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Abstract. We introduce the notion of a restricted exchangeable partition of N. We obtain integral representations, consider associ-
ated fragmentations, embeddings into continuum random trees and convergence to such limit trees. In particular, we deduce from
the general theory developed here a limit result conjectured previously for Ford’s alpha model and its extension, the alpha-gamma
model, where restricted exchangeability arises naturally.

Résumé. Nous introduisons la notion d’une partition restreinte échangeable de N. Nous obtenons des représentations intégrales,
nous considérons les fragmentations associées, des plongements dans des arbres aléatoires continus et la convergence vers de tels
arbres limites. En particulier, nous déduisons de la théorie générale développée içi un résultat limite formulé en conjecture dans un
travail précédent. Ce résultat particulier concerne les arbres alpha de Ford et leurs généralisations, les arbres alpha-gamma, deux
exemples où l’échangeabilité restreinte arrive de manière naturelle.
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1. Introduction

This paper introduces the concept of restricted exchangeability, which captures a weak form of exchangeability that
occurs naturally in models such as the alpha-gamma tree model of [10].

1.1. Motivating example: Alpha-gamma trees as random hierarchies

An important motivation for this paper is the study of the limiting behaviour of the alpha-gamma tree-growth model
[10], which is based on a simple stochastic growth rule to build a tree Tn+1 from a tree Tn by adding a leaf (degree-1
vertex) labelled n+ 1. Let us specify this rule in a framework of hierarchies (also called total partitions or fragmenta-
tions in the literature).

Following [20,24,29,30], we call hierarchy on B ⊆ N any subset tB of the power set of B such that B ∈ tB and
{j} ∈ tB for all j ∈ B , and so that for everyA,A′ ∈ tB , eitherA⊆A′ orA′ ⊆A orA∩A′ = ∅. To avoid trivialities, we
also require ∅ ∈ tB . We say that a strict subset A ∈ tB of A′ ∈ tB is a maximal subset of A′ in tB if for all A′′ ∈ tB with
A⊆ A′′ ⊆ A′ either A= A′′ or A′′ = A′. For finite B ⊂ N with #B ≥ 2, the maximal subsets A1, . . . ,Ak of B in tB
form a partition of B and the restrictions tAi

= tB ∩Ai = {A∩Ai : A ∈ tB} are hierarchies on Ai , i ∈ [k] := {1, . . . , k};
a hierarchy tB fully encodes a rooted tree, i.e. a connected acyclic graph, with vertex set tB and edge relation linking
each set to its maximal non-empty subsets, with root ∅ related to B; hierarchies tAi

are the subtrees of tB above the
first branchpoint B of tB . See Fig. 1. We call A ∈ tB branchpoint or internal vertex if #A≥ 2. Denote by Tn the set
of all hierarchies on [n], n≥ 1. We say that tn ∈ Tn and tn+1 ∈ Tn+1 are consistent if tn = tn+1 ∩ [n].
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Fig. 1. Two hierarchies on B = {1,2,3,4,5,6,7,8,9} illustrated as rooted trees.

Fig. 2. Alpha-gamma growth rule: displayed is one internal vertex, B say, of Tn with degree k + 1, hence vertex weight (k − 1)α − γ , with k − r

leaves Lr+1, . . . ,Lk ∈ [n] and r bigger subtrees S1, . . . , Sr ; all edges also carry weights, weight 1 − α and γ are displayed here for the leaf edge
below {Lk} and the inner edge below B only; the three associated possibilities for Tn+1 are displayed.

The alpha-gamma model [10] is a consistent family (Tn,n ≥ 1) of random hierarchies on [n], for which the con-
ditional distributions of Tn+1 given Tn are particularly simple. In terms of trees, passing from Tn to Tn+1 means
identifying the random place in Tn where {n+ 1} connects to Tn: as illustrated in Fig. 2, for parameters 0 ≤ γ ≤ α ≤ 1
and for n≥ 1, vertex {n+ 1} connects to

• a new vertex {j, n+ 1} inserted (in the edge) below {j } ∈ Tn with probability (1 − α)/(n− α);
• a new vertex B ∪ {n+ 1} inserted below branchpoint B ∈ Tn with probability γ /(n− α);
• an existing branchpoint B ∈ Tn with probability ((k − 1)α − γ )/(n− α), where k + 1 is the degree of vertex B in

the tree Tn, or equivalently k is the number of blocks of the partition into maximal subsets A1, . . . ,Ak of B in the
hierarchy Tn;

now Tn+1 is built from Tn by adding n+ 1 to all vertices on the path between {n+ 1} and ∅.
A random hierarchy TB on B is called exchangeable [20] if for every bijection β :B → B , the hierarchy β(TB)=

{{β(j): j ∈A},A ∈ TB} obtained by permuting labels by β is distributed like TB . An alpha-gamma tree Tn for n≥ 3
is exchangeable iff γ = 1 − α; note for instance that

P

⎛⎝T3 =
⎞⎠= P

⎛⎝T3 =
⎞⎠= 1 − α

2 − α
while

γ

2 − α
= P

⎛⎝T3 =
⎞⎠ .

However, for γ �= 1 − α there is still some exchangeability. To capture this, we introduce the partition Πn of Tn into
maximal strict subsets of [n] and refer to its distribution Pn on the set Pn of partitions of [n] as a splitting rule. We
say that (Tn,n≥ 1) is a labelled Markov branching model if conditionally given Πn = {A1, . . . ,Ak}, the hierarchies
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Tn ∩Ai , i ∈ [k], are independent and distributed as βi(T#Ai
), where βi is the unique increasing bijection from [#Ai]

to Ai . Then (Pn,n ≥ 2) determines the distributions of Tn, n ≥ 1. We will show in Section 6 that the alpha-gamma
model is a labelled Markov branching model with splitting rules Pα,γ

n satisfying

P
α,γ
n (π)= P

α,γ
n

(
β(π)

)
for all bijections β : [n] → [n] with π ∩ {1,2} = β(π)∩ {1,2},

where β(π) = {{β(j): j ∈ A},A ∈ π}. Equivalently, Pα,γ
n satisfies Pα,γ

n (π) = P
α,γ
n (π ′) if π ∩ {1,2} = π ′ ∩ {1,2}

and if π = {A1, . . . ,Ak} and π ′ = {A′
1, . . . ,A

′
k} have the same multiset of block sizes #Ai , i ∈ [k], and #A′

j , j ∈ [k].
Alpha-gamma trees (Tn,n≥ 1) give rise to a random hierarchy H = {A⊂ N: A∩ [n] ∈ Tn for all n≥ 1} on N. We

studied the limiting behaviour of Tn and identified a scaling limit in [10], but only obtained convergence in distribution.
The crucial tool to strengthen to convergence in probability is restricted exchangeability, which we will use to embed
H and more general hierarchies of (restricted exchangeable) Markov branching models into suitable limit trees.

1.2. Restricted exchangeable partitions and integral representations

For a partition π = {πi, i ∈ N} of B ⊆ N with disjoint πi , i ∈ N, each non-empty πi ⊆ B is called a block of π . When
π has only finitely many blocks, we often omit ∅ from π . To be definite, we arrange the blocks of π in the order of
least element, i.e. minπi < minπj for every i < j , followed by ∅ with the convention min ∅ = ∞. For finite πi , we
consider the block size #πi . We denote the set of all partitions of B by PB . Recall [n] = {1, . . . , n} for n ∈ N. Note
that for Γ ∈ P = PN, the restrictions Γ |n = Γ ∩ [n] = {Γi ∩ [n], i ∈ N} are partitions of [n], n ∈ N. On P , consider
the metric d(Γ,Γ ′)= 2− inf{n≥1:Γ |n �=Γ ′|n} and the associated Borel σ -algebra.

Following de Finetti and Kingman, we call a Borel measure on the space PB of partitions of B ⊆ N exchangeable,
if it is invariant under the natural action on PB of the symmetric group on B; and a random partition is called
exchangeable if its distribution is exchangeable. Then a measure μ on P is exchangeable if and only if the discrete
measures μn on Pn = P[n], given by

μn
({π})= μ

(
Pπ
)
, π ∈ Pn, where Pπ = {Γ ∈ P : Γ |n = π}, (1)

are exchangeable for all n ≥ 1. Furthermore, a measure μn on Pn is exchangeable if μn({π}) = μn({π ′}) for all
π,π ′ ∈ Pn with the same multiset of block sizes.

Several weaker forms of exchangeability have been studied in the literature, notably Pitman’s partial exchangeabil-
ity [26] and Gnedin’s constrained exchangeability [13]. We introduce here a new weak form of exchangeability and
discuss in Section 3.1 how these notions interact.

Definition 1. For π ∈ Pn, we call a measure μ on Pπ exchangeable on Pπ if μ(Pπ ′
) = μ(Pπ ′′

) for all π ′,π ′′ ∈⋃
m≥1 Pn+m with the same multiset of block sizes and with π ′ ∩ [n] = π ′′ ∩ [n] = π .
A measure μ on P is called restricted exchangeable (RE) if there is C ⊂ K :=⋃n≥1 Pn s.th.

• no π ∈ C is the restriction of another π ′ ∈ C ,
• the measure μ is carried by

⋃
π∈C Pπ , i.e. μ(P \⋃π∈C Pπ)= 0,

• and for each π ∈ C , the restriction of μ to Pπ is finite and exchangeable on Pπ .

Remark 2. A measure on Pπ is exchangeable on Pπ if and only if μ(Pπ ′
) = μ(Pβ(π ′)) for all π ′ ∈ Pn+m and all

bijections β : [n+m] → [n+m] with π ′ ∩ [n] = β(π ′)∩ [n] = π , m≥ 1.
Note that the set of admissible bijections β depends on π ′, and while β(j) = j , j ∈ [n], makes β admissible,

there are many other admissible bijections. The point is that the specific blocks containing πi in π ′ and β(π ′) may
have different sizes (while the multisets of all block sizes of π ′ and β(π ′) coincide). This is an important feature
of our definition of restricted exchangeability. The apparently more natural but strictly weaker concept obtained by
restricting the admissible bijections to the subgroup of those with β(j)= j , j ∈ [n], is less convenient to work with,
since integral representations of such measures – which we might call weakly RE – no longer just involve measures
on decreasing sequences, cf. Theorem 3.
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Let S↓ = {s = (si , i ≥ 1): s1 ≥ s2 ≥ · · · ≥ 0,
∑

i≥1 si ≤ 1}. For s ∈ S↓, Kingman’s paintbox [22] is obtained from
independent random variables (ξr , r ≥ 1) with respective distributions

P(ξr = i)= si, i ≥ 1, P(ξr = −r)= s0 := 1 −
∑
i≥1

si ,

as the distribution κs on P of the exchangeable partition Π = {{n≥ 1: ξn = i}, i ∈ Z}, which puts any two m,n ∈ N

into the same block if and only if ξm = ξn. By the Strong Law of Large Numbers, the vector of block sizes #(Π ∩[n])↓
in decreasing order of size has asymptotic frequencies

|Π |↓ = lim
n→∞

1

n
#
(
Π ∩ [n])↓ = (si , i ≥ 1)= s.

It is well-known [1,21,22] that exchangeable measures on P admit integral representations μ = ∫
S↓ κsν(ds). To es-

tablish integral representations for RE measures here, we introduce modified paintboxes κπs , π ∈ K =⋃n≥1 Pn, by
conditioning κs on the cylinder set Pπ = {Γ ∈ P : Γ |n = π} of π in P , but note that this conditioning is degenerate
in some cases; see Section 2 for details.

Theorem 3 (Integral representation). Let μ be a measure on P . Then μ is RE if and only if there are a subset C ⊂ K
such that no π ∈ C is the restriction of another π ′ ∈ C , and for each π ∈ C a finite measure νπ on S↓ such that

μ=
∑
π∈C

∫
S↓
κπs νπ (ds).

Note that a RE measure μ can be infinite, if C is infinite. However, as C ⊂ K is countable, such infinite measures
will still be σ -finite, because they are finite on Pπ , π ∈ C .

Examples 4.

(i) For B ⊆ N, let 1B be the trivial partition of a single block B . Dislocation measures are measures on P carried
by P \ {1N}, finite on Pπ , π ∈ K \ {1[n], n ≥ 1}. We set C = {{[j ], {j + 1}}, j ≥ 1} to naturally decompose
P \ {1N} =⋃π∈C Pπ . Bertoin’s [6] possibly infinite exchangeable dislocation measures, in the sense of (1), are
exchangeable and finite on Pπ , π ∈ C , so they satisfy Definition 1. See Sections 1.3 and 3.2.

(ii) We can associate dislocation measures with Ford’s alpha model [12] and the alpha-gamma Markov branching
model [10], defined in Section 1.1, so that μα,γ (Pπ ) = λ

α,γ
n P

α,γ
n (π), π ∈ Pn \ {1[n]}, for consistent rates λα,γn ,

n≥ 2. These dislocation measures μα,γ are RE, but not exchangeable, as we illustrated in terms of splitting rules
P
α,γ
n at the end of Section 1.1. See Section 3.2 for an exploration of the relationship between splitting rules and

dislocation measures in a general RE framework.

From Theorem 3 we deduce an integral representation for restricted exchangeable dislocation measures. For sim-
plicity we only allow as decomposition of P in Definition 1 the most relevant and natural C = {{[j ], {j + 1}}, j ≥ 1}.

Corollary 5. Let κ be a RE measure with C = {{[j ], {j + 1}}, j ≥ 1}. Then for each j ≥ 1, there are constants cj ≥ 0
and kj ≥ 0, and a measure νj on S↓ with

νj
({
(0,0, . . .)

})= νj
({
(1,0, . . .)

})= 0 and
∫
S↓

(
s01{j=1} +

∑
i≥1

s
j
i (1 − si)

)
νj (ds) <∞,

such that, for ε(j) = {{j},N \ {j}} and ω[j ] = {[j ], {j + 1}, {j + 2}, . . .}, j ≥ 1,

κ = c1δε(1) +
∑
j≥1

(
cj δε(j+1) + kj δω[j ] +

∫
S↓
κs
(· ∩ Pj

)
νj (ds)

)
, where Pj = P {[j ],{j+1}}.

In the exchangeable case, we have (cj , kj , νj )= (c,0, ν), j ≥ 1, as was shown by Bertoin [6].
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1.3. RE hierarchies and continuum random trees

In the context of our motivating example, the alpha-gamma model, we demonstrated how consistent Markov branching
trees give rise to a random hierarchy H of N. Let us investigate this in the context of Bertoin’s systematic studies [8]
of exchangeable homogeneous and exchangeable self-similar P -valued fragmentation processes (F ∗(t), t ≥ 0) in
continuous time, and of Haas and Miermont’s [17] associated self-similar continuum random trees (CRTs).

Bertoin described exchangeable homogeneous fragmentation processes in terms of an exchangeable dislocation
measure κ =∑j≥1 cδε(j) + ∫S ↓ κsν(ds) on P . Informally, blocks fragment independently; for each π ∈ Pn \ {1[n]},
there is a competing rate κ(Pπ ) at which a given block F ∗

i (t) undergoes a split whose effect on the first n block
members is a partition according to π . For an α-self-similar fragmentation process, this rate is increased (in the case
α > 0) by a factor |F ∗

i (t)|−α depending on the asymptotic frequency |F ∗
i (t)| of the block. The rate increase is such

that singleton blocks and indeed the all-singleton state 0N are obtained in finite time.
Under some regularity conditions, [17] constructed self-similar CRTs (T(α,ν),μ) with characteristic pair (α, ν), i.e.

random path-connected compact metric spaces (T(α,ν),d) equipped with a root ρ ∈ T(α,ν) and a probability measure μ
on T(α,ν), and with the tree property that there are no cyclic paths. Self-similarity here means that conditionally given
the tree up to height t above the root and given subtree masses μ(Si(t)) = mi(t) above height t , the subtrees Si(t),
i ≥ 1, above height t , are like independent copies of T(α,ν), with masses rescaled by mi(t) and distances rescaled
by (mi(t))

α . These CRTs can be considered as genealogical trees of Bertoin’s fragmentation processes; for a μ-
distributed i.i.d. sample Σ∗

n , n ≥ 1, in T(α,ν), we obtain an α-self-similar fragmentation process by considering the
partition-valued process that has {n≥ 1: Σ∗

n ∈ Si(t)}, i ≥ 1, as non-singleton blocks and all other integers in singleton
blocks at time t , t ≥ 0.

To any exchangeable P -valued fragmentation process we associate the exchangeable hierarchy H∗ = {F ∗
i (t), i ≥

1, t ≥ 0} of all blocks ever visited, equivalently H∗ = {L∗(T v): v ∈ T(α,ν)}, where L∗(T v)= {n ∈ N: Σ∗
n ∈ T v} and

T v is the subtree of T(α,ν) above v ∈ T(α,ν). We say that the hierarchy H∗ is embedded in the CRT T(α,ν) by the sample
Σ∗
n ∈ T(α,ν), n≥ 1.
We now associate with any RE dislocation measure κ a RE fragmentation process F , in which each block fragments

independently, with rates κ(Pπ ), π ∈ Pn, affecting the n smallest block members by partitioning according to π .
We call H = {Fi(t): i ≥ 1, t ≥ 0} the associated RE hierarchy. Alternatively (see Section 3.2), RE splitting rules
Pn(π)= κ(Pπ )/κ(P \ P 1[n]), π ∈ Pn \ {1[n]}, give rise to consistent RE labelled Markov branching trees (Tn,n≥ 1)
with splitting rules (Pn,n ≥ 2) that induce a RE hierarchy {A ⊂ N: A ∩ [n] ∈ Tn for all n≥ 1}. Embedding a non-
exchangeable hierarchy H into a CRT T means finding Σn ∈ T , n≥ 1, with a non-trivial dependence structure, such
that H is embedded in T by Σn, n≥ 1.

