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Abstract. We consider the problem of estimating a function s on [−1,1]k for large values of k by looking for some best approxi-
mation of s by composite functions of the form g ◦u. Our solution is based on model selection and leads to a very general approach
to solve this problem with respect to many different types of functions g,u and statistical frameworks. In particular, we handle
the problems of approximating s by additive functions, single and multiple index models, artificial neural networks, mixtures of
Gaussian densities (when s is a density) among other examples. We also investigate the situation where s = g ◦ u for functions g

and u belonging to possibly anisotropic smoothness classes. In this case, our approach leads to a completely adaptive estimator
with respect to the regularities of g and u.

Résumé. Cet article traite du problème de l’estimation d’une fonction s définie sur [−1,1]k lorsque k est grand en utilisant des
approximations de s par des fonctions composées de la forme g ◦ u. Notre solution est fondée sur la sélection de modèle et
conduit, pour résoudre ce problème, à une approche très générale tant sur les possibilités de choix des fonctions g et u que sur les
cadres statistiques d’application. En particulier, et entre autres exemples, nous considérons l’approximation de s par des fonctions
additives, des modèles de type “single” ou “multiple index”, des réseaux de neurones, ou des mélanges de densités gaussiennes
lorsque s est elle-même une densité. Nous étudions également le cas où s est exactement de la forme g ◦ u pour des fonctions
g et u appartenant à des classes de régularités qui peuvent être anisotropes. Dans ce cas, notre approche conduit à un estimateur
complètement adaptatif par rapport aux régularités de g et u.
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1. Introduction

In various statistical problems, we have at hand a random mapping X from a measurable space (Ω, A) to (X, X ) with
an unknown distribution Ps on X depending on some parameter s ∈ S which is a function from [−1,1]k to R. For
instance, s may be the density of an i.i.d. sample or the intensity of a Poisson process on [−1,1]k or a regression
function. The statistical problem amounts to estimating s by some estimator ŝ = ŝ(X) the performance of which is
measured by its quadratic risk R(s, ŝ) = Es[d2(s, ŝ)], where d denotes a given distance on S . To be more specific,
we shall assume in this introduction that X = (X1, . . . ,Xn) is a sample of density s2 (with s ≥ 0) with respect to
some measure μ and d is the Hellinger distance. We recall that, given two probabilities P and Q dominated by μ
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with respective densities f = dP/dμ and g = dQ/dμ, the Hellinger distance h between P and Q or, equivalently,
between f and g (since it is independant of the choice of μ) is given by

h2(P,Q) = h2(f, g) = 1

2

∫
(
√

f − √
g)2 dμ. (1.1)

It follows that
√

2d(s, t) is merely the L2-distance between s and t .
A general method for constructing estimators ŝ is to choose a model S for s, i.e. do as if s belonged to S, and to

build ŝ as an element of S. Sometimes the statistician really assumes that s belongs to S and that S is the true parameter
set, sometimes he does not and rather considers S as an approximate model. This latter approach is somewhat more
reasonable since it is in general impossible to be sure that s does belong to S. Given S and a suitable estimator ŝ, as
those built in Birgé [8] for example, one can achieve a risk bound of the form

R(s, ŝ) ≤ C
[

inf
t∈S

d2(s, t) + τ D(S)
]
, (1.2)

where C is a universal constant (independent of s and S), D(S) the dimension of the model S (with a proper definition
of the dimension) and τ , which is equal to 1/n in the specific context of density estimation, characterizes the amount
of information provided by the observation X.

It is well known that many classical estimation procedures suffer from the so-called “curse of dimensionality,”
which means that the risk bound (1.2) deteriorates when k increases and actually becomes very loose for even moderate
values of k. This phenomenon is easy to explain and actually connected with the most classical way of choosing
models for s. Typically, and although there is no way to check that such an assumption is true, one assumes that s

belongs to some smoothness class (Hölder, Sobolev or Besov) of index α. Such an assumption can be translated in
terms of the approximation properties of a suitable collection of linear spaces (generated by piecewise polynomials,
splines, or wavelets for example) with respect to the target function s. More precisely, there exists a collection S of
models with the following property: for all D ≥ 1, there exists a model S ∈ S with dimension D which approximates s

with an error bounded by cD−α/k for some c independent of D (but depending on s, α and k). With such a collection
at hand, we deduce from (1.2) that whatever D ≥ 1 one can choose a model S = S(D) ∈ S for which the estimator
ŝ ∈ S achieves a risk bounded from above by C[c2D−2α/k + τD]. Besides, by using the elementary Lemma 1 below
to be proved in Section 5.6, one can optimize the choice of D, and hence of the model S in S, to build an estimator
whose risk satisfies

R(s, ŝ) ≤ C max
{
3c2k/(2α+k)τ 2α/(2α+k);2τ

}
. (1.3)

Lemma 1. For all positive numbers a, b and θ and N
� the set of positive integers,

inf
D∈N�

{
aD−θ + bD

}≤ b + min
{
2a1/(θ+1)bθ/(θ+1);a}≤ max

{
3a1/(θ+1)bθ/(θ+1);2b

}
.

Since the risk bound (1.3) is achieved for D of order τ−k/(2α+k), as τ tends to 0, the deterioration of the rate
τ 2α/(2α+k) when k increases comes from the fact that we use models of larger dimension to approximate s when k is
large. Nevertheless, this phenomenon is only due to the previous approach based on smoothness assumptions for s.
An alternative approach, assuming that s can be closely approximated by suitable parametric models the dimensions
of which do not depend on k would not suffer from the same weaknesses. More generally, a structural assumption on
s associated to a collection of models S

′, the approximation properties of which improve on those of S, can only lead
to a better risk bound and it is not clear at all that assuming that s belongs to a smoothness class is more realistic than
directly assuming approximation bounds with respect to the models of S

′. Such structural assumptions that would
amount to replacing the large models involved in the approximation of smooth functions by simpler ones have been
used for many years, especially in the context of regression. Examples of such structural assumptions are provided by
additive models, the single index model, the projection pursuit algorithm introduced by Friedman and Tukey [14] (an
overview of the procedure is available in Huber [17]) and artificial neural networks as in Barron [6,7], among other
examples. It actually appears that a large number of these alternative approaches (in particular those we just cited) can
be viewed as examples of approximation by composite functions.
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In any case, an unattractive feature of the previous approach based on an a priori choice of a model S ∈ S is that it
requires to know suitable upper bounds on the distances between s and the models S in S. Such a requirement is much
too strong and an essential improvement can be brought by the modern theory of model selection. More precisely,
given some prior probability π on S, model selection allows to build an estimator ŝ with a risk bound

CR(s, ŝ) ≤ inf
S∈S

{
inf
t∈S

d2(s, t) + τ
[

D(S) + log
(
1/π(S)

)]}
(1.4)

for some universal constant C > 0. If we neglect the influence of log(1/π(S)), which is connected to the complexity
of the family S of models we use, the comparison between (1.2) and (1.4) indicates that the method selects a model in
S leading approximately to the smallest risk bound.

