partition �t is distributed according to the paint-box scheme with mass-partition (�Zt

Zt
,0,0, . . .), see Section 2.1 for

a precise definition of the paint-box scheme. The genealogical interpretation is the following: (t,�Zt ) corresponds
to a reproduction event where a parent, chosen uniformly among the population alive at time t−, gives birth to a
subpopulation of size �Zt ; therefore a fraction �Zt

Zt
of the individuals at time t descends from this parent. In addition,

when Z has a diffusion part, P contains points of the form (t,1{i,j}) that model binary reproduction events, that is,
events where an individual i at time t− is the parent of two individuals i and j at time t , the partition 1{i,j} having a
unique non-singleton block {i, j}, with i < j . A precise definition of the point process P will be given in Section 3.2,
but it should be seen as an object that collects all the elementary reproduction events as time passes.

We then introduce a collection of random partitions (Π̂s,t ,0≤ s ≤ t < T) by “composing” the partitions contained
in P . In order not to burden this introduction, we do not provide the precise definition of these partitions but, roughly
speaking, Π̂s,t is the result of the composition forward-in-time of all the elementary reproduction events provided by
P on the interval (s, t]. Therefore the partitions collect the following information

• Backward-in-time: the process s 	→ Π̂t−s,t gives the genealogy of the population alive at time t .
• Forward-in-time: the process s 	→ Π̂t,t+s gives the descendants of the population alive at time t .

(Π̂s,t ,0≤ s ≤ t < T) is called a Ψ flow of partitions and Z its underlying Ψ -CSBP.
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Connection with the lookdown representation

This object is intimately related to the lookdown representation of Donnelly and Kurtz [11]. A lookdown process is a
particle system entirely characterized by a sequence of initial types, that provides a sampling of the initial population,
and a so-called lookdown graph, that stands for the genealogical structure. In a previous work [22], we showed that
the flow of partitions formalizes and clarifies the notion of lookdown graph which was implicit in the lookdown
construction of Donnelly and Kurtz [11]. To complete the picture of the lookdown construction, note that the limiting
empirical measure of the particle system at time t , say Ξt , is a probability measure such that the process Z ·Ξ is a
Ψ -MVBP, see Section 3 for further details.

Connection with the flow of subordinators

It is well-known that the process x 	→ mt ([0, x]) is a subordinator whose Laplace exponent ut (·) is related to the
branching mechanism Ψ via forthcoming Eq. (7). In addition, the branching property ensures that mt+s is obtained
by composing the subordinator mt with an independent subordinator distributed as ms . This is the key observation
that allowed Bertoin and Le Gall [4] to describe the genealogy of the Ψ -MVBP with a collection of subordinators.
Formally, a Ψ flow of subordinators (Ss,t (a),0≤ s ≤ t, a ≥ 0) is a collection of random processes that verify

• For every 0≤ s ≤ t , (Ss,t (a), a ≥ 0) is a subordinator with Laplace exponent ut−s .
• For every integer p ≥ 2 and 0≤ t1 ≤ · · · ≤ tp , the subordinators St1,t2 , . . . ,Stp−1,tp are independent and

St1,tp (a)= Stp−1,tp ◦ · · · ◦ St1,t2(a) ∀a ≥ 0 a.s. (cocycle property).

• For all a ≥ 0, (S0,t (a), t ≥ 0) is a Ψ -CSBP started from a.

Each subordinator [0,1] � x 	→ S0,t (x) can be seen as the distribution function of a random measure m0,t on [0,1] so
that (m0,t , t ≥ 0) forms a Ψ -MVBP. In particular, St := S0,t (1) is its total-mass process and one can define TS as its
lifetime. Hence, all the relevant information about this initial population [0,1] is contained into the flow (Ss,t (a),0≤
s ≤ t,0 ≤ a ≤ Ss). Fix 0 ≤ s < t < TS and consider a point a ∈ [0,Ss] such that Ss,t (a) − Ss,t (a−) > 0. Bertoin
and Le Gall interpreted a as an ancestor alive at time s and Ss,t (a) − Ss,t (a−) as its progeny alive at time t . We
show that our collection of partitions actually formalizes this genealogical structure. To state this result we use the
notation P(Ss,t ) that stands for the paint-box distribution based on the mass-partition obtained from the rescaled

jumps {Ss,t (a)−Ss,t (a−)

St
, a ∈ [0,Ss]} of the subordinator Ss,t , here again we refer to Section 2.1 for a precise definition.

Theorem 1. The collection of partitions (Π̂s,t ,0≤ s ≤ t < T), together with its underlying CSBP Z, satisfies

• For all n≥ 1 and all 0 < t1 < · · ·< tn,

(Zt1 , . . . ,Ztn , Π̂0,t1 , . . . , Π̂tn−1,tn |tn < T)
(d)= (St1, . . . ,Stn ,P(S0,t1), . . . ,P(Stn−1,tn )|tn < TS).

• For all 0≤ r < s < t < T, a.s. Π̂r,t = Coag(Π̂s,t , Π̂r,s) (cocycle property).

Note that the operator Coag is a composition operator for partitions, see Section 4.2 in [2] or Section 2.1 of the
present paper.

Main results

We now study the connection between the Eve property and the genealogy. To alleviate notation, we set Π̂t := Π̂0,t and
let σ be the diffusion coefficient appearing in the branching mechanism Ψ . In addition, we let 1[∞] := {{1,2,3, . . .}}
denote the partition with a unique block containing all the integers.

Theorem 2. There exists an exchangeable partition Π̂T such that Π̂t → Π̂T almost surely as t ↑ T. Moreover, these
three assumptions are equivalent
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(i) Ψ satisfies the Eve property.
(ii) Π̂T = 1[∞] a.s.

(iii)
∑

{s<T:�Zs>0}(
�Zs

Zs
)2 + ∫ T

0
σ 2

Zs
ds =∞ a.s.

This result allows to define Π̂t := Π̂T for all t ≥ T.
If there are individuals who do not share their ancestors with any other individuals then the partition has singleton

blocks: we say that the partition has dust. It is well-known that for coalescent processes with multiple collisions, a di-
chotomy occurs (except in a very trivial case) between those coalescent processes that have infinitely many singletons
at every time t > 0 almost surely and those that have no singletons at every time t > 0 almost surely, see [24]. It is
striking that a similar dichotomy holds in the branching process setting.

Theorem 3. The following dichotomy holds:

• If Ψ is the Laplace exponent of a Lévy process with finite variation paths, then almost surely for all t ∈ (0,T), the
partition Π̂t has singleton blocks.

• Otherwise, almost surely for all t ∈ (0,T), the partition Π̂t has no singleton blocks.

Furthermore when σ = 0, almost surely for all t ∈ (0,T] the asymptotic frequency of the dust component of Π̂t is
equal to

∏
s≤t (1− �Zs

Zs
) whereas when σ > 0, almost surely for all t ∈ (0,T] there is no dust.

A flow of partitions also appears as an efficient tool to deal with convergences. We illustrate this fact with the
following problem. Consider a sequence of branching mechanisms (Ψm)m≥1 that converges pointwise to another
branching mechanism Ψ . Implicitly, Zm, Π̂m will denote Ψm-CSBP and Ψm flow of partitions, for every m≥ 1. It is
easy to deduce from [8] that Zm → Z in a sense that will be made precise in Section 5.2, so that a similar result for
the corresponding genealogies is expected.

Theorem 4. Suppose that

(i) for all u ∈R+, Ψm(u)→ Ψ (u) as m→∞,
(ii) the branching mechanism Ψ satisfies the Eve property,

(iii) Ψ is not the Laplace exponent of a compound Poisson process,

then

(
Π̂m

t , t ≥ 0
) (d)−→

m→∞ (Π̂t , t ≥ 0)

in D(R+,P∞).

The Eve property says that the rescaled Ψ -MVBP can be approximated by a Dirac mass as t gets close to T. It is
natural to ask if finer results can be obtained: for instance, does there exist a second Eve that carries a significant part
of the remaining population?

We call ancestor a point x ∈ [0,1] for which there exists t ∈ [0,T) such that mt ({x}) > 0; in that case, mt ({x}) is
called the progeny of x at time t . We will prove in Section 4.2 that the collection of ancestors is countable. Roughly
speaking, the progeny of a given ancestor is a Ψ -CSBP started from 0. Therefore, one can naturally compare two
ancestors: either by persistence, i.e. according to the extinction times of their progenies (if they become extinct in
finite time); or by predominance, i.e. according to the asymptotic behaviours of their progenies (if their lifetimes are
infinite). Notice that these two notions (persistence/predominance) are mutually exclusive.

Theorem 5. Assume that Z does not reach∞ in finite time. If the Eve property holds then one can order the ancestors
by persistence/predominance. We denote this ordering (ei )i≥1 and call these points the Eves. In particular, e1 is the
primitive Eve.

The Eves enjoy several nice properties. For instance, Proposition 4.13 shows that the sequence (ei )i≥1 is i.i.d.
uniform[0,1]. Also, the Eves will be of major importance in the last part of this work we now present.
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Theorem 1 shows that flows of subordinators and flows of partitions are related by their finite-dimensional
marginals. One could wonder if the connection is deeper: does there exist a flow of partitions embedded into a flow of
subordinators? It turns out that the Eve property plays a crucial rôle in this topic.

Consider a Ψ flow of subordinators (Ss,t (a),0 ≤ s ≤ t < TS,0 ≤ a ≤ Ss), and for simplicity let Zs := Ss denote
the total population size and T := TS its lifetime. For all s ≤ t , the subordinator Ss,t defines a random measure ms,t

on [0,Zs] with total mass Zt . Assume that Z does not reach ∞ in finite time and that the Eve property is verified.
Theorem 5 allows to introduce the Eves process (ei

s , s ∈ [0,T))i≥1 by considering at each time s ∈ [0,T), the sequence
of Eves of the Ψ -MVBP (ms,t , t ∈ [s,T)) that starts from the Lebesgue measure on [0,Zs]. Notice that we actually
rescale the Eves (ei

s )i≥1 by the mass Zs in order to obtain r.v. in [0,1].
The Eves process is the set of individuals that play a significant rôle in the population as time passes. One is

naturally interested in the genealogical relationships between these Eves, so we introduce a collection of partitions
(Π̂s,t ,0≤ s ≤ t < T) by setting

Π̂s,t (i) :=
{
j ∈N: ej

t descends from ei
s

}
.

Here “ej
t descends from ei

s” means that Zt · ej
t ∈ (Ss,t (Zs · ei

s−),Ss,t (Zs · ei
s)].

Theorem 6. The collection of partitions (Π̂s,t ,0 ≤ s ≤ t < T) defined from the flow of subordinators and the Eves
process is a Ψ flow of partitions.

We end with a decomposition result similar to the main theorem of [22]. For each time s ∈ [0,T), let Es(Π̂, (ei
s )i≥1)

be the measure-valued process defined by

[s,T) � t 	→
∑
i≥1

∣∣Π̂s,t (i)
∣∣δei

s
(dx)+

(
1−

∑
i≥1

∣∣Π̂s,t (i)
∣∣)dx

and rs,t the probability measure on [0,1] defined by

rs,t (dx) := ms,t (Zs · dx)

Zt

.

Theorem 7. The flow of subordinators can be uniquely decomposed into two random objects: the Eves process (ei
s , s ∈

[0,T)) and the flow of partitions (Π̂s,t ,0≤ s ≤ t < T).

(i) Decomposition. For each s ∈R, a.s. Es(Π̂, (ei
s )i≥1)= (rs,t , t ∈ [s,T)).

(ii) Uniqueness. Let (Hs,t ,0 ≤ s ≤ t < T) be a Ψ flow of partitions defined from the Ψ -CSBP Z, and for each
s ∈ [0,T), consider a sequence (χs(i))i≥1 of r.v. taking distinct values in [0,1]. If for each s ∈ [0,T), a.s.
Es(H, (χs(i))i≥1)= (rs,t , t ∈ [s,T)) then

• For each s ∈ [0,T), a.s. (χs(i))i≥1 = (ei
s )i≥1.

• Almost surely H= Π̂ .

This theorem provides an embedding of the lookdown representation into a flow of subordinators and thus, unifies
those two representations. Note that the Eve property is actually a necessary condition for the uniqueness. Indeed
when the Eve property does not hold, there is no natural order on the ancestors and therefore no uniqueness of the
embedding.

2. Preliminaries

2.1. Partitions of integers

For every n ∈ N ∪ {∞}, let Pn be the set of partitions of [n] := {1, . . . , n}. We equip P∞ with the distance dP

defined as follows. For all π,π ′ ∈P∞

dP
(
π,π ′

)= 2−i ⇔ i = sup
{
j ∈N: π [j ] = π ′[j ]

}
, (2)



Genealogy of CSBP and the Eve property 737

where π [j ] is the restriction of π to [j ]. (P∞, dP) is a compact metric space. We also introduce for every n ∈ N ∪
{∞}, P∗

n as the subset of Pn whose elements have a unique non-singleton block. In particular, for all subsets K⊂N,
we denote by 1K the element of P∗∞ whose unique non-singleton block is K. Also we denote by O[∞] := {{1}, {2}, . . .}
the trivial partition of N into singletons.

Let π ∈P∞, for each i ≥ 1 we denote by π(i) the ith block of π in the increasing order of their least element.
Furthermore, the asymptotic frequency of π(i) when it exists is defined to be

∣∣π(i)
∣∣= lim

n→∞
1

n

n∑
j=1

1{j∈π(i)}.

When all the blocks of a partition π admit an asymptotic frequency, we denote by |π |↓ the sequence of its asymptotic
frequencies in the decreasing order. We consider the Borel σ -field of (P∞, dP), and define an exchangeable random
partition π as a random variable on P∞ whose distribution is invariant under the action of any permutation of N, see
Section 2.3.2 in [2] for further details.

We define the coagulation operator Coag :P∞ × P∞ → P∞ as follows. For any elements π,π ′ ∈ P∞,
Coag(π,π ′) is the partition whose blocks are given by

Coag
(
π,π ′

)
(i)=

⋃
j∈π ′(i)

π(j) (3)

for every i ∈N. This is a Lipschitz-continuous operator and we have

Coag
(
π,Coag

(
π ′,π ′′

))= Coag
(
Coag

(
π,π ′

)
,π ′′

)
(4)

for any elements π,π ′,π ′′ ∈P∞, see Section 4.2 in [2] for further details.
We call mass-partition a sequence s = (si)i≥1 such that s1 ≥ s2 ≥ · · · ≥ 0,

∑
i≥1 si ≤ 1. From a mass-partition s

one can define the paint-box based on s, that is, the distribution P(s) of the random exchangeable partition whose
sequence of asymptotic frequencies is s. This can be achieved by considering a sequence (Ui)i≥1 i.i.d. uniform[0,1]
and defining the random partition π via the following equivalence relation

i ∼ j ⇔ ∃p ≥ 1 s.t. Ui,Uj ∈
[

p−1∑
k=1

sk,

p∑
k=1

sk

)
.

In this work, we will consider the mass-partition (x,0, . . .) associated to a point x ∈ (0,1] and the corresponding
paint-box distribution P(x,0, . . .) in order to define the flow of partitions, see Section 3.2.

Finally consider a subordinator X restricted to [0, a], with a > 0. On the event {Xa > 0}, the sequence (�Xt

Xa
)
↓
t∈[0,a]

will be called the mass-partition induced by the subordinator X, and the paint-box based on this sequence will be
denoted by P(X). This can be achieved by considering an i.i.d. sequence (Ui)i≥1 of uniform[0,1] r.v., and defining
on the event {Xa > 0} the exchangeable random partition π by the following equivalence relation

i
π∼ j ⇔ X−1(XaUi)=X−1(XaUj ), (5)

where X−1 denotes the right continuous inverse of t 	→ Xt . We also complete the definition by setting P(X) :=
1[∞] = {{1,2,3, . . .}} on the event {Xa = 0}.