Theorem 6. Let α > 0, and let κ be a RE dislocation measure of the form

κ =
∑
j≥1

∫
S↓
κs
(· ∩ Pj

)
νj (ds), with ν(ds) :=

∑
j≥1

(∑
i≥1

s
j
i (1 − si)

)
νj (ds) (2)

satisfying
∫
S↓(1 − s1)ν(ds) < ∞ and ν(s0 > 0) = 0. Then we can construct (T(α,ν), (Σi, i ≥ 1)) such that H =

{L(T v
(α,ν)): v ∈ T(α,ν)} is a RE hierarchy with dislocation measure κ , embedded in a self-similar CRT T(α,ν) with

characteristic pair (α, ν), where L(T v
(α,ν))= {i ∈ N: Σi ∈ T v

(α,ν)}.

Our proof of Theorem 6 in Section 4 gives an explicit sampling procedure for leaves Σi ∈ T(α,ν), i ≥ 1, based on
the self-similarity of T(α,ν) and recursive spinal decompositions of subtrees.

Theorem 6 partly generalises Theorem 4 of [28]. However, apart from the alpha model (the alpha-gamma model
with γ = α, which produces only binary trees), that theorem treats models that are not RE in the sense of Corollary 5
nor for other decompositions of P .

It requires no extra work to also construct hierarchies associated with RE dislocation measures κ based on different
decompositions of P . However, in those more general cases, a RE measure still qualifies as a dislocation measure if
and only if it is finite on P {[j ],{j+1}}, j ≥ 1, and this is necessary for hierarchies to be well-defined. Hence, the
decomposition in Corollary 5 is the most natural decomposition in the context of fragmentation processes.
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Exchangeable hierarchies H∗ derived from fragmentation processes (or from Markov branching trees) have been
used to construct CRTs as scaling limits [18]. We carry out a similar programme here for RE hierarchies H, starting
from a RE dislocation measure of the form identified in Corollary 5. We can delabel trees Tn = H ∩ [n], but retain the
root, to obtain rooted combinatorial trees T ◦

n , i.e. connected acyclic graphs with no degree-2 vertex, but some degree-1
vertices, only one of which is distinguished, as the root. We can regard T ◦

n as a metric space with unit distance between
adjacent vertices and with adjacent vertices connected by unit length line segments. We use notation T ◦

n /a to scale
the length of the line segments and to obtain a metric space with all connecting line segments of length 1/a, where
a ∈ (0,∞).

In the exchangeable case, [18] obtain CRT convergence under a regular variation condition

ν(s1 ≤ 1 − ε)= ε−α�(1/ε) as ε ↓ 0; for some α ∈ (0,1) and slowly varying � (3)

and a log-moment condition∫
S↓

∑
i≥2

si
∣∣log(si)

∣∣�ν(ds) <∞ for some � > 0. (4)

Theorem 7. If in the setting of Theorem 6, the measure ν satisfies (3) and (4), and if νj = νm for some m≥ 1 and all
j ≥m, then

T ◦
n

nα�(n)Γ (1 − α)
→ T(α,ν) in probability, in the Gromov–Hausdorff sense.

Returning to the alpha-gamma model, we can now show that Theorem 7 applies to give a scaling limit in probability.
The identification of νj , j ≥ 1, in the parameterisation of Corollary 5 finally sheds some light on the peculiar splitting
rules and ν-measures in Ford’s alpha model and the alpha-gamma model [10,12,18,28]. To do this, we follow [19,24,
25] and introduce Poisson–Dirichlet dislocation measures PD∗

α,θ (ds) as σ -finite measures on S↓ given by

E
[
σθ1 ;σ−1

1 �σ[0,1] ∈ ds
]
, θ >−2α,α ∈ (0,1),

on the interior of the parameter range, where (σt , t ≥ 0) is a stable subordinator with Laplace transform E[e−λσt ] =
e−tλα and where �σ[0,1] is the decreasing rearrangements of the jumps �σt = σt − σt−, t ∈ [0,1]. For θ = −2α, the
binary case, PD∗

α,−2α(ds) is defined as the ranked beta measure on {(x,1 − x,0, . . .), x ∈ (1/2,1)} ⊂ S↓ with density

x−α−1(1−x)−α−11(1/2,1)(x); the associated Markov branching model is Aldous’s [4] beta-splitting model, for α < 1.
As the references demonstrate, Poisson–Dirichlet dislocation measures give rise to some of the nicest and best-

studied parametric families of exchangeable fragmentation processes, while alpha and alpha-gamma models have
as their dislocation measure what we have previously written as linear combinations of Poisson–Dirichlet measures
of different parameters [10]. With the notion of restricted exchangeability, we can now obtain a stronger and more
satisfactory connection.

Proposition 8. The alpha-gamma model for α ∈ (0,1) and γ ∈ [0, α] is a RE Markov branching model with disloca-
tion measure of the form identified in Corollary 5 with ν1 = (1 − α)PD∗

α,−α−γ and νj = γPD∗
α,−α−γ , j ≥ 2.

The boundary case α = 1 degenerates [10] and leads to RE Markov branching models with

• for γ = 0 star trees corresponding to (ν1, c1, k1)= (0,0,1) and (ν2, c2, k2)= (0,0,0);
• for γ = 1 comb trees corresponding to (ν1, c1, k1)= (0,0,0) and (ν2, c2, k2)= (0,1,0);
• for γ ∈ (0,1) bushy combs corresponding to (ν1, c1, k1)= (0,0,1), (c2, k2)= (0,0) and

ν2(s2 > 0)= 0 and ν2(s1 ∈ dx)= γ x−2(1 − x)−1−γ 1(0,1)(x)dx.
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1.4. Sampling consistency and the skewed Poisson–Dirichlet model

Proposition 8 suggests to introduce a three-parameter family of restricted exchangeable fragmentation trees that we
call the skewed Poisson–Dirichlet model, by setting

ν1 = λPD∗
α,θ , νj = (1 − λ)PD∗

α,θ , j ≥ 2,

for α ∈ [0,1], θ ≥ −2α and λ ∈ [0,1]. When λ = (1 − α)/(1 − θ − 2α) and θ = −α − γ , this is the alpha-gamma
model; when λ = 1/2, this is the exchangeable Poisson–Dirichlet model studied in [19,24]. We will use parameter-
isations by (α, θ, λ) and (α, γ,λ), where γ = −α − θ . We can apply Theorem 7 to obtain a convergence result in
probability:

Corollary 9. Let (Tn,n ≥ 1) be a consistent family of skewed Poisson–Dirichlet trees for parameters 0 < α < 1,
0< γ = −α − θ ≤ α and 0 ≤ λ < 1. Then

T ◦
n

nγ
→ T(γ,ν) in probability, in the Gromov–Hausdorff sense,

where T(γ,ν) is a γ -self-similar CRT associated with measure

ν(ds)= γΓ (1 − α)

(1 − λ)αΓ (1 − γ /α)

(
λ+ (1 − 2λ)

∑
i≥1

s2
i

)
PD∗

α,θ (ds)

for γ < α, while in the binary case γ = α (i.e. θ = −2α), we have ν(s1 + s2 < 1)= 0 and

ν(s1 ∈ dx)= α

(1 − λ)Γ (1 − α)

(
(1 − λ)+ (4λ− 2)x(1 − x)

)
x−α−1(1 − x)−α−1 dx.

Regarding the alpha model, α ∈ (0,1), θ = −2α, λ= 1 − α, this confirms in part a conjecture formulated in [28];
specifically, the setting of the conjecture was the two-parameter (α, θ)-model that contains the alpha model as a special
case, and the conjecture claims almost sure convergence, while we only obtain convergence in probability here.

Another interesting feature of the skewed Poisson–Dirichlet model relates to sampling consistency. Here we say
that a family of unlabelled random trees (T ◦

n , n ≥ 1) is sampling consistent if the tree T ◦
n with a uniformly cho-

sen leaf removed is distributed as T ◦
n−1. For consistent trees with exchangeable labels such as the exchangeable

Poisson–Dirichlet model this is trivially so, but also and non-trivially for the alpha-gamma model that includes non-
exchangeable trees [10]. Geometrically, this gives sampling consistency for two two-dimensional subsets of the three-
dimensional parameter space (intersecting in the one-parameter family of stable trees [25] for γ = 1 − α), but some-
what surprisingly, sampling consistency does not extend any further:

Proposition 10. The skewed Poisson–Dirichlet model is sampling consistent only for parameters that reduce it to the
exchangeable Poisson–Dirichlet model or to the alpha-gamma model.

This shows that while Theorem 6 and 7 always refer to Markov branching trees T ◦
n in the sense of [18], they

typically do not, however, satisfy the sampling consistency property of [18], so that the theory developed in [18] does
not even yield convergence in distribution for these trees, where we here establish convergence in probability.

1.5. Structure of this paper

In addition to proofs of main results already formulated, the content of this paper is as follows.

• Section 2 proves Theorem 3 and Corollary 5 by combining approaches of Vershik and Kerov, and of Aldous, both
in the exchangeable case.

• Section 3 includes a discussion of the relationship between restricted exchangeability, partial exchangeability and
constrained exchangeability, and a discussion of RE dislocation measures, RE splitting rules, RE hierarchies and
RE fragmentations.
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• In Section 4, we develop a new technique to sample leaves in general self-similar CRTs. We make explicit the
embedding that we use to prove Theorem 6, and we obtain decomposition results along subtrees spanned by the
first k sampled leaves (Corollary 22).

• In Section 5 we prove Theorem 7. Our approach is similar in spirit to [18], but with added technical difficulties. We
analyse the RE embedding of Theorem 6 in detail. While in [18] consideration of a single Σ∗ ∈ T(α,ν) gives relevant
estimates for all Σ∗

n , n ≥ 1, we here need individual estimates for each Σn, n ≥ 1. Methods include Gnedin’s
constrained paintboxes and renewal theory. We also establish almost sure convergences of rescaled subtrees of Tn
spanned by k leaves, as first n→ ∞ in Proposition 28 and then also k → ∞ in (22).

• Section 6 provides proofs for Propositions 8 and 10.
• An Appendix contains the proof of a technical lemma.

2. Integral representations, proof of Theorem 3 and Corollary 5

Our first aim is to understand exchangeability on subsets of the form Pπ ⊆ P , for some π ∈ K. Let us formally define
modified paintboxes. For s ∈ S↓ let m≥ 0 such that sm > sm+1 = 0 (or m= ∞ if si > 0 for all i ≥ 1), suppose π ∈ K
has k blocks πj �= ∅, 1 ≤ j ≤ k, of which � with #πj ≥ 2. For the paintbox κs associated with s, we have κs(Pπ ) > 0
iff either s0 > 0 and �≤m, or s0 = 0 and k ≤m. In these cases, set κπs = κs(·|Pπ ). Then κπs is a modified paintbox:

1. Randomly assign “colours” c(π)= (c(π1), . . . , c(πk)) to the blocks π1, . . . , πk using the following rule (with Zπ
s

as normalisation constant)

P
(
c(π)= (i1, . . . , ik)

)= 1

Zπ
s

∏
1≤j≤k

s
#πj
ij

, (5)

where ij is allowed to be equal to 0 iff #πj = 1, and the ij with ij ≥ 1 are pairwise distinct.
2. Let n be such that π ∈ Pn. Conditionally given c(π)= (i1, . . . , ik), set for 1 ≤ r ≤ n and r ∈ πj ,

ξr = ij if ij ≥ 1, and ξr = −minπj if ij = 0,

and for r ≥ n+1, consider independent ξr with P(ξr = i)= si , i ≥ 1, P(ξr = −r)= s0. Then κπs is the distribution
of the partition Π = {{n ≥ 1: ξn = i}, i ∈ Z}, which puts any two n,n′ ∈ N into the same block if and only if
ξn = ξn′ .

In the degenerate case when κs(Pπ )= 0, the numerator of (5) always vanishes. Roughly speaking, we use all colours
1, . . . ,m for the largest blocks of π . Formally, we replace 1. by 1′.:
1′. Randomly assign “colours” using the following rule (with Zπ

s as normalisation constant):

P
(
c(π)= (i1, . . . , ik)

)= 1

Zπ
s

∏
1≤j≤k:ij �=0

s
#πj
ij

,

if {i1, . . . , ik} = {0, . . . ,m}, the ij ≥ 1 are pairwise distinct and
∑k

j=1 #πj1{ij �=0} is maximal.

Step 2. is applied as before to construct Π and hence κπs . Note that Πj = πj if ij = 0, while Πj ⊃ πj will have
limiting frequency sij > 0 if ij ≥ 1.

Now κπs (P \ Pπ)= 0 and, for π ′ = (π ′
1, . . . , π

′
k′) ∈ Kπ := {π ′ ∈ K: π ′ ∩ [n] = π},

κπs
(

Pπ ′)= 1

Zπ
s

∑
(i1,...,ik′ ) admissible for (π,π ′,s)

s
#{Jπs ≤j≤k′:ij=0}
0

∏
1≤j≤k′:ij �=0

s
#π ′

j 1{ij≥1}
ij

,

where Jπs = k + 1 in the degenerate case, Jπs = 1 otherwise, and where (i1, . . . , ik′) is admissible for (π,π ′, s) if
(i1, . . . , ik) is as in 1′. or 1. above, respectively, and if for k + 1 ≤ j ≤ k′, we allow ij equal to 0 iff #π ′

j = 1, and the
ij with ij ≥ 1, 1 ≤ j ≤ k′, and pairwise distinct.

For π = {{1}}, this is a well-known formula for Kingman’s paintbox κs = κπs , with Zπ
s = 1. It is easy to show that,

in the general case, the modified paintboxes κπs are exchangeable on Pπ .
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Proposition 11. For any n≥ 1 and π ∈ Pn, the modified paintbox κπs can be expressed in terms of any Γ ∈ Pπ with
asymptotic frequencies s, provided that any blocks of Γ with zero asymptotic frequency are either subsets of [n] or
singletons, as

κπs
(

Pπ ′)= lim
r→∞

#{π ′′ ∈ Kπ ′
: π ′′ ≈ Γ |r }

#{π ′′ ∈ Kπ : π ′′ ≈ Γ |r} for all π ′ ∈ Kπ = {π ′ ∈ K: π ′ ∩ [n] = π
}
,

where we write π ′ ≈ π ′′ if π ′ and π ′′ have the same multiset of block sizes.

Proof. This proof is a refinement of the relevant part of the proof of Theorem 3.1 of [21], Kerov’s proof of Kingman’s
paintbox representation of exchangeable partitions in P , where we need to take into account the restriction to Pπ . We
evaluate the right-hand side. Numerator and denominator are easily calculated, e.g. for π ′ = (π ′

1, . . . , π
′
k′) ∈ Pπ

n′ :=
Kπ ∩ Pn′ as

#
{
π ′′ ∈ Pπ ′

r : π ′′ ≈ Γ |r
}=

∑(
r − n′

#Γi1 |r − #π ′
1, . . . ,#Γik′ |r − π ′

k′ ,#Γothers|r
)

1∏
j≥1 pj !

,

where
∑

is over indices (i1, . . . , ik′) such that #Γij |r − #π ′
j ≥ 0 for all j ∈ [k′], Γothers|r is the vector of all Γi |r ,

i ≥ 1, except Γi1 |r , . . . ,Γik′ |r , and pj is the number of blocks of Γ |r with j elements, j ≥ 1. First assume s0 =
1 −∑i≥1 si = 0, then the limit exists and is Zπ,π ′

s /Z
π,π
s , where

Zπ,π ′
s = lim

r→∞

∑( r−n
#Γi1 |r−#π ′

1,...,#Γik |r−#π ′
k′ ,#Γothers|r

)
rd(

r
#Γ1|r ,#Γ2|r ,...

) =
∑

(i1,...,ik′ ) admissible for (π,π ′,s)

∏
j :ij �=0

s
#π ′

j

ij
,

with d the minimal
∑k′

j=1 #π ′
j1{ij=0}, so that d > 0 only in the degenerate case; this power d is such that terms with

higher than the minimal sum vanish as r → ∞, and we identify κπs (Pπ ′
).