With such a tool at hand that allows us to play with many models simultaneously and let the estimator choose a
suitable one, we may freely introduce various models corresponding to various sorts of structural assumptions on s that
avoid the “curse of dimensionality.” We can, moreover, mix them with models which are based on pure smoothness
assumptions that do suffer from this dimensional effect or even with simple parametric models. This means that we
can so cumulate the advantages of the various models we introduce in the family S.

The main purpose of this paper is to provide a method for building various sorts of models that may be used, in
conjonction with other ones, to approximate functions on [−1,1]k for large values of k. The idea, which is not new, is
to approximate the unknown s by a composite function g ◦ u where g and u have different approximation properties.
If, for instance, the true s can be closely approximated by a function g ◦ u where u goes from [−1,1]k to [−1,1]
and is very smooth and g, from [−1,1] to R, is rough, the overall smoothness of g ◦ u is that of g but the curse
of dimensionality only applies to the smooth part u, resulting in a much better rate of estimation than what would
be obtained by only considering g ◦ u as a rough function from [−1,1]k to R. This is an example of the substantial
improvement that might be brought by the use of models of composite functions.

Recent works in this direction can be found in Horowitz and Mammen [16] or Juditsky, Lepski and Tsybakov
[18]. Actually, our initial motivation for this research was a series of lectures given at CIRM in 2005 by Oleg Lepski
about a former version of this last paper. There are, nevertheless, major differences between their approach and ours.
They deal with estimation in the white noise model, kernel methods and the L∞-loss. They also assume that the true
unknown density s to be estimated can be written as s = g ◦u where g and u have given smoothness properties and use
these properties to build a kernel estimator which is better than those based on the overall smoothness of s. The use of
the L∞-loss indeed involves additional difficulties and the minimax rates of convergence happen to be substantially
slower (not only by logarithmic factors) than the rates one gets for the L2-loss, as the authors mention on p. 1369,
comparing their results with those of Horowitz and Mammen [16].

Our approach is radically different from the one of Juditsky, Lepski and Tsybakov and considerably more general as
we shall see, but this level of generality has a price. While they provide a constructive estimator that can be computed
in a reasonable amount of time, although based on supposedly known smoothness properties of g and u, we offer a
general but abstract method that applies to many situations but does not provide practical estimators, only abstract
ones. As a consequence, our results about the performance of these estimators are of a theoretical nature, to serve as
benchmarks about what can be expected from good estimators in various situations.

We actually consider “curve estimation” with an unknown functional parameter s and measure the loss by L2-type
distances. Our construction applies to various statistical frameworks (not only the Gaussian white noise but also all
these for which a suitable model selection theorem is available). Besides, we do not assume that s = g ◦ u but rather
approximate s by functions of the form g ◦u and do not fix in advance the smoothness properties of g and u but rather
let our estimator adapt to it. In order to give a simple account of our result, let us focus on pairs (g,u) with u mapping
[−1,1]k into [−1,1] and g [−1,1] into R. In this case, our main theorem says the following: consider two (at most)
countable collections of models T and F, endowed with the probabilities λ and γ respectively, in order to approximate
such functions u and g respectively. There exists an estimator ŝ such that, whatever the choices of u and g with g at
least L-Lipschitz for some L > 0,

C ′(L)R(s, ŝ) ≤ d2(s, g ◦ u) + inf
F∈F

{
inf
f ∈F

d2∞(g, f ) + τ
[

D(F ) + log
(
1/γ (F )

)]}

+ inf
T ∈T

{
inf
t∈T

d2(u, t) + τ
[

D(T ) log τ−1 + log
(
1/λ(T )

)]}
, (1.5)
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where d∞ denotes the distance based on the supremum norm. Compared to (1.4), this result says that, apart from the
extra logarithmic factors and the constant C′ depending on L, if s were of the form g ◦ u the risk bound we get for
estimating s is the maximum of those we would get for estimating g and u separately from a model selection procedure
based on (F, γ ) and (T, λ) respectively. A more general version of (1.5) allowing to handle less regular functions g

and multivariate functions u = (u1, . . . , ul) with values in [−1,1]l is available in Section 3. As a consequence, our
approach leads to a completely adaptive method with many different possibilities to approximate s. It allows, in
particular, to play with the smoothness properties of g and u or to mix purely parametric models with others based on
smooth functions. Since methods and theorems about model selection are already available, our main task here will be
to build suitable models for various forms of composite functions g ◦u and check that they do satisfy the assumptions
required for applying previous model selection results.

2. Our statistical framework

We observe a random element X from the probability space (Ω, A,Ps) to (X, X ) with distribution Ps on X depending
on an unknown parameter s. The set S of possible values of s is a subset of some space Lq(E,μ) where μ is a given
probability on the measurable space (E, E ). We shall mainly consider the case q = 2 even though one can also take
q = 1 in the context of density estimation. We denote by d the distance on Lq(E,μ) corresponding to the Lq(E,μ)-
norm ‖ · ‖q (omitting the dependency of d with respect to q) and by Es the expectation with respect to Ps so that
the quadratic risk of an estimator ŝ is Es[d2(s, ŝ)]. The main objective of this paper, in order to estimate s by model
selection, is to build special models S that consist of functions of the form f ◦ t where t = (t1, . . . , tl) is a mapping
from E to I ⊂ R

l , f is a continuous function on I and I =∏l
j=1 Ij is a product of compact intervals of R. Without

loss of generality, we may assume that I = [−1,1]l . Indeed, if l = 1, t takes its values in I1 = [β − α,β + α], α > 0
and f is defined on I1, we can replace the pair (f, t) by (f̄ , t̄) where t̄ (x) = α−1[t (x) − β] and f̄ (y) = f (αy + β) so
that t̄ takes its values in [−1,1] and f ◦ t = f̄ ◦ t̄ . The argument easily extends to the multidimensional case.