2.2. Continuous-state branching processes

We recall the definition of the continuous-state branching processes introduced in the celebrated article of Jirina [20].
A continuous-state branching process (CSBP for short) started from a ≥ 0 is a Markov process (Za

t , t ≥ 0) with
values in [0,∞] such that (Za+b

t , t ≥ 0) has the same distribution as (Za
t + Zb

t , t ≥ 0) where Za and Zb are two
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independent copies started from a and b respectively. Such a process is entirely characterized by a convex function
Ψ : [0,+∞)→ (−∞,+∞), called its branching mechanism, via the following identity

E
[
e−λZa

t
]= e−aut (λ), ∀λ > 0 (6)

where the function ut (λ) solves

∂ut (λ)

∂t
=−Ψ

(
ut (λ)

)
, u0(λ)= λ (7)

and Ψ is the Laplace exponent of a spectrally positive Lévy process. Thus Ψ has the following form

Ψ (u)= γ u+ σ 2

2
u2 +

∫ ∞

0

(
e−hu − 1+ hu1{h≤1}

)
ν(dh), (8)

where γ ∈ R, σ ≥ 0 and ν is a measure on (0,∞) such that
∫∞

0 (1 ∧ x2)ν(dx) <∞. In the sequel, we will omit the
symbol a and consider a = 1 as the results we will expose do not depend on this value. Note that the semigroup
is Feller, so a Ψ -CSBP admits a càdlàg modification. In the rest of this subsection, we consider implicitly a càdlàg
modification of Z.

We say that the Ψ -CSBP is subcritical, critical or supercritical according as Ψ ′(0+) is positive, null, or negative.
Furthermore since 0 and ∞ are two absorbing states, we introduce the following two stopping times, namely the
extinction time and the explosion time by setting

T0 := inf {t ≥ 0: Zt = 0}, T∞ := inf{t ≥ 0: Zt =∞}. (9)

Let also T := T0 ∧ T∞ denote the lifetime of the Ψ -CSBP Z. Classical results entail that P(ZT = 0) = e−q , and
therefore P(ZT =∞)= 1− e−q where q := sup{u≥ 0: Ψ (u)≤ 0}. Note that we use the convention sup R+ =∞. In
[18], Grey provided a complete classification of the possible behaviours of Z at the end of its lifetime:
Extinction. For all t > 0, we have P(T0 ≤ t)= e−ut (∞) and

ut (∞) <∞ ⇔ Ψ (v) > 0 for large enough v and
∫ ∞

v

du

Ψ (u)
<∞.

If ut (∞) is finite, then ut (∞) ↓ q as t →∞. This ensures that on the event {ZT = 0} either T <∞ a.s., or T=∞ a.s.
Explosion. For all t > 0, we have

P(T∞ > t)= lim
λ→0+E

[
e−λZt

]= e−ut (0+). (10)

Using this last equality, Grey proved that T∞
a.s.= ∞⇔ ∫

0+
du

Ψ (u)
=∞. When this condition holds, we say that the

CSBP is conservative. Here again, on the event {ZT =+∞} either T <∞ a.s., or T=∞ a.s.
The proofs of the following two lemmas are postponed to the Appendix.

Lemma 2.1. On the event {T <∞}, T has a distribution absolutely continuous with respect to the Lebesgue measure
on R+.

For all ε ∈ (0,1), we introduce Tε := inf{t ≥ 0: Zt /∈ (ε,1/ε)}, and notice that Tε < T a.s. for all ε ∈ (0,1).

Lemma 2.2. For all t ≥ 0 and all ε ∈ (0,1)

E

[ ∑
s≤t∧Tε :�Zs>0

(
�Zs

Zs

)2]
<∞.
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2.3. Measure-valued branching processes and flows of subordinators

In this subsection, we introduce the measure-valued branching processes associated to a branching mechanism Ψ . For
the sake of simplicity, we will consider measures on the interval [0,1], but the definition holds for any other compact
interval. Let Mf denote the set of finite measures on [0,1] and let � be an extra point that will represent infinite
measures. We set Mf :=Mf ∪ {�} and equip this space with the largest topology that makes continuous the map

[0,+∞]×M1 →Mf ,

(λ,μ) 	→
{

λ ·μ if λ <∞,
� if λ=∞.

This topology is due to Watanabe [27].
We denote by B++ the set of bounded Borel functions on [0,1] that admit a strictly positive infimum. We call

measure-valued branching process associated with the branching mechanism Ψ , or Ψ -MVBP in short, a Mf -valued
Markov process (mt , t ≥ 0) started from a given measure m0 ∈Mf that verifies for all f ∈ B++

E
[
exp
(−〈mt , f 〉

)]= exp
(−〈m0, ut ◦ f 〉).

Note that 〈�,f 〉 = +∞, thus � is an absorbing point. The existence of this process can be obtained using a flow of
subordinators as it will be shown below. The uniqueness of the distribution derives from the Markov property and the
characterization of the Laplace functional on B++.

It is straightforward to check that the total-mass process (mt ([0,1]), t ≥ 0) is a Ψ -CSBP, say Z, started from
m0([0,1]). As proved in [15], this process verifies the branching property: for every m0,m′

0 ∈Mf , the process (mt +
m′

t , t ≥ 0) is a Ψ -MVBP started from m0 + m′
0, where (mt , t ≥ 0) and (m′

t , t ≥ 0) are two independent Ψ -MVBP
started from m0 and m′

0 respectively.
Finally, from Lemma 3.5.1 in [9] one can prove that its semigroup verifies the Feller property. This implies that the

Ψ -MVBP admits a càdlàg modification. In the rest of this subsection, we consider implicitly a càdlàg modification of
m and will denote by T the lifetime of its total-mass process (which is necessarily a càdlàg Ψ -CSBP).

Suppose that (mt , t ≥ 0) starts from the Lebesgue measure on [0,1]. It is then immediate to deduce that for all t ≥ 0,
the process x 	→ mt ([0, x]) is a (possibly killed) subordinator whose Laplace exponent is given by (ut (λ), λ > 0).
From the Lévy–Khintchine formula, we deduce that there exists a real number dt ≥ 0 and a measure wt on (0,∞)

that verifies
∫∞

0 (1∧ h)wt (dh) <∞, such that

ut (λ)= ut (0+)+ dtλ+
∫ ∞

0

(
1− e−λh

)
wt(dh) for all λ > 0. (11)

Notice that ut (0+) is the instantaneous killing rate of the subordinator, which is related to the explosion of the total
mass process (mt ([0,1]), t ≥ 0). Indeed P(T∞ ≤ t)= P(mt ([0,1])=∞)= 1− e−ut (0+), see Eq. (10).

From this observation, Bertoin and Le Gall introduced an object called flow of subordinators. Proposition 1 in [4]
asserts the existence of a process (Ss,t (a),0≤ s ≤ t, a ≥ 0) such that

• For every 0≤ s ≤ t , (Ss,t (a), a ≥ 0) is a subordinator with Laplace exponent ut−s .
• For every integer p ≥ 2 and 0≤ t1 ≤ · · · ≤ tp , the subordinators St1,t2 , . . . ,Stp−1,tp are independent and

St1,tp (a)= Stp−1,tp ◦ · · · ◦ St1,t2(a) ∀a ≥ 0 a.s. (cocycle property).

• For all a ≥ 0, (S0,t (a), t ≥ 0) is a Ψ -CSBP started from a.

Actually in their construction, they excluded the non-conservative branching mechanisms but one can easily adapt
their proof to the general case.

Let us now present the connection with the Ψ -MVBP. Introduce the random Stieltjes measures

m0,t (dx) := dxS0,t (x) ∀x ∈ [0,1].
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From the very definition of the flow of subordinators, one can prove that (m0,t , t ≥ 0) is a Ψ -MVBP started from
the Lebesgue measure on [0,1]. One can consider a càdlàg modification still denoted (m0,t , t ≥ 0), and let TS be the
lifetime of its total-mass process St :=m0,t ([0,1]), t ≥ 0 (which is a càdlàg Ψ -CSBP). It is then natural to introduce
the random Stieltjes measures

ms,t (dx) := dxSs,t (x) ∀x ∈ [0,Ss]
for every 0 < s ≤ t < TS. Each process (ms,t , t ∈ [s,TS)) is a Ψ -MVBP and admits a càdlàg modification still denoted
(ms,t , t ∈ [s,TS)). Then we obtain a flow of Ψ -MVBP (ms,t ,0≤ s ≤ t < TS) that describes the evolution of an initial
population [0,1].

3. Flows of partitions and the lookdown representation

The goal of this section is to develop the construction of Ψ flows of partitions presented in the introduction. To
that end, we first recall the definition of deterministic flows of partitions as introduced in [22] since the one-to-one
correspondence with lookdown graphs is deterministic. Then, we define a random point process P pathwise from a
càdlàg Ψ -CSBP Z, which will allow us to construct a Ψ flow of partitions. Finally we give a precise characterization
of its jump rates which will be necessary in the proof of Theorem 4, this last subsection can be skipped on first reading.

3.1. Deterministic flows of partitions

Fix T ∈ (0,+∞]. In [22], we introduced deterministic flows of partitions and proved they are in one-to-one correspon-
dence with the so-called lookdown graphs. Lookdown graphs are implicit in the lookdown construction of Donnelly
and Kurtz [11], and the upshot of the flows of partitions is to clarify and formalize this notion. In the present paper,
we do not recall the definition of the lookdown graph and we refer to [22] for further details.

Below this formal definition of deterministic flows of partitions, the reader should find intuitive comments.

Definition 3.1. A deterministic flow of partitions on [0, T ) is a collection π̂ = (π̂s,t ,0≤ s ≤ t < T ) of partitions such
that

• For every r < s < t ∈ [0, T ), π̂r,t = Coag(π̂s,t , π̂r,s).
• For every s ∈ (0, T ), limr↑s limt↑s π̂r,t =: π̂s−,s− = O[∞].
• For every s ∈ [0,T), limt↓s π̂s,t = π̂s,s = O[∞].

Furthermore, if for all s ∈ (0, T ), π̂s−,s has at most one unique non-singleton block, then we say that π̂ is a determin-
istic flow of partitions without simultaneous mergers.

The first property asserts a cocycle property for the collection of partitions: the evolution forward-in-time is ob-
tained by coagulating consecutive partitions. The second and third properties ensure that for all n ≥ 1 and every
compact interval [r, t] ⊂ [0, T ), only a finite number of partitions π̂

[n]
s−,s differ from the trivial partition O[n]. Note that

in this paper, we will only consider flows of partitions without simultaneous mergers.

Construction from a point process

Let p be a deterministic point process on [0, T )×P∗∞ whose restriction to any subset of the form (s, t] ×P∗
n has

finitely many points. Fix an integer n ∈ N and two real numbers s ≤ t ∈ [0, T ). Let (ti , �i)1≤i≤q be the finitely many
points of p|(s,t]×P∗

n
in the increasing order of their time coordinate. We introduce

π̂
[n]
s,t := Coag

(
�q,Coag

(
�q−1, . . . ,Coag(�2, �1) . . .

))
. (12)

Obviously, the collection of partitions (π̂
[n]
s,t , n ∈N) is compatible and defines by a projective limit a unique partition

π̂s,t such that its restriction to [n] is π̂
[n]
s,t , for each n ∈ N. Then, one easily verifies that (π̂s,t ,0 ≤ s ≤ t < T ) is a

deterministic flow of partitions without simultaneous mergers.
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Remark 3.2. This construction gives a hint of the one-to-one correspondence with lookdown graphs. See [22] for
further details.

We can now introduce the lookdown representation using a deterministic flow of partitions. Let (ξs,s(i))i≥1 be a
sequence of points in R+ and define the particle system (ξs,t (i), t ∈ [s, T ))i≥1 as follows. For all t ≥ s and all i, j ≥ 1,

ξs,t (j)= ξs,s(i) ⇔ j ∈ π̂s,t (i). (13)

Definition 3.3. We use the notation Ls(π̂ , (ξs,s(i))i≥1) to denote the deterministic lookdown function (ξs,t (i), t ∈
[s,∞))i≥1 defined from the flow of partitions π̂ and the initial types (ξs,s(i))i≥1.

Moreover, for all t ∈ [s, T ), set

Ξs,t (dx) := lim
n→∞

1

n

n∑
i=1

δξs,t (i)(dx) (14)

when this is well-defined.

Definition 3.4. We denote by Es(π̂ , (ξs,s(i))i≥1) the collection of limiting empirical measures (Ξs,t , t ∈ [s,∞)) de-
fined from the flow of partitions π̂ and the initial types (ξs,s(i))i≥1, when it exists.

Let us give an intuitive explanation of this particle system. If one considers each point ξs,s(i) as some characteristic
(type or location for instance) of the ith ancestor at time s, then the underlying idea of the lookdown representation is
to give the same characteristic to the descendants of this ancestor at any time t > s. Therefore, the measure Ξs,t (dx)

describes the composition of the population at time t : Ξs,t ({ξs,s(i)}) is the proportion of individuals at time t who
descend from the ith ancestor alive at time s. In the next subsection, we will see that if one applies this scheme with
a random flow of partitions, whose distribution is well chosen, then Ξ is a MVBP (rescaled by its total-mass).

3.2. Stochastic flows of partitions associated with a branching mechanism

We randomize the previous definitions using a point process P on [0,T)×P∞ where T is a random positive time
in order to introduce flows of partitions associated with a branching mechanism Ψ . As mentioned in the introduction,
this point process is obtained as the union of two point processes: Nσ that stands for the binary reproduction events
due to the diffusion of the underlying CSBP, and Nν that encodes the positive frequency reproduction events due to
the jumps of the CSBP. As these objects rely on many definitions, one should refer on first reading to the heuristic
definitions given in the introduction.

For every z > 0, we introduce the map φz : R∗+ → [0,1], that will be used to consider rescaled jumps of a CSBP,
by setting

φz :h 	→ h

h+ z
.

We define a measure μbinary on P∞ that will encode binary reproduction events often called Kingman reproduction
events. Recall that 1{i,j} stands for the element of P∗∞ whose unique non-singleton block is {i, j} for every integers
1≤ i < j .

μbinary(dπ) :=
∑
i<j

δ1{i,j }(dπ). (15)

This ends the introduction of preliminary notation. Fix a branching mechanism Ψ and consider a Ψ -CSBP (Zt , t ≥
0) started from 1 assumed to be càdlàg. We keep the notation of Section 2.2, in particular T denotes the lifetime of Z.
We start with the definition of Nν . Consider the random point process

Q :=
⋃

{t≥0:�Zt>0}

{(
t,

�Zt

Zt

)}
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and define a P-randomization Nν of Q in the sense of Chapter 12 in [21], where P is the paint-box probability
kernel introduced in Section 2.1. The point process Nν :=⋃{(t, �Zt

Zt
, �t )} on R+ × [0,1] ×P∞ can be described

as follows. For all t ≥ 0 such that �Zt > 0, �t is a r.v. on P∞ distributed according to the paint-box distribution
P(�Zt

Zt
,0, . . .). It is more convenient to consider the restriction of this point process to R+ ×P∞ still denoted by

Nν =⋃{(t, �t )}.
Second, we define a doubly stochastic Poisson point process Nσ on R+ ×P∞, in the sense of Chapter 12 in [21],

with a random intensity measure given by

1{t<T} dt ⊗ σ 2

Zt

μbinary(dπ). (16)

We finally define the point process P on R+ ×P∞ as

P := Nσ ∪ Nν. (17)

Notice that almost surely this point process takes its values in R+ ×P∗∞, and has finitely many points in any set
of the form [0, t] ×P∗

n with t < T and n ∈ N, as we will see in Proposition 3.10. Thus for each ω ∈Ω , we define
a deterministic flow of partitions without simultaneous mergers (Π̂s,t (ω),0 ≤ s ≤ t < T) using the point collection
P (ω) and the pathwise construction of Section 3.1.

Let us now explain how one defines a lookdown process associated with a Ψ -MVBP. Fix s ≥ 0 and condition
on {s < T}. Consider a sequence (ξs,s(i))i≥1 of i.i.d. uniform[0,1] r.v. and define the lookdown process (ξs,t (i), t ∈
[s,T))i≥1 :=Ls(Π̂, (ξs,s(i)))i≥1. Lemma 3.5 in [11] ensures that almost surely this particle system admits a process
of limiting empirical measures (Ξs,t , t ∈ [s,T)) := Es(Π̂, (ξs,s(i))i≥1), and almost surely for all t ∈ [s,T) we have

Ξs,t (dx)=
∑
i≥1

∣∣Π̂s,t (i)
∣∣δξs,s (i)(dx)+

(
1−

∑
i≥1

∣∣Π̂s,t (i)
∣∣)dx.

Moreover, Section 2 in [7] shows that the process (Zt ·Ξs,t (Zs · dx), t ∈ [s,T)) is a càdlàg Ψ -MVBP started from the
Lebesgue measure on [0,Zs], conditionally on Zs .

Remark 3.5. The results in [7,11] are stated with the usual notion of lookdown graph. But they are immediately
translated in terms of flows of partitions thanks to our one-to-one correspondence.