If s0 > 0, blocks of zero limiting frequency need to be treated differently, because their union Γ̃0 now has a limiting
frequency, and a union π̃ ′

0 of blocks of π ′ can indeed be associated with Γ̃0. Specifically, we calculate a first factor as

lim
r→∞

∑( r−n
#Γ̃0−π̃ ′

0,#Γ̃i1 |r−#π̃1,...,#Γ̃ĩ
k′ |r−#π̃ ′̃

k′ ,#Γ̃others|r
)

(
r

#Γ̃0|r ,#Γ̃1|r ,#Γ̃2|r ,...
) =

∑
(i1,...,ĩk′ ) admissible for (π̃,π̃ ′,s)

s
#π̃ ′

0
0

k̃′∏
j=1

s
#π̃ ′

j

ij
,

but then need to also count the further partitions of the block of size #Γ̃0|r . This yields for π̃ ′
0 = π ′

j1
∪ · · · ∪ π ′

jb
a

positive limit factor if d = #π̃ ′
0 − b is minimal, which we then calculate as

lim
r→∞

∑( #Γ̃0|r−#π̃ ′
0

#Γi1 |r−#π ′
j1
,...,#Γib |r−#π ′

jb
,1,...,1

)
rd

(#Γ̃0|r )! = s−d0 ;

the number of available indices is asymptotically equivalent to #Γ̃0|r ∼ s0r , so that the sum contains ∼ (#Γ̃0|r )b
terms, and this contributes to the asymptotics of the numerator. Finally we sum over the different choices of π̃ ′

0 with

#π̃ ′
0 − b= d to identify κπs (Pπ ′

). �

With these representations of the modified paintboxes, we now obtain the integral representation of general mea-
sures that are exchangeable on Pπ for some π ∈ Pn.

Proposition 12. Let μ be a finite measure, exchangeable on Pπ for some π ∈ Pn. Then there is a finite measure ν on
S↓ such that μ= ∫

S↓ κπs ν(ds).
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Proof. This proof uses a combination of the martingale method due to Vershik and Kerov [31], Theorem 2, and the de
Finetti method used by Aldous [1]. W.l.o.g., μ is a probability measure. Let Π ∼ μ for an exchangeable probability
measure on Pπ . For n′ ≥ n and π ′ ∈ Kπ ∩ Pn′ , consider the process

Xr = #{π ′′ ∈ Kπ ′
: π ′′ ≈Π |r }

#{π ′′ ∈ Kπ : π ′′ ≈Π |r} , r ≥ n′,

in the decreasing filtration Fr generated by the block sizes of Π |u, u ≥ r . By exchangeability, Xr depends only on
the block sizes Br of Π |r and is hence Fr -measurable and E[Xr |Fr+1] only depends on Xr+1. For a multiset b
of block sizes, denote by m(b) (resp. m′(b)) the number of partitions in Kπ (resp. in Kπ ′

) with block sizes b. By
exchangeability, each of these is equally likely. For block sizes Br+1 = br+1, we denote by m(br, br+1) the number
of partitions in Kπ̃ with block sizes br+1, where π̃ is any specific partition with block sizes br . Then there are
m(br)m(br , br+1) partitions in Kπ with block sizes br+1 that restrict to block sizes br . With this notation, we have
Xr =m′(Br)/m(Br). Then

E[Xr |Br+1 = br+1] =
∑
br

m(br)m(br , br+1)

m(br+1)

m′(br )
m(br)

= 1

m(br+1)

∑
br

m(br , br+1)m
′(br )= m′(br+1)

m(br+1)

for all admissible br+1 shows that (Xr, r ≥ n′) is a bounded martingale and hence converges a.s.
On the other hand, de Finetti’s theorem yields that asymptotic frequencies exist μ-a.s. Specifically, consider a

partition Π with distribution μ and, independently, a sequence Ui , i ≥ 1, of auxiliary independent uniform random
variables. Then the random variables

Ξj =Ui if j ∈Πi , j ≥ n+ 1,

are exchangeable. By de Finetti’s theorem, they are conditionally i.i.d. and the atom sizes Si of the random limiting
distribution in random (“size-biased”) order satisfy

Si = lim
r→∞

#{j ∈ {n+ 1, . . . , n+ r}: Ξj =Ui}
r

= lim
r→∞

#Πi ∩ [r]
r

.

Clearly, the latter limit does not depend on the auxiliary variables (Ui, i ≥ 1), so asymptotic frequencies exist μ-a.s.
Furthermore, μ-a.e. partition is such that blocks with zero asymptotic frequency either only involve elements of [n]
or are singletons. Denote by ν the distribution on S↓ of the asymptotic frequencies S = (Si, i ≥ 1) rearranged into
decreasing order of Π .

This means that μ is concentrated on those partitions for which Proposition 11 yields modified paintbox represen-
tations, and we see that Xr → κπS (Pπ ′

) a.s., where S ∼ ν; but (Xr, r ≥ n′) is a bounded martingale, so exchangeability
on Pπ yields∫

S↓
κπs
(

Pπ ′)
ν(ds)= E

[
κπS
(

Pπ ′)]= E[Xn′ ] =
∑

π̃∈Pπ
n′ :π̃≈π ′

μ
(

P π̃
) 1

#{π ′′ ∈ Pπ
n′ : π ′′ ≈ π̃} = μ

(
Pπ ′)

.

�

This proof raises the question whether we could have done without the martingale method or without the de Finetti
argument, as can be done in the exchangeable case. To avoid the de Finetti argument, we would have to generalise
Proposition 11 to ensure that all Γ for which the limits in Proposition 11 exist converge to modified paintboxes, which
seems more difficult given the exceptional non-singleton sets of zero limiting frequency. On the other hand, our de
Finetti argument only identifies the distribution of Π restricted to {n+ 1, n+ 2, . . .} and gives little information about
the conditional distribution of how the blocks of π attach themselves to such paintboxes. We have not found a simple
and direct argument to see why the modified paintboxes describe the only way to attach π in an exchangeable way.

Now recall that Theorem 3 states that RE measures on P are precisely those of the form μ=∑π∈C
∫
S↓ κπs νπ (ds).

Proof of Theorem 3. First consider μ =∑π∈C
∫
S↓ κπs νπ (ds) with C such that no π ∈ C is a restriction of another

π ′ ∈ C . Since κπs only charges Pπ , the measure μ only charges
⋃

π∈C Pπ . Furthermore, the restrictions of μ are finite
and exchangeable on Pπ . Hence μ is RE.
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Conversely, let μ be any RE measure on P with C such that the three bullet points of Definition 1 hold. Then the
sets Pπ , π ∈ C , are disjoint and the restrictions of μ to Pπ are finite and exchangeable on Pπ . By Proposition 12, the
restrictions of μ to Pπ can be represented as

∫
S↓ κπs νπ (ds). Since furthermore μ(P \⋃π∈C Pπ )= 0, we have

μ=
∑
π∈C

μ
(· ∩ Pπ

)=∑
π∈C

∫
S↓
κπs νπ (ds).

�

The proof of the Corollary 5 is now straightforward. Note, however, that νj is not νπ for π = {[j ], {j + 1}}, j ≥ 1.
Instead, we set kj = νπ ({(0,0, . . .)} ≥ 0 and cj = νπ ({(1,0, . . .)}) ≥ 0. The corresponding modified paintboxes are
δ{[j ],{j+1},{j+2},...} and δ{{j+1},N\{j+1}}, respectively, except for j = 1, where it is 1

2 (δ{{1},N\{1}} + δ{{2},N\{2}}). We also
incorporate the normalisation constants Zπ

s of the modified paintboxes as densities into νj and use restricted Kingman
paintboxes κs(· ∩ Pj ) rather than normalised modified paintboxes κπs .

3. Basic results on restricted exchangeability and related notions

3.1. Partially exchangeable and constrained exchangeable partitions

Let us explore the connections between the RE partitions introduced in this paper and other generalisations of
exchangeability studied in the literature, notably partial exchangeability and constrained exchangeability. Par-
tially exchangeable partitions were introduced by Pitman [26]. A measure μn on Pn is partially exchangeable if
μn(π) = μn(π

′) for all π,π ′ ∈ Pn with the same vector of block sizes in the order of least element. Partially ex-
changeable measures are not RE, in general, nor vice versa. Specifically, π = {{1,2}, {3,4}} and π ′ = {{1,3}, {2,4}}
have the same mass for partially exchangeable measures but not necessarily for RE measures. Vice versa, consider
π = {{1,2,3}, {4,5}} and π ′ = {{1,2}, {3,4,5}}. In fact, “the intersection” of the two concepts is exchangeability:

Proposition 13. A measure μn of Pn is exchangeable if and only if it is both partially exchangeable and RE with
C = {0[2],1[2]} = {{{1}, {2}}, {{1,2}}}.

Proof. The “only if” part follows straight from the definitions. For the “if” part, suppose that π,π ′ ∈ Pn \ {1[n]} have
the same multiset of block sizes. Let π̃ be such that, for blocks in order of least element, π̃1 = (π1 ∪{minπ2})\{2} and
π̃2 = (π2 \{minπ2})∪{2}, π̃j = πj , j ≥ 3. Similarly construct π̃ ′ from π ′. By partial exchangeability μn(π)= μn(π̃)

and μn(π ′)= μn(π̃
′). But π̃ ′, π̃ ∈ P {{1},{2}}, so by restricted exchangeability, we have μn(π̃ ′)= μn(π̃). �

Constrained exchangeable partitions were introduced by Gnedin [13]. Let ς = (ςk, k ≥ 1) be a fixed sequence of
integers ςk ≥ 1. Consider the set Pς-constr of partitions Γ ∈ P that are constrained with respect to ς in the sense
that each block Γk contains the ςk least elements of

⋃
j≥k Γj for every k ≥ 1 with Γk �= ∅. A measure μ on P

is constrained exchangeable if μ(P \ Pς-constr) = 0 for some ς , and if μn(π) = μn(π
′) for all π,π ′ ∈ {Γ |n: Γ ∈

Pς-constr} with the same multiset of block sizes and all n≥ 1. For ς = (1,2,1, . . .), under a constrained exchangeable
measure, π = {{1,3}, {2,4}, {5}} and π ′ = {{1,2}, {3,4}, {5}} have the same mass, but not necessarily under a RE
measure. Vice versa, restrictions to P {[j ],{j+1}} of a RE measure μ are constrained exchangeable if we take ς =
(j,1,1, . . .), but as soon as μ gives positive mass to more than one P {[j ],{j+1}}, j ≥ 1, constrained exchangeability in
Gnedin’s sense fails.

3.2. RE hierarchies and fragmentation processes

In Section 1.1, we defined hierarchies HB on sets B ⊆ N and represented hierarchies on finite B ⊂ N as graph-
theoretic trees above a root ∅, with edges between each block A ∈ HB , #A ≥ 2, and its maximal subsets in HB ,
which form a partition of A. For infinite B ⊆ N, the notion of a maximal subset A of B in HB is more delicate, and it
is not always true that there are maximal subsets that form a partition of B .

For a hierarchy HB on infinite B ⊆ N, we say HB is closed if for all sequences (Aj , j ≥ 1) in HB that are
increasing for the inclusion partial order, we have

⋃
Aj ∈ HB , and if for all decreasing sequences we have

⋂
Aj ∈
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HB . A closed hierarchy HB is uniquely determined by its restrictions HB ∩ [n], n≥ 1, as HB = {A⊆ B: A ∩ [n] ∈
HB ∩ [n] for all n≥ 1}. For every hierarchy HB there is a closure Hcl

B , the intersection of all closed hierarchies
containing HB .

Recall from Section 1.1 definitions of labelled Markov branching models (Tn,n≥ 1) with splitting rules Pn, n≥ 2,
and that hierarchies Tn on [n] are called consistent if Tn+1 ∩ [n] = Tn, Both consistency and the labelled Markov
branching property can be viewed as properties of the distributions Qn of Tn, n≥ 1. This labelled Markov branching
property implies a Markov branching property [18] for rooted delabelled trees T ◦

n ∼Q◦
n, as follows: call size the num-

ber of leaves (non-root degree-1 vertices), first split the decreasing sequence of subtree sizes for the vertex adjacent
to the root; conditionally given that the first split of T ◦

n is n1 ≥ · · · ≥ nk , the subtrees are distributed as if they were
independent with respective distributions Q◦

ni
, 1 ≤ i ≤ k. On the other hand, the associated family (Q◦

n, n ≥ 1) will
not, in general, have the sampling consistency property of [18], which asserts that a tree T ◦

n ∼Q◦
n with a leaf picked

uniformly at random removed (together with any resulting degree-2 vertex) has distribution Q◦
n−1, for n≥ 3.

Let Pj = P {[j ],{j+1}}, j ≥ 1. We say that a splitting rule Pn is RE if for all 1 ≤ j ≤ n − 1 and π,π ′ ∈ Pj
n :=

{π ∈ Pn: π ∩ [j + 1] = {[j ], {j + 1}}} with the same multiset of block sizes, we have Pn({π}) = Pn({π ′}). The
alpha-gamma model of Section 1.1 is an example.

If κ is a RE dislocation measure as in Corollary 5, then

Pn
({π})= {κ(Pπ )/κ(P \ P 1[n]), κ(P \ P 1[n]) > 0,

δ0[n]({π}), κ(P \ P 1[n])= 0 or n= 2,
π ∈ Pn \ {1[n]}, n≥ 2, (6)

defines RE splitting rules and hence inductively a consistent Markov branching model (Qn,n≥ 1) that we also refer
to as RE. More specifically, there is always n0 ∈ {2,3, . . .} ∪ {∞} such that the second line in (6) applies for n < n0

but not for n ≥ n0. The second line leads to the minimal hierarchy Qn({{[n], {1}, . . . , {n},∅}}) = 1 of [n]. We have
Pn0({[n0 − 1], {n0}}) = 1 degenerate, while for all n ≥ n0 + 1, we have Pn({[n − 1], {n}}) < 1, non-degenerate, if
n0 <∞.

Let us call a consistent RE Markov branching model (Qn,n≥ 1) with splitting rules (Pn,n≥ 2) regular if there is
n0 ≥ 2 such that Qn is minimal for n < n0, and if Pn is degenerate for n= n0, non-degenerate for n≥ n0 + 1.

Proposition 14. All regular consistent labelled Markov branching models (Qn,n ≥ 1) with RE splitting rules
(Pn,n≥ 2) are of the form (6) for some RE measure κ as in Corollary 5.

Proof. In Pitman’s [27] formalism of exchangeable partition probability functions (EPPFs)

p
j
n(#π1, . . . ,#πk)= Pn

({π}), π ∈ Pj
n = P {[j ],{j+1}} ∩ [n], j ∈ [n− 1],

consistency in the RE case (extending Formula (16) of [24]) is equivalent to

p
j
n(n1, . . . , nk)= pnn+1(n,1)pjn(n1, . . . , nk)+

k+1∑
i=1

p
j

n+1(n1, . . . , ni−1, ni + 1, ni+1, . . . , nk)

for all n1, . . . , nk ∈ N, k ≥ 2, n = n1 + · · · + nk , j ∈ [n − 1]. For λn = 0, n < n0, any λn0 ∈ (0,∞) and
(1 − pnn+1(n,1))λn+1 = λn, n ≥ n0, we see that κ(Pπ ) = λnPn({π}), π ∈⋃n≥2 Pn \ {1[n]}, defines a RE measure
that has the properties required. �

By Kolmogorov’s consistency theorem, we can consider a consistent family (Tn,n ≥ 1) of trees Tn ∼ Qn with
Tn+1 ∩ [n] = Tn, n ≥ 1, and associate H = {A ⊂ N: A ∩ [n] ∈ Tn for all n≥ 2} as random closed hierarchy on N,
which we call RE if (Qn,n≥ 1) is RE. In the regular RE case with n0 = 2, we can consistently embed into continuous
time the blocks of Tn, n≥ 2, using

• exponential holding times η[n] of rate λn for state [n], λn as in the proof of Proposition 14;
• recursively and independently as blocks appear from splits, ηπ at rate λ#π for any π ∈ Tn.



Restricted exchangeable partitions 851

With the convention that λ1 = 0 gives infinite holding times, the collection of blocks held at any given time t ≥ 0
forms a partition F |n(t) of [n]. Indeed, this construction yields consistent homogeneous fragmentation processes
(F |n(t), t ≥ 0) in Pn, n ≥ 2, that determine a P -valued process (F (t), t ≥ 0), which we call a RE homogeneous
fragmentation process.

We can also generalise Bertoin’s [8] Poissonian construction to directly obtain RE homogeneous fragmentation
processes (F (t), t ≥ 0) in P from a RE dislocation measure κ . This provides an alternative construction of the same
random closed hierarchy H = {Fi(t), i ≥ 0, t ≥ 0}cl, but we do not need this alternative construction and leave the
details to the reader.

In the regular case with n0 ≥ 3, a block [n0 − 1] is never split under the exponential-rates construction above;
informally [n0 − 1] is a limiting block at infinity alongside many other such blocks of size n0 − 1 that still need
splitting to obtain a hierarchy – they need partitioning into singletons. The simplest kind of irregular model of a RE
hierarchy can be obtained here by some intermediate partitioning of these blocks of size n0 − 1. It is possible, but
not as natural as in the regular case with n0 = 2, to incorporate such further splits in a common embedding, also
when other irregularities occur with more degenerate splitting rules. For our next aim of embedding hierarchies into
self-similar CRTs, such embeddings do not provide a suitable framework.

4. Embedding in self-similar CRTs, proof of Theorem 6

4.1. Self-similar CRTs, fragmentation processes and spinal decomposition

Aldous [2] called a pair (T ,μ) a continuum tree if T is an R-tree, μ a finite measure on T , with

1. the measure μ supported by the set Lf(T ) of leaves of T ,
2. the measure μ has no atoms,
3. for every x ∈ T \ Lf(T ), positive mass μ(Tx) > 0 in the subtree Tx rooted at x.