2.1. Notations and conventions

To perform our construction based on composite functions f ◦ t , we introduce the following spaces of functions:
T ⊂ Lq(E,μ) is the set of measurable mappings from E to [−1,1], Fl,∞ is the set of bounded functions on [−1,1]l
endowed with the distance d∞ given by d∞(f, g) = supx∈[−1,1]l |f (x) − g(x)| and Fl,c is the subset of Fl,∞ which
consists of continuous functions on [−1,1]l . We denote by N

� (respectively, R
�+) the set of positive integers (respec-

tively positive numbers) and set

�z� = sup{j ∈ Z|j ≤ z} and z� = inf
{
j ∈ N

�|j ≥ z
}

for all z ∈ R.

The numbers x ∧ y and x ∨ y stand for min{x, y} and max{x, y} respectively and log+(x) stands for (logx) ∨ 0.
The cardinality of a set A is denoted by |A| and, by convention, “countable” means “finite or countable.” We call
subprobability on some countable set A any positive measure π on A with π(A) ≤ 1 and, given π and a ∈ A, we set
π(a) = π({a}) and Δπ(a) = − log(π(a)) with the convention Δπ(a) = +∞ if π(a) = 0. The dimension of the linear

space V is denoted by D(V ). Given a compact subset K of R
k with

◦
K �= ∅, we define the Lebesgue probability μ on

K by μ(A) = λ(A)/λ(K) for A ⊂ K , where λ denotes the Lebesgue measure on R
k .

For x ∈ R
m, xj denotes the j th coordinate of x (1 ≤ j ≤ m) and, similarly, xi,j denotes the j th coordinate

of xi if the vectors xi are already indexed. We set |x|2 = ∑m
j=1 x2

j for the squared Euclidean norm of x ∈ R
m,

without reference to the dimension m, and denote by Bm the corresponding closed unit ball in R
m. Similarly,

|x|∞ = max{|x1|, . . . , |xm|} for all x ∈ R
m. For x in some metric space (M,d) and r > 0, B(x, r) denotes the closed

ball of center x and radius r in M and for A ⊂ M , d(x,A) = infy∈A d(x, y). Finally, C stands for a universal constant
while C′ is a constant that depends on some parameters of the problem. We may make this dependence explicit by
writing C′(a, b) for instance. Both C and C′ are generic notations for constants that may change from line to line.
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2.2. A general model selection result

General model selection results apply to models which possess a finite dimension in a suitable sense. Throughout the
paper we assume that in the statistical framework we consider the following theorem holds.

Theorem 1. Let S be a countable family of finite dimensional linear subspaces S of Lq(E,μ) and let π be some
subprobability measure on S. There exists an estimator ŝ = ŝ(X) with values in

⋃
S∈S

S satisfying, for all s ∈ S ,

Es

[
d2(s, ŝ)

]≤ C inf
S∈S

{
d2(s, S) + τ

[(
D(S) ∨ 1

)+ Δπ(S)
]}

, (2.1)

where the positive constant C and parameter τ only depend on the specific statistical framework at hand.

Similar results often hold also for the loss function dr(s, ŝ) (r ≥ 1) replacing d2(s, ŝ). In such a case, the results
we prove below for the quadratic risk easily extend to the risk Es[dr(s, ŝ)]. For simplicity, we shall only focus on the
case r = 2.

2.3. Some illustrations

The previous theorem actually holds for various statistical frameworks. Let us provide a partial list.

Gaussian frameworks
A prototype for Gaussian frameworks is provided by some Gaussian isonormal linear process as described in Section 2
of Birgé and Massart [11]. In such a case, X is a Gaussian linear process with a known variance τ , indexed by a
subset S of some Hilbert space L2(E,μ). This means that s ∈ S determines the distribution Ps . Regression with
Gaussian errors and Gaussian sequences can both be seen as particular cases of this framework. Then Theorem 1
is a consequence of Theorem 2 of Birgé and Massart [11]. In the regression setting, Baraud, Giraud and Huet [4]
considered the practical case of an unknown variance and proved that (2.1) holds under the assumption that D(S) ∨
Δπ(S) ≤ n/2 for all S ∈ S.

Density estimation
Here X = (X1, . . . ,Xn) is an n-sample with density s2 with respect to μ and S is the set of nonnegative elements of
norm 1 in L2(E,μ). Then d(s, t) = √

2h(s2, t2) where h denotes the Hellinger distance between densities defined by
(1.1), τ = n−1 and Theorem 1 follows from Theorem 6 of Birgé [8] or Corollary 8 of Baraud [2]. Alternatively, one
can take for s the density itself, for S the set of nonnegative elements of norm 1 in L1(E,μ) and set q = 1. The result
then follows from Theorem 8 of Birgé [8]. Under the additional assumption that s ∈ L2(E,μ) ∩ L∞(E,μ), the case
q = 2 follows from Theorem 6 of Birgé [10] with τ = n−1‖s‖∞(1 ∨ log‖s‖∞).

Regression with fixed design
We observe X = {(x1, Y1), . . . , (xn,Yn)} with E[Yi] = s(xi) where s is a function from E = {x1, . . . , xn} to R and the
errors εi = Yi − s(xi) are i.i.d. Here μ is the uniform distribution on E, hence d2(s, t) = n−1∑n

i=1[s(xi)− t (xi)]2 and
τ = 1/n. When the errors εi are subgaussian, Theorem 1 follows from Theorem 3.1 in Baraud, Comte and Viennet
[3]. For more heavy-tailed distributions (Laplace, Cauchy, etc.) we refer to Theorem 6 of Baraud [2] when s takes its
values in [−1,1].
Bounded regression with random design
Let (X,Y ) be a pair of random variables with values in E × [−1,1] where X has distribution μ and E[Y |X = x] =
s(x) is a function from E to [−1,1]. Our aim here is to estimate s from the observation of n independent copies
X = {(X1, Y1), . . . , (Xn,Yn)} of (X,Y ). Here the distance d corresponds to the L2(E,μ)-distance and Theorem 1
follows from Corollary 8 in Birgé [8] with τ = n−1.