Remark 3.6. We can define from any time s ∈ [0,T), a Ψ -MVBP with total-mass process Z using an independent
sequence of initial types (ξs,s(i))i≥1 and the flow Π̂ . Then, it could seem simple to define a flow of Ψ -MVBP using
this lookdown representation simultaneously for all s ∈ [0,T). However, this is far from being trivial since the initial
types s 	→ (ξs,s(i))i≥1 have to be suitably coupled. In Section 6, we will show that these initial types have to be the
Eves.

An important property of the lookdown process (see [11]) is that for all t ≥ s, conditionally given Zt the sequence
(ξs,t (i))i≥1 is exchangeable on [0,1]. This implies that conditionally given Zt the partition Π̂s,t has the paint-box
distribution on the subordinator x 	→ Zt ·Ξs,t ([0, x]). More generally, we have

Theorem 1. The collection of partitions (Π̂s,t ,0≤ s ≤ t < T), together with its underlying CSBP Z, satisfies

• For all n≥ 1 and all 0 < t1 < · · ·< tn,

(Zt1 , . . . ,Ztn , Π̂0,t1 , . . . , Π̂tn−1,tn |tn < T)
(d)= (St1, . . . ,Stn ,P(S0,t1), . . . ,P(Stn−1,tn )|tn < TS).

• For all 0≤ r < s < t < T, a.s. Π̂r,t = Coag(Π̂s,t , Π̂r,s) (cocycle property).
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Proof. The cocycle property is a consequence of our construction as we have defined the restrictions of the partitions
by coagulating elementary reproduction events. We turn our attention to the finite dimensional distributions. Fix an in-
teger n≥ 1 and a n-tuple 0= t0 < t1 < · · ·< tn. Let (Ss,t (a),0≤ s ≤ t,0≤ a ≤ S0,s(z)) be a Ψ flow of subordinators
restricted to an initial population [0, z] instead of [0,1], and keep the notation TS to denote the lifetime of the total
mass process (St := S0,t (z), t ≥ 0) which is a Ψ -CSBP started from z. For every i ∈ [n], let Hti−1,ti be distributed
according to the paint-box P(Sti−1,ti ). Note that H0,t1 , . . . ,Htn−1,tn are coupled only through their mass-partitions.
We use our construction of the beginning of this subsection to define pathwise from the CSBP (St , t ≥ 0) a collection
(Π̂S

s,t ,0 ≤ s ≤ t < TS). We will use the notation Pz to emphasize the dependence on the initial value z. Implicitly,
fi will denote a bounded Borel map from P∞ to R and gi a bounded Borel map from R+ to R. We now prove by
recursion on n≥ 1 that

Ez

[
f1
(
Π̂S

0,t1

)
g1(St1) . . . fn

(
Π̂S

tn−1,tn

)
gn(Stn )1{tn<TS}

]
= Ez

[
f1(H0,t1)g1(St1) . . . fn(Htn−1,tn )gn(Stn )1{tn<TS}

]
.

The case n = 1 follows from the discussion above the statement of the theorem. Fix n ≥ 2 and suppose that for all
z > 0 and all f1, . . . , fn−1, g1, . . . , gn−1, we have

Ez

[
f1
(
Π̂S

0,t1

)
g1(St1) . . . fn−1

(
Π̂S

tn−2,tn−1

)
gn−1(Stn−1)1{tn−1<TS}

]
= Ez

[
f1(H0,t1)g1(St1) . . . fn−1(Htn−2,tn−1)gn−1(Stn−1)1{tn−1<TS}

]
.

Then, we obtain at rank n for any given z > 0 and any f1, . . . , fn, g1, . . . , gn

Ez

[
f1
(
Π̂S

0,t1

)
g1(St1) . . . fn

(
Π̂S

tn−1,tn

)
gn(Stn )1{tn<TS}

]
= Ez

[
f1
(
Π̂S

0,t1

)
g1(St1)1{t1<TS}ESt1

[
f2
(
Π̂S

0,t2−t1

)
. . . fn

(
Π̂S

tn−1−t1,tn−t1

)
gn(Stn−t1)1{tn−t1<TS}

]]
= Ez

[
f1(H0,t1)g1(St1)1{t1<TS}ESt1

[
f2(H0,t2−t1) . . . fn(Htn−1−t1,tn−t1)gn(Stn−t1)1{tn−t1<TS}

]]
= Ez

[
f1(H0,t1)g1(St1) . . . fn(Htn−1,tn )gn(Stn )1{tn<TS}

]
,

where the first (resp. last) equality comes from the Markov property applied to the process (St , t ∈ [0,TS)) (resp. to
the homogeneous chain (Sti ,Hti−1,ti , ti+1− ti )1≤i≤n) while the second equality makes use of the recursion hypothesis
and the case n= 1. �

This result motivates the following definition.

Definition 3.7. A collection of random partitions (Π̂s,t ,0 ≤ s ≤ t < T) defined on a same probability space as a
càdlàg Ψ -CSBP (Zt , t ∈ [0,T)) and that verifies

• for all n≥ 1 and all 0 < t1 < · · ·< tn,

(Zt1 , . . . ,Ztn , Π̂0,t1 , . . . , Π̂tn−1,tn |tn < T)
(d)= (St1, . . . ,Stn ,P(S0,t1), . . . ,P(Stn−1,tn )|tn < TS),

• for all 0≤ r < s < t < T, a.s. Π̂r,t = Coag(Π̂s,t , Π̂r,s) (cocycle property),

is called a Ψ flow of partitions. Z is called its underlying CSBP.

Remark 3.8. In our construction from a point process, we can verify that the cocycle property is fulfilled almost surely
simultaneously for all triplets, that is,

P
[∀0≤ r < s < t < T, Π̂r,t = Coag(Π̂s,t , Π̂r,s)

]= 1.

This is not necessarily the case for a general Ψ flow of partitions: however Proposition 5.4 will show that we can
define a regularized modification which fulfils that property.
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3.3. A characterization of the jump rates

The formalism of partitions enables one to restrict to n individuals sampled uniformly among the population. In this
subsection, we give a characterization of the dynamics of this finite-dimensional process. The restriction of P to
R+ ×P∗

n is denoted P [n]. We introduce, for any integer 2 ≤ k ≤ n and any subset K ⊂ [n] such that #K = k, the
quantity

Lt (n,K) := #
{
r ∈ (0, t]: (r,1[n]K

) ∈ P [n]}, (18)

where 1[n]K is the restriction of 1K to [n] and 1K is the partition whose unique non-singleton block is K. Moreover, we
set

Lt (n) :=
∑

{K⊂[n]:#K≥2}
Lt (n,K). (19)

In words, Lt (n) is the total number of points of P restricted to (0, t] ×P∗
n . Note that the collection of processes

{(Lt (n,K), t ∈ [0,T));K ⊂ [n],#K ≥ 2} is completely equivalent with the restricted flow (Π̂
[n]
s,t ,0 ≤ s ≤ t < T): the

knowledge of any one of them is sufficient to recover the other. We denote by dn the number of subsets of [n] with at
least 2 elements, that is, dn :=∑n

k=2

(
n
k

)
and we introduce the filtration (Ft , t ≥ 0) by setting for all t ≥ 0

Ft := σ
{
Zs , s ∈ [0, t]}∨ σ {P[0,t]×P∞}. (20)

For every integer k such that 2≤ k ≤ n, we set

λn,k(z,Ψ ) :=
∫ 1

0
xk(1− x)n−k

(
σ 2

z
x−2δ0(dx)+ zν ◦ φ−1

z (dx)

)
,

where ν ◦ φ−1
z is the pushforward measure of ν through the map φz. Notice that λn,k can be seen as a map from

R∗+ ×Mf (R+) to R+. Indeed, any element of Mf (R+) has the form σ̃ 2δ0(dh)+ (1 ∧ h2)ν̃(dh), where σ̃ ≥ 0 and
ν̃ is a measure on (0,∞) such that

∫∞
0 (1 ∧ h2)ν̃(dh) <∞, so it can be associated to the branching mechanism Ψ̃

defined by the triplet (γ̃ = 0, σ̃ , ν̃).
This ends the introduction of notation. We now state two results: the first is a technical continuity statement and

the second is the characterization of the jump rates. They will be of main importance for the proof of Theorem 4.

Proposition 3.9. Fix k,n such that 2 ≤ k ≤ n. The map λn,k is continuous from R∗+ ×Mf (R+), endowed with the
product topology, to R+.

The proof of this first result will be given in the Appendix, as it is rather technical. For the next result, we rely on
notions of stochastic calculus introduced in Chapters I.3 and II.2 in [19].

Proposition 3.10. The collection of counting processes {(Lt (n,K), t ∈ [0,T));K ⊂ [n],#K ≥ 2} is a pure-jump dn-
dimensional semimartingale on [0,T) with respect to F . Its predictable compensator is the dn-dimensional process

{(∫ t

0
λn,#K(Zs−,Ψ )ds, t ∈ [0,T)

)
;K⊂ [n],#K≥ 2

}
. (21)

Proof. Fix K⊂ [n] such that its cardinality, denoted by k := #K, is greater than 2. It is straightforward to check that
(Lt (n,K), t ∈ [0,T)) is a counting process adapted to the filtration F . Similarly, one can easily verify that the process

(∫ t

0
λn,k(Zs−,Ψ )ds, t ∈ [0,T)

)
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is a predictable increasing process w.r.t. the filtration F . Let us prove that the process(
Lt (n,K)−

∫ t

0
λn,k(Zs−,Ψ )ds, t ∈ [0,T)

)

is a local martingale on [0,T) w.r.t. F . To do so, set for all t ∈ [0,T)

M
(1)
t := Lt (n,K)−

∑
s≤t

(
�Zs

Zs

)k(
1− �Zs

Zs

)n−k

− 1{k=2}
∫ t

0

σ 2

Zs−
ds,

M
(2)
t :=

∑
s≤t

(
�Zs

Zs

)k(
1− �Zs

Zs

)n−k

−
∫ t

0

∫ 1

0
xk(1− x)n−kZs−ν ◦ φ−1

Zs−(dx)ds.

It is sufficient to show that both M(1) and M(2) are local martingales on [0,T) w.r.t. F .
Let us focus on the first one. Fix ε ∈ (0,1) and recall the definition of the stopping time Tε := inf{t ≥ 0: Zt /∈

(ε,1/ε)}. Condition on (Zs , s ∈ [0,T)) and consider a time s > 0 such that �Zs > 0 (note that those times are
countably many a.s.). The P-randomization procedure implies that the restriction of the random partition �s to Pn

has a probability (�Zs

Zs
)k(1− �Zs

Zs
)n−k to be equal to 1[n]K independently of the other partitions (�t ){t �=s:�Zt>0}. For all

t ≥ 0, the number of occurrences of the partition 1[n]K in Nν restricted to [0, t ∧ Tε] ×Pn is given by the following
r.v.

#
{
s ∈ [0, t ∧ Tε]:

(
s,1[n]K

) ∈ N [n]
ν

}
(22)

which is, therefore, distributed as the sum of a sequence, indexed by {s ∈ [0, t ∧ Tε]: �Zs > 0}, of independent
Bernoulli r.v. with parameters ((�Zs

Zs
)k(1− �Zs

Zs
)n−k). Since

(
�Zs

Zs

)k(
1− �Zs

Zs

)n−k

≤
(

�Zs

Zs

)2

(23)

a simple application of Borel–Cantelli lemma together with Lemma 2.2 ensures that the r.v. of Eq. (22) is finite a.s.
One also easily deduces that for all t ≥ 0

E
[
#
{
s ∈ [0, t ∧ Tε]:

(
s,1[n]K

) ∈ N [n]
ν

}|(Zs , s ∈ [0, t ∧ Tε]
)]= ∑

s≤t∧Tε

(
�Zs

Zs

)k(
1− �Zs

Zs

)n−k

.

Furthermore when k = 2, we deduce from the definition of Nσ that the counting process

#
{
s ∈ [0, t]: (s,1[n]K

) ∈ N [n]
σ

}
, t ∈ [0,T)

is a doubly stochastic Poisson process with intensity 1{t<T} σ 2

Zt
dt . Therefore, for all t ≥ 0

E
[
#
{
s ∈ [0, t ∧ Tε]:

(
s,1[n]K

) ∈ N [n]
σ

}|(Zs , s ∈ [0, t ∧ Tε]
)]= ∫ t∧Tε

0

σ 2

Zs

ds.

Notice that the r.h.s. is finite a.s. Putting together the preceding results, we get that

E
[
Lt∧Tε (n,K)|(Zs , s ∈ [0, t ∧ Tε]

)]= ∑
s≤t∧Tε

(
�Zs

Zs

)k(
1− �Zs

Zs

)n−k

+ 1{k=2}
∫ t∧Tε

0

σ 2

Zs

ds.

Using Lemma 2.2 and Eq. (23), we deduce that the r.h.s. of the preceding equation is integrable for all t ≥ 0. Therefore

E
[
M

(1)
t∧Tε

]= 0.
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Note that the integrability is indeed locally uniform since we deal with non-decreasing processes. In addition, we have
for all 0≤ r ≤ t ,

E
[
M

(1)
t∧Tε

|Fr

] =M
(1)
r∧Tε

+E

[
Lr∧Tε,t∧Tε (n,K)

−
∑

s∈(r∧Tε,t∧Tε]

(
�Zs

Zs

)k(
1− �Zs

Zs

)n−k

− 1{k=2}
∫ t∧Tε

r∧Tε

σ 2

Zs

ds

∣∣∣Fr

]
.

By applying the strong Markov property at time r ∧ Tε to the process Z, one easily gets that the second term in
the r.h.s. is zero a.s. using the preceding arguments. Therefore, we have proven that (M

(1)
t∧Tε

, t ∈ [0,T)) is a locally

uniformly integrable martingale. Since Tε ↑ T a.s., it implies that M(1) is a local martingale on [0,T).
We turn our attention to M(2). It is well-known that the dual predictable compensator of the random measure

∑
{t≥0:�Zt>0}

δ(t,�Zt /Zt ) (24)

is the random measure 1{t<T }Zt− dt ⊗ ν ◦ φ−1
Zt−(dx) on R+ × [0,1]. Thus Theorem II.1.8 in [19] ensures that M(2) is

a local martingale on [0,T). Indeed, it suffices to take W(ω, t, x) := 1{t<T}xk(1− x)n−k and to apply the theorem to
the random measure of Eq. (24).

We have proved that both M(1) and M(2) are local martingales w.r.t. F , this implies that the process

(
Lt (n,K)−

∫ t

0
λn,k(Zs−,Ψ )ds, t ∈ [0,T)

)

is a local martingale on [0,T) w.r.t. F .
Finally, consider the vector formed by the dn counting processes. Since we have identified for each of them their

compensator in a same filtration F , we have identified the compensator of the vector. The proposition is proved. �

4. The Eve property

Throughout this section, m designates a càdlàg Ψ -MVBP started from the Lebesgue measure on [0,1], Z denotes its
total-mass process and T its lifetime. In the first subsection, we define the Eve property and prove Theorem 2. In the
second subsection, we identify a complete sequence of Eves and prove Theorem 5. Some properties of the Eves are
given in the third subsection.

4.1. Definition

Recall the definition given in the introduction.

Definition 1.1. We say that the branching mechanism Ψ satisfies the Eve property if and only if there exists a random
variable e in [0,1] such that

mt (dx)

mt ([0,1]) −→t↑T
δe(dx) a.s. (25)

in the sense of weak convergence of probability measures. The r.v. e is called the primitive Eve of the population.

Lemma 4.1. Suppose that the Eve property is verified. Then e is uniform[0,1].
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Proof. Let us consider a bijection f from [0,1] to [0,1] that preserves the Lebesgue measure. For all t ≥ 0, we denote
by mt ◦ f−1 the pushforward measure of mt by the function f . The process (mt ◦ f−1, t ∈ [0,T)) is still a Ψ -MVBP
whose lifetime is T. Thus there exists a r.v. e′ ∈ [0,1] such that

mt ◦ f−1(dx)

mt ([0,1]) −→
t→T

δe′(dx) a.s. (26)

Moreover, it is immediate to check that e′ := f (e) and that e′ and e have the same distribution. We deduce that e
is a r.v. on [0,1] whose distribution is invariant under bijections that preserve the Lebesgue measure. Hence it is a
uniform[0,1] r.v. �

The following proposition specifies an important case where the Eve property is fulfilled.