We specify a root vertex ρ ∈ T and distance function d. For technical simplicity, we follow Aldous [3] and use CRTs
in �1 = �1(N). We endow the set of compact subsets of �1 with the Hausdorff metric, and the set of finite measures on
�1 with any metric inducing the topology of weak convergence, so that the set H of pairs (T ,μ) where T is a rooted
R-tree embedded as a subset of �1 and μ is a finite measure on T , is endowed with the product Borel σ -algebra.

A Continuum Random Tree (CRT) is a random variable with values in the set of continuum trees. To be specific, we
call distribution of a CRT (T ,μ,ρ,d) the distribution on H of the particular random isometric embedding of (T ,d)
in �1 obtained from a random sample Σ∗

i , i ≥ 1, of independent leaves with distribution μ/μ(T ), using 0 ∈ �1 as the
root and the ith coordinate direction in �1 to embed the branch leading to leaf Σ∗

i , finally passing to the �1-closure
and the weak limit of the μ(T )-multiples of empirical measures of the embedded Σ∗

1 , . . . ,Σ
∗
i , i ≥ 1.

For, α ∈ R, x ∈ [0,1] and s ∈ S↓, we denote by Qα
x the distribution of the α-scaled tree (T , xμ,ρ, xαd) and by

Qα
s the distribution of a bush of independent trees with distributions Qα

si
, i ≥ 1, all grafted to the same root. For

every u ≥ 0, consider the bush B(u) obtained by grafting the connected components Ti (u), i ∈ I , of the open set
{x ∈ T : d(x,ρ) > u} to the same root. Recall that a CRT is called α-self-similar in the sense of [17], if for all u≥ 0
and conditionally given (μ(Ti (u)), i ∈ I )↓ = s �= 0, we have B(u)∼Qα

s .
For α ∈ R, a P -valued process (Π(t), t ≥ 0) is an exchangeable α-self-similar fragmentation process if Π =

(Π(t), t ≥ 0) is exchangeable and if given Π(t)= π , the partition Π(t + s) has the same law as the random partition
whose blocks are those of πi ∩ Π(i)(|πi |−αs), i ≥ 1, where (Π(i), i ≥ 1) is a sequence of i.i.d. copies of Π . The
process X = (|Π(t)|↓, t ≥ 0) is an S↓-valued α-self-similar fragmentation. Bertoin proved in [5] that the distribution
of an exchangeable P -valued self-similar fragmentation is determined by a triple (α, c, ν), where ν is a dislocation
measure on S↓, i.e. ν(s1 = 1) = 0 and

∫
S↓(1 − s1)ν(ds) < ∞. In this paper, we take c = 0 and ν conservative, i.e.

ν(s0 > 0)= 0, where s0 = 1 −∑i≥1 si . We call (α, ν) characteristic pair.
According to [17], there exists a self-similar CRT T associated with (α, ν), provided also that α > 0 (and ν

is infinite, but this is not essential unless it is required that the topological support of μ is T ). Specifically, Y =
((μ(Ti (u)), i ∈ Iu)

↓, u≥ 0) has the same distribution as X.
Consider s ∈ S↓ and s(i) ∈ S↓, i ≥ 1. We call fragmentation of s by s(·) the mass partition Frag(s, s(·)) given by

the decreasing rearrangement of (sis
(i)
j , i, j ∈ N). Bertoin showed that the process (X(t), t ≥ 0) is Markovian and its
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Fig. 3. The tree T on the left-hand side has its spine to v ∈ T exposed; for a vertex vα(u) on the spine [[ρ,v]], the subtree containing v has been
indicated. The right-hand side displays rescaled subtrees and the residual mass process after passage to homogeneous time via ηv .

semigroup can be described as follows. For every t, t ′ ≥ 0, the conditional distribution of X(t + t ′) given X(t)= s is
the law of Frag(s,S(·)), where each S(i) independently is distributed as X(t ′s−αi ), see Proposition 3.7 of [8].

Consider an infinite block B ⊆ N and Γ ∈ P . We call fragmentation of B by Γ the partition Frag(B,Γ ) :=
βB(Γ ) ∈ PB , where βB is the unique increasing bijection from N to B . This is a slight variation of Bertoin’s [8]
notion, who uses Γ ∩B , not βB(Γ ), but this is useful in Lemma 15 as it allows to recover Γ from Frag(B,Γ ), and it
is also instructive in the RE case.

Given a CRT (T ,μ,ρ,d) and v ∈ T , we denote by v(u) the point on the spine [[ρ,v]] with d(ρ, v(u)) = u,
0 ≤ u≤ d(ρ, v), and obtain a parameterisation [[ρ,v]] = {v(u),0 ≤ u≤ d(ρ, v)} by distance, cf. Fig. 3. We consider
the subtree T(v)(u)= {w ∈ T : d(ρ,w∧ v) > u} of T containing v rooted at v(u), and its mass X(v)(u)= μ(T(v)(u)).
For α > 0, let ηα→0

v be the α-self-similar time change with

ηα→0
v (t)= inf

{
u≥ 0:

∫ u

0

(
X(v)(y)

)−α dy > t

}
, 0 ≤ t < ζα→0

v =
∫ d(ρ,v)

0

(
X(v)(y)

)−α dy. (7)

Then vα→0(t) = v(ηα→0
v (t)), T α→0

(v) (t) = T(v)(ηα→0
v (t)) and Xα→0

(v) (t) = μ(T α→0
(v) (t)) are associated time-changed

quantities. In particular, [[ρ,v[[= {vα→0(t),0 ≤ t < ζα→0
v } is a new parameterisation of the spine, which we call

parameterisation by time. Denote by Sv(t) = (Svi (t), i ≥ 1) ∈ S↓ the sequence such that Xα→0
(v)

(t−)Sv(t) is the

decreasing sequence of μ-masses of the connected components of {w ∈ T : vα→0(t) ∈ [[ρ,w[[}, also Fv(t) =
Xα→0
(v) (t)/Xα→0

(v) (t−) the component of Sv(t) corresponding to the subtree containing v. Moreover, we denote by

(
Bα→0
(v) (t),

μ|Bα→0
(v)

(t)

Xα→0
(v) (t−) , v

α→0(t),
d|Bα→0

(v)
(t)

(Xα→0
(v) (t−))α

)
, where Bα→0

(v) (t)= T α→0
(v) (t−) \ T α→0

(v) (t)

the associated rescaled spinal bush, of mass 1 − Fv(t), at time t ≥ 0.
The following lemma is a description in the CRT framework of Bertoin’s tagged particle process that is a bit richer

than often stated, but follows from the same arguments.

Lemma 15. Let (T ,μ,ρ,d) be an α-self-similar CRT with characteristic pair (α, ν) and Σ∗ ∼ μ. Then (SΣ
∗
,FΣ∗)

is a Poisson point process on S↓ × (0,1) with intensity measure ν̃∗ given by

ν̃∗(ds,dx)=
∑
i≥1

siδsi (dx)ν(ds).
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Proof. Let Y be the self-similar mass-fragmentation process associated with the CRT (T ,μ) and Yα→0 the homo-
geneous mass-fragmentation process obtained by applying the α-self-similar time-change to each block: Yα→0(t)=
(μ(T α→0

i (t)), i ∈ Iα→0
t )↓, where {T α→0

i (t), i ∈ Iα→0
t } = {T α→0

(v) (t): v ∈ T , ζ α→0
v > t}. On an extended probability

space, denote by Π a homogeneous exchangeable P -valued fragmentation process associated with Yα→0. With-
out loss of generality, we can consider Xα→0

(Σ∗) (t) = |Π1(t)|, by exchangeability. Since |Π1(t)| > 0 a.s., the block

Π1(t) is infinite and there is a unique partition Π(1)(t) of N such that Π1(t) = Frag(Π1(t−),Π(1)(t)). Further-
more, SΣ

∗
(t) = |Π(1)(t)|↓. By Bertoin’s Poissonian construction of exchangeable fragmentations, Π(1) is a (time-

homogeneous) Poisson point process with intensity measure κ = ∫S ↓ κsν(ds). Hence, SΣ
∗

is a Poisson point process
on S↓ with intensity measure ν.

As Σ∗ is distributed according to μ, it is not hard to show that the distribution of (SΣ
∗
,FΣ∗) can be obtained by

marking SΣ
∗

via the size-biased marking kernel K∗(s, ·)=∑i≥1 siδsi and so (SΣ
∗
,FΣ∗) is a Poisson point process

with intensity K∗(s,dx)ν(ds)= ν̃∗(ds,dx). �

By the stopping line argument of [19], Proposition 4, this yields the following joint description of the ordered
coarse and unordered fine spinal decompositions along the spine to Σ∗ ∼ μ.

Proposition 16 (Spinal decomposition [9,19]). Let (T ,μ,ρ,d) be an α-self-similar CRT with characteristic pair
(α, ν) and Σ∗ ∼ μ. Then the process (SΣ

∗
,FΣ∗ ,Bα→0

(Σ∗) ) is a Poisson point process with intensity measure

ν̃∗
bush(ds,dx,dT )=

∑
i≥1

siδsi (dx)Q
α
(s1,...,si−1,si+1,...)

(dT )ν(ds).

Conversely, the isometry class of (T ,μ,ρ,d) is a measurable function of (SΣ
∗
,FΣ∗ ,Bα→0

(Σ∗) ).

4.2. A generic procedure to sample a leaf from a self-similar CRT

Our aim is to generalise Lemma 15 and Proposition 16 to leaves other than the μ-sampled leaf Σ∗ where we are
effectively marking a Poisson point process with intensity measure ν using the size-biased marking kernel K∗(s, ·)=∑

i≥1 siδsi from S↓ to (0,1). We will now consider other marking kernels. It will be convenient to adopt an idea
from Pitman’s EPPF formalism and specify the probability that a specific part of size x is chosen with probability
P(s, x) so that the probability of choosing a mass x is K(s, {x}) =mxP (s, x) where for s = (si , i ≥ 1) ∈ S↓, we let
mx = #{i ≥ 1: si = x}.

Definition 17. A measurable function P :S↓ × (0,1)→ [0,1] that fulfils the two conditions

• P(s, x)= 0 if x /∈ {si , i ≥ 1},
• ∑i≥1P(s, si)= 1,

is called a selection probability function (SPF).

Example 18. The SPF associated with a leaf chosen according to μ is P(s, si)= si .

We now formulate the procedure to sample a special leaf Σ based on an SPF P from an α-self-similar CRT
(T ,μ,ρ,d) with dislocation measure ν, T ∼Qα

1 =Q1 for short (α > 0 fixed).

Procedure 1. Let P be an SPF as in Definition 17 fulfilling∫
S↓

∑
i≥1

(1 − si)P (s, si)ν(ds) <∞. (8)

0. We start from (T1,μ1, ρ1,d1) := (T ,μ,ρ,d) and i = 1 and proceed inductively.
1. Conditionally given (Ti ,μi, ρi,di ), let Σ(i) ∼ μi .
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2. Conditionally given (Ti ,Σ(i)), we consider the parameterisation in homogeneous time of the spine [[ρi,Σ(i)[[=
{Σα→0

(i) (t), t ≥ 0} and pick as Ti+1 a subtree S off the spine; specifically, if S is a subtree rooted at the spinal

vertex Σα→0
(i) (t), it is selected with probability

P
(

Ti+1 = S|Ti ,Σ(i)

)= P

(
SΣ(i) (t),

μi(S)
μi(T α→0

(Σ(i))
(t−))

)∏
t ′<t

P
(
SΣ(i)

(
t ′
)
,FΣ(i)

(
t ′
))
.

3. Let τ(i) = inf{t ≥ 0: Ti+1 ∩ T α→0
Σ(i)

(t)= ∅}. We turn Ti+1 into a CRT with rescaled mass measure, root and rescaled
distance function as follows:

μi+1 = μi |Ti+1

μi(Ti+1)
, ρi+1 =Σα→0

(i) (τ(i)), di+1 = di |Ti+1×Ti+1

(μi(Ti+1))α
.

4. Repeat within the subtree (Ti+1,μi+1, ρi+1,di+1) by increasing i by 1 and proceeding to 1.
5. As i → ∞, we obtain a sequence (Σα→0

(i)
(τ(i)), i ≥ 1) in T that increases in the sense that Σα→0

(i)
(τ(i)) ∈

[[ρ,Σα→0
(i+1)(τ(i+1))]] and hence converges. Let Σ = limi→∞Σα→0

(i) (τ(i)).

Note that Step 2. is well-defined as
∏

t ′≥0P(S
Σ(i) (t ′),FΣ(i)

(t ′))= 0, by Proposition 16.
Roughly speaking, this sampling procedure is that we travel along the spine [[ρ,Σ(1)]] and keep selecting subtrees

until the first time we choose a subtree not containing Σ(1) and then repeat inductively in the subtree until we reach
a leaf Σ in the limit, see Fig. 4. We show in the following proposition that there is a spinal subordinator associated
with Σ .

Proposition 19. Let Σ be sampled according to Procedure 1.

(i) The process (SΣ,FΣ,Bα→0
(Σ) ) is a Poisson point process with intensity measure

ν̃Pbush(ds,dx,dT )=
∑
i≥1

P(s, si)δsi (dx)Q(s1,...,si−1,si+1,...)(dT )ν(ds).

Specifically, ((SΣ(t),FΣ(t),Bα→0
(Σ) (t)),0 ≤ t < τ(1)) is a killed Poisson point process with killing rate∫

S↓
∑

i≥1(1 − si)P (s, si)ν(ds) and intensity measure

ν̃P(1),bush(ds,dx,dT )=
∑
i≥1

siP (s, si)δsi (dx)Q(s1,...,si−1,si+1,...)(dT )ν(ds).

Fig. 4. In Procedure 1 we begin by sampling in T1 = T a leaf Σ(1) ∼ μ and pick one of the spinal subtrees as T2 according to SPF P .
Within Ti for i = 2, rescaled, we repeat by sampling a leaf Σ(i) ∼ μi and pick spinal subtree Ti+1 according to P . As i → ∞ we indicate

Σ = limi→∞Σα→0
(i)

(τ(i)).
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(ii) Let ξΣt = − logXα→0
(Σ)

(t), t ≥ 0. Then ξΣ is a pure jump subordinator with Laplace exponent ΦΣ and Lévy
measure ΛΣ given by

ΦΣ(q)=
∫

S ↓

∑
i≥1

(
1 − s

q
i

)
P(s, si)ν(ds) and ΛΣ =

∫
S↓

∑
i≥1

P(s, si)δ− log si ν(ds). (9)

Proof. (i) This proof relies heavily on Poisson point process techniques. We use the terminology of Kingman [23].
By Proposition 16, the process (SΣ(1) , FΣ(1) ,Bα→0

(Σ(1))
) is a Poisson point process with intensity measure ν̃∗

bush. Step 2.
of Procedure 1 can be read and analysed as follows. We mark some points of this Poisson point process with a selected
subtree T sel

(Σ(1))
(t) using the kernel

K
(
s, x,B ′;dT ′′)= P(s, x)δ({0})

(
dT ′′)+ ∑

S connected component of B ′\{ρ′}
P
(
s,μ′(S)

)
δS
(
dT ′′),

where B ′ is short for (B ′,μ′, ρ′,d′) and T ′′ is short for (T ′′,μ′′, ρ′′,d′′), also S for (S,μ′|S, ρ′,d′|S×S) and {0} for
({0},0,0,0). By standard marking and mapping, we get a new Poisson point process (SΣ(1) , FΣ(1) ,Brem

(Σ(1))
,T sel

(Σ(1))
),

where Brem
(Σ(1))

(t)= Bα→0
(Σ(1))

(t) \ T sel
(Σ(1))

(t) with intensity measure

∑
i≥1

siδsi (dx)

(
P(s, si)Q̂s(i)

(
dB ′)δ{0}

(
dT ′′)+∑

j �=i
P (s, sj )Q̂s(i,j)

(
dB ′)Qsj

(
dT ′′))ν(ds),

where ŝ(i) = (s1, . . . , si−1, si+1, . . .) is the sequence s with si removed and similarly ŝ(i,j) is the sequence s with si
and sj removed.