Poisson processes
In this case, X is a Poisson process on E with mean measure s2 · μ, where s is a nonnegative element of L2(E,μ).
Then τ = 1 and Theorem 1 follows from Birgé [9] or Corollary 8 of Baraud [2].
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3. The basic theorems

3.1. Models and their dimensions

If we assume that the unknown parameter s to be estimated is equal or close to some composite function of the form
g ◦u with u ∈ T l and g ∈ Fl,c and if we wish to estimate g ◦u by model selection we need to have at disposal a family
F of models for approximating g and families Tj , 1 ≤ j ≤ l, to approximate the components uj of u. Typical sets
that are used for approximating elements of Fl,c or T l are finite-dimensional linear spaces or subsets of them. Many
examples of such spaces are described in books on Approximation Theory, like the one by DeVore and Lorentz [13]
and we need a theorem which applies to such classical approximation sets for which it will be convenient to choose
the following definition of their dimension.

Definition 1. Let H be a linear space and S ⊂ H . The dimension D(S) ∈ N ∪ {∞} of S is 0 if |S| = 1 and is,
otherwise, the dimension (in the usual sense) of the linear span of S.

3.2. Some smoothness assumptions

In order to transfer the approximation properties of g by f and u by t into approximation of g ◦ u by f ◦ t , we shall
also require that g be somewhat smooth. The smoothness assumptions we need can be expressed in terms of moduli
of continuity. We start with the definition of the modulus of continuity of a function g in Fl,c.

Definition 2. We say that w from [0,2]l to R
l+ is a modulus of continuity for a continuous function g on [−1,1]l

if, for all z ∈ [0,2]l , w(z) is of the form w(z) = (w1(z1), . . . ,wl(zl)) where each function wj with j = 1, . . . , l is
continuous, nondecreasing and concave from [0,2] to R+, satisfies wj (0) = 0, and

∣∣g(x) − g(y)
∣∣≤ l∑

j=1

wj

(|xj − yj |
)

for all x, y ∈ [−1,1]l .

For α ∈ (0,1]l and L ∈ (0,+∞)l , we say that g is (α,L)-Hölderian if one can take wj (z) = Ljz
αj for all z ∈ [0,2]

and j = 1, . . . , l. It is said to be L-Lipschitz if it is (α,L)-Hölderian with α = (1, . . . ,1).

Note that our definition of a modulus of continuity implies that the wj are subadditive, a property which we shall
often use in the sequel and that, given g, one can always choose for wj the least concave majorant of wj where

wj(z) = sup
x∈[−1,1]l ;xj ≤1−z

∣∣g(x) − g(x1, . . . , xj−1, xj + z, xj+1, . . . , xl)
∣∣.

Then wj (z) ≤ 2wj(z) according to Lemma 6.1, p. 43 of DeVore and Lorentz [13].

3.3. The main theorem

Our construction of estimators ŝ of g ◦ u will be based on some set S of the following form:

S = {l,F, γ,T1, . . . ,Tl , λ1, . . . , λl}, l ∈ N
�, (3.1)

where F,T1, . . . ,Tl denote families of models and γ , λj are measures on F and Tj respectively. In the sequel, we
shall assume that S satisfies the following requirements.

Assumption 1. The set S is such that

(i) the family F is a countable set and consists of finite-dimensional linear subspaces F of Fl,∞ with respective
dimensions D(F ) ≥ 1,

(ii) for j = 1, . . . , l, Tj is a countable set of subsets of Lq(E,μ) with finite dimensions,
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(iii) the measure γ is a subprobability on F,
(iv) for j = 1, . . . , l, λj is a subprobability on Tj .

Given S, one can design an estimator ŝ with the following properties.

Theorem 2. Assume that Theorem 1 holds and that S satisfies Assumption 1. One can build an estimator ŝ = ŝ(X)

satisfying, for all u ∈ T l and g ∈ Fl,c with modulus of continuity wg ,

CEs

[
d2(s, ŝ)

] ≤ d2(s, g ◦ u) +
l∑

j=1

inf
T ∈Tj

{
lw2

g,j

(
d(uj , T )

)+ τ
[
Δλj

(T ) + i(g, j, T )D(T )
]}

+ inf
F∈F

{
d2∞(g,F ) + τ

[
Δγ (F) + D(F )

]}
, (3.2)

where

i(g, j, T ) =
{

1 if D(T ) = 0;
inf
{
i ∈ N

�|lw2
g,j

(
e−i

)≤ τ iD(T )
}

< +∞ otherwise. (3.3)

Note that, since the risk bound (3.2) is valid for all g ∈ Fl,c and u ∈ T l , we can minimize the right-hand side of
(3.2) with respect to g and u in order to optimize the bound. The proof of this theorem is postponed to Section 5.4.

Of special interest is the case where g is L-Lipschitz. If one is mainly interested by the dependence of the risk
bound with respect to τ as it tends to 0, one can check that i(g, j, T ) ≤ log τ−1 for τ small enough (depending on l

and L) so that (3.2) becomes for such a small τ

C′
Es

[
d2(s, ŝ)

] ≤ d2(s, g ◦ u) +
l∑

j=1

inf
T ∈Tj

{
d2(uj , T ) + τ

(
Δλj

(T ) + D(T ) log τ−1)}

+ inf
F∈F

{
d2∞(g,F ) + τ

[
D(F ) + Δγ (F)

]}
.

If it were possible to apply Theorem 1 to the models F with the distance d∞ and the models T with the distance d

for each j separately, we would get risk bounds of this form, apart from the value of C′ and the extra log τ−1 factor.
This means that, apart from this extra logarithmic factor, our procedure amounts to performing l + 1 separate model
selection procedures, one with the collection F for estimating g and the other ones with the collections Tj for the
components uj , finally getting the sum of the l + 1 resulting risk bounds. The result is however slightly different
when g is no longer Lipschitz. When g is (α,L)-Hölderian then one can check that i(g, j, T ) ≤ Lj,T where

Lj,T =
{

1 if D(T ) = 0;[
α−1

j log
(
lL2

j

[
τ D(T )

]−1)]∨ 1 otherwise, (3.4)

so that

Lj,T ≤ C′(l, αj )
[
log

(
τ−1)∨ log

(
L2

j /D(T )
)∨ 1

]
. (3.5)

In this case, Theorem 2 leads to the following result.