Proposition 4.2. If T <∞ a.s. then Ψ satisfies the Eve property.

Proof. Suppose that T <∞ a.s. The branching property fulfilled by the process (mt , t ≥ 0) ensures that(
mt

([0,2−n)
)
, t ∈ [0,T)

); (
mt

([2−n,2× 2−n)
)
, t ∈ [0,T)

); . . . ; (
mt

([
1− 2−n,1

])
, t ∈ [0,T)

)
are 2n i.i.d. Ψ -CSBP started from 2−n and stopped at the infimum of their lifetimes. Since the lifetimes of these
CSBP are independent and finite a.s., we deduce from Lemma 2.1 that they are distinct a.s. and that T is either the
first explosion time or the last extinction time of the preceding collection. Therefore, for all i ∈ [2n],

lim
t→T

mt ([(i − 1)2−n, i2−n))

mt ([0,1]) ∈ {0,1} a.s.

This implies that there exists a unique (random) integer un ∈ [2n] such that

lim
t→T

mt ([(un − 1)2−n,un2−n))

mt ([0,1]) = 1 a.s.

This holds for all n ∈ N and obviously [(un − 1)2−n,un2−n)⊃ [(un+1 − 1)2−(n+1), un+12−(n+1)). We can therefore
introduce the following random variable

e := inf
n∈N

un2−n.

We have proved that

mt (dx)

mt ([0,1]) −→t→T
δe(dx) a.s. (27)

in the sense of weak convergence of probability measures. �

Remark 4.3. A complete classification of the asymptotic behaviour of mt (·)
mt ([0,1]) will be established in a forthcoming

work [12]. In particular it will be shown that whenever the CSBP is supercritical, the Eve property is fulfilled if and
only if the mean is infinite: an intuitive argument for this result is that two independent copies of a same CSBP have
comparable asymptotic sizes iff the mean is finite.

We now present a result that relates the Eve property with the behaviour of the Ψ flow of partitions at the end of
its lifetime T. In addition, this result provides a necessary and sufficient condition on Z for the Eve property to hold.

Theorem 2. There exists an exchangeable partition Π̂T such that Π̂t → Π̂T almost surely as t ↑ T. Moreover, these
three assumptions are equivalent

(i) Ψ satisfies the Eve property.
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(ii) Π̂T = 1[∞] a.s.

(iii)
∑

{s<T:�Zs>0}(
�Zs

Zs
)2 + ∫ T

0
σ 2

Zs
ds =∞ a.s.

Remark 4.4. This theorem should be compared with Theorem 6.1 in [11] where a similar condition on the total-mass
process is given but for a much larger class of measure-valued processes. However their result is proved only when
T <∞, which in our particular case of branching processes, is a trivial case as we already know from Proposition 4.2
that the Eve property is fulfilled.

Proof of Theorem 2. To prove the asserted convergence, it suffices to show that for each n ∈ N, the restriction Π̂
[n]
t

of Π̂t to Pn admits a limit when t ↑ T almost surely. We fix n ∈N until the end of the proof.

Step 1. Remark that conditional on
∫ T

0
σ 2

Zs
ds, the r.v. #{Nσ |[0,T)×P∗

n
} has a Poisson distribution with parameter(

n
2

) ∫ T
0

σ 2

Zs
ds. Thus we have almost surely

P

(
#{Nσ |[0,T)×P∗

n
} = 0

∣∣∣ ∫ T

0

σ 2

Zs

ds

)
= exp

(
−
(

n

2

)∫ T

0

σ 2

Zs

ds

)
. (28)

In addition, thanks to Borel–Cantelli lemma we notice that

P

(
#{Nν|[0,T)×P∗

n
} = 0

∣∣∣∑
s<T

(
�Zs

Zs

)2

=∞
)

≤ 1− P

(
#{Nν|[0,T)×P∗

n
} =∞

∣∣∣∑
s<T

(
�Zs

Zs

)2

=∞
)
= 0. (29)

Step 2. Introduce ti := inf{t ≥ 0: Π̂
[i]
t = 1[i]} for all i ∈N, we first prove that tn < T conditional on {∑s<T(�Zs

Zs
)2 +∫ T

0
σ 2

Zs
ds =∞}, thus it will imply that Π̂

[n]
t → 1[n] as t ↑ T on the same event, and also the implication (iii) ⇒ (ii).

We proceed via a recursion. At rank i = 2, we use Eqs (28) and (29) to obtain

P

(
#{P|[0,T)×P∗

2
} = 0

∣∣∣∑
s<T

(
�Zs

Zs

)2

+
∫ T

0

σ 2

Zs

ds =∞
)
= 0.

Hence t2 < T a.s. Suppose that ti−1 < T almost surely for a given integer i ≥ 3, then we have Π̂
[i−1]
ti−1

= 1[i−1] a.s.

Thus either ti = ti−1 and the recursion is complete, or Π̂
[i]
ti−1

= {1, . . . , i − 1}, {i}. In the latter case, we need to prove
that on [ti−1,T) there will be a reproduction event involving an integer in [i − 1] and the integer i. We denote by Ai

the subset of P∗
i whose elements are partitions with a non-singleton block containing an integer lower than i− 1 and

the integer i. Remark that on the event {∑s<T(�Zs

Zs
)2 + ∫ T

0
σ 2

Zs
ds =∞}

∑
ti−1<s<T

(
�Zs

Zs

)2

+
∫ T

ti−1

σ 2

Zs

ds =∞ a.s.

so that almost surely

P

(
#{Nσ |(ti−1,T)×Ai

} = 0
∣∣∣ ∫ T

0

σ 2

Zs

ds =∞
)
= 0,

P

(
#{Nν|(ti−1,T)×Ai

} = 0
∣∣∣∑
s<T

(
�Zs

Zs

)2

=∞
)
= 0

which in turn ensures that ti < T a.s. The recursion is complete.
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Step 3. We now prove that conditional on {∑s<T(�Zs

Zs
)2 + ∫ T

0
σ 2

Zs
ds < ∞}, the number of reproduction events

#{P|[0,T)×P∗
n
} is finite. This will imply that Π̂

[n]
t admits a limit as t ↑ T on the same event.

Thanks to the remark preceding (28), we deduce that on {∫ T
0

σ 2

Zs
ds < ∞}, the r.v. #{Nσ |[0,T)×P∗

n
} is finite. In

addition, for each s ≥ 0 such that �Zs > 0, the probability that the restriction of �s to Pn differs from 0[n] is equal to

n∑
k=2

(
n

k

)(
�Zs

Zs

)k(
1− �Zs

Zs

)n−k

independently of the other (�t )t �=s . Since

∑
s<T

n∑
k=2

(
n

k

)(
�Zs

Zs

)k(
1− �Zs

Zs

)n−k

≤
∑
s<T

n∑
k=2

(
n

k

)(
�Zs

Zs

)2

an application of Borel–Cantelli lemma implies that

P

(
#{Nν|[0,T)×P∗

n
}<∞

∣∣∣∑
s<T

(
�Zs

Zs

)2

<∞
)
= 1.

Thus we have proved that #{P|[0,T)×P∗
n
} is finite on the event {∑s<T(�Zs

Zs
)2 + ∫ T

0
σ 2

Zs
ds <∞}.

Step 4. We now prove that

P

(∑
s<T

(
�Zs

Zs

)2

+
∫ T

0

σ 2

Zs

ds <∞
)

> 0 ⇒ P(Π̂T �= 1[∞]) > 0

this will imply (ii) ⇒ (iii).
Thanks to Eq. (28), we get

P

(
#{Nσ |[0,T)×P∗

2
} = 0

∣∣∣ ∫ T

0

σ 2

Zs

ds <∞
)

> 0.

Also, note that

P

(
#{Nν|[0,T)×P∗

2
} = 0

∣∣∣{(�Zs

Zs

)2

; s < T

})
=
∏
s<T

(
1−

(
�Zs

Zs

)2)
.

One can readily prove that the r.h.s. is strictly positive on the event {∑s<T(�Zs

Zs
)2 <∞}. Therefore we have proven

that

P

(
Π̂
[2]
T = O[2]

∣∣∣∑
s<T

(
�Zs

Zs

)2

+
∫ T

0

σ 2

Zs

ds <∞
)

> 0.

This inequality ensures the implication (ii) ⇒ (iii).
Step 5. We turn our attention to the proof of (ii) ⇔ (i). Consider a sequence (ξ0(i))i≥1 of i.i.d. uniform[0,1] r.v. and
let (ξt (i), t ≥ 0)i≥1 :=L0(Π̂, (ξ0(i))i≥1) be the lookdown process defined from this last sequence and the flow of
partitions Π̂ . We know that (Zt ·Ξt(·), t ≥ 0) is a Ψ -MVBP, where (Ξt , t ≥ 0) := E0(Π̂, (ξ0(i))i≥1). Moreover, a.s.
for all t ∈ [0,T)

Ξt

({
ξ0(1)

}) = lim
n→∞

1

n

n∑
i=0

1{ξt (i)=ξ0(1)}

= ∣∣Π̂t (1)
∣∣.
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It is intuitively easy to see that the Eve property is equivalent with the almost sure convergence

Ξt

({
ξ0(1)

}) −→
t↑T

1.

Roughly speaking, the primitive Eve is necessarily the type ξ0(1) in the sequence of initial types of the lookdown
representation. For a rigorous proof of this result, see Proposition 4.12. Then, it is sufficient to show the following
equivalence

Ξt

({
ξ0(1)

}) −→
t↑T

1 a.s. ⇐⇒ Π̂t −→
t↑T

1[∞] a.s.

Since Π̂t is, conditionally on {t < T}, an exchangeable random partition, we deduce that for all n≥ 1

P
(
Π̂
[n]
t = 1[n]|

∣∣Π̂t (1)
∣∣)= ∣∣Π̂t (1)

∣∣n−1
.

Thus

Ξt

({
ξ0(1)

}) −→
t↑T

1 a.s. ⇐⇒ ∣∣Π̂t (1)
∣∣ −→

t↑T
1 a.s. ⇐⇒ ∀n≥ 1, Π̂

[n]
T = 1[n] a.s.

The proof is complete. �

Thanks to this theorem, we can set Π̂t := Π̂T for all t ≥ T.

4.2. An ordering of the ancestors

Consider the following definition of an ancestor.

Definition 4.5. Fix a point x ∈ [0,1]. If there exists a time t > 0 such that mt ({x}) > 0, then we say that x is an
ancestor of m and mt ({x}) is called its progeny at time t . We say that an ancestor x becomes extinct at time d , if
d := sup{t > 0: mt ({x}) > 0} is finite. If so, d is called its extinction time.

Thanks to the lookdown representation the set of ancestors is countable almost surely. Indeed, an ancestor is a point
of the atomic support of the MVBP at a given time. Since at any time, the atomic support is included in the set of
initial types (of the lookdown representation) and since this last set is countable, the result follows.

Remark 4.6. In the infinite variation case, one can identify an ancestor and its progeny with a Lévy tree among the
Lévy forest that represents the genealogy of a CSBP. For further details on Lévy trees see [13,14,23].

The progeny mt ({x}) of an ancestor x has the same possible long-term behaviours as a Ψ -CSBP (these behaviours
have been recalled in Section 2.2). We thus propose a classification of the Ψ -MVBPs according to these possible
behaviours; for the moment we do not require the Eve property to be verified. Recall dt ,wt from Equation (11).

Classification of the behaviours.

• Extinction. The total-mass process Z reaches 0 in finite time. All the ancestors become extinct in finite time but no
two of them simultaneously. At any time t ∈ (0,T), mt has finitely many atoms, hence the number of ancestors that
have not become extinct is finite, and mt has no continuous part, that is, dt = 0.

• Explosion. The total-mass process Z reaches∞ in finite time. All the ancestors, except the primitive Eve, have finite
progenies at time T.

• Infinite lifetime – no extinction of ancestors. T=∞ and Ψ is either negative or has a second root q ∈ [0,∞) and
verifies

∫∞ du
Ψ (u)

=∞. Then no ancestor becomes extinct in finite time, and their progenies reach, in infinite time,
0 or ∞.
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• Infinite lifetime – possible extinction of ancestors. T=∞, Ψ has a second positive root q > 0 and
∫∞ du

Ψ (u)
<∞.

The set of ancestors can be subdivided into those, infinitely many, which become extinct in finite time (no two of
them simultaneously) and those, finitely many, whose progenies reach ∞ in infinite time.

Additionally in the last two cases, the number of ancestors whose progenies reach ∞ is Poisson with parameter q

under the condition that Ψ is conservative.

Remark 4.7. A Ψ -MVBP enjoys at most two distinct behaviours: one on the event {ZT = 0} and another on the event
{ZT =∞}.

Example 4.8. Let us give some examples that illustrate the previous cases

• Ψ (u)= u2, the Ψ -CSBP reaches 0 in finite time almost surely and so we are in the Extinction case almost surely.
• Ψ (u) = −√u, the Ψ -CSBP reaches +∞ in finite time almost surely and so we are in the Explosion case almost

surely.
• Ψ (u)= u ln(u), this is called the Neveu CSBP: it has an infinite lifetime almost surely and so we are in the Infinite

lifetime – no extinction of ancestors case almost surely.
• Ψ (u)= u ln(u)+ u2, this CSBP reaches either 0 in finite time or ∞ in infinite time. On the event {ZT =∞} we are

in the Infinite lifetime – possible extinction of ancestors case, while on the event {ZT = 0} we are in the Extinction
case.

Proof of Classification of the behaviours. It is plain that these four cases cover all the possible combinations of
branching mechanisms and asymptotic behaviours of the total-mass processes.
Extinction case. If dt > 0 or wt is an infinite measure then we have P(Zt = 0)= 0, therefore necessarily wt is a finite
measure and dt = 0. Since each atom of mt is associated with an ancestor with a positive progeny at time t , we deduce
that at any time t > 0 only finitely many ancestors have not become extinct. Now condition on {t < T} and consider
two ancestors x1 and x2 in [0,1] not yet extinct at time t . Their progenies after time t are given by two independent
Ψ -CSBP (mt+s({x1}), s ≥ 0) and (mt+s({x2}), s ≥ 0). The extinction times of these two ancestors are then distinct
a.s. thanks to Lemma 2.1.
Explosion case. Since two independent Ψ -CSBP cannot explode at the same finite time thanks to Lemma 2.1, we
deduce that only one ancestor has an infinite progeny at time T.
Infinite lifetime cases. The Poisson distribution of the statement can be derived from Lemma 2 in [3]. Let x ∈ [0,1]
be an ancestor. Then, there exists t > 0 s.t. mt ({x}) > 0. The process (mt+s({x}), s ≥ 0) is a Ψ -CSBP started from
mt ({x}), and so, either it reaches ∞ in infinite time with probability 1− e−mt ({x})q or it reaches 0 with the comple-
mentary probability. In the latter case, it reaches 0 in finite time if and only if

∫∞ du
Ψ (u)

<∞.

Now consider the case
∫∞ du

Ψ (u)
<∞. Remark that in that case dt = 0 for all t > 0 and that there is no simultaneous

extinction (same proof as above). Let us prove that infinitely many ancestors become extinct in finite time. Consider
the lookdown representation of the Ψ -MVBP: we stress that the set of initial types is exactly equal to the set of
ancestors. We have already proved one inclusion at the beginning of this subsection: each ancestor is an initial type.
The converse is obtained as follows. Observe first that Ψ is necessarily the Laplace exponent of a Lévy process with
infinite variation paths since otherwise

∫∞ du
Ψ (u)

<∞ would not hold. Therefore Theorem 3 ensures that the partitions
Π̂0,t , t > 0 have no singleton: each block has a strictly positive asymptotic frequency and therefore each initial types
of the lookdown representation has a strictly positive frequency. This implies that each initial type is necessarily an
ancestor. As the initial types are infinitely many, so are the ancestors: a Poisson number of them have a progeny that
reaches ∞ in infinite time, hence infinitely many become extinct in finite time. �

Remark 4.9. One should compare the Extinction case with the behaviour of the Λ Fleming–Viot processes that come
down from infinity. But in that setting, the question of simultaneous loss of ancestral types remains open, see Section 6
or [22] for further details.

Theorem 5. Assume that Z does not reach∞ in finite time. If the Eve property holds then one can order the ancestors
by persistence/predominance. We denote this ordering (ei )i≥1 and call these points the Eves. In particular, e1 is the
primitive Eve.
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The persistence of an ancestor refers to the extinction time of its progeny (when it reaches 0 in finite time) while
the predominance denotes the asymptotic behaviour of its progeny (when it does not become extinct in finite time).
The proof of this theorem is thus split into the Extinction and the Infinite lifetime cases. Note that we have excluded
the case where the Ψ -CSBP is non-conservative for a reason given in Remark 4.11.