In Step 3., we set τ(1) = inf{t ≥ 0: T sel
(Σ(1))

(t) �= {0}}, exponentially distributed with rate

∫
S↓

∑
i≥1

si
∑
j �=i

P (s, sj )ν(ds)=
∫
S↓

∑
j≥1

(1 − sj )P (s, sj )ν(ds) <∞,

note (8). Standard thinning and projecting yields that ((SΣ(t),FΣ(t),Bα→0
(Σ)

(t)),0 ≤ t < τ(1))= ((SΣ(1) (t),FΣ(1) (t),

Brem
(Σ(1))

(t)),0 ≤ t < τ(1)) is an independently killed Poisson point process with intensity measure
∑

i≥1 siP (s, si)×
δsi (dx)Q̂s(i) (dB

′)ν(ds), as required for the second assertion. The rescaled tree T2 = T sel
(Σ(1))

(τ(1))∼Q1 is independent

of this killed Poisson point process and also jointly independent of the pair formed by the bush Brem
(Σ(1))

and the rescaled

tree T α→0
(Σ(1))

(τ(1)) that has distribution Qsi for si = FΣ(1) (τ(1)), using the converse statement in Proposition 16.
In Step 4., the induction proceeds on Ti ∼ Q1, i ≥ 2, all independent of the past, so this Poisson point process

extends indefinitely, but ignores points at τ(1) + · · · + τ(i), i ≥ 1. These are exponentially spaced and i.i.d., hence
form an independent Poisson point process. The independence and distributional properties that we noted identify the
distribution of (SΣ(τ(1)),FΣ(τ(1)),Bα→0

(Σ)
(τ(1)))= (SΣ(1) (τ(1)),μ

sel(T sel
(Σ(1))

(τ(1))), B̃1), and the intensity measure

∑
i≥1

si
∑
j �=i

P (s, sj )δsj (dx)Q(si ,̂s(i,j))
(
dB ′)ν(ds)=

∑
j≥1

(1 − sj )P (s, sj )δsj (dx)Q̂s(j)
(
dB ′)ν(ds),

because we define B̃i by grafting to the same root Brem
(Σ(i))

(τ(i))∼Qŝ(i,j) and the rescaled T α→0
(Σ(i))

(τ(i)) has distribution
Qsi . Standard superposition completes the proof of (i).

(ii) By (i) and standard mapping, (�ξΣt , t ≥ 0) is a Poisson point process with intensity measure ΛΣ , hence
ξΣt =∑s≤t �ξΣs is a pure jump subordinator with Laplace exponent ΦΣ . �
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4.3. A procedure to sample a sequence of leaves from a self-similar CRT

In this section, we formulate a special inductive procedure to sample k leaves Σ1, . . . ,Σk from a self-similar CRT
(T ,μ) with characteristic pair (α, ν), where

ν(ds)=
∑
j≥1

(∑
i≥1

s
j
i (1 − si)

)
νj (ds)

for some measures νj , j ≥ 1, representing a RE dislocation measure as in Corollary 5. Clearly, the measures νj , j ≥ 1,
are absolutely continuous with respect to ν. We denote their Radon–Nikodym derivatives by fj = dνj /dν, j ≥ 1, and
define selection functions

P0(s, si)=
∑
�≥1

s�i (1 − si)f�(s), P old
k (s, si)=

∑
�≥k+1 s

�
i (1 − si)f�(s)∑

�≥k s�i (1 − si)f�(s)
, k ≥ 1, and

for j �= i P new
k (s, si , sj )= ski sj fk(s)∑

�≥k s�i (1 − si)f�(s)
, k ≥ 1.

Procedure 2.

(0) To sample Σ1 in the whole CRT (T1,∅,μ1,∅, ρ1,∅,d1,∅)= (T ,μ,ρ,d) we use step (k,∅) for k = 1 and then
proceed inductively.

(k,∅) Sample leaf Σk in Tk,∅ according to Procedure 1 using the SPF P0. Then increase k by 1, set B = [k− 1] and
Tk,B = T , and proceed to step (k,B).

(k,B) with B �= ∅.
1. Given Σi ∈ Tk,B , i ∈ B , denote by vk,B the branch point that separates the labels in B into several subtrees,

so that [[ρk,B, vk,B ]] =⋂i∈B [[ρk,B,Σi]].
2. Conditionally given (Tk,B;Σi, i ∈ B), with spine [[ρk,B, vk,B [[= {vα→0

k,B (t),0 ≤ t < ζα→0
vk,B

}, pick as Tk,B ′

either a new subtree S above some vα→0
k,B (t) with probability

P(Tk,B ′ = S|Tk,B;Σi, i ∈ B)

= P new
#B

(
Svk,B (t),Fvk,B (t),

μk,B(S)
μk,B(T α→0

(vk,B )
(t−))

)∏
t ′<t

P old
#B

(
Svk,B

(
t ′
)
,Fvk,B

(
t ′
))
,

or, in the case #B ≥ 2, a new or old subtree S above vk,B with probability

P(Tk,B ′ = S|Tk,B;Σi, i ∈ B)= μk,B(S)
μk,B(T α→0

(vk,B )
(ζvk,B−))

∏
t ′<ζvk,B

P old
#B

(
Svk,B

(
t ′
)
,Fvk,B

(
t ′
))
,

where B ′ = {i ∈ B: Σi ∈ S} and new/old means without/with any Σi , i ∈ B .
3. Let τk,B = min{ζ α→0

vk,B
, inf{t ≥ 0: Tk,B ′ ∩ T α→0

vk,B
(t) = ∅}}. We turn Tk,B ′ into a CRT with rescaled mass

measure, root and rescaled distance function as follows:

μk,B ′ = μk,B |Tk,B′
μk,B(Tk,B ′)

, ρk,B ′ = vα→0
k,B (τk,B), dk,B ′ = dk,B |Tk,B′×Tk,B′

(μk,B(Tk,B ′))α
.

4. Repeat within the subtree (Tk,B ′ ,μk,B ′ , ρk,B ′ ,dk,B ′) by proceeding to step (k,B ′).

Note that the probabilities in Step 2. add up to 1 since
∑

j :j �=i ski sj fk(s)= ski (1 − si)fk(s). From Proposition 19,
we obtain the following by straightforward arguments.
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Corollary 20. Sample (Σk, k ≥ 1) following Procedure 2. Let vk be the branch point in T that separates [k] into
different subtrees, k ≥ 1. Then ((SΣk (t),FΣk

(t),Bα→0
(Σk)

(t)),0 ≤ t < ζα→0
vk

) is a Poisson point process with killing rate

λk = ∫
S↓
∑

i≥1
∑k−1

�=1 s
�
i (1 − si)ν�(ds) and intensity measure

ν̃
(k)
bush(ds,dx,dT )=

∑
i≥1

δsi (dx)Q(s1,...,si−1,si+1,...)(dT )
∑
�≥k

s�i (1 − si)ν�(ds). (10)

Note λ1 = 0, so the Poisson point process is not killed and Corollary 20 describes the whole tree T jointly with
Σ1, decomposed along its spine [[ρ,Σ1[[. For k ≥ 2, Corollary 20 describes a spinal decomposition along [[ρ,vk[[,
but not the subtrees above vk . This is done in Lemma 21.

Proof of Corollary 20. The case k = 1 follows straight from step (1, ∅) of Procedure 2 and Proposition 19. We then
proceed by induction in k. Assuming that the statement is true for k, step (k + 1, [k]) 2. and standard thinning with
probabilities P old

k+1(s, si) yields

ν̃
(k+1)
bush (ds,dx,dT )=

∑
i≥1

P old
k+1(s, si)δsi (dx)Q(s1,...,si−1,si+1,...)(dT )

∑
�≥k

s�i (1 − si)ν�(ds),

as claimed, and an extra rate
∫
S↓
∑

i≥1(1 −P old
k+1(s, si))

∑
�≥k s�i (1 − si)ν�(ds) is added to the killing rate λk from the

induction hypothesis. This completes the induction step. �

To identify the distribution Q[k]
1 of (T ;Σi, i ∈ [k]) constructed according to Procedure 2 run up to some k ≥ 2, we

study its branching structure recursively by specifying the first branch point vk that separates [k] into several subtrees
denoted by T [k]

� with label partition Π [k] and a remaining bush B[k] of unlabelled subtrees, with joint relative subtree
sizes S[k] ∈ S↓. For x ∈ (0,1] and B = {b1, . . . , bk} ⊂ N with 1 ≤ b1 < · · ·< bk , it will be convenient to denote by QB

x

the distribution of a rescaled and relabelled version of (T ;Σi, i ∈ [k]), where the mass measure has been multiplied
by x, the distance function by xα , and Σi is renamed to Σbi , i ∈ [k].

Lemma 21. The first branching of (T ;Σi, i ∈ [k]) separating [k] and associated subtrees described in C br
k =

(S[k],Π [k],T [k],B[k]) are independent of C pre
k = ((Svk (t),Fvk (t),Bα→0

(vk)
(t)),0 ≤ t < ζvk ), with distribution given by

P
(
S[k] ∈ ds,Π [k] = π,

(
T [k]

1 ;Σi, i ∈ π1
) ∈ dT1, . . . ,

(
T [k]
r ;Σi, i ∈ πr

) ∈ dTr,B[k] ∈ dB ′)
= 1

λk

( ∑
i1,...,ir distinct

Q̂s(i1,...,ir )
(
dB ′) r∏

�=1

s
#π�
i�

Qπ�
si�
(dT�)

)
νm(ds),

where π = (πi1 , . . . , πr) ∈ Pk and m= minπ2 − 1, also ŝ(i1,...,ir ) is s with s1, . . . , sir removed.

The kernel κs,π (dT1, . . . ,dTr,dB ′) =∑i1,...,ir distinctQŝ(i1,...,ir ) (dB
′)
∏r

�=1 s
#π�
i�

Q
π�
si�
(dT�) is a fancy paintbox that

equips each block under κs with a tree and embeds the labels for π ∈ K.

Proof of Lemma 21. For k = 1, this is trivial since v1 = Σ1 is a leaf. Now suppose that the result holds for all
[j ] ⊆ [k], and consider k + 1. In our use of standard Poisson point process arguments as well as in extracting from
Procedure 2 as from Procedure 1, we build on the proof of Proposition 19.

For π ∈ Pk+1 \ {1[k+1]}, let Aπ = {Π [k+1] = π} be the event that vk+1 splits [k + 1] into π . The simplest
case is for π = {[k], {k + 1}}. By Corollary 20, the decomposition of T along the spine [[ρ,vk[[ is given by the
Poisson point process ((SΣk (t),FΣk

(t),Bα→0
(Σk)

(t)),0 ≤ t < ζα→0
vk

) with intensity measure (10), killed at rate λk =∫
S↓
∑

i≥1
∑k−1

�=1 s
�
i (1−si)ν�(ds). By comparison with the statement of Corollary 20 for k+1, we see P(A{[k],{k+1}})=

1 − λk/λk+1. Conditionally given A{[k],{k+1}}, the distribution of (SΣk (τk+1,[k]),FΣk
(τk+1,[k]),Brem

(Σk)
(τk+1,[k]),
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T sel
k+1,[k](τk+1,[k])) is

1

λk+1 − λk

∑
i≥1

∑
j �=i

P new
k (s, si , sj )δsi (dx)Q̂s(i,j)

(
dB ′)Qsj

(
dT ′′)∑

�≥k
s�i (1 − si)ν�(ds)

= 1

λk+1 − λk

∑
i≥1

∑
j �=i

δsi (dx)Q̂s(i,j)
(
dB ′)Qsj

(
dT ′′)ski sj νk(ds), (11)

independently of the rescaled (T α→0
(Σk)

(τk+1,[k]);Σi, i ∈ [k]) that has Q[k]
1 as conditional distribution given A{[k],{k+1}}.

Note also, that the sampling of Σk+1 in the rescaled T sel
k+1,[k](τk+1,[k]) yields conditional distribution Q

{k+1}
1 given

A{[k],{k+1}}, and that by standard thinning arguments these are conditionally independent of ((SΣk+1(t),FΣk+1(t),

Bα→0
(Σk+1)

(t)),0 ≤ t < ζα→0
vk+1

) given A{[k],{k+1}}. Multiplying by P(A{[k],{k+1}}), this yields the result for π = {[k],
{k + 1}}.

Now consider any other π = {π1, . . . , πr} ∈ Pk+1 \ {1[k+1]} and write m = minπ2 − 1 ∈ [k − 1]. Note that also
m = minπ2 ∩ [k] − 1. By the induction hypothesis, the collections C pre

k describing the spine to the branch point
separating [k], and C br

k describing the branching and rescaled subtrees, are independent. We read and analyse Step 2.
of Procedure 2 by marking C pre

k as we marked the Poisson point process in the proof of Proposition 19 and similarly
and independently selecting a new or old subtree S above vk with probability

P
(

T sel = S|Tk,B;Σi, i ∈ B
)= μk,B(S)

μk,B(T α→0
(vk,B )

(t−)) .

Then Aπ is an intersection of two independent events Aπ =A
pre
k ∩Abr

π given by

A
pre
k = {T sel

vk
= {0} for all 0 ≤ t < ζvk

}
and Abr

π = {Lk

(
T sel)= π(k+1) ∩ [k]},

where Lk(S) = {i ∈ [k]: Σi ∈ S} and π(k+1) is the block of π containing k + 1. By construction, (C pre
k ,A

pre
k ) and

(C br
k ,A

br
π ) are also independent and, since the random variables used to sample Σk+1 in T sel are conditionally in-

dependent of (C pre
k ,A

pre
k ) given T sel, also C br

k+1 is independent of (C br
k ,A

br
π ), hence of C br

k+1, since on Abr
π , we have

C br
k+1 = C br

k . The distribution of C br
k+1 now follows from the conditional distribution of T sel given C br

k , the recursive
nature of Procedure 2 and the stability of the procedure under increasing bijections from [j ] to other sets B ⊂ N with
#B = j that allows us to apply the induction hypothesis to obtain that the sampling of Σk+1 in the rescaled T sel ∼QB

1

yields a tree with rescaled distribution QB∪{k+1}
1 , as required. �

Inductively, Lemma 21 yields a subtree decomposition of (T ;Σ1, . . . ,Σk). For ∅ �= B ⊂ [k], consider
[[ρk,B, vk,B [[ = {vα→0

B (t),0 < t < ζα→0
B } in Tk,B ⊂ T , branch B , as in Procedure 2 (cf. Fig. 5, where T3 =

{[3], {2,3}, {1}, {2}, {3}}). For the rescaled Tk,B ∼ QB
1 , i.e. Q[#B]

1 pushed forward under the increasing bijection
[#B] → B , Corollary 20 gives the distribution of the analogous point process ((SB(t),FB(t),Bα→0

B (t)),0 ≤ t <

ζα→0
B ) that captures the spinal subtrees off [[ρk,B, vk,B [[. The remaining split at vk,B into relative sizes SB , of which
FB
i is the size corresponding to the ith block of the split ΠB of B and BB is the subbush of unlabelled subtrees of the

remaining sizes in SB , can be read from Lemma 21, as QB
1 is just a push-forward of Q[#B]

1 .

Corollary 22 (Subtree decomposition). The discrete tree shapes Tk , k ≥ 1, of the reduced treesR(T ;Σ1, . . . ,Σk) :=
[[ρ,Σ1]] ∪ · · · ∪ [[ρ,Σk]], k ≥ 1, are labelled Markov branching trees with

P
(
Π [k] = π

)= 1

λk

∫
S↓
κs
(

Pπ
)
νm(ds), where m= minπ2 − 1. (12)

Conditionally given Tk = tk , ΠB = πB = (πB1 , . . . , π
B
r ) with mB = minπB2 − 1, B ∈ tk ,
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Fig. 5. Sampling Σ4 in (T ;Σi, i ∈ [3]) using Procedure 2: first step is (4, [3]), random selection picks the old subtree T4,{2,3}; in step (4, {2,3}),
the old subtree T4,{2} is picked; in step (4, {2}), a new subtree, shaded, is picked; step (4,∅) takes place in this subtree, using Procedure 1.

• the processes ((SB(t),FB(t),Bα→0
B (t)),0 ≤ t < ζα→0

B ), with distribution as in Corollary 20,
• and the variables (SB,FB

1 , . . . ,F
B
r ,BB), with distribution

1

λ#BP(ΠB = πB)

( ∑
i1,...,ir distinct

Q̂s(i1,...,ir )
(
dB ′) r∏

�=1

s
#πB�
i�

δsi�
(dx�)

)
νmB (ds),

B ∈ tk , are independent. The tree (T ;Σ1, . . . ,Σk) with k leaves sampled via Procedure 2 is a measurable function of
(Tk; ((FB,SB,BB), ((S

B(t),FB(t),Bα→0
B (t)),0 ≤ t < ζα→0

B )),B ∈ Tk).

Proof of Theorem 6. We will show that Procedure 2 provides an embedding for a RE hierarchy as in Corollary 5,
provided that

∫
S↓(1 − s1)ν(ds) <∞ and ν(s0 > 0)= cj = kj = 0, j ≥ 1.

A RE hierarchy is uniquely determined by its restrictions to [k], k ≥ 1. But the formula for κ in Corollary 5
is identical to (12), hence the hierarchy constructed via Procedure 2 is a RE hierarchy associated with (νj , j ≥ 1)
embedded in a CRT with characteristic pair (α, ν). �

5. Scaling limits, proof of Theorem 7

5.1. Asymptotics of block numbers in Gnedin’s constrained partitions

Before we describe Gnedin’s framework and provide a slight extension of his asymptotic study, let us state the pth
order renewal theory result that we need for this.

Lemma 23 (Gut [15], Theorem 2.3(b)). Let Nt = #{n ≥ 1: X1 + · · · +Xn ≤ t} be the renewal process associated
with independent and identically distributed Xj > 0. Then for all p ∈ N

E

[
N
p
t

tp

]
→ 1

(E[X1])p ∈ [0,∞), as t → ∞.