Corollary 1. Assume that the assumptions of Theorem 2 hold. For all (α,L)-Hölderian function g with α ∈ (0,1]l
and L ∈ (R�+)l , the estimator ŝ of Theorem 2 satisfies

CEs

[
d2(s, ŝ)

] ≤ d2(s, g ◦ u) +
l∑

j=1

inf
T ∈Tj

{
lL2

j d
2αj (uj , T ) + τ

[
Δλj

(T ) + D(T )Lj,T

]}

+ inf
F∈F

{
d2∞(g,F ) + τ

[
Δγ (F) + D(F )

]}
, (3.6)

where Lj,T is defined by (3.4) and bounded by (3.5).
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3.4. Mixing collections corresponding to different values of l

If it is known that s takes the special form g ◦u for some unknown values of g ∈ Fl,c and u ∈ T l , or if s is very close to
some function of this form, the previous approach is quite satisfactory. If we do not have such an information, we may
apply the previous construction with several values of l simultaneously, approximating s by different combinations
gl ◦ ul with ul taking its values in [−1,1]l , gl a function on [−1,1]l and l varying among some subset I of N

�. To
each value of l we associate, as before, l + 1 collections of models and the corresponding subprobabilities, each l

then leading to an estimator ŝl the risk of which is bounded by R(ŝl , gl, ul) given by the right-hand side of (3.2). The
model selection approach allows us to use all the previous collections of models for all values of l simultaneously
in order to build a new estimator the risk of which is approximately as good as the risk of the best of the ŝl . More
generally, let us assume that we have at hand a countable family {S,  ∈ I } of sets S of the form (3.1) satisfying
Assumption 1 for some l = l() ≥ 1. To each such set, Theorem 2 associates an estimator ŝ with a risk bounded by

Es

[
d2(s, ŝ)

]≤ inf
(g,u)

R(ŝ, g,u),

where R(ŝ, g,u) denotes the right-hand side of (3.2) when S = S and the infimum runs among all pairs (g,u) with
g ∈ Fl(),c and u ∈ T l(). We can then prove (in Section 5.5 below) the following result.

Theorem 3. Assume that Theorem 1 holds and let I be a countable set and ν a subprobability on I . For each  ∈ I

we are given a set S of the form (3.1) that satisfies Assumption 1 with l = l() and a corresponding estimator ŝ
provided by Theorem 2. One can then design a new estimator ŝ = ŝ(X) satisfying

CEs

[
d2(s, ŝ)

]≤ inf
∈I

inf
(g,u)

{
R(ŝ, g,u) + τΔν()

}
,

where R(ŝ, g,u) denotes the right-hand side of (3.2) when S = S and the second infimum runs among all pairs
(g,u) with g ∈ Fl(),c and u ∈ T l().

3.5. The main ideas underlying our construction

Let us assume here that p = q = 2 and E = [−1,1]k with k > l ≥ 1. Our approach is based on the construction
of a family of linear spaces with good approximation properties with respect to composite functions g ◦ u. More
precisely, if one considers a finite dimensional linear space F ⊂ Fl,∞ for approximating g and compact sets Tj ⊂ T
for approximating the uj , we shall show (see Proposition 4 in Section 5.1 below) that there exists some t in T =∏l

j=1 Tj such that the linear space St = {f ◦ t |f ∈ F } approximates the composite function g ◦u with an error bound

d(g ◦ u,St ) ≤ d∞(g,F ) + √
2

l∑
j=1

wg,j

(
d(uj , Tj )

)
. (3.7)

The case where the function g is Lipschitz, i.e. wg,j (x) = Lx for all j , is of particular interest since, up to constants,
the error bound we get is the sum of those for approximating separately g by F (with respect to the L∞-distance)
and the uj by Tj . In particular, if s were exactly of the form s = g ◦ u for some known functions uj , we could use
a linear space F of piecewise constant functions with dimension of order D to approximate g, and take Tj = {uj }
for all j . In this case the linear space Su whose dimension is also of order D would approximate s = g ◦ u with an
error bounded by D−1/l . Note that if the uj were all (β,L)-Hölderian with β ∈ (0,1]k , the overall regularity of the
function s = g ◦ u could not be expected to be better than β-Hölderian, since this regularity is already achieved by
taking g(y1, . . . , yl) = y1. In comparison, an approach based on the overall smoothness of s, which would completely
ignore the fact that s = g ◦u and the knowledge of the uj , would lead to an approximation bound of order D−β/k with
β = k(

∑k
j=1 β−1

j )−1. The former bound, D−1/l , based on the structural assumption that s = g ◦ u therefore improves

on the latter since β ≤ 1 and k > l. Of course, one could argue that the former approach uses the knowledge of the uj ,
which is quite a strong assumption. Actually, a more reasonable approach would be to assume that u is unknown but
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close to a parametric set T, in which case, it would be natural to replace the single model Su used for approximating
s, by the family of models ST(F ) = {St |t ∈ T} and, ideally, let the usual model selection techniques select some best
linear space among it. Unfortunately, results such as Theorem 1 do not apply to this case, since the family ST(F ) has
the same cardinality as T and is therefore typically not countable. The main idea of our approach is to take advantage
of the fact that the uj take their values in [−1,1] so that we can embed T into a compact subset of T l . We may then
introduce a suitably discretized version T of T (more precisely, of its embedding) and replace the ideal collection
ST(F ) by ST(F ), for which similar approximation properties can be proved. The details of this discretization device
will be given in the proofs of our main results. Finally, we shall let both T and F vary into some collections of models
and use all the models of the various resulting collections ST(F ) together in order to estimate s at best.

4. Applications

The aim of this section is to provide various applications of Theorem 2 and its corollaries. We start with a brief
overview of more or less classical collections of models commonly used for approximating smooth (and less smooth)
functions on [−1,1]k .

4.1. Classical models for approximating smooth functions

Along this section, d denotes the L2-distance in L2([−1,1]k,2−k dx), thus taking q = 2, E = [−1,1]k and μ the
Lebesgue probability on E. Collections of models with the following property will be of special interest throughout
this paper.

Assumption 2. For each D ∈ N the number of elements with dimension D belonging to the collection S is bounded
by exp[c(S)(D + 1)] for some nonnegative constant c(S) depending on S only.

4.1.1. Approximating functions in Hölder spaces on [−1,1]k
When k = 1, a typical smoothness condition for a function s on [−1,1] is that it belongs to some Hölder space

Hα([−1,1]) with α = r + α′, r ∈ N and 0 < α′ ≤ 1 which is the set of all functions f on [−1,1] with a continuous
derivative of order r satisfying, for some constant L(f ) > 0,

∣∣f (r)(x) − f (r)(y)
∣∣≤ L(f )|x − y|α′

for all x, y ∈ [−1,1].