4.2.1. Extinction case
One can enumerate the ancestors of (mt , t ∈ [0,T)), say (ei )i≥1, in the decreasing order of their extinction times
(di)i≥1, that is, T= d1 > d2 > d3 > · · ·> 0. In particular, e1 is the primitive Eve.

4.2.2. Infinite lifetime case
We let e1 be the primitive Eve of the population: necessarily it does not become extinct in finite time. Then we use the
following result.

Lemma 4.10. In the Infinite lifetime – no extinction of ancestors case: there exists a sequence (ei )i≥2 such that for
all i ≥ 2

lim
t→∞

mt ({ei})
mt ([0,1] \ {e1, . . . , ei−1}) = 1.

In the Infinite lifetime – possible extinction of ancestors case: let K be the random number of ancestors which never
become extinct. There exists a sequence (ei )i≥2 such that for all i ∈ {2, . . . ,K}

lim
t→∞

mt ({ei})
mt ([0,1] \ {e1, . . . , ei−1}) = 1

and (ei )i>K are the remaining ancestors in the decreasing order of their extinction times (di)i>K , that is, T=∞>

dK+1 > dK+2 > dK+3 > · · ·> 0.

Proof. We focus on the Infinite lifetime – no extinction of ancestors case, the other case is then a mixture of the latter
with the Extinction case. For every n ∈N, we subdivide [0,1] into[

0,2−n
)
,

[
2−n,2× 2−n

)
, . . . ,

[
1− 2−n,1

]
.

Since these intervals are disjoint, the restrictions of mt to each of them are independent. Therefore, we define for each
i ∈ [2n], the random point e(i, n) as the Eve of the process(

mt

(· ∩ [(i − 1)2−n, i2−n
))

, t ≥ 0
)

(note that for i = 2n we take [1 − 2−n,1]). In addition, one can define an ordering of the collection (e(i, n))i∈[2n]
according to the asymptotic behaviours of their progenies. More precisely, for two integers i �= j ∈ [2n], thanks to the
classification of the behaviours and the Eve property, we have

lim
t→∞

mt ({e(i, n)})
mt ({e(j, n)}) ∈ {0,∞}.

Thus, there exist two r.v. in1 �= in2 ∈ [2n] such that for all i ∈ [2n]

lim
t→∞

mt ({e(in1 , n)})
mt ({e(i, n)}) =∞ if i �= in1 ,

lim
t→∞

mt ({e(in2 , n)})
mt ({e(i, n)}) =∞ if i �= in1 , in2 .

We set e1(n) := e(in1 , n) and e2(n) := e(in2 , n). We claim that almost surely the sequences (e1(n))n≥1 and (e2(n))n≥1

are eventually constant. This is clear for (e1(n))n≥1 since for each n ≥ 1, e1(n) = e1, which is the primitive Eve of
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the entire population [0,1]. We turn our attention to the sequence (e2(n))n≥1, in that case the claim is not so clear.
Roughly speaking, the wild behaviour this sequence could have is the following: infinitely often, the second Eve e2(n)

is “hidden” in the interval [(in−1
1 − 1)2−(n−1), in−1

1 2−(n−1)) containing the first Eve e1 at rank n− 1, but we will see
that it cannot occur. Suppose that the claim does not hold. Thus there exists an event E of positive probability on
which there exists a sequence (nk)k≥1 of integers such that e2(nk − 1) �= e2(nk) for every k ≥ 1. From the consistency
of the restrictions of the MVBP m to the subintervals defined at ranks nk − 1 and nk , we deduce that e2(nk) is in
[(ink−1

1 − 1)2−(nk−1), i
nk−1
1 2−(nk−1)), that is, the same interval as e1 at rank nk − 1. Hence on the event E

∣∣e1 − e2(n)
∣∣→ 0 as n ↑∞. (30)

We now exhibit a contradiction. By the exchangeability of the increments of the MVBP m, we know that (in1 , in2 ) is
distributed uniformly among the pairs of integers in [2n]. Therefore, one easily deduces that for all n≥ p

P
(∣∣e1 − e2(n)

∣∣≤ 2−p
)≤ P

(∣∣in1 − in2

∣∣≤ 2n−p + 1
)≤ 22−p.

This implies that the convergence of Eq. (30) holds with probability 0, and E cannot have positive probability. There-
fore our initial claim is proved and we can define e2 := limn→∞ e2(n).

The property is proved for the first two ancestors e1 and e2. The general case is obtained similarly. �

Remark 4.11. In the case where Z reaches ∞ in finite time (non-conservative case), we cannot obtain a relevant
ordering. Indeed, in that case all the progenies mT({x}) of the ancestors x �= e are finite at time T. Therefore, no
natural order appears in that setting.

4.3. The Eves and the lookdown representation

Let us motivate the previous ordering by presenting a striking connection with the lookdown representation. The
following proposition implies that, if the process of limiting empirical measures of a lookdown process is equal to
a given Ψ -MVBP, then the initial types are necessarily the sequence of Eves of the Ψ -MVBP. We denote by rt the
probability measure obtained by rescaling mt by its total-mass Zt .

Proposition 4.12. Assume that the Eve property is fulfilled and that the Ψ -CSBP does not explode in finite time.
Consider a Ψ flow of partitions (Π̂s,t ,0 ≤ s ≤ t < T) defined from the Ψ -CSBP Z and a sequence (ξ0(i))i≥1 of r.v.
taking distinct values in [0,1]. Let (Ξt , t ∈ [0,T)) := E0(Π̂, (ξ0(i))i≥1) be the limiting empirical measures of the
lookdown process defined from these objects. If (Ξt , t ∈ [0,T))= (rt , t ∈ [0,T)) a.s., then (ξ0(i))i≥1 = (ei )i≥1 a.s.

Proof. We prove the proposition in the Extinction and Infinite lifetime – no extinction of ancestors cases, as the Infinite
lifetime – possible extinction of ancestors case is a combination of these two cases. Consider the lookdown process(

ξt (i), t ∈ [0,T)
)
i≥1 :=L0

(
Π̂,
(
ξ0(i)

)
i≥1

)
.

Suppose this lookdown process verifies the assumptions of the proposition: there exists an event Ω∗ of probability 1
on which(

Ξt, t ∈ [0,T)
)= (rt , t ∈ [0,T)

)
. (31)

We have to prove that ξ0(i)= ei for all i ≥ 1 a.s. First we notice that each initial type ξ0(i) (resp. each ancestor ei ) is
associated with a process of frequencies (|Π̂0,t (i)|, t ≥ 0) (resp. (rt ({ei}), t ≥ 0)). In addition, we have

Ξt(dx)=
∑
i≥1

∣∣Π̂0,t (i)
∣∣δξ0(i)(dx)+

(
1−

∑
i≥1

∣∣Π̂0,t (i)
∣∣)dx. (32)

We work on the event Ω∗ throughout this proof.
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Extinction case. There is no drift part in Eq. (32), and the two sets {ξ0(i); i ≥ 1} and {ei; i ≥ 1} are equal. The initial
types {ξ0(i); i ≥ 1} of the lookdown process are ordered by decreasing persistence by construction. The Eves of the
Ψ -MVBP (mt , t ∈ [0,T)) are also ordered by decreasing persistence. Therefore ξ0(i)= ei for all i ≥ 1.
Infinite lifetime – no extinction of ancestors case. From Eqs (31) and (32), we know that

(∣∣Π̂0,t (i)
∣∣)↓

i≥1 =
(
rt
({

ei
}))↓

i≥1 (33)

for all t ∈ [0,T). By definition of the ancestors, we know that for every i ≥ 1

P
[(

rt
({

ej

0

}))
1≤j≤i

= (rt({ej

0

}))↓
1≤j≤i

] −→
t→∞ 1.

Thus, using the exchangeability of the partition Π̂0,t , Eq. (33) and the last identity, we deduce that for every i ≥ 1

P
[(∣∣Π̂0,t (j)

∣∣)
1≤j≤i

= (∣∣Π̂0,t (j)
∣∣)↓

1≤j≤i

] −→
t→∞ 1

which entails that

P
[(

ξ0(j)
)

1≤j≤i
= (ej

)
1≤j≤i

]= 1.

This concludes the proof. �

We now determine the distribution of the sequence of Eves (ei )i≥1.

Proposition 4.13. The sequence (ei )i≥1 is i.i.d. uniform[0,1] and is independent of the sequence of processes
(mt ({ei}), t ∈ [0,T))i≥1.

Proof. Consider a sequence (ξ0(i))i≥1 of i.i.d. uniform[0,1] r.v. and a Ψ flow of partitions (Π̂s,t ,0 ≤ s ≤ t < T)

defined from the Ψ -CSBP (Zt , t ∈ [0,T)). Let (Ξt , t ∈ [0,T)) := E0(Π̂, (ξ0(i))i≥1) be the limiting empirical measures
of the corresponding lookdown process. Denote by � the measurable map that associates to a Ψ -MVBP its sequence
of Eves. From Proposition 4.12, we deduce that a.s.

�
((

Zt ·Ξt(·), t ∈ [0,T)
))= (ξ0(i)

)
i≥1.

Since (Zt ·Ξt(·), t ∈ [0,T))
(d)= (mt (·), t ∈ [0,T)), we obtain thanks to Proposition 4.12 the following identity:

((
mt (·), t ∈ [0,T)

)
,
(
ei
)
i≥1

) (d)= ((Zt ·Ξt(·), t ∈ [0,T)
)
,
(
ξ0(i)

)
i≥1

)
. (34)

Therefore (ei )i≥1 is a sequence of i.i.d. uniform[0,1] r.v. In addition the collection of asymptotic frequencies (Zt ·
Ξt({ξ0(i)}), t ∈ [0,T))i≥1 only depends on Π̂ , thus it is independent of the initial types (ξ0(i))i≥1. The asserted result
follows. �

5. Some properties of the genealogy

Consider a branching mechanism Ψ , a Ψ -CSBP Z started from 1 assumed to be càdlàg and a Ψ flow of partitions
(Π̂s,t ,0 ≤ s ≤ t < T) defined from the Ψ -CSBP Z. We present some properties of the Ψ flow of partitions before
stating a limit theorem. For the sake of simplicity, let Π̂t := Π̂0,t for all t ≥ 0 (recall that Theorem 2 allows us to
extend this process after time T).
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5.1. Dust and modification

Theorem 3. The following dichotomy holds:

• If σ = 0 and
∫∞

0 (1∧ h)ν(dh) <∞, then almost surely for all t ∈ (0,T), the partition Π̂t has singleton blocks.

• Otherwise, almost surely for all t ∈ (0,T), the partition Π̂t has no singleton blocks.

Furthermore when σ = 0, almost surely for all t ∈ (0,T] the asymptotic frequency of the dust component of Π̂t is
equal to

∏
s≤t (1− �Zs

Zs
) whereas when σ > 0, almost surely for all t ∈ (0,T] there is no dust.

Remark 5.1. The condition σ = 0 and
∫∞

0 (1∧ h)ν(dh) <∞ is equivalent to saying that Ψ is the Laplace exponent
of a Lévy process with finite variation paths.

Proof. By the definition of a Ψ flow of partitions, we know that, conditional on t < T, Π̂t is distributed as a paint-box
on the subordinator S0,t therefore it has no singleton blocks iff dt = 0 (recall that dt is the drift term of the Laplace
exponent ut (·)). Since for all t, s ≥ 0, ut+s(·)= ut ◦ us(·), classical results ensure that dt+s = dt .ds . Therefore

∃t > 0, dt > 0 ⇔ ∀t > 0, dt > 0.

Also, the equivalence dt > 0⇔ σ = 0 and
∫∞

0 (1∧ h)ν(dh) <∞ can be found in [25].
Suppose now that σ = 0. Classical results on exchangeable partitions (see [2] for instance) ensure that the asymp-

totic frequency of the dust is almost surely equal to the probability that the first block is a singleton conditional on the
mass partition. If t < T, then Π̂t (1) is a singleton iff no elementary reproduction event has involved 1. This occurs
with probability

∏
s≤t (1− �Zs

Zs
) conditionally on Z. If t = T, then either Π̂T has finitely many blocks and in that case

it cannot have dust, or it has infinitely many blocks. In the latter case Π̂T(1) is a singleton iff for all t < T Π̂t (1) is a
singleton. This occurs with probability

∏
s<T(1− �Zs

Zs
).

When σ > 0, the number of blocks in Π̂t is finite almost surely since we are either in the Extinction case or in the
Infinite lifetime – possible extinction of ancestors case.

Finally, for all t ∈ [0,T) we have proved that the asserted properties hold almost surely. Since the process of
asymptotic frequencies of Π̂t is càdlàg, we deduce that these properties hold almost surely for all t ∈ [0,T). �

Another interesting question about genealogical structures is the following: can we recover the population size
from the genealogy?

Proposition 5.2. The process (Zt , t ≥ 0) is measurable in the filtration F Π̂
t := σ {Π̂r,s ,0≤ r ≤ s ≤ t}, t ≥ 0.

Proof. We give a sketch of the proof. Suppose that σ > 0 then the infinitesimal jumps due to binary coagulation
events allow one to recover the jump rates which is σ 2/Zt at any given time t ≥ 0 thus the process Z is entirely
recovered from this only information. Now suppose that σ = 0. The rescaled jumps (�Zt

Zt
, t ≥ 0) are measurable

w.r.t. (F Π̂
t , t ≥ 0). Conjointly with the knowledge of the deterministic drift γ , we are able to recover the paths of the

process. �

Recall that the trajectories of a stochastic flow of partitions are not necessarily deterministic flows of partitions: the
cocycle property does not necessarily hold simultaneously for all triplets r < s < t . But we have mentioned that this
property is actually verified in the particular case of a flow of partitions defined from a càdlàg CSBP as presented in
Section 3.2. The goal of what follows is to prove that any Ψ flow of partitions admits a modification whose trajectories
are deterministic flows of partitions. The following two results are proved in the Appendix.

Lemma 5.3. The process (Zt , Π̂t ; t ≥ 0) is a Markov process in its own filtration with a Feller semigroup.

Proposition 5.4. Consider a Ψ flow of partitions (Π̂s,t ,0 ≤ s ≤ t < T) with underlying Ψ -CSBP (Zt ,0 ≤ t < T).

There exists a process (
˜̂
Πs,t ,0≤ s ≤ t < T) such that:
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• For all s ≤ t , almost surely on the event {t < T} Π̂s,t = ˜̂
Πs,t .

• For P-a.a. ω ∈Ω , ˜̂Π(ω) is a deterministic flow of partitions without simultaneous mergers.

5.2. A limit theorem

We now turn our attention to the continuity properties of the law of (Π̂t , t ≥ 0) according to its branching mecha-
nism Ψ . To motivate this study we provide a convergence result for sequences of Ψ -CSBPs, but this requires first to
introduce a suitable topology to compare càdlàg functions that possibly reach ∞ in finite time. At first reading, one
can replace our topology with the usual Skorohod’s topology and skip the next paragraph.

Our topology is the same as the one introduced in [8]. Let d̄ be a metric on [0,+∞] that makes this space home-
omorphic to [0,1]. We denote by D([0,+∞], [0,+∞]) the space of càdlàg functions f : [0,+∞]→ [0,+∞] such
that f (t)= 0 (resp. ∞) implies f (t + s)= 0 (resp. ∞) and limt→∞ f (t) exists in [0,+∞] and is equal to f (∞).

We define Λ∞ as the set of increasing homeomorphisms of [0,+∞] into itself. Let d̄∞ be the following metric on
D([0,+∞], [0,+∞])

d̄∞(f, g) := 1∧ inf
λ∈Λ∞

(
sup
s≥0

d̄
(
f (s), g ◦ λ(s)

)∨ sup
s≥0

∣∣s − λ(s)
∣∣).

Let (Ψm)m∈N be a sequence of branching mechanisms such that Eq. (8) is fulfilled with the triplet (γm,σm, νm)m∈N

verifying the corresponding assumptions and denote by Zm a Ψm-CSBP started from 1. Let Ψ be another branching
mechanism and Z a Ψ -CSBP. We consider the following assumption.

Assumption 1. For all u ∈R+, we have Ψm(u)→ Ψ (u) as m→∞.