Gnedin [13] introduced a constrained paintbox based on an N-valued deterministic sequence ψ = (ψk, k ≥ 1) and a
strictly decreasing random sequence (Gk, k ≥ 0) in [0,1] with G0 = 1 and limk→∞Gk = 0. Specifically, he considers
a sequence (In, n ≥ 1) of independent uniform random variables on [0,1] independent of (Gk), but then associates

a modified sequence (I
ψ

n ,n ≥ 1) that is constrained so that its lower records follow (Gk, k ≥ 1) with multiplicities
given by (ψk, k ≥ 1):
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• Set I
ψ

1 = · · · = I
ψ

ψ1
=G1; inductively, consider the number Kψ

n of records Gk that have been attained ψk times by

(I
ψ

1 , . . . , I
ψ

n ), and the number Rψ
n of times that G

K
ψ
n +1

has been attained by (I
ψ

1 , . . . , I
ψ

n ); for n = ψ1, we have

K
ψ
n = 1 and Rψ

n = 0; this is the base case.
• Given (I

ψ

1 , . . . , I
ψ

n ), K
ψ
n = k ≥ 1 and Rψ

n = r ∈ {0, . . . ,ψk+1 − 1}, proceed as follows

– if In+1 ∈ [Gk,1], let I
ψ

n+1 = In+1, Kψ

n+1 =K
ψ
n and Rψ

n+1 =R
ψ
n ;

– if In+1 ∈ [0,Gk) and r ≤ψk+1 − 2, let I
ψ

n+1 =Gk+1, Kψ

n+1 =K
ψ
n and Rψ

n+1 =R
ψ
n + 1;

– if In+1 ∈ [0,Gk) and r =ψk+1 − 1, let I
ψ

n+1 =Gk+1, Kψ

n+1 =K
ψ
n + 1 and Rψ

n+1 = 0.

Eventually, each Gk will appear ψk times as lower record in (I
ψ

n ,n ≥ 1). Let Jψn = K
ψ
n + 1{Rψ

n >0} be the number

of records attained by the n first terms of the sequence. Gnedin obtains the asymptotics of Jψn when Gk = Y1 · · ·Yk ,
where Yk , k ≥ 1, are i.i.d. in (0,1) with E[− logY1]<∞ and Var(− logY1) <∞. Here we drop the requirement of
finite logarithmic moments.

Lemma 24. Let Gk = Y1 · · ·Yk , where Yk , k ≥ 1, are i.i.d. in (0,1). If ψ = (ψk, k ≥ 1) is such that ψk ∈ N, k ≥ 1 and

log

(
k∑

j=1

ψj

)
= o(k), as k → ∞,

then

lim
n→∞

J
ψ
n

logn
= 1

E[− logY1]
in the sense that this limit vanishes when E[− logY1] = ∞. Furthermore, for every p ≥ 1,

lim sup
n→∞

E

[(
J
ψ
n

logn

)p]
<∞.

Proof. The case Var(− logY1) < ∞, and implicitly also E[− logY1] < ∞, has been shown in the proof of Proposi-
tion 8 of [13]. Now let E[− logY1] = ∞. Define J ′

n = #{k ≥ 1: Gk ≥ 1/n} = #{k ≥ 1:
∑k

i=1(− logYi)≤ logn}. By
the Renewal Theorem, see e.g. Theorem 4.1 in Chapter 3 of [11], we have J ′

n/ logn→ 0 a.s. when E[− logY1] = ∞.
Let I1,n < · · ·< In,n be the order statistics of I1, . . . , In. Define βn by Iβn,n < 1/n < Iβn+1,n. According to Gnedin’s

discussion, J ′
n and βn are independent, βn is binomial(n,1/n) and Jψn ≤ J ′

n + βn. By Markov’s inequality, we have
for all ε > 0,

P(βn > ε logn)= P
(
e2βn/ε > n2)≤ E[e2βn/ε]

n2
= 1

n2

(
1 + e2/ε − 1

n

)n
.

Hence,
∑

n≥1 P(βn > ε logn) <∞. The Borel–Cantelli Lemma now yields limn→∞ βn/ logn= 0 a.s. This gives us

lim supn→∞ J
ψ
n / logn= 0 when E[− logY1] = ∞. Finally, for p ≥ 1,

E

[(
J
ψ
n

logn

)p]
≤ E

[(
J ′
n + βn

logn

)p]
≤ 2p−1

(
E

[(
J ′
n

logn

)p]
+ E

[(
βn

logn

)p])
.

The first term is bounded (Lemma 23), the second tends to 0 (βn have bounded moments). �

5.2. Special branch points and their asymptotics

We consider the setting of Theorem 7, where m= inf{n≥ 1: νj = νn for all j ≥ n}<∞. In this setting, the selection
probabilities of Section 4.3 for k ≥m+ 1 become

P old
k (s, si)= si and P new

k (s, si , sj )= sj .
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It is now easy to see that the sampling procedure in (T ,μ) can be simplified in this setting so as to combine for each
k ≥m the steps until #B ′ <m into a single selection according to μ.

Procedure 3. Use the steps of Procedure 2, but instead of steps (k,[k − 1])1.–2., use the following steps for k ≥m:

1′. Given (T ;Σi ∈ [k − 1]), sample Σ∗
k ∼ μ independently.

2′. We consider the spine [[ρ,Σ∗
k [[= {Σ∗α→0

k (t), t ≥ 0} and set

Tk,B ′ = T α→0
(Σ∗

k )

(
τ ∗
k

)
, where τ ∗

k = inf
{
t ≥ 0: #Lk−1

(
T α→0
(Σ∗

k )
(t)
)
<m

}
, B ′ = Lk−1

(
T α→0
(Σ∗

k )

(
τ ∗
k

))
,

and Lk−1(S)= {i ∈ [k − 1]: Σi ∈ S} is the set of labels in S ⊆ T .

Theorem 7 describes the convergence of unlabelled trees. In fact, more is true and it will be instructive to study
approximations of the spines [[ρ,Σj [[, j ≥ 1, in (T ;Σi, i ∈ N) by discrete spines {B ∈ Tn: j ∈ B}, n≥ j ≥ 1. In the
proof of Theorem 7 we will need to control these uniformly in j ≥ 1. In the exchangeable case, these spines can be
regarded as independent uniform samples from a strongly sampling consistent regenerative interval partition [18]. In
the RE case here, the analogous partitions will no longer be regenerative (except for j = 1, and for j = 2 if m = 2)
and the sampling is not independent uniform. However, both features are still present on parts of the spine and we will
cut the spines at certain special branch points.

Fix j ≥ 1. A branch point v ∈ [[ρ,Σj [[ is called special in (T ;Σi, i ∈ N) for [[ρ,Σj [[ if some or all of the m
smallest labels L(T v) in the bush T v above v are not included in the subtree T(Σj )(d(ρ, v)) above v containing Σj .
Note that a branch point v is special iff at v the m smallest labels split or j splits from the m smallest labels. In
particular, a branch point that is special for [[ρ,Σj [[ and an element of [[ρ,Σj ′ [[ for some j ′ < j may not be special
for [[ρ,Σj ′ [[. For the analogous notion in (T ;Σi, i ∈ [n]), for n≥ j , we write

N
(j)
n = #

{
v ∈ [[ρ,Σj [[: v is a special branchpoint for [[ρ,Σj [[ in

(
T ;Σi, i ∈ [n])}

for the number of special branch points, and τ
(j)
n = inf{t ≥ 0: #Ln(T α→0

(Σj )
(t)) < m} for the time when the label set

first has fewer than m elements. The significance of this time is that up to this time, all branch points that are special in
(T ;Σi, i ∈ N) will also be special in (T ;Σi, i ∈ [n]), but this fails afterwards. We introduce V (j)

n = inf{t ≥ 0: Σn /∈
T α→0
(Σj )

(t)}, the time when Σn leaves the spine [[ρ,Σj [[.

Proposition 25. Let (νj , j ≥ 1) and ν be as in Theorem 6 and (T ;Σi, i ∈ N) a sampling according to Procedure 2.
Suppose furthermore that there is m ≥ 1 with νj = νm, j ≥ m, and that νm(s1 ≤ 1 − ε) = ε−α�(1/ε), which is
equivalent to (3) for ν as in (2). Then,

(i) for all j ≥ 1, we have N(j)
n /(nα�(n))

a.s.−−−−→
n→∞ 0;

(ii) for every p ≥ 1, we have lim supn→∞ E[(N(n)
n / logn)p]<∞;

(iii) for every p ≥ 1, there exists a constant Cspec
p such that for all 1 ≤ j ≤ n and x > 0

P
(
N
(j)
n > xnα�(n)

)
<

C
spec
p

xpnαp−1
.

Proof. (i) Let us consider N(1)
n first. We will study the asymptotics by relating to the setting of Lemma 24. Recall that

Xα→0
(Σ1)

(V
(1)
i ), i ≥ 2, are the residual masses of the subtrees containing Σ1 when Σi has left the spine [[ρ,Σ1[[. Let

Yk , k ≥ 1, be independent copies of Xα→0
(Σ1)

(τ
(1)
m ), the residual mass of the subtree containing Σ1 at the branch point

separating [m], and Gk = Y1 · · ·Yk .
Consider the filtration F (1)

n (t)= σ((SΣ1(s),FΣ1(s),Bα→0
(Σ1)

(s),Ln(Bα→0
(Σ1)

(s))), s ≤ t), t ≥ 0, of the spinal Poisson

point process (SΣ1 ,FΣ1,Bα→0
(Σ1)

) studied in Proposition 19 augmented by label sets of spinal bushes derived from

sampled leaves Σ1, . . . ,Σn. Let H(1)
n = #{τ (1)i ,m ≤ i ≤ n}. Then H

(1)
m = 1 is the initial state, we will also consider
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(τ
(1)
m ,Xα→0

(Σ1)
(τ

(1)
m ),#Lm(T α→0

(Σ1)
(τ

(1)
m ))). Now let n ≥ m + 1 and write V

(j)

n = min{τ (j)n ,V
(j)
n }, n ≥ 1. Conditionally

given F (1)
n−1(τ

(1)
n−1), in particular (X(Σ1)(V

(1)
m ), . . . ,X(Σ1)(V

(1)
n−1)), H

(1)
n−1 = k and #Ln−1(T α→0

(Σ1)
(τ

(1)
n−1))= �, the argu-

ment to establish Procedure 3 can be used to simplify Procedure 2 slightly differently with modified steps 1′.–2′.
combining the steps until #B ′ < m or 1 /∈ B ′; specifically, sample a leaf Σ∗

n ∼ μ, define V
(1)
n,∗ = inf{t ≥ 0: 1 /∈

Ln−1(T α→0
(Σ∗

n )
(t))} and

– if V (1)
n,∗ ≤ τ

(1)
n−1, set Tn−1,B ′ = T α→0

(Σ1)
(V

(1)
n,∗ ), note H(1)

n = k, τ (1)n = τ
(1)
n−1, #Ln(T α→0

(Σ1)
(τ

(1)
n ))= �;

– if V (1)
n,∗ > τ

(1)
n−1 and � <m− 1, set Tn−1,B ′ = T α→0

(Σ1)
(τ

(1)
n−1), note H(1)

n = k, τ (1)n = τ
(1)
n−1, #Ln(T α→0

(Σ1)
(τ

(1)
n ))= �+ 1;

– if V (1)
n,∗ > τ

(1)
n−1 and � = m − 1, then sampling of Σn in the rescaled subtree T α→0

(Σ1)
(τ

(1)
n−1) is independent of

F (1)
n−1(τ

(1)
n−1) and by the same procedure as Σm is sampled in T , therefore

Xα→0
(Σ1)

(
V
(1)
n

) d=Xα→0
(Σ1)

(
V
(1)
n−1

)
Yk+1

d=Gk+1,

note H(1)
n = k + 1, τ (1)n − τ

(1)
n−1

d= τ
(1)
m independent of F (1)

n−1(τ
(1)
n−1), and #Ln(T α→0

(Σ1)
(τ

(1)
n )) < m.

Independently of (Gk, k ≥ 1), consider (Ψk, k ≥ 1)
d= (m − #LWk+1(T α→0

(Σ1)
(τ

(1)
Wk+1

)), k ≥ 1), where Wk = inf{n ≥
1: H(1)

n = k}. As (Gk, k ≥ 1)
d= (Xα→0

(Σ1)
(V

(1)
Wk
), k ≥ 1), it is now straightforward to show that the dynamics of H(1)

n

and JΨn−m+1 are the same, hence there exists a sequence (Ii, i ≥ 1) of independent uniform random variables on [0,1]
and an independent random sequence Ψ , each member taking values in [m] such that for all n≥m(

H(1)
m , . . . ,H (1)

n

) d= (JΨ1 , . . . , JΨn−m+1

)
. (13)

Now note that n ∈ N with Wk < n<Wk+1 can only yield a new special branch point if V (1)
n,∗ > τ

(1)
n−1, i.e. in the middle

case of the procedure above, but after at most m − 1 such steps, the third case will apply and H
(1)
n will increase.

Therefore,

N(1)
n ≤m#H(1)

n . (14)

Lemma 24 ensures H(1)
n / logn→ 1/E[− logY1], therefore N(1)

n /(nα�(n))→ 0 a.s. as n→ ∞.
The same argument, with Σ1 replaced by Σ∗ ∼ μ, yields N∗

n/(n
α�(n)) → 0 a.s. as n → ∞. For j ≥ 2, consider

times χ(j)i = inf{t ≥ 0: #Lj (T α→0
(Σj )

(t)) < m−i}, 0 ≤ i < m, when j changes rank belowm in the label set, s.th. χ(j)0 =
τ
(j)
j and χ(j)m−1 = ∞. As #Ln(T α→0

(Σj )
(χ

(j)
i ))≤ n− j +m, the number of special branch points between Σα→0

j (χ
(j)
i )

and Σ�i , where �i = min Lj (T α→0
(Σj )

(χ
(j)
i ), will be no larger than Ñ (1),i

n−j+m where (Ñ (1),i
k , k ≥ 1) are independent copies

of (N(1)
k , k ≥ 1). Then

N
(j)
n ≤ Ñ∗

n +
m−1∑
i=1

Ñ
(1),i
n−j+m, (15)

where Ñ∗
n is the number of special branchpoints on [[ρ,Σ∗

j [[, so that Ñ∗ d= N∗. Hence the convergence for

N
(j)
n /(nα�(n)) follows from previous cases of N(1) and N∗.
(ii) To study N

(n)
n , we will identify new families (Gk, k ≥ 1) and ψ different from the ones in (i) and again

apply Lemma 24. Let b(j)1 = Σα→0
j (χ

(j)

1 ) be the first special branch point in the spine [[ρ,Σj ]]. By Procedure 3,

Xα→0
(Σj )

(χ
(j)

1 )=Xα→0
(Σ∗

j )
(χ

(j)

1 ) for all j ≥m+ 1. Also, note that χ(j)1 is determined by (T ;Σi, i ∈ [m];Σ∗
j ). As Σ∗

j is

sampled according to μ in T , we have

Xα→0
(Σj )

(
χ
(j)

1

)=Xα→0
(Σ∗

j )

(
χ
(j)

1

) d=Xα→0
(Σ∗

m+1)

(
χ
(m+1)
1

)=Xα→0
(Σm+1)

(
χ
(m+1)
1

)
. (16)



Restricted exchangeable partitions 863

Let Yk , k ≥ 1, be independent copies of Xα→0
Σm+1

(χ
(m+1)
1 ) and consider a constrained painbox associated with Gk =

Y1 · · ·Yk , k ≥ 1, also ψk = 1, k ≥ 1. We claim that for all n≥m+ 1, and every x > 0,

P
(
N(n)
n −m+ 1> x

)≤ P
(
J
ψ
n−m > x

)
. (17)

This formula holds for n = m+ 1 as N(m+1)
m+1 −m+ 1 ≤ J

ψ

1 = 1. Suppose (17) holds for all n ≤ j − 1. For n = j ,

the first special branch point b(j)1 on the spine [[ρ,Σj ]] is located on the spine [[ρ,b(1)1 ]]. For i =m+ 1, . . . , j − 1,

let T α→0
(Σi)

(V
(1)
i ∧ χ

(1)
1 ) be the spinal subtree of T containing Σi rooted on a branch point on the spine [[ρ,b(1)1 ]],

possibly at b(1)1 itself. By Procedure 3, Σ∗
i ∈ T α→0

(Σi)
(V

(1)
i ∧ χ

(1)
1 ). We can express the number M(j)

1 of leaves in

{Σm+1, . . . ,Σj−1} belonging to the subtree containing Σj above branch point b(j)1 as

M
(j)

1 = #
{
i ∈ {m+ 1, . . . , j − 1}: Σi ∈ T α→0

(Σj )

(
χ
(j)

1

)}= #
{
i ∈ {m+ 1, . . . , j − 1}: Σ∗

i ∈ T α→0
(Σj )

(
χ
(j)

1

)}
.

As Σ∗
m+1, . . . ,Σ

∗
j−1 are sampled according to μ and Xα→0

(Σj )
(χ

(j)

1 )
d=Xα→0

(Σm+1)
(χ

(m+1)
1 )

d= Y1, by (16),

P
(
M

(j)

1 = k
) = E

[(
j −m− 1

k

)(
Xα→0
(Σj )

(
χ
(j)

1

))k(1 −Xα→0
(Σj )

(
χ
(j)

1

))j−m−k−1
]

= E

[(
j −m− 1

k

)
Y k1 (1 − Y1)

j−m−k−1
]

= P
(
M

ψ

j−m = k
)

for all 0 ≤ k ≤ j −m− 1, where M
ψ

j−m is the number of I
ψ

1 , . . . , I
ψ

j−m hitting the interval (0,G1).