This notion of smoothness extends to functions f (x1, . . . , xk) defined on [−1,1]k , by saying that f belongs to
Hα([−1,1]k) with α = (α1, . . . , αk) ∈ (0,+∞)k if, viewed as a function of xi only, it belongs to Hαi ([−1,1]) for
1 ≤ i ≤ k with some constant L(f ) independent of both i and the variables xj for j �= i. The smoothness of a function
s in Hα([−1,1]k) is said to be isotropic if the αi are all equal and anisotropic otherwise, in which case the quantity
α = k(

∑k
i=1 α−1

i )−1 corresponds to the average smoothness of s. It follows from results in Approximation Theory that
functions in the Hölder space Hα([−1,1]k) can be well approximated by piecewise polynomials on k-dimensional
hyperrectangles. More precisely, our next proposition follows from results in Dahmen, DeVore and Scherer [12].

Proposition 1. Let (k, r) ∈ N
�×N. There exists a collection of models Hk,r =⋃

D≥1 Hk,r (D) satisfying Assumption 2
such that, for each D ∈ N

�, the family Hk,r (D) consists of linear spaces S with dimensions D(S) ≤ C′
1(k, r)D spanned

by piecewise polynomials of degree at most r on k-dimensional hyperrectangles and for which

inf
S∈Hk,r (D)

d(s, S) ≤ inf
S∈Hk,r (D)

d∞(s, S) ≤ C′
2(k, r)L(s)D−α/k

for all s ∈ Hα([−1,1]k) with sup1≤i≤k αi ≤ r + 1.
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4.1.2. Approximating functions in anisotropic Besov spaces
Anisotropic Besov spaces generalize anisotropic Hölder spaces and are defined in a similar way by using directional
moduli of smoothness, just as Hölder spaces are defined using directional derivatives. To be short, a function belongs
to an anisotropic Besov space on [−1,1]k if, when all coordinates are fixed apart from one, it belongs to a Besov space
on [−1,1]. A precise definition (restricted to k = 2 but which can be generalized easily) can be found in Hochmuth
[15]. The general definition together with useful approximation properties by piecewise polynomials can be found
in Akakpo [1]. For 0 < p ≤ +∞, k > 1 and β ∈ (0,+∞)k , let us denote by Bβ

p,p([−1,1]k) the anisotropic Besov

spaces. In particular, Bβ∞,∞([−1,1]k) = Hβ([−1,1]k) when no coordinate of β is an integer. It follows from Akakpo
[1] that Proposition 1 can be generalized to Besov spaces in the following way.

Proposition 2. Let p > 0, k ∈ N
� and r ∈ N. There exists a collection of models Bk,r = ⋃

D≥1 Bk,r (D) satisfying
Assumption 2 such that for each positive integer D, Bk,r (D) consists of linear spaces S with dimensions D(S) ≤
C′

1(k, r)D spanned by piecewise polynomials of degree at most r on k-dimensional hyperrectangles and for which

inf
S∈Bk,r (D)

d(s, S) ≤ C′
2(k, r,p)|s|β,p,pD−β/k

for all s ∈ Bβ
p,p([−1,1]k) with semi-norm |s|β,p,p and β satisfying

sup
1≤i≤k

βi < r + 1 and β > k
[(

p−1 − 2−1)∨ 0
]
. (4.1)

4.2. Estimation of smooth functions on [−1,1]k

In this section, our aim is to establish risk bounds for our estimator ŝ when s = g ◦ u for some smooth functions g

and u. We shall discuss the improvement, in terms of rates of convergence as τ tends to 0, when assuming such a
structural hypothesis, as compared to a pure smoothness assumption on s. Throughout this section, we take q = 2,
E = [−1,1]k and d as the L2-distance on L2(E,2−k dx).

It follows from Section 4.1 that, for all r ≥ 0, Hk,r satisfies Assumption 2 for some constant c(Hk,r ). Therefore the
measure γ on Hk,r defined by

Δγ (S) = (
c(Hk,r ) + 1

)
(D + 1) for all S ∈ Hk,r (D)

∖ ⋃
1≤D′<D

Hk,r

(
D′) (4.2)

is a subprobability since

∑
S∈Hk,r

e−Δγ (S) ≤
∑
D≥1

e−D
∣∣Hk,r (D)

∣∣e−c(Hk,r )(D+1) ≤
∑
D≥1

e−D < 1.

We shall similarly consider the subprobability λ defined on Bk,r by

Δλ(S) = (
c(Bk,r ) + 1

)
(D + 1) for all S ∈ Bk,r (D)

∖ ⋃
1≤D′<D

Bk,r

(
D′). (4.3)

Finally, for g ∈ Hα([−1,1]l ) with α ∈ (R�+)l , we set ‖g‖α,∞ = |g|α,∞,∞ + infL′ where the infimum runs among all
numbers L′ for which wg,j (z) ≤ L′zαj ∧1 for all z ∈ [0,2] and j = 1, . . . , l.

4.2.1. Convergence rates using composite functions
Let us consider here the set Sk,l(α,β,p,L,R) gathering the composite functions g ◦ u with g ∈ Hα([−1,1]l ) sat-

isfying ‖g‖α,∞ ≤ L and uj ∈ Bβj
pj ,pj

with semi-norms |uj |βj ,pj ,pj
≤ Rj for all j = 1, . . . , l. The following result

holds.
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Theorem 4. Assume that Theorem 1 holds with q = 2. There exists an estimator ŝ such that, for all l ≥ 1, α,R ∈
(R�+)l , L > 0, β1, . . . ,β l ∈ (R�+)k and p ∈ (0,+∞]l with βj > k[(p−1

j − 2−1) ∨ 0] for 1 ≤ j ≤ l,

sup
s∈Sk,l (α,β,p,L,R)

C′
Es

[
d2(s, ŝ)

]

≤
l∑

j=1

(
LR

αj ∧1
j

)2k/(2βj (αj ∧1)+k)[τ L]2βj (αj ∧1)/(2βj (αj ∧1)+k) + L2l/(l+2α)τ 2α/(l+2α) + τ L,

where L = log(τ−1) ∨ log(L2) ∨ 1 and C′ depends on k, l,α, β and p.

Let us recall that we need not assume that s is exactly of the form g ◦ u but rather, as we did before, that s can be
approximated by a function s̄ = g ◦ u ∈ Sk,l(α,β,p,L,R). In such a case we simply get an additional bias term of
the form d2(s, s̄) in our risk bounds.

Proof of Theorem 4. Let us fix some value of l ≥ 1, take s = g ◦ u ∈ Sk,l(α,β,p,L,R) and define

r = r(α,β) = 1 +
⌊

max
i=1,...,l

αi ∨ max
j=1,...,l,=1,...,k

βj,

⌋
.