Remark 5.5. This assumption is equivalent with

γm − νm

(
(1,∞)

) −→
m→∞ γ − ν

(
(1,∞)

)
in R and

σ 2
mδ0(dh)+ (1∧ h2)νm(dh) −→

m→∞ σ 2δ0(dh)+ (1∧ h2)ν(dh)

in the sense of weak convergence in the set Mf (R+) of finite measures on R+. See Theorem VII.2.9 and Re-
mark VII.2.10 in [19].

The following proposition yields a convergence result on sequences of CSBP, which is a consequence of the work
of Caballero, Lambert and Uribe Bravo in [8].

Proposition 5.6. Under Assumption 1, we have

(
Zm

t , t ≥ 0
) (d)−→

m→∞ (Zt , t ≥ 0), in the sense of weak convergence in D
([0,+∞], [0,+∞]). (35)

Proof. The proof of Proposition 6 in [8] ensures that there exists a sequence (Ym
t , t ≥ 0) of Ψm-Lévy processes started

from 1 stopped whenever reaching 0 that converges almost surely to a Ψ -Lévy process (Yt , t ≥ 0) stopped whenever
reaching 0, where the convergence holds in D([0,+∞], [0,+∞]). Furthermore, Proposition 5 in [8] yields that L−1

is continuous on (D([0,+∞], [0,+∞]), d̄∞) where L is a time change due to Lamperti, see Section A.1 for the
definition. Therefore, we deduce that

d̄∞
(
L−1(Ym

)
,L−1(Y)

) −→
m→∞ 0 a.s.

Since L−1(Ym) (resp. L−1(Y)) is a Ψm (resp. Ψ ) CSBP for all m≥ 1, this concludes the proof. �

Let (Π̂m
s,t ,0≤ s ≤ t) be a Ψm flow of partitions, for each m≥ 1.
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Theorem 4. Suppose that

(i) for all u ∈R+, Ψm(u)→ Ψ (u) as m→∞,
(ii) the branching mechanism Ψ satisfies the Eve property,

(iii) Ψ is not the Laplace exponent of a compound Poisson process,

then

(
Π̂m

t , t ≥ 0
) (d)−→

m→∞ (Π̂t , t ≥ 0)

in D(R+,P∞).

The proof of this theorem requires a preliminary lemma. Recall that Tε := inf{t ≥ 0: Zt /∈ (ε,1/ε)}.

Lemma 5.7. Under the hypothesis of the theorem, suppose that Zm → Z almost surely as m ↑ ∞ in D([0,+∞],
[0,+∞]), then for all ε ∈ (0,1) we have Tm

ε −→
m→∞Tε a.s. and

(
Zm

t∧Tm
ε
, t ≥ 0

) −→
m→∞ (Zt∧Tε , t ≥ 0) a.s.

in D(R+,R+).

We postpone the proof of this lemma to the Appendix. We are now ready to prove the theorem.

Proof of Theorem 4. The definition of the topology on P∞ entails that it suffices to show that for every n ∈N,

(
Π̂

m,[n]
t , t ≥ 0

) (d)−→
m→∞

(
Π̂
[n]
t , t ≥ 0

)
(36)

in D(R+,Pn). So we fix n ∈N. Our proof consists in showing that

(a) P(Π̂
[n]
Tε
= 1[n])→ 1 as ε ↓ 0.

(b) (Π̂
m,[n]
t∧Tm

ε
, t ≥ 0)

(d)−→
m→∞ (Π̂

[n]
t∧Tε

, t ≥ 0) in D(R+,Pn) for every ε ∈ (0,1).

To see that those two properties imply the asserted convergence, observe that they entail

P
(
Π̂

m,[n]
Tε

= 1[n]
)→ 1

as m→∞ and ε ↓ 0. Since 1[n] is an absorbing state for the processes Π̂ [n] and Π̂m,[n], we deduce that

P
[(

Π̂
[n]
t∧Tε

, t ≥ 0
)= (Π̂ [n]

t , t ≥ 0
)]→ 1,

P
[(

Π̂
m,[n]
t∧Tm

ε
, t ≥ 0

)= (Π̂m,[n]
t , t ≥ 0

)]→ 1

as m→∞ and ε ↓ 0. Hence, the asserted convergence follows. We now prove (a) and (b).
The first property (a) derives from Theorem 2 and the fact that Tε → T a.s. as ε ↓ 0.
Let us prove the second property (b). Note that this is sufficient to show that for every ε ∈ (0,1)

{(
Lm

t∧Tm
ε
(n,K), t ≥ 0

);K ⊂ [n],#K ≥ 2
} (d)−→

m↑∞
{(

Lt∧Tε (n,K), t ≥ 0
);K ⊂ [n],#K ≥ 2

}

in D(R+,R
dn+ ), where {(Lt (n,K), t ≥ 0);K ⊂ [n],#K ≥ 2} are the counting processes whose jump rates have been

characterized in Section 3.3. Indeed the knowledge of these processes allows to determine the elementary reproduction
events Π̂

[n]
t−,t , and so, is sufficient to recover the process (Π̂

[n]
t , t ≥ 0). Obviously, this also holds when the processes

are stopped at Tε .
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Let Zm (resp. Z) be a Ψm-CSBP (resp. Ψ -CSBP) such that Zm → Z almost surely as m ↑ ∞ in D([0,+∞],
[0,+∞]). Fix ε ∈ (0,1), we know from Lemma 5.7 that(

Zm
t∧Tm

ε
, t ≥ 0

) −→
m→∞ (Zt∧Tε , t ≥ 0) a.s.

in D(R+,R+). Using Proposition 3.9 and the definition of the stopping times Tm
ε , we deduce that for each 2≤ k ≤ n

(∫ t∧Tm
ε

0
λn,k

(
Zm

s−,Ψ m
)

ds, t ≥ 0

)
−→
m↑∞

(∫ t∧Tε

0
λn,k(Zs−,Ψ )ds, t ≥ 0

)
a.s. (37)

in D(R+,R+).
From each Ψm-CSBP Zm, we define a flow of partitions and consider the corresponding dn-dimensional counting

process{(
Lm

t∧Tm
ε
(n,K), t ≥ 0

);K ⊂ [n],#K ≥ 2
}
.

We do the same from the Ψ -CSBP Z and define{(
Lt∧Tε (n,K), t ≥ 0

);K ⊂ [n],#K ≥ 2
}
.

We have shown in Proposition 3.10 that this process is a dn-dimensional pure-jump semimartingale whose predictable
compensator is the dn-dimensional process{(∫ t∧Tε

0
λn,#K(Zs−,Ψ )ds, t ≥ 0

)
;K ⊂ [n],#K ≥ 2

}

and similarly for {(Lm
t∧Tm

ε
(n,K), t ≥ 0);K ⊂ [n],#K ≥ 2}, for each m≥ 1. From Theorem VI.4.18 in [19] we deduce

that the collection of dn-dimensional processes {(Lm
t∧Tm

ε
(n,K), t ≥ 0);K ⊂ [n],#K ≥ 2}m≥1 is tight D(R+,R

dn+ ).
Indeed, in the notation of [19] conditions (i) and (ii) are trivially verified, while condition (iii) is a consequence of
Eq. (37). Furthermore, this last equation ensures that any limit of a subsequence of the collection of dn-dimensional
semimartingales is a dn-dimensional semimartingale whose predictable compensator is{(∫ t∧Tε

0
λn,#K(Zs−,Ψ )ds, t ≥ 0

)
;K ⊂ [n],#K ≥ 2

}

which characterizes uniquely the semimartingale {(Lt∧Tε (n,K), t ≥ 0);K ⊂ [n],#K ≥ 2} (see for instance Theo-
rem IX.2.4 in [19]). This ensures the following convergence

{(
Lm

t∧Tm
ε
(n,K), t ≥ 0

);K ⊂ [n],#K ≥ 2
} (d)−→

m↑∞
{(

Lt∧Tε (n,K), t ≥ 0
);K ⊂ [n],#K ≥ 2

}
(38)

in D(R+,R
dn+ ). �

6. From a flow of subordinators to the lookdown representation

6.1. Connection with generalized Fleming–Viot and motivation

In [22], we considered the class of generalized Fleming–Viot processes: they are Markov processes that take values
in the set of probability measures on a set of genetic types, say [0,1], and that describe the evolution of the asymp-
totic frequencies of genetic types in a population of constant size 1. A flow of generalized Fleming–Viot processes
(ρs,t ,−∞ < s ≤ t < +∞) is a consistent collection of generalized Fleming–Viot processes and is completely en-
coded by a stochastic flow of bridges, see the article [5] of Bertoin and Le Gall. This object is similar to the stochastic
flow of subordinators (restricted to an initial population [0,1]), but while in the former the population size is constant
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in the latter it varies as a CSBP. This will be a major difficulty in the present work. We introduced the notion of
ancestral type for a generalized Fleming–Viot process, similarly as we have identified the ancestors of a MVBP. Then
we restricted our study to the following two subclasses of generalized Fleming–Viot:

• Eves – extinction: the ancestral types with a positive frequency are finitely many at any positive time almost surely
and any two of them do never get extinct simultaneously. Thus we can order them by decreasing extinction times,
hence obtaining a sequence (ei )i≥1 called the Eves.

• Eves – persistent: the ancestral types do never become extinct and can be ordered according to the asymptotic
behaviours of their progenies as t tends to ∞, we called the corresponding sequence (ei )i≥1 the Eves as well.

At each time s ∈ R, we defined the sequence of Eves (ei
s)i≥1 as the ancestral types of the generalized Fleming–Viot

process (ρs,t , t ∈ [s,∞)). Then, expressing the genealogical relationships between those Eves in terms of partitions
of integers we obtained a stochastic flow of partitions (Π̂s,t ,−∞ < s ≤ t < ∞). These two objects catch all the
information encoded by the flow of generalized Fleming–Viot processes: (ei

s )i≥1 is the sequence of types carried
by the population started at time s while (Π̂s,t , t ∈ [s,∞)) tells how the frequencies of these types evolve in time.
Additionally, it provides a pathwise connection with the lookdown representation: the main result of [22] asserts that
for every time s ∈ R, the process of limiting empirical measures Es(Π̂, (ei

s )i≥1) is almost surely equal to (ρs,t , t ∈
[s,∞)).

Many connections exist between generalized Fleming–Viot processes and Ψ -MVBP: in [4], Bertoin and Le Gall
proved that the Bolthausen–Sznitman coalescent is the genealogy of the Neveu branching process, in [7] Birkner et
al. exhibited a striking connection between α-stable branching processes and Beta(2− α,α) Fleming–Viot processes
and in [6] Bertoin and Le Gall proved that a generalized Fleming–Viot process has a behaviour locally (i.e. for a small
subpopulation) identical with a branching process. It is thus natural to expect that a result similar to the one stated in
[22] holds in the present setting of branching processes.

For our construction to hold, we need the following assumptions:

• Ψ is conservative, that is, the Ψ -CSBP does not reach ∞ in finite time a.s.
• The branching mechanism Ψ enjoys the Eve property.

These assumptions ensure the existence of the ordering of ancestors presented in Section 4.2 in three different cases:
Extinction, Infinite lifetime – no extinction of ancestors and Infinite lifetime – possible extinction of ancestors.

From now on, we consider a flow of Ψ -MVBP (ms,t ,0≤ s ≤ t < T) defined from a Ψ flow of subordinators. As
explained in Section 2.3, we can assume that each process (ms,t , t ∈ [s,T)) is càdlàg. Note that in this section, we use
T instead of TS for the lifetime of the flow and we set Zt := m0,t ([0,1]) for all t ∈ [0,T) instead of the notation St .
Finally, recall the definition of the probability measure rs,t via the rescaling

rs,t (dx) := ms,t (Zs · dx)

Zt

.

In the next subsection, we define the Eves process (ei
s , s ∈ [0,T))i≥1 and a Ψ -flow of partitions (Π̂s,t ,0≤ s ≤ t < T)

pathwise from the flow of Ψ -MVBP. In particular, we prove Theorem 6. In the last subsection, we introduce for
all s ∈ [0,T), the lookdown process (ξs,t (i), t ∈ [s,T))i≥1 :=Ls(Π̂, (ei

s )i≥1) and define the measure-valued process
(Ξs,t , t ∈ [s,T)) := Es(Π̂, (ei

s)i≥1). The rest of that subsection is devoted to the proof of the following result.

Theorem 7. The flow of subordinators can be uniquely decomposed into two random objects: the Eves process (ei
s , s ∈

[0,T)) and the flow of partitions (Π̂s,t ,0≤ s ≤ t < T).

(i) Decomposition. For each s ∈R, a.s. Es(Π̂, (ei
s )i≥1)= (rs,t , t ∈ [s,T)).

(ii) Uniqueness. Let (Hs,t ,0 ≤ s ≤ t < T) be a Ψ flow of partitions defined from the Ψ -CSBP Z, and for each
s ∈ [0,T), consider a sequence (χs(i))i≥1 of r.v. taking distinct values in [0,1]. If for each s ∈ [0,T), a.s.
Es(H, (χs(i))i≥1)= (rs,t , t ∈ [s,T)) then

• For each s ∈ [0,T), a.s. (χs(i))i≥1 = (ei
s)i≥1.

• Almost surely H= Π̂ .
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6.2. Eves process and flow of partitions

For each s ∈ [0,T), the process (ms,t , t ∈ [s,T)) is a Ψ -MVBP started from the Lebesgue measure on [0,Zs]. There-
fore, we introduce the sequence (ei

s)i≥1 defined as its sequence of Eves (according to the definition given in Sec-
tion 4.2) but rescaled by the mass Zs in order to obtain r.v. in [0,1]. The process (ei

s , s ∈ [0,T))i≥1 is then called the
Eves process.

A motivation for the rescaling of the Eves by the mass Zs is given by the following lemma.

Lemma 6.1. For every s ∈ [0,T), the sequence (ei
s)i≥1 is i.i.d. uniform[0,1] and independent of the past of the flow

until time s, that is, of σ {mu,v,0≤ u≤ v ≤ s}.

Proof. An easy adaptation of Proposition 4.13 shows that, conditional on σ {mu,v,0 ≤ u ≤ v ≤ s}, the se-
quence (Zsei

s )i≥1 is i.i.d. uniform[0,Zs]. Therefore, the sequence (ei
s )i≥1 is i.i.d. uniform[0,1] and independent

of σ {mu,v,0≤ u≤ v ≤ s}. �

We now express the genealogical relationships between the Eves in terms of partitions. It is convenient to define
the process Fs,t as the distribution function of rs,t for all 0≤ s ≤ t < T. One easily shows that this process is a bridge
in the sense of [5]: it is a non-decreasing random process from 0 to 1 with exchangeable increments. We define an
exchangeable random partition Π̂s,t for all 0≤ s ≤ t < T thanks to the following equivalence relation

i
Π̂s,t∼ j ⇔ F−1

s,t

(
ei
t

)= F−1
s,t

(
ej
t

)
for all integers i, j .

Proposition 6.2. For all 0≤ s ≤ t < T, almost surely (Fs,t , (ei
t )i≥1, (ei

s )i≥1) follows the composition rule, that is:

• (ei
t )i≥1 is i.i.d. uniform[0,1].

• Π̂s,t is an exchangeable random partition independent of (ei
s )i≥1. Denote its blocks by (Aj )j≥1 in the increasing

order of their least elements. Then, for each j and any i ∈Aj , we have ej
s = F−1

s,t (e
i
t ).

• (ei
s )i≥1 is i.i.d. uniform[0,1].

The proof of this proposition follows from very similar arguments to those developed in Section 5 of [22], where
the Eves – extinction case corresponds here to the Extinction case while the Eves – persistent case corresponds to
Infinite lifetime – no extinction of ancestors here. Once again, the Infinite lifetime – possible extinction of ancestors
case is obtained as a mixture of the previous two ones.

Theorem 6. The collection of partitions (Π̂s,t ,0 ≤ s ≤ t < T) defined from the flow of subordinators and the Eves
process is a Ψ flow of partitions.

Proof. Fix 0≤ r < s < t < T. We know that for all integers i, j

i
Π̂r,t∼ j ⇔ F−1

r,t

(
ei
t

)= F−1
r,t

(
ej
t

)
.

Recall that F−1
r,t (ei

t )= F−1
r,s ◦F−1

s,t (e
i
t ) a.s. and similarly for j . Proposition 6.2 shows that there exists an integer ki (resp.

kj ) such that F−1
s,t (e

i
t )= eki

s a.s. (resp. j instead of i). Then we obtain that a.s.

i
Π̂r,t∼ j ⇔ ki

Π̂r,s∼ kj .