Let N(j)
j (χ

(j)

1 ,∞)=N
(j)
j −1 be the number of special branch points in ]]b(j)1 ,Σj ]], and Jψj−m(0, Y1)= J

ψ
j−m−1.

GivenM(j)

1 = k, we have #Lj (T α→0
(Σj )

(χ
(j)

1 ))≤ k+m≤ j−1. Hence, applying the induction hypothesis to the rescaled

(T α→0
(Σj )

(χ
(j)

1 );Σi, i ∈ Lj (T α→0
(Σj )

(χ
(j)

1 )))

P
(
N
(j)
j

(
χ
(j)

1 ,∞)−m+ 1> x|M(j)

1 = k
)

≤ P
(
N
(k+m)
k+m −m+ 1> x

)≤ P
(
J
ψ
k > x

)= P
(
J
ψ
j−m(0, Y1) > x|Mψ

j−m = k
)
,

and then

P
(
N
(j)
j −m+ 1> x

) = E
[
P
(
N
(j)
j

(
χ
(j)

1 ,∞)−m+ 1> x − 1|M(j)

1

)]
≤ E

[
P
(
J
ψ
j−m(0, Y1) > x − 1|Mψ

j−m
)]= P

(
J
ψ
j−m > x

)
.

Now (17) is clear and we deduce that E[(N(n)
n −m+ 1)p] ≤ E[(Jψn−m)p] for every p ≥ 1. The result in (ii) now

follows from Lemma 24.
(iii) Formula (15) implies that for every p ≥ 1 and x > 0 and zn = xnα�(n)

P
(
N
(j)
n > zn

) ≤ P
(
Ñ∗
n > zn/m

)+ m−1∑
i=1

P
(
Ñ
(1),i
n−j+m > zn/m

)

≤ E[(N∗
n )

p]
z
p
n/m

p
+ (m− 1)

E[(N(1)
n−j+m)p]
z
p
n /m

p
≤ Cp(logn)p

z
p
n

.

The last line is obtained by Markov’s inequality. Formula (14) together with Lemma 24 gives the upper bounds. The
result in (iii) follows. �
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Procedure 3 and the notion of special branch points are also useful to show that the sampling uses the whole CRT
(T ,μ) and does not leave any subtrees of positive mass unlabelled. One way of making this precise is to say that the
reduced trees converge to the CRT:

Proposition 26. In the setting of Procedure 3, we have

R
(

T ;Σi, i ∈ [k])→ T a.s. in the Gromov–Hausdorff sense as k → ∞.

Proof. Let ε > 0. Consider [[ρ,Σ1[[ and the associated spinal mass partition [19]. Here we denote by νsp
ε the distri-

bution on S↓ of the masses of spinal subtrees that are greater than ε. Let σ (1)ε = inf{t ≥ 0: μ(T α→0
(Σ1)

(t)) < ε}. Note

that W1 := inf{n ≥ 1: τ (1)n ≥ σ
(1)
ε } < ∞ a.s., by the previous proof. By Procedure 3, leaves Σ∗

n and Σn are in the
same subtree of [[ρ,Σα→0

1 (σε)]] for each n >W1, in particular each subtree of mass greater than ε is selected with
an asymptotic frequency greater than ε. Inductively, we use Corollary 20 and leaves selected according to Procedure 3
to further split according to scaled νsp

ε each subtree of mass greater than ε.
After a finite number of steps, all subtrees have mass less than ε, e.g. because a homogeneous mass fragmentation

process (Ft , t ≥ 0) in S↓ with finite dislocation measure νsp
ε satisfies Ft → 0 as t → ∞, see e.g. Eq. (4) of [7], and so

only has finitely many splits before |F1(t)|< ε. �

Using arguments of [28], Corollary 23, we can also show joint a.s. convergence in the Gromov–Prohorov sense of
weighted trees (R(T ;Σi, i ∈ [n]), n−1∑n

i=1 δΣi
)→ (T ,μ).

5.3. Convergence of reduced trees and large deviation estimates for spines

By Corollary 22, reduced trees R(T ;Σi, i ∈ [k]) of self-similar CRTs with labelled leaves sampled according to
Procedure 3, can be assigned subtree masses on edges (parts of spines) in terms of Poisson point processes and
associated spinal subordinators, and away from existing leaves, sampling of new leaves is according to subtree masses.
To study the asymptotics of the number of spinal branchpoints, we will need the following refinement of results in
[14,18].

Lemma 27. Let ξ = (ξt , t ≥ 0) be a pure jump subordinator with Lévy measure Λ satisfying Λ([x,∞)) =
x−α�Λ(1/x), x ↓ 0, for some α ∈ (0,1). Let (ε, τ, τ ′) be any random variables on [0,∞)2 × [0,∞] with τ ≤ τ ′.
Let (Vi, i ≥ 1) be any random variables conditionally independent given (ξ, ε, τ ) with

P(Vi ≤ τ |ξ, ε, τ )= 1 − e−ε and P(Vi > τ + v|ξ, ε, τ )= e−ε−ξv , v ≥ 0,

and Kn(ε, τ, τ
′)= #{Vi : 1 ≤ i ≤ n, τ < Vi ≤ τ ′}. Then

lim
n→∞

Kn(ε, τ, τ
′)

nα�Λ(n)Γ (1 − α)
=
∫ τ ′−τ

0
exp
(−α(ε + ξv)

)
dv a.s. as n→ ∞.

If furthermore Λ([xy,∞))≤ CΛy
−�Λ([x,∞)) for all y ≥ 1 and 0< x ≤ 1, and some � > 0, then there is a constant

Cp for all p > 1/α, such that for all x ≥ 1, n ≥ 1 and all (ε, τ, τ ′) as above, but with the additional property that
τ ′ = τ + τ ′′ for a stopping time τ ′′ for a filtration in which ξ is a subordinator,

P

(
Kn(ε, τ, τ

′)
nα�Λ(n)Γ (1 − α)

> (1 + x)Y
(
ε, τ, τ ′))≤ Cp

xpnαp−1
, (18)

where Y(ε, τ, τ ′)= 1 + (1 +Aα)CΛ
∑[τ ′−τ ]

j=0 exp(−�(ε + ξj )) with Aα = 2
∑

j≥1
(j+1)

√
α

j (j+1) .

This lemma is an extension of Lemmas 8 and 12 of [18], which we recover as the special case τ = ε = 0 and/or
τ ′ = ∞. The proof is also essentially the same, but since this result is more general, we reproduce the proof rewritten
in the present generality in the Appendix.
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Proposition 28. Let ν1, . . . , νm be conservative with ν(s1 ≤ 1 − ε) = ε−α�(1/ε), where ν is as in Theorem 6 with
νj = νm, j ≥ m. Let R(T ,Σ1, . . . ,Σn) be an R-tree sampled from an α-self-similar CRT (T ,μ) with dislocation
measure ν by Procedure 3. Let (Tn)n≥1 be the associated labelled discrete RE Markov branching trees with unit edge
lengths. Then

R(Tn, [k])
nα�(n)Γ (1 − α)

a.s.−−−→
n→∞ R(T ,Σ1, . . . ,Σk) in the sense that all edge lengths converge.

In particular, the delabelled trees (R(Tn, [k]))◦, n≥ k, converge in the Gromov–Hausdorff sense.

Proof. Consider k = 1 and denote by D(1)
n the length of R(Tn, {1}).

If ν1 = · · · = νm−1 = 0, then Σ1, . . . ,Σm are always in the same subtree in T , then τ (1)1 = · · · = τ
(1)
m = ∞. Condi-

tionally on the subordinator ξΣ1 associated with leaf Σ1, cf. Proposition 19(ii), the leaves Σm+1, . . . ,Σn are sampled
according to μ along the spine [[ρ,Σ1[[. Using Proposition 19(ii), we see that the hypotheses of the first part of
Lemma 27 are satisfied, and the convergence result then follows. Specifically, it is easy to see that by (3), as x ↓ 0,

Λ1
([x,∞)

)∼ ∫
{1/2<s1≤e−x }

P0(s, s1)ν(ds)∼ ν
(
s1 ≤ e−x)∼ xα�(1/x),

since by (8),
∫
{1/2<s1≤e−x }(1 − P0(s, s1))ν(ds)≤ 2

∫
S↓
∑

i≥2(1 − si)P0(s, si)ν(ds) <∞.
Now suppose that at least one of ν1, . . . , νm−1 is non-zero. By Procedure 3, each Σi is either placed in the same

subtree of [[ρ,Σ1[[ as Σ∗
i ∼ μ or contributes a special branch point. Now

D(1)
n = #

{
V
(1)
i ,1 ≤ i ≤ n

}≤ 1 +N(1)
n + #

{
V
(1)
i,∗ ,2 ≤ i ≤ n

}
, (19)

with V (1)
i,∗ = inf{t ≥ 0: 1 /∈ Ln−1(T α→0

(Σ∗
n )
(t))}, where Lemma 27 yields the asymptotics ofK(1)

n−1(0,0,∞)= #{V (1)
i,∗ ,2 ≤

i ≤ n}. Together with the asymptotics of N(1)
n obtained in Proposition 25, this yields

lim sup
n→∞

D
(1)
n

nα�(n)Γ (1 − α)
≤
∫ ∞

0
exp
(−αξΣ1

t

)
dt a.s. (20)

On the other hand, no special branch points are created for n≥ l + 1 ≥m+ 2 below τ
(1)
l , so

D(1)
n ≥ #

{
V
(1)
i : 0<V

(1)
i ≤ τ

(1)
l , l + 1 ≤ i ≤ n

}= #
{
V
(1)
i,∗ : 0 <V

(1)
i,∗ ≤ τ

(1)
l , l + 1 ≤ i ≤ n

}
.

At least one of νj �= 0, j ≤m− 1, so τ (1)m <∞. By the proof of Proposition 25, τ (1)l → ∞, so

lim inf
n→∞

D
(1)
n

nα�(n)Γ (1 − α)
≥ sup

l≥m+1
lim inf
n→∞

#{V (1)
i,∗ : V (1)

i,∗ ≤ τ
(1)
l , l + 1 ≤ i ≤ n}

nα�(n)Γ (1 − α)
=
∫ ∞

0
exp
(−αξΣ1

t

)
dt.

Combining this with (20), the convergence for D(1)
n follows and establishes the result for k = 1.

Next, consider k ≥ 2 assuming the result for 1, . . . , k − 1. For the branch point vk adjacent to ρ in R(T ,Σ1,

. . . ,Σk), set D[k] = d(ρ, vk), with time ζvk given by

D[k] =
∫ ζvk

0
exp
(−αξΣ1

t

)
dt.

Let D[k]
n be the height of the branch point adjacent to the root in R(Tn, [k]), then D

[k]
n − 1 is the number of distinct

branch points of R(T ,Σ1, . . . ,Σn) belonging to [[ρ,vk[[, i.e.

D[k]
n = 1 + #

{
V
(1)
i : 0<V

(1)
i < ζvk , k + 1 ≤ i ≤ n

}
.
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If 2 ≤ k ≤m, then 1 ≤D
[k]
m ≤m− 1 and, by the same argument as for k = 1,

K
(k)
n−m(0,0, ζvk )= #

{
V
(1)
i,∗ : V (1)

i,∗ < ζvk ,m+ 1 ≤ i ≤ n
}≤D[k]

n ≤m+K
(k)
n−m(0,0, ζvk ). (21)

If k ≥m+ 1, then D[k]
n = 1 + #{V (1)

i,∗ : V (1)
i,∗ < ζvk , k + 1 ≤ i ≤ n}. In all cases, by Lemma 27

D
[k]
n

nα�(n)Γ (1 − α)

a.s.−−−→
n→∞

∫ ζvk

0
exp
(−αξΣ1

s

)
ds =D[k].

So the renormalized length of the root edge of R(Tn, [k]) converges as required.
Now argue conditionally given that [k] is first separated into Π [k] = (π1, . . . , πr). For all n≥ k+ 1 and 1 ≤ j ≤ r ,

denote by Bj (n)= Ln(T [k]
j )⊃ πj the j th block of the partition at vk in (T ;Σi, i ∈ [n]), and by T [k]

n,j the corresponding
subtree of Tn. By Lemma 21, Procedure 3 and the Strong Law of Large Numbers,

#Bj (n)

n

a.s.−−−→
n→∞ μ

(
T [k]
j

)
, 1 ≤ j ≤ r,

and the Induction Hypothesis yields convergence of the remaining edge lengths, for 1 ≤ j ≤ r

R(T
[k]
n,j ,πj )

nα�(n)Γ (1 − α)
= (#Bj (n))α�(#Bj (n))

nα�(n)

R(T
[k]
n,j ,πj )

(#Bj (n))α�(#Bj (n))Γ (1 − α)

a.s.−−−−→
n→∞

(
μ
(

T [k]
j

))α
R
(

T [k]
j ;Σi, i ∈ πj

)
,

in the sense that all edge lengths converge, which implies Gromov–Hausdorff convergence. �

While the arguments of the analogous but much more specific Proposition 22 of [28], do not apply here in cases
where the densities fk = dνk/dν are degenerate, we can now deduce from our Proposition 26 that in the setting of
Proposition 28 here, delabelled trees converge a.s. when taking double limits

lim
k→∞ lim

n→∞
(R(Tn, [k]))◦

nα�(n)Γ (1 − α)
= T in the Gromov–Hausdorff sense a.s. (22)

Theorem 7, instead of restricting to [k], then letting n→ ∞ and then k → ∞, considers n→ ∞ directly, at the cost
of weakening the mode of convergence to convergence in probability. To prepare the proof of Theorem 7, we study
the spines [[ρ,Σj [[, j ≥ 1.

We denote by Λ1 and Λ∗ the Lévy measures of the subordinators ξΣ1 and ξΣ
∗

generated, respectively, by the
first sampled leaf Σ1 and by a leaf Σ∗ sampled according to μ. For k ≥ 1 and n ≥ k, denote by D

(k)
n the length of

R(Tn, {k}).

Lemma 29. For all p ≥ 0, there is a constant C′
p > 0 such that for all k ≥ 1, n≥ k and x ≥ 1

P
(
D(k)
n > 2(1 + x)(2 +Zk)max

{
Λ1
(
n−1),Λ∗(

n−1)})≤ C′
p

xpnαp−1
,

where Zk =m+ (1 +Aα)max{CΛ1,CΛ∗}(m+∑∞
i=0(X

α→0
(Σk)

(i))�) has all moments finite.

Proof. For k = 1, we use (19) to write D(1)
n ≤ 2(D(1)

n −1)≤ 2N(1)
n +2K(1)

n−1(0,0,∞) and deduce from Proposition 25
and Lemma 27 that for all p ≥ 0 and all n≥ 1, x ≥ 1,

P
(
D(1)
n > 2(1 + x)(2 +Z1)Λ1

(
n−1))

≤ P
(
N(1)
n > (1 + x)2Λ1

(
n−1))+ P

(
K
(1)
n−1(0,0,∞) > (1 + x)Z1Λ1

(
n−1))≤ C

spec
p +C

(1)
p

xpnαp−1
.
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Next, consider 2 ≤ k ≤m. Recall that we denote by Lk(S)= {i ∈ [k]: Σi ∈ S} the set of labels in a subtree S ⊆ T .
We set γ (k)k = 0 and split the spine [[ρ,Σk[[ at times γ (k)j = inf{t ≥ 0: #Lk(T α→0

(Σk)
(t))≤ j} for k − 1 ≥ j ≥ 1, some

of which may coincide. Repeated application of Corollary 20, Lemma 21 and arguing as for (19) yields that

D(k)
n ≤ 2

(
D(k)
n − 1

)≤ 2N(k)
n + 2K(k,1)

n−k
(
ξΣk
(
γ
(k)
1

)
, γ

(k)
1 ,∞)+ k∑

j=2

2K(k,j)
n−k

(
ξΣk
(
γ
(k)
j

)
, γ

(k)
j , γ

(k)
j−1

)
,

where K
(k,j)
n−k (ξΣk (γ

(k)
j ), γ

(k)
j , γ

(k)
j−1) is as in Lemma 27, but here associated with the subordinator ξ (k,j) =

ξΣk,j (γ
(k)
j +·)−ξΣk,j (γ

(k)
j ) that has Lévy measureΛ(k,j) =Λ1 and with random variables V (k,j)

i = inf{t ≥ 0: Σ∗
k+i /∈

T α→0
(Σk,j )

(t)}, i ≥ 1, where Σk,j =Σ� if �= min Lk(T α→0
(Σk)

(γ
(k)
j )).

Let Z(k)(γ
(k)
j , γ

(k)
j−1)= 1 + (1 +Aα)CΛ1

∑[γ (k)j−1]
i=[γ (k)j ] exp(−�ξΣk

i ), noting
∑k

j=1Z
(k)(γ

(k)
j , γ

(k)
j−1) < Zk . Then

P
(
D(k)
n > 2(1 + x)(2 +Zk)Λ1

(
n−1))

≤ P
(
N(k)
n > 2(1 + x)Λ1

(
n−1))+ k∑

j=1

P
(
K
(k,j)
n−k

(
ξΣk
(
γ
(k)
j

)
, γ

(k)
j , γ

(k)
j−1

)
> (1 + x)Z(k)

(
γ
(k)
j , γ

(k)
j−1

)
Λ1
(
n−1))

and we can conclude again by Proposition 25 and Lemma 27 with constant Cspec
p + kC

(1)
p .