The regularity properties of g and the uj together with Propositions 1 and 2 imply that for all D ≥ 1, there exist
F ∈ Hl,r (D) and sets Tj ∈ Bk,r (D) for j = 1, . . . , l such that

D(F ) ≤ C′
1(l,α,β)D; d∞(g,F ) ≤ C′

2(l,α,β)LD−α/l;
and, for 1 ≤ j ≤ l,

D(Tj ) ≤ C′
3(k,α,βj ,pj )D; d(uj , Tj ) ≤ C′

4(k,α,βj ,pj )RjD
−βj /k.

Since the collections Hl,r and Bk,r satisfy Assumption 2 and wg,j (z) ≤ Lzαj ∧1 for all j and z ∈ [0,2], we may apply
Corollary 1 with

Sl,r = (l,Hl,r , γr ,Bk,r , . . . ,Bk,r , λr , . . . , λr )

the subprobabilities γl,r and λl,r being given by (4.2) and (4.3) respectively. Besides, it follows from (3.5) that Lj,T ≤
C′(l,α)L for all j , so that (3.6) implies that the risk of the resulting estimator ŝl,r is bounded from above by

C′R(ŝl,r , g, u) =
l∑

j=1

inf
D≥1

[
L2R

2(αj ∧1)

j D−2(αj ∧1)βj /k + Dτ L
]+ inf

D≥1

[
L2D−2α/l + Dτ

]

for some constant C′ depending on l, k,α,β1, . . . ,β l . We obtain the result by optimizing each term of the sum with
respect to D by means of Lemma 1, and by using Theorem 3 with ν defined for  = (l, r) ∈ N

� × N by ν(l, r) =
e−(l+r+1) for which Δν(l, r)τ ≤ (l + r + 1)R(ŝl,r , g, u) for all l, r . �

4.2.2. Structural assumption versus smoothness assumption
In view of discussing the interest of the risk bounds provided by Theorem 4, let us focus here, for simplicity, on the
case where g ∈ Hα([−1,1]) with α > 0 (hence l = 1) and u is a function from E = [−1,1]k to [−1,1] that belongs
to Hβ([−1,1]k) with β ∈ (R�+)k . The following proposition is to be proved in Section 5.7.

Proposition 3. Let φ be the function defined on (R�+)2 by

φ(x, y) =
{

xy if x ∨ y ≤ 1;
x ∧ y otherwise.
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For all k ≥ 1, α > 0, β ∈ (R�+)k , g ∈ Hα([−1,1]) and u ∈ Hβ([−1,1]k),

g ◦ u ∈ Hθ
([−1,1]k) with θi = φ(βi, α) for 1 ≤ i ≤ k. (4.4)

Moreover, θ is the largest possible value for which (4.4) holds for all g ∈ Hα([−1,1]) and u ∈ Hβ([−1,1]k) since,
whatever θ ′ ∈ (R�+)k such that θ ′

i > θi for some i ∈ {1, . . . , k}, there exist some g ∈ Hα([−1,1]) and u ∈ Hβ([−1,1]k)
such that g ◦ u /∈ Hθ ′

([−1,1]k).

Using the information that s belongs to Hθ ([−1,1]k) with θ given by (4.4) and that we cannot assume that s

belongs to some smoother class (although this may happen in special cases) since θ is minimal, but ignoring the fact
that s = g ◦ u, we can estimate s at rate τ 2θ/(2θ+k) (as τ tends to 0) while, on the other hand, by using Theorem 4 and
the structural information that s = g ◦ u, we can achieve the rate

τ 2α/(2α+1) + (
τ
[
log τ−1])2β(α∧1)/(2β(α∧1)+k)

.

Let us now compare these two rates. First note that it follows from (4.4) that θi ≤ α for all i, hence θ ≤ α and, since
k > 1, 2α/(2α + 1) > 2θ/(2θ + k). Therefore the term τ 2α/(2α+1) always improves over τ 2θ/(2θ+k) when τ is small
and, to compare the two rates, it is enough to compare θ with β(α ∧ 1). To do so, we use the following lemma (to be
proved in Section 5.8).

Lemma 2. For all α > 0 and β ∈ (R�+)k , the smoothness index θ = (φ(α,β1), . . . , φ(α,βk)) satisfies θ ≤ β(α ∧ 1)

and equality holds if and only if sup1≤i≤k βi ≤ α ∨ 1.

When sup1≤i≤k βi ≤ α ∨ 1, our special strategy does not bring any improvement as compared to the standard one,
it even slightly deteriorates the risk bound because of the extra log τ−1 factor. On the opposite, if sup1≤i≤k βi > α ∨ 1,
our new strategy improves over the classical one and this improvement can be substantial if β is much larger than
α ∨ 1. If, for instance, α = 1 and β = k = βj for all j , we get a bound of order [τ(log τ−1)]2/3 which, apart from
the extra log τ−1 factor, corresponds to the minimax rate of estimation of a Lipschitz function on [−1,1], instead of
the risk bound τ 2/(2+k) that we would get if we estimated s as a Lipschitz function on [−1,1]k . When our strategy
does not improve over the classical one, i.e. when sup1≤i≤k βi ≤ α ∨ 1, the additional loss due to the extra logarithmic
factor in our risk bound can be avoided by mixing the models used for the classical strategy with the models used for
designing our estimator, following the recipe of Section 3.4.

4.3. Generalized additive models

In this section, we assume that E = [−1,1]k , μ is the Lebesgue probability on E and q = 2. A special structure that
has often been considered in regression corresponds to functions s = g ◦ u with

u(x1, . . . , xk) = u1(x1) + · · · + uk(xk); s(x) = g
(
u1(x1) + · · · + uk(xk)