From the definition of the coagulation operator, we deduce that a.s. Π̂r,t = Coag(Π̂s,t , Π̂r,s).
Now we prove the property on the finite dimensional marginals via a recursion on n. Implicitly fi (resp. gi ) will

denote a bounded Borel map from P∞ (resp. R+) to R while φ will be a bounded Borel map from [0,1]N to R.
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For any sequence 0 = t0 < t1 < t2 < · · · < tn, Hti−1,ti :=P(Sti−1,ti ) will denote the random partitions obtained via
independent paint-box schemes based on Sti−1,ti , with i ∈ [n]. In addition, we will consider a more general setting in
which the flow of subordinators is taken at time 0 with an initial population [0, z] for a given z > 0 (whereas in this
section we consider only the case z = 1). Then we make use of Pz to emphasize the dependence on z > 0. We will
prove that for any integer n≥ 1, for all z > 0, 0 < t1 < · · ·< tn, and all f1, . . . , fn, g1, . . . , gn we have

Ez

[
f1(Π̂0,t1)g1(Zt1) . . . fn(Π̂tn−1,tn )gn(Ztn )|

(
ei

0

)
i≥1

]
= Ez

[
f1(H0,t1)g1(Zt1) . . . fn(Htn−1,tn )gn(Ztn )

]
.

This identity will ensure the asserted distribution for finite dimensional marginals of Π̂ .
At rank n = 1, we use Lemma 6.1 to deduce that the sequence (ei

t1
)i≥1 is independent from the subordinator

S0,t1 . Therefore, we can assume that H0,t1 is defined according to the paint-box scheme with this sequence of i.i.d.
uniform[0,1] and the subordinator S0,t1 , that is, H0,t1 = Π̂0,t1 . It suffices to prove that Π̂0,t1 and Zt1 are independent
from the sequence (ei

0)i≥1. The first independence comes from Proposition 6.2. The second independence can be
obtained from Lemma 6.1. The identity follows.

Now suppose that the identity holds at rank n− 1 for all z > 0, and all f1, g1, . . . , fn−1, gn−1. At rank n, we get
for any f1, g1, . . . , fn, gn,φ and z > 0

Ez

[
f1(Π̂0,t1)g1(Zt1) . . . fn(Π̂tn−1,tn )gn(Ztn )φ

((
ei

0

)
i≥1

)]
= Ez

[
f1(Π̂0,t1)g1(Zt1)φ

((
ei

0

)
i≥1

)
E
[
f2(Π̂t1,t2)g2(Zt2) . . . fn(Π̂tn−1,tn )gn(Ztn )|Ft1 ,

(
ei
t1

)
i≥1

]]
,

where Ft1 is the σ -field generated by the flow of subordinators until time t1. Remark that we have used the measur-
ability of (ei

0)i≥1 from Ft1 and (ei
t1
)i≥1, given by Proposition 6.2. We now apply the Markov property to the process

(Zt , t ≥ 0) to obtain

= Ez

[
f1(Π̂0,t1)g1(Zt1)φ

((
ei

0

)
i≥1

)
EZt1

[
f2(Π̂0,t2−t1)g2(Zt2−t1) . . . gn(Ztn−t1)|

(
ei
t1

)
i≥1

]]
.

Notice that we use an abusive notation when conditioning on (ei
t1
)i≥1: we mean that the sequence of ancestors at time

0 in the shifted (by t1) process is equal to the sequence (ei
t1
)i≥1 of the original flow of subordinators. We believe that

an accurate notation would have greatly burdened the preceding equations. We now apply the recursion hypothesis
and the case n= 1 to obtain

= Ez

[
f1(H0,t1)g1(Zt1)EZt1

[
f2(H0,t2−t1)g2(Zt2−t1) . . . gn(Ztn−t1)

]]
Ez

[
φ
((

ei
0

)
i≥1

)]
= Ez

[
f1(H0,t1)g1(Zt1)f2(Ht1,t2) . . . fn(Htn−1,tn )gn(Ztn )

]
Ez

[
φ
((

ei
0

)
i≥1

)]
,

where the last equality is due to the Markov property applied to the chain (Zti ,Hti−1,ti , (ti+1 − ti ))1≤i≤n. Note that
this discrete chain is homogeneous in time since we include in the state-space the length of the next time interval. The
recursion is complete. �

6.3. The pathwise lookdown representation

So far, we have defined pathwise from the flow of Ψ -MVBP (ms,t ,0≤ s ≤ t < T) the Eves process (ei
s , s ∈ [0,T))i≥1

and a Ψ flow of partitions (Π̂s,t ,0≤ s ≤ t < T). Thanks to Proposition 5.4, we can consider a regularized modification
of the flow of partitions that we still denote (Π̂s,t ,0≤ s ≤ t < T) for convenience. We are now able to define a particle
system (ξs,t (i),0 ≤ s ≤ t < T)i≥1 as follows. For all s ∈ [0,T), let (ξs,t (i), t ∈ [s,T))i≥1 := Ls(Π̂, (ei

s )i≥1) and
define the measure-valued process (Ξs,t , t ∈ [s,T)) := Es(Π̂, (ei

s )i≥1). The rest of this subsection is devoted to the
proof of Theorem 7.
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Proof of Theorem 7. Fix s ≥ 0 and work conditionally on {s < T}. From the lookdown representation, we know that
for all t ∈ [s,T), almost surely

Ξs,t (dx)=
∑
i≥1

∣∣Π̂s,t (i)
∣∣δei

s
(dx)+

(
1−

∑
i≥1

∣∣Π̂s,t (i)
∣∣)dx.

Thanks to Proposition 6.2, for all t ∈ [s,T), almost surely for all i ≥ 1, |Π̂s,t (i)| = rs,t ({ei
s}) and

rs,t =
∑
i≥1

rs,t
({

ei
s

})
δei

s
(dx)+

(
1−

∑
i≥1

rs,t
({

ei
s

}))
dx

we obtain that almost surely for all t ∈ [s,T) ∩Q, Ξs,t = rs,t . Since both processes are càdlàg, we deduce they are
equal almost surely.

We now turn our attention to the proof of the uniqueness property. Let (Hs,t ,0 ≤ s ≤ t < T) be a Ψ -flow of
partitions defined from Z and (χs(i), s ∈ [0,T))i≥1 be, at each time s ∈ [0,T), a sequence of r.v. taking distinct values
in [0,1]. Define for each s ∈ [0,T)(

Xs,t , t ∈ [s,T)
) := Es

(
H,
(
χs(i)

)
i≥1

)
and suppose that a.s. (Xs,t , t ∈ [s,T))= (rs,t , t ∈ [s,T)).

From Proposition 4.12, we deduce that for each s ∈ [0,T), almost surely (χs(i))i≥1 = (ei
s )i≥1. So the first unique-

ness property is proved. We now prove the second uniqueness property. There exists an event Ω∗ of probability 1 such
that on this event, for every rational numbers s, t such that 0≤ s ≤ t < T and every integer i ≥ 1 we have

rs,t
({

ei
s

})= ∣∣Π̂s,t (i)
∣∣= ∣∣Hs,t (i)

∣∣. (39)

In the rest of the proof, we work on the event Ω∗. Our proof relies on the following claim.

Claim. The flow of partitions Π̂ is entirely defined by the knowledge of the quantities |Π̂s,t (i)| for every rational
values 0≤ s ≤ t < T and every integer i ≥ 1.

Obviously, the same then holds for the flow of partitions H. Thanks to this result and Eq. (39), we deduce that
Π̂ =H almost surely. �

It remains to prove the Claim. This is achieved thanks to the following two lemmas.

Lemma 6.3. Almost surely, for every s ≤ t in [0,T) such that t is rational, Π̂s,t admits asymptotic frequencies and
the process r 	→ |Π̂t−r,t (i)| is làdcàg for every integer i.

Lemma 6.4. Let I be a subset of N. The following assertions are equivalent

(i) Π̂s−,s has a unique non-singleton block I .

(ii)

⎧⎨
⎩
(∣∣Π̂s−,t (i)

∣∣, t ∈ (s,∞)∩Q
)= (∑j∈I

∣∣Π̂s,t (j)
∣∣, t ∈ (s,∞)∩Q

)
if i =min(I ),(∣∣Π̂s−,t (i)

∣∣, t ∈ (s,∞)∩Q
)= (∣∣Π̂s,t (j)

∣∣, t ∈ (s,∞)∩Q
)

if

{
i �=min(I ),

i = j − (#{I ∩ [j ]}− 1
)∨ 0

and similarly when Π̂ is replaced by H.

Proof of Claim. The knowledge of |Π̂s,t (i)| for every rational values 0≤ s ≤ t < T and every integer i ≥ 1, entails,
thanks to Lemma 6.3, the knowledge of the quantities |Π̂r−,t (i)| and |Π̂r,t (i)| for all r ∈ (0, t). Then, Lemma 6.4
ensures that the elementary reproduction events Π̂s−,s are obtained from the preceding quantities. �
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Proof of Lemma 6.3. From the exchangeability properties of Π̂ , we know that almost surely the quantities |Π̂s,t (i)|
exist simultaneously for all rational values s ≤ t and integers i ≥ 1. Fix the rational value t . We differentiate three
cases. First if wt is a finite measure and dt = 0, then the process r 	→ Π̂t−r,r has finitely many blocks and no dust, and
evolves at discrete times by coagulation events. Thus, for all s ∈ (0,T), there exist rational values p < s < q such that
Π̂s−,t = Π̂p,t and Π̂s,t = Π̂q,t . The result follows. Second if dt > 0. Then, one can easily prove that the rate at which
the ith block is involved in a coalescence event is finite, for every i ≥ 1. Therefore, the same identities, but for the ith
block, as in the previous case hold.

Finally, consider the case where blocks have infinitely many blocks but no dust. Then, one can adapt the arguments
used in Section 7 of [22] to obtain the result. �

Proof of Lemma 6.4. The objects are well-defined thanks to Lemma 6.3. One can adapt the proof in Section 6 of
[22] in this setting to obtain the asserted result. For this, it is enough to remark that the processes (|Π̂s,t (i)|, t ∈
(s,T) ∩Q)i≥1 are distinct by pair since either they reach 0 at distinct finite times or their asymptotic behaviours are
distinct. �

Appendix

A.1. The Lamperti representation

The Lamperti representation provides a time change that maps a Ψ -Lévy process to a Ψ -CSBP. It relies on the
following objects. Define for all t ≥ 0 and any f ∈D([0,+∞], [0,+∞]),

I (f )t := inf

{
s ≥ 0:

∫ s

0
f (u)du > t

}
.

Then we define L :D([0,+∞], [0,+∞])→D([0,+∞], [0,+∞]) by setting

L(f ) := f ◦ I (f ) for all f ∈D
([0,+∞], [0,+∞]).

Conversely, one can verify that L−1(g)= g ◦ J (g) where, for all g ∈D([0,+∞], [0,+∞])

J (g)t := inf

{
s ≥ 0:

∫ s

0
g−1(u)du > t

}
.

Consider a Ψ -Lévy process Y started from 1 stopped whenever reaching 0, the result of Lamperti ensures that L−1(Y)

is a Ψ -CSBP started from 1, and that L(Z) is a Ψ -Lévy started from 1 stopped whenever reaching 0.

A.2. Proof of Lemma 2.1

A simple calculation ensures that t 	→ ut (∞) (when ut (∞) <∞) and t 	→ ut (0+) are differentiable, with derivatives
equal to −Ψ (ut (∞)) and −Ψ (ut (0+)) respectively. Therefore t 	→ P(T ≤ t) = e−ut (∞) + 1− e−ut (0+) is differen-
tiable as well. So the distribution of T is absolutely continuous with respect to the Lebesgue measure on (0,∞) on
the event {T <∞}.

A.3. Proof of Lemma 2.2

Let (Yt , t ≥ 0) be a Ψ -Lévy started from 1. Using the Lamperti’s result, we define a Ψ -CSBP Z := L−1(Y) started
from 1. For all ε ∈ (0,1), we introduce the stopping time

TY
ε := inf

{
t ≥ 0: Yt /∈ (ε,1/ε)

}
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and use the stopping time Tε introduced for Z previously. It is immediate to check that for all t ≥ 0, YJ (Y)t∧TY
ε
=

Zt∧Tε . Fix t ≥ 0 and notice that

J (Y)t ∧ TY
ε ≤

t

ε
.

Thus, we get that

E

[ ∑
s≤t∧Tε :�Zs>0

(
�Zs

Zs

)2]
= E

[ ∑
s≤J (Y)t∧TY

ε :
0<�Ys<1

(
�Ys

Ys

)2]
+E

[ ∑
s≤J (Y)t∧TY

ε :
�Ys≥1

(
�Ys

Ys

)2]

≤ 1

ε2
E

[ ∑
s≤J (Y)t∧TY

ε :
0<�Ys<1

(�Ys)
2
]
+E

[
#
{
s ≤ J (Y)t ∧ TY

ε : �Ys ≥ 1
}]

≤ 1

ε2
E

[ ∑
s≤t/ε:0<�Ys<1

(�Ys)
2
]
+E

[
#{s ≤ t/ε: �Ys ≥ 1}]

≤ t

ε3

∫
(0,1)

h2ν(dh)+ t

ε
ν
([1,∞)

)
<∞,

where the last inequality derives from the very definition of ν.

A.4. Proof of Proposition 3.9

Fix 2≤ k ≤ n. Consider a sequence (zm)m≥1 ∈R∗+ that converges to z > 0, and a sequence of branching mechanisms
(Ψm)m≥1 such that Assumption 1 is verified. We have to prove that∫ 1

0
xk(1− x)n−k

(
σ 2

m

zm

x−2δ0(dx)+ zmνm ◦ φ−1
zm

(dx)

)
→
∫ 1

0
xk(1− x)n−k

(
σ 2

z
x−2δ0(dx)+ zν ◦ φ−1

z (dx)

)
.

Since x 	→ xk−2(1− x)n−k is continuous on [0,1], it suffices to prove that

σ 2
m

zm

δ0(dx)+ zmx2νm ◦ φ−1
zm

(dx)
(w)−→ σ 2

z
δ0(dx)+ zx2ν ◦ φ−1

z (dx) (40)

in the sense of weak convergence in Mf ([0,1]). Let f : [0,1]→R be a continuous function. Set

Im :=
∫ 1

0
f (x)

(
σ 2

m

zm

δ0(dx)+ zmx2νm ◦ φ−1
zm

(dx)

)
=
∫ ∞

0
f

(
h

h+ zm

)(
σ 2

m

zm

δ0(dh)+ zm

(
h

h+ zm

)2

νm(dh)

)
.

We decompose Im =Am +Bm where

Am :=
∫ ∞

0
f

(
h

h+ z

)(
h

h+ z

)2
z

1∧ h2

(
σ 2

mδ0(dh)+ (1∧ h2)νm(dh)
)
,

Bm :=
∫ ∞

0

(
f

(
h

h+ zm

)(
h

h+ zm

)2

zm − f

(
h

h+ z

)(
h

h+ z

)2

z

)
1

1∧ h2

(
σ 2

mδ0(dh)+ (1∧ h2)νm(dh)
)
.

Using the remark below Assumption 1, one can check that Am →A where

A :=
∫ ∞

0
f

(
h

h+ z

)(
h

h+ z

)2
z

1∧ h2

(
σ 2δ0(dh)+ (1∧ h2)ν(dh)

)

=
∫ 1

0
f (x)

(
σ 2

z
δ0(dx)+ zx2ν ◦ φ−1

z (dx)

)
.
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Therefore, the proof of Eq. (40) reduces to show that Bm → 0 as m ↑∞. To that end, we get

Bm =
∫ ∞

0
f

(
h

h+ zm

)
h

h+ zm

(
h

h+ zm

zm

1∧ h2
− h

h+ z

z

1∧ h2

)[
σ 2

mδ0(dh)+ (1∧ h2)νm(dh)
]

+
∫ ∞

0

(
f

(
h

h+ zm

)
h

h+ zm

− f

(
h

h+ z

)
h

h+ z

)
h

h+ z

z

1∧ h2

[
σ 2

mδ0(dh)+ (1∧ h2)νm(dh)
]
.