Now consider k ≥ m + 1. We set γ
(k)
m+1 = 0 and γ

(k)
0 = ∞. We split [[ρ,Σk[[ at times γ

(k)
m = inf{t ≥

0: Σ∗
k /∈ T α→0

(Σk)
(t)} and γ

(k)
j = inf{t ≥ γ

(k)
m : #Lk(T α→0

(Σk)
(t)) ≤ j} for m − 1 ≥ j ≥ 1. Note that, by Procedure 3,

#Lk(T α→0
(Σk)

(γ
(k)
m ))≤m. Again

D(k)
n ≤ 2

(
D(k)
n − 1

)≤ 2N(k)
n +

k∑
j=1

2K(k,j)
n−m

(
ε
(k)
j , γ

(k)
j , γ

(k)
j−1

)+ 2K(k,∗)
n−m

(
0,0, γ (k)m

)
,

where ε
(k)
j = ξΣk (γ

(k)
j ), other notation as for k ≤ m, and K

(k,∗)
n−m(0,0, γ (k)m ) is as in Lemma 27, here based on the

subordinator ξΣ
∗
k with Lévy measure Λ∗, and V (k,∗)

i = inf{t ≥ 0: Σ∗
i /∈ T α→0

(Σ∗
k )
(t)}, the time when Σ∗

k and Σ∗
i are first

in different subtrees. We get

P
(
D(k)
n > 2(1 + x)(2 +Zk)max

{
Λ1
(
n−1),Λ∗(

n−1)})
≤ P
(
N(k)
n > 2(1 + x)Λ1

(
n−1))

+
k∑

j=1

P
(
K
(k,j)
n−m

(
ξΣk
(
γ
(k)
j

)
, γ

(k)
j , γ

(k)
j−1

)
> (1 + x)Z(k)

(
γ
(k)
j , γ

(k)
j−1

)
Λ1
(
n−1))

+ P
(
K
(k,∗)
n−m

(
0,0, γ (k)m

)
> (1 + x)Z(k)

(
0, γ (k)m

)
Λ

∗(
n−1))

and conclude again by Proposition 25 and Lemma 27 with constant C′
p = C

spec
p +mC

(1)
p +C∗

p .
Let H�

T be the height of the �-self-similar CRT (T �,μ�) obtained from (T ,μ) by �-self-similar time-change. By
Proposition 14 of [16], the height H�

T has exponential moments and so does Zk :

sup
k≥1

Zk ≤ m+ (1 +Aα)max{CΛ1,CΛ∗}
(
m+ sup

k≥1

∫ ∞

0

(
Xα→0
(Σk)

(t)
)� dt

)
≤ m+ (1 +Aα)max{CΛ1,CΛ∗}(m+H

�

T
)
. �
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5.4. Proof of Theorem 7

The previous sections contain the new developments that we need to apply the techniques developed in [18] for the
exchangeable case in the higher generality of Theorem 7. We only briefly retrace this argument here so as to identify
the places where a result in the previous sections here replaces a more specific result of [18].

Lemma 30 (Lemma 10 and Corollary 11 of [18]). Let Hn = max1≤k≤n D(k)
n be the height of Tn. Then there is a

constant Cp,a for all a > 0, p ≥ 2/α, such that for all x ≥ 1 and n≥ 1

P

(
Hn

nα�(n)
> ax

)
≤ Cp,a

xp
.

The proof is based on Lemma 29 here replacing Lemma 12 of [18], and Λ1(n
−1)∼Λ

∗
(n−1)∼ nα�(n).

Lemma 31 (Proposition 9 of [18]). Under the hypotheses of Theorem 7, let for n≥ k

�(n, k) := max
1≤i≤n

dn
({i},R(Tn, [k])),

dn being the metric associated with Tn. Then for each η > 0,

lim
k→∞ lim sup

n→∞
P

(
�(n, k)

nα�(n)
> η

)
= 0.

The proof is based on the following three replacements. First, Proposition 26 or (22) here replace “Clearly, λkmax :=
maxj≥1 λ

k
j → 0 a.s.” on page 1819 of [18]. Second, Corollary 22 here replaces the reference made in [18] to Lemma

3.14 of their reference [10]. Third, Lemma 30 here replaces Corollary 11 of [18].

Proof of Theorem 7. This proof is now based on the following three replacements. First, (22) here replaces the refer-
ence made in [18] to their reference [29]. Second, Lemma 31 here replaces Proposition 9 of [18]. Third, Proposition 28
here replaces Proposition 7 of [18]. �

6. Skewed PD model; proofs of Propositions 8 and 10

Recall that Proposition 8 asserts that the alpha-gamma model for α ∈ [0,1) and γ ∈ [0, α] is a RE Markov
branching model with dislocation measures of the form identified in Corollary 5 with ν1 = (1 − α)PD∗

α,−α−γ and
νj = γPD∗

α,−α−γ , j ≥ 2.

Proof of Proposition 8. We focus on the multifurcating case α ∈ (0,1) and γ ∈ [0, α), the binary case being easier.
We claim that the distribution of the partition Πn of Tn ∼Q

α,γ
n at [n] is given by

P(Πn = π)=
⎧⎨⎩p1

n(n1, . . . , nk)= (1 − α)
Γ (2−α)

Γ (n+1−α)
αk−2Γ (k−1−γ /α)

Γ (1−γ /α)
∏k

i=1
Γ (ni−α)
Γ (1−α) , π ∈ K0[2] ∩ Pn,

p2
n(n1, . . . , nk)= γ

Γ (2−α)
Γ (n+1−α)

αk−2Γ (k−1−γ /α)
Γ (1−γ /α)

∏k
i=1

Γ (ni−α)
Γ (1−α) , π ∈ K1[2] ∩ Pn,

and that (Qα,γ
n , n≥ 2) has the labelled Markov branching property

P
(
Πn = π,Sn1 = s1, . . . , S

n
k = sk

)= p
j
n(#π1, . . . ,#πk)

k∏
i=1

Qα,γ
πi

({si}), π ∈ Pj
n ,

where Sni is the ith subtree of Tn above the first branchpoint, and Qα,γ
πi is the push-forward of Qα,γ

#πi
under the natural

bijection on the set of hierarchies induced by the increasing bijection from [#πi] to πi .
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We show this by induction on n. Specifically, for n= 2, this is trivial, for n= 3 we have e.g.

P
(
Π3 = {{1,3}, {2}})= P

(
Π3 = {{1}, {2,3}})= 1 − α

2 − α
, P

(
Π3 = {{1,2}, {3}})= γ

2 − α
.

If the claim holds for n, we can apply the growth rules and the induction hypothesis to see

P
(
Πn+1 = {[n], {n+ 1}}, Sn+1

1 = s1, S
n+1
2 = {{n+ 1}})= γ

n− α
Qn

({s1}
)
Q{n+1}

({n+ 1}),
and for π = (π1, . . . , πk) ∈ Pj

n , j = 1,2, and hierarchies si of πi , i �= i′, and si′ of πi′ ∪ {n+ 1},
P
(
Πn+1 = (π1, . . . , πk, {n+ 1}), Sn+1

1 = s1, . . . , S
n+1
k = sk, S

n+1
k+1 = {{n+ 1}})

= (k − 1)α − γ

n− α
p
j
n(#π1, . . . ,#πk)Q{n+1}

({{n+ 1}}) k∏
i=1

Qπi

({si}),
P
(
Πn+1 = (π1, . . . , πi′ ∪ {n+ 1}, . . . , πk

)
, Sn+1

1 = s1, . . . , S
n+1
k = sk

)
= ni′ − α

n− α
p
j
n(#π1, . . . ,#πk)Qπi′ ∪{n+1}

({si′ })∏
i �=i′

Qπi

({si}),
as conditionally given that the insertion of n+ 1 is in subtree Sn

i′ , it is just as an insertion of #πi′ + 1 into T#πi′ , pushed
forward from [#πi′ + 1] to πi′ ∪ {n+ 1}. The result follows. �

Recall that Proposition 10 asserts that the skewed Poisson–Dirichlet model is sampling consistent only for param-
eters that reduce it to the exchangeable Poisson–Dirichlet model or to the alpha-gamma model.

Proof of Proposition 10. By Corollary 5, the skewed Poisson–Dirichlet model has dislocation measure

κ =
∫
S↓

(
λκs
(· ∩ P 0[2])+ (1 − λ)κs

(· ∩ P 1[2]))PD∗
α,θ (ds).

From this, we can calculate splitting rules. Specifically, we can calculate the distribution of the ranked sequence
Sn = (#Πn,1, . . . ,#Πn,Kn)

↓ of block sizes of Πn = (Πn,1, . . . ,Πn,Kn) by summing (6) over partitions of equal ranked
sequence of block sizes and obtain

P
(
S2 = (1,1)

)= 1, P
(
S3 = (1,1,1)

)= λ(2α + θ)

D3
, P

(
S3 = (2,1)

)= (1 + λ)(1 − α)

D3

P
(
S4 = (1,1,1,1)

)= λ(3α + θ)(2α + θ)

D4
, P

(
S4 = (2,1,1)

)= (1 + 4λ)(2α + θ)(1 − α)

D4

P
(
S4 = (2,2)

)= (1 + λ)(1 − α)2

D4
, P

(
S4 = (3,1)

)= 2(1 − α)(2 − α)

D4
,

where D3 and D4 are normalisation constants of the form a3λ+b3 and a4λ+b4. Using the criterion of [18], sampling
consistency requires, in particular, that

P
(
S3 = (1,1,1)

)= P
(
S4 = (1,1,1,1)

)+ 1

2
P
(
S4 = (2,1,1)

)+ 1

4
P
(
S4 = (3,1)

)
P
(
S3 = (1,1,1)

)
,

which upon multiplication by D3D4 is a quadratic equation in λ. Common coefficients of all terms include (1−α) and
(θ +2α). For α < 1 and θ >−2α, the quadratic equation has the two solutions λ= 1/2 and λ= (1−α)/(1− θ −2α)
corresponding, respectively, to the Poisson–Dirichlet and alpha-gamma models, so no other models can be sampling
consistent.
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The exchangeable Poisson–Dirichlet model is trivially sampling consistent. The alpha-gamma model was shown in
[10] to be sampling consistent. In the excluded case α = 1 models for all θ collapse to the same deterministic model
where all leaves are connected directly to a single branch point [24]. For the binary case θ = −2α, which we also had
to exclude for our argument here, we need to consider S5. This gives similar quadratic equations, but also leads to the
required conclusion that only the alpha model λ= 1−α and the beta-splitting model λ= 1/2 are sampling consistent.
We leave details to the reader. �

Appendix: Proof of Lemma 27

The first part of Lemma 27 is a straightforward consequence of [14], see also Lemma 8 of [18]. The second part
generalises Lemma 12 of [18]. In the following, we indicate the most relevant changes that needed for our higher
generality.

Let Ny(t1, t2) denote the number of jumps of ξ of size at least y in the time interval [t1, t2], Ñε,τ
y (t1, t2) denote the

number of jumps of exp(−ε)(1 − exp(−ξ)) of size at least y in the same time interval.

Step 1. Large deviations for Ñε,τ
y (0, τ ′′)

Lemma 32. For all x > 0 and 0< y ≤ 1,

P

(
Ñε,τ
y

(
0, τ ′′)> (1 + x)CΛ

[τ ′′]∑
i=0

exp
(−�(ε + ξi)

)
Λ(y)

)
≤ exp

(−axΛ(y)),
where ax := (1 + x) ln(1 + x)− x > 0.

Proof. We adapt the proof of Lemma 36 of [18]. Let F ε,τ
t denote the σ -field generated by (ε, τ, τ ′′ ∧ t) and ξ until

time t , and F ε,τ∞ the one generated by (ε, τ, τ ′′) and ξ , and observe that

Ñε,τ
y

(
0, τ ′′)≤ [τ ′′]∑

i=0

Ñε,τ
y (i, i + 1)≤

[τ ′′]∑
i=0

Ny exp(ε+ξi )(i, i + 1).

Conditional on Fε,τ
i , Ny exp(ε+ξi )(i, i + 1) is a Poisson random variable with mean Λ(y exp(ε + ξi)). The remainder

of the proof of Lemma 36 of [18], now applies to give

P

([τ ′′]∧n∑
i=0

Ny exp(ε+ξi )(i, i + 1)≥ (1 + x)CΛ

[τ ′′]∧n∑
i=0

exp
(−�(ε + ξi)

)
Λ(y)

)
≤ exp

(−axΛ(y)),
and we can let n→ ∞ and apply Fatou’s lemma to complete the proof. �

Step 2. Large deviations for E[Kn(ε, τ, τ
′)|F ε,τ

τ ′′ ]

Lemma 33. Let Bα :=∑k≥1 exp(−4−1a1k
α/2) with a1 = 2 ln 2 − 1. Then for all x ≥ 1 and all integers n large

enough,

P
(
E
[
Kn

(
ε, τ, τ ′)|F ε,τ

τ ′′
]
> (1 + x)

(
Y
(
ε, τ, τ ′)− 1

)
Λ
(
n−1))≤ (1 +Bα) exp

(−4−1a1xΛ
(
n−1)).

Proof. We adapt the proof of Lemma 14 of [18]. According to formula (4) of [14],

E
[
Kn

(
ε, τ, τ ′)|F ε,τ

τ ′′
]= n

∫ 1

0
(1 − y)n−1Ñε,τ

y

(
0, τ ′′)dy ≤ Ñ

ε,τ
1/n

(
0, τ ′′)+ n

∫ 1/n

0
Ñε,τ
y

(
0, τ ′′)dy.
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Hence, setting S := CΛ
∑[τ ′′]

i=0 exp(−�(ε + ξi)),

P
(
E
[
Kn

(
ε, τ, τ ′)|F ε,τ

τ ′′
]
> (1 + x)(1 +Aα)SΛ

(
n−1))

≤ P
(
Ñ
ε,τ
1/n

(
0, τ ′′)> (1 + x)SΛ

(
n−1))+ P

(
n

∫ 1/n

0
Ñε,τ
y

(
0, τ ′′)dy > (1 + x)AαSΛ

(
n−1)).

The first probability in the RHS is smaller than exp(−axΛ(n−1)) by Lemma 32. To bound the second probability, we
use n

∫ 1/kn
1/(k+1)n Ñ

ε,τ
y (0, τ ′′)dy ≤ Ñ

ε,τ
1/(n(k+1))(0, τ

′′) 1
k(k+1) , which gives

P

(
n

∫ 1/n

0
Ñε,τ
y

(
0, τ ′′)dy > Aα(1 + x)SΛ

(
n−1))

≤
∑
k≥1

P
(
Ñ
ε,τ
1/(n(k+1))

(
0, τ ′′)> 2(k + 1)

√
α(1 + x)SΛ

(
n−1)),

and we proceed as in Lemma 14 of [18], to see that this is bounded by exp(−4−1a1xΛ(n
−1))Bα for all x ≥ 1 and n

large enough. �

Step 3. Proof of inequality (18)

We adapt the proof of formula (28) of [18]. To start with, fix x ≥ 1, n ∈ N, and note that

P
(
Kn

(
ε, τ, τ ′)> (1 + x)Y

(
ε, τ, τ ′)Λ(n−1))

≤ P
(
E
[
Kn

(
ε, τ, τ ′)|F ε,τ

τ ′′
]
> (1 + x)

(
Y
(
ε, τ, τ ′)− 1

)
Λ
(
n−1))

+ P
(
Kn

(
ε, τ, τ ′)− E

[
Kn

(
ε, τ, τ ′)|F ε,τ

τ ′′
]
> (1 + x)Λ

(
n−1)). (23)

Lemma 33 gives an upper bound for the first probability provided n is large enough. To get an upper bound for the
second probability, we proceed as for formula (28) of [18], to find that for all m≥ 1, there exists some deterministic
constant Bm depending only on m such that

P
(
Kn

(
ε, τ, τ ′)− E

[
Kn

(
ε, τ, τ ′)|F ε,τ

τ ′′
]
> (1 + x)Λ

(
n−1)|F ε,τ

τ ′′
)

≤ 2m−1Bm
E[(Kn(ε, τ, τ

′))m|F ε,τ
τ ′′ ] + ((1 + x)Λ(n−1))m

((1 + x)Λ(n−1))2m
.

We then take expectations on both sides of the resulting inequality. Theorem 6.3 of [14] ensures that E[(Kn(ε, τ,

τ ′))m|ε, τ ] ≤ E[(Kn(0,0,∞)m] ∼ (Λ(n−1))m, up to a constant. Hence, we have

P
(
Kn

(
ε, τ, τ ′)− E

[
Kn

(
ε, τ, τ ′)|F ε,τ

τ ′′
]
> (1 + x)Λ

(
n−1))≤ Bm,Λ

(
(1 + x)Λ

(
n−1))−m, (24)

where Bm,Λ depends only on m and Λ. The proof of (18) now follows the proof of formula (28) of [18].
This completes the proof of Lemma 27. �
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