)
, (4.5)

where the uj take their values in [−1/k,1/k] for all j = 1, . . . , k. Such a model has been considered in Horowitz
and Mammen [16] and while their approach is nonadaptive, ours, based on Theorem 2 and a suitable choice of the
collections of models, allows to derive a fully adaptive estimator with respect to the regularities of g and the uj . More
precisely, for r ∈ N, let Tr be the collection of all models of the form T = T1 +· · ·+Tk where for j = 1, . . . , k, Tj is the
set of functions of the form x �→ tj (xj ) with x ∈ E and tj in B1,r . Using λr = λ as defined by (4.3), we endow Tr with

the subprobability λ
(k)
r defined for T ∈ Tr by the infimum of the quantities

∏k
i=1 λr(Ti) when (T1, . . . , Tk) runs among

all the k-uplets of B
k
1,r satisfying T = T1 +· · ·+Tk . Finally, for α,L > 0, β,R ∈ (R�+)k and p = (p1, . . . , pk) ∈ (R�+)k ,

let S Add
k (α,β,p,L,R) be the set of functions of the form (4.5) with g ∈ Hα([−1,1]) satisfying ‖g‖α,∞ ≤ L and

uj ∈ Bβj
pj ,pj

([−1,1]) with |uj |βj ,pj ,pj
≤ Rjk

−1 for all j = 1, . . . , k. Using the sets Sr = (1,H1,r , γr ,Tr , λ
(k)
r ) with

r ∈ N we can build an estimator with the following property.
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Theorem 5. Assume that Theorem 1 holds with q = 2. There exists an estimator ŝ which satisfies for all α,L > 0,
p,R ∈ (R�+)k and β ∈ (R�+)k with βj > (1/pj − 1/2)+ for all j = 1, . . . , k,

sup
s∈S Add

k (α,β,p,L,R)

C′
Es

[
d2(s, ŝ)

] ≤ L2/(2α+1)τ 2α/(2α+1)

+
k∑

j=1

(
L
(
Rjk

−1/2)α∧1)2/(2(α∧1)βj +1)
(τ L)2(α∧1)βj /(2(α∧1)βj +1) + τ L,

where L = log(τ−1) ∨ log(L2) ∨ 1 and C′ is a constant that depends on α,β,p and k only.

If one is mainly interested in the rate of convergence as τ tends to 0, the bound we get is of order
max{τ 2α/(2α+1), [τ log(τ−1)]2(α∧1)β/(2(α∧1)β+1)} where β = min{β1, . . . , βk}. In particular, if α ≥ 1, this rate is the
same (up to a logarithmic factor) as that we would obtain for estimating a function on [−1,1] with the smallest
regularity among α,β1, . . . , βk .

Proof of Theorem 5. Let us consider some s = g ◦ u ∈ S Add
k (α,β,p,L,R) and r = 1 + α ∨ β1 ∨ · · · ∨ βk�. For all

D,D1, . . . ,Dk ≥ 1, there exist F ∈ H1,r (D) and Tj ∈ B1,r (Dj ) for all j = 1, . . . , k such that

D(F ) ≤ C′
1(r)D; d∞(g,F ) ≤ C′

2(r)LD−α

and, for 1 ≤ j ≤ k,

D(Tj ) ≤ C′
3(k, r,p)Dj ; d(uj , Tj ) ≤ C′

4(k, r,p)Rj k
−1D

−βj

j .

If T = T1 +· · ·+Tk , then D(T ) ≤∑k
j=1 D(Tj ), Δλ

(k)
r

(T ) ≤∑k
j=1 Δλr (Tj ) ≤ (c(B1,r )+1)

∑k
j=1(Dj +1). Moreover,

d(u,T ) ≤∑k
j=1 d(uj , Tk) ≤ C′

4k
−1∑k

j=1 RjD
−βj

j , hence, d2(u,T ) ≤ (C′
4)

2k−1∑k
j=1 R2

jD
−2βj

j and finally,

d2(α∧1)(u,T ) ≤ (
C′

4

)2(α∧1)
k∑

j=1

(
Rjk

−1/2)2(α∧1)
D

−2(α∧1)βj

j .

For all T , L1,T ≤ C′(α)L and since wg(z) ≤ Lzα for all z ∈ [0,2], we may apply Corollary 1 with l = 1 and get that
the risk of the resulting estimator ŝr satisfies

C′R(ŝr , g,u) =
k∑

j=1

inf
D≥1

[
L2(Rjk

−1/2)2(α∧1)
D−2(α∧1)βj + Dτ L

]+ inf
D≥1

[
L2D−2α + Dτ

]
.

We conclude by arguing as in the proof of Theorem 4. �

4.4. Multiple index models and artificial neural networks

In this section, we assume that E = [−1,1]k , q = 2 and d is the distance in L2(E,μ) where μ is the Lebesgue
probability on E. We denote by | · |1 and | · |∞ respectively the 1- and ∞-norms in R

k and Ck the unit ball for the
1-norm. As we noticed earlier, when s is an arbitrary function on E and k is large, there is no hope to get a nice
estimator for s without some additional assumptions. A very simple one is that s(x) can be written as g(〈θ, x〉) for
some θ ∈ Ck , which corresponds to the so-called single index model. More generally, we may pretend that s can be
well approximated by some function s̄ of the form s̄(x) = g(〈θ1, x〉, . . . , 〈θl, x〉) where θ1, . . . , θl are l elements of Ck

and g maps [−1,1]l to R, l being possibly unknown and larger than k. When s̄ = g ◦ u is of this form, the coordinate
functions uj (·) = 〈θj , ·〉, for 1 ≤ j ≤ l, belong to the set T0 ⊂ T of functions on E of the form x �→ 〈θ, x〉 with θ ∈ Ck ,
which is a subset of a k-dimensional linear subspace of L2(E,μ), hence D(T0) ≤ k. A slight generalization of this
situation leads to the following result.
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Theorem 6. Assume that Theorem 1 holds with q = 2. For j ≥ 1, let Tj be a subset of T with finite dimension kj and
for I ⊂ N

∗ and l ∈ I , let Fl be a collection of models satisfying Assumptions 1(i) and (iii) for some subprobability γl .
There exists an estimator ŝ which satisfies

CEs

[
d2(s, ŝ)

]≤ inf
l∈I

inf
g∈Fl,c,u∈Tl

[
d2(s, g ◦ u) + A(g,Fl , γl) + τ

l∑
j=1

kj i(g, j, Tj )

]
, (4.6)

where Tl = T1 × · · · × Tl , i(g, j, Tj ) is defined by (3.3) and

A(g,Fl , γl) = inf
F∈Fl

{
d2∞(g,F ) + τ

[
D(F ) + Δγl

(F )
]}

.

In particular, for all l ∈ I and (α,L)-Hölderian functions g with α ∈ (0,1]l and L ∈ (R�+)l

CEs

[
d2(s, ŝ)

]≤ inf
u∈Tl

[
d2(s, g ◦ u) + A(g,Fl , γl) + τ

l∑
j=1

kj

[
1

αj

log
(
lL2

j (kj τ )