Set gm(h) := h
h+zm

zm

1∧h2 − h
h+z

z

1∧h2 . One can easily prove that gm(h)→ 0 as m ↑∞ uniformly in h ∈R+. Therefore
we have the following upper bound for the absolute value of the first term on the r.h.s. of the preceding equation

‖f ‖∞
∫ ∞

0

∣∣gm(h)
∣∣[σ 2

mδ0(dh)+ (1∧ h2)νm(dh)
]→ 0 as m ↑∞.

Finally remark that the second term in the r.h.s. of the preceding equation gives∫ ∞

0

(
f

(
h

h+ zm

)
h

h+ zm

− f

(
h

h+ z

)
h

h+ z

)
h

h+ z

z

1∧ h2

[
σ 2

mδ0(dh)+ (1∧ h2)νm(dh)
]

=
∫ ∞

0

(
f

(
h

h+ zm

)
− f

(
h

h+ z

))(
h

h+ z

)2
z

1∧ h2

[
σ 2

mδ0(dh)+ (1∧ h2)νm(dh)
]

+
∫ ∞

0
f

(
h

h+ zm

)(
1

h+ zm

− 1

h+ z

)
h2

h+ z

z

1∧ h2

[
σ 2

mδ0(dh)+ (1∧ h2)νm(dh)
]
.

Denote by Cm and Dm respectively the first and second term on the r.h.s. of the preceding equation. One can easily
prove that h 	→ h

h+zm
− h

h+z
converges to 0 as m ↑∞ uniformly in h ∈ R+. And since f is uniformly continuous on

[0,1], we deduce that h 	→ f ( h
h+zm

)− f ( h
h+z

) converges to 0 as m ↑∞ uniformly on R+. Therefore it is immediate
to check that |Cm|→ 0 as m ↑∞. Moreover,∣∣∣∣f

(
h

h+ zm

)(
1

h+ zm

− 1

h+ z

)
h2

h+ z

z

1∧ h2

∣∣∣∣≤ ‖f ‖∞ |z− zm|
zm

(
1

z
∨ z

)
.

Hence, Dm → 0 as m ↑∞. This ends the proof of the proposition.

A.5. Proof of Lemma 5.3

The state space of this process is (0,∞)×P∞ to which is added formally a cemetery point ∂ that gathers all the states
of the form (0,π) and (∞,π) where π is any partition. The semigroup has been completely defined in Theorem 1,
and it follows that the corresponding process (Zt , Π̂t ; t ≥ 0) is Markov. To prove that this semigroup verifies the Feller
property, we have to show first that the map (z,π) 	→ E[f (Zt , Π̂t )] is continuous and vanishes at ∂ , and second that
E[f (Zt , Π̂t )] → f (z,π) as t ↓ 0, for any given continuous map f : (0,∞)×P∞ → R that vanishes at ∂ , and any
initial condition (z,π) ∈ (0,∞)×P∞ for the process (Z, Π̂).

To show the first assertion, we consider the map

(z,π) 	→ E
[
f
(
S0,t (z),Coag

(
P
(
Sz

0,t

)
,π
))]

,

where (S0,t (a), a ≥ 0) is a subordinator with Laplace exponent ut (·) and Sz
0,t is its restriction to [0, z]. Let

(zm,πm)m≥1 be a sequence converging to (z,π) ∈ (0,∞) ×P∞. For all ε > 0, there exists m0 ≥ 1 such that for
all m≥m0, we have

P

( |S0,t (z)− S0,t (zm)|
S0,t (z)∨ S0,t (zm)

> ε

∣∣∣S0,t (z) /∈ {0,∞}
)

< ε,

P
(
S0,t (zm) �= S0,t (z)|S0,t (z) ∈ {0,∞})< ε.
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Then, there are two cases: on the event {S0,t (z) ∈ {0,∞}}, the process starting from (z,π) is in the cemetery point at
time t and with conditional probability greater than 1− ε, this is also the case at time t for the process starting from
(zm,πm), for every m≥m0. On the complementary event {S0,t (z) /∈ {0,∞}}, fix m≥m0 and n≥ 1. Without loss of
generality, we can suppose that zm ≤ z. Let (Ui)i≥1 be a sequence of i.i.d. uniform[0,S0,t (z)] r.v. and introduce the
partitions P(Sz

0,t ) by applying the paint-box scheme to the subordinator Sz
0,t using the (Ui)i≥1. Let (Vi)i≥1 be an in-

dependent sequence of i.i.d. uniform[0,S0,t (zm)] r.v. and define the sequence Wi :=Ui1{Ui≤S0,t (zm)}+Vi1{Ui>S0,t (zm)}.
This sequence is also i.i.d. uniform[0, S0,t (zm)], and we apply the paint-box scheme to the subordinator S

zm

0,t with that
sequence (Wi)i≥1, then obtaining a partition P(S

zm

0,t ). We have (recall the definition of the metric dP given in Eq. (2))

P
(
dP
(
P
(
Szm

0,t

)
,P
(
Sz

0,t

))≤ 2−n|S0,t (z) /∈ {0,∞})
≥ P

[⋂
i≤n

{Ui =Wi}
⋂{ |S0,t (z)− S0,t (zm)|

S0,t (z)∨ S0,t (zm)
< ε

}∣∣∣S0,t (z) /∈ {0,∞}
]

≥ P

[⋂
i≤n

{
Ui ≤ S0,t (zm)

}∣∣∣ |S0,t (z)− S0,t (zm)|
S0,t (z)∨ S0,t (zm)

< ε;S0,t (z) /∈ {0,∞}
]

× P

[ |S0,t (z)− S0,t (zm)|
S0,t (z)∨ S0,t (zm)

< ε

∣∣∣S0,t (z) /∈ {0,∞}
]

≥ P

(
U1

S0,t (z)
≤ 1− ε

)n

(1− ε)≥ (1− ε)n+1.

Putting all these arguments together and using the facts that the coagulation operator is bicontinuous and that f is
continuous and vanishes near ∂ , one deduces that

E
[
f
(
S0,t (z),Coag

(
P
(
Sz

0,t

)
,π
))− f

(
S0,t (zm),Coag

(
P
(
Szm

0,t

)
,πm

))] −→
m→∞ 0

and the continuity property follows. The fact that it vanishes at ∂ is elementary. Let us now prove that for all (z,π) ∈
(0,∞)×P∞, we have

E
[
f
(
S0,t (z),Coag

(
P
(
Sz

0,t

)
,π
))]→

t↓0
f (z,π).

This convergence follows from the càdlàg property of t 	→ S0,t (z) and the fact that P(Sz
0,t ) tends to O[∞] in distribu-

tion as t ↓ 0. The Feller property follows.

A.6. Proof of Proposition 5.4

Let (Π̂s,t ,0≤ s ≤ t < T) be a Ψ -flow of partitions with underlying Ψ -CSBP Z. The idea of the proof is the following:
we consider the rational marginals of the flow and show that for P-a.a. ω, (Π̂s,t (ω),0 ≤ s ≤ t < T; s, t ∈ Q) is a
deterministic flow of partitions. Thus we extend this flow to the entire interval [0,T) and show that its trajectories are
still deterministic flows of partitions, almost surely.

There exists an event Ω
Π̂

of probability 1 such that on this event, we have:

• For every r < s < t ∈ [0,T)∩Q, Π̂r,t = Coag(Π̂s,t , Π̂r,s).
• For every s ∈ (0,T), ∀n≥ 1,∃ε > 0 s.t. ∀p,q ∈ (s − ε, s)∩Q, Π̂

[n]
p,q = O[n].

• For every s ∈ [0,T), ∀n≥ 1,∃ε > 0 s.t. ∀p,q ∈ (s, s + ε)∩Q, Π̂
[n]
p,q = O[n].

• For every s ∈ [0,T)∩Q, Π̂s,s = O[∞] and the process (Π̂s,t , t ∈ [s,T)∩Q) is càdlàg.

The existence of this event follows from the following arguments. First, for each given triplet the coagulation property
holds a.s. So it holds simultaneously for all rational triplets, a.s. Second, the probability that Π̂r,t is close to O[∞]
increases to 1 as t − r ↓ 0. Together with the coagulation property this ensures the second and third properties.
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Finally, Lemma 5.3 shows that the process (Zt , Π̂t ; t ≥ 0) is Markov with a Feller semigroup, so it admits a càdlàg
modification. This ensures the last assertion.

We now define a process (
˜̂
Πs,t ,0≤ s ≤ t < T) as follows. On Ω

Π̂
, we set for all 0≤ s ≤ t < T

˜̂
Πs,t :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Π̂s,t if s, t ∈Q,
limr↓t,r∈Q Π̂s,r if s ∈Q, t /∈Q,
limr↓s,r∈Q Π̂r,t if t ∈Q, s /∈Q,
O[∞] if s = t ,

Coag(
˜̂
Πr,t ,

˜̂
Πs,r ) if s, t /∈Q with any given r ∈ (s, t)∩Q.

On the complementary event Ω \Ω
Π̂

, set any arbitrary values to the flow ˜̂
Π . A long but easy enumeration of all

possible cases proves that this defines a modification of Π̂ and that almost surely, the trajectories are deterministic
flows of partitions.

A.7. Proof of Lemma 5.7

Let (fm)m≥1 and f be elements of D([0,+∞], [0,+∞]) without negative jumps and introduce for all ε ∈ (0,1)

T f (ε) := inf
{
t ≥ 0: f (t) /∈ (ε,1/ε)

}
and T fm(ε) := inf

{
t ≥ 0 : fm(t) /∈ (ε,1/ε)

}
for all m≥ 1.

We make the following assumptions

(i) fm(0)= f (0)= 1 and fm −→m→∞ f for the distance d̄∞.
(ii) T f (ε)= inf{t ≥ 0: f (t) /∈ [ε,1/ε]}.

(iii) �f (T f (ε)) > 0⇒ f (T f (ε)) > 1/ε.
(iv) For all r ∈ [0, T f (ε)), infs∈[0,r] f (s) > ε. Moreover when �f (T f (ε)) > 0, it remains true with r = T f (ε).

We fix ε ∈ (0,1) until the end of the proof.
Step 1. We stress that T fm(ε) → T f (ε) as m →∞. Indeed, suppose that there exists δ > 0 such that T fm(ε) <

T f (ε)− δ for an infinity of m≥ 1 (for simplicity, say for all m≥ 1). Then, for all m≥ 1 we use (iv) to deduce

d̄∞(f,fm)≥ δ

2
∧ inf
{s∈[0,T f (ε)−δ/2]}

{∣∣1/ε− f (s)
∣∣∧ ∣∣f (s)− ε

∣∣}> 0

which contradicts the convergence hypothesis. Similarly, suppose that there exists δ > 0 such that T fm(ε) > T f (ε)+δ

for an infinity of m≥ 1 (here again, say for all m≥ 1). For all m≥ 1, using (ii) we have

d̄∞(f,fm)≥ δ

2
∧ sup
{s∈[T f (ε),T f (ε)+δ/2]}

{∣∣f (s)− 1/ε
∣∣∧ ∣∣ε− f (s)

∣∣}> 0

which also contradicts the convergence hypothesis. Therefore, the asserted convergence T fm(ε)→ T f (ε) as m→∞
holds. For simplicity, we now write T f instead of T f (ε) to alleviate the notation.
Step 2. We now prove that (f m(t ∧ T fm), t ≥ 0)→ (f (t ∧ T f ), t ≥ 0) for the distance d̄∞. We consider two cases.
Step 2a. Suppose that T f is a continuity point of f . Fix η > 0, there exists δ > 0 such that for all t ∈ [T f − δ, T f + δ],
we have

d̄
(
f
(
T f
)
, f (t)

)
< η.

From (i), we know there exists an integer m0 ≥ 1 and a sequence (λm)m≥m0 of homeomorphisms of [0,∞) into [0,∞)

such that for all m≥m0, |T fm − T f |< δ/4 and

sup
s≥0

∣∣λm(s)− s
∣∣< δ/4 and sup

s≥0
d̄
(
fm

(
λm(s)

)
, f (s)

)
< η.
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We consider now any integer m≥m0. For all r ∈ [0, δ/2], we have

d̄
(
fm

(
T fm − r

)
, f
(
T f
)) ≤ d̄

(
f m
(
T fm − r

)
, f
(
λ−1

m

(
T fm − r

)))+ d̄
(
f
(
λ−1

m

(
T fm − r

))
, f
(
T f
))

< 2η

using the preceding inequalities. In particular we have proven that f m(T fm) → f (T f ) as m →∞. Finally for all
t ≥ 0 and all m≥m0 we have

d̄
(
fm

(
λm(t)∧ T fm

)
, f
(
t ∧ T f

)) ≤ d̄
(
fm

(
λm(t)

)
, f (t)

)+ d̄
(
fm

(
T fm

)
, f (t)

)
1{λm(t)>T fm,t<T f }

+ d̄
(
fm

(
λm(t)

)
, f
(
T f
))

1{λm(t)≤T fm ,t≥T f } + d̄
(
fm

(
T fm

)
, f
(
T f
))

.

The first and the fourth term in the r.h.s. are inferior to η and 2η thanks to the preceding inequalities. Concerning the
second term, one can show that |t − T f |< δ/2 when {λm(t) > T fm, t < T f } which ensures that

d̄
(
fm

(
T fm

)
, f (t)

)
1{λm(t)>T fm,t<T f } ≤ d̄

(
fm

(
T fm

)
, f
(
T f
))+ d̄

(
f
(
T f
)
, f (t)

)
1{|t−T f |<δ/2} ≤ 3η.

Similarly, when {λm(t)≤ T fm, t ≥ T f } the quantity r := T fm − λm(t) belongs to [0, δ/2] and thus

d̄
(
fm

(
λm(t)

)
, f
(
T f
))

1{λm(t)≤T fm ,t≥T f } < 2η.

Hence, we have d̄(fm(λm(t)∧ T fm), f (t ∧ T f ))≤ 8η. This proves the asserted convergence when T f is a continuity
point of f .
Step 2b. Now suppose that f jumps at time T f . Recall that in that case, f (T f ) > 1/ε. We denote by S :=
sup{f (s): s ∈ [0, T f )} the supremum of f before time T f , which is strictly inferior to 1/ε, and similarly I :=
inf{f (s): s ∈ [0, T f )} which is strictly superior to ε thanks to (iv). Set

η := [d̄(1/ε,S)∧ d̄
(
1/ε,f

(
T f
))∧ d̄(ε, I )

]
/2.

Thanks to (i), there exists an integer m0 ≥ 1 and a sequence (λm)m≥m0 of homeomorphisms of [0,∞) into itself such
that for all m≥m0 we have

sup
s≥0

∣∣λm(s)− s
∣∣< η and sup

s≥0
d̄
(
f m
(
λm(s)

)
, f (s)

)
< η.

Suppose that λm(T f ) > T fm . Then necessarily,

d̄
(
f m
(
T fm

)
, f
(
λ−1

m

(
T fm

)))
> d̄(1/ε,S)∧ d̄(ε, I ) > η

which contradicts the hypothesis. Similarly, if λm(T f ) < T fm , then

d̄
(
f m
(
λm

(
T f
))

, f
(
T f
))

> d̄
(
1/ε,f

(
T f
))

> η

which also contradicts the hypothesis. Hence, λm(T f )= T fm . And we conclude that(
f m
(
t ∧ T fm

)
, t ≥ 0

)→ (
f
(
t ∧ T f

)
, t ≥ 0

)
in (D([0,+∞], [0,+∞]), d̄∞). But these functions are elements of D(R+,R+), so the last convergence also holds in
the usual Skorohod’s topology (see the remark below Proposition 5 in [8]).

To finish the proof, it suffices to apply these deterministic results to the processes Zm and Z once we have verified
that their trajectories fulfil the required assumptions a.s. Recall that a Ψ -CSBP Z can be obtained via the Lamperti
time change (see Appendix A.1) of a Ψ Lévy process Y

Zt =YJ (Y)t



Genealogy of CSBP and the Eve property 769

and that the map t 	→ J (Y)t is continuous.
As we have assumed that Ψ is not the Laplace exponent of a compound Poisson process, we deduce that a.s.

Tε = inf{s ≥ 0: Zs /∈ [ε,1/ε]} and that if Z jumps at time Tε then ZTε > 1/ε a.s. Moreover, infs∈[0,r] Zs > ε a.s. for all
r ∈ [0,Tε), and also for r = Tε when Z jumps at Tε . Otherwise, the càdlàg inverse of the infimum of Z would admit
a fixed discontinuity at time ε with positive probability, but the latter is (the Lamperti time-change of) the opposite of
a subordinator, and so, it does not admit any fixed discontinuity.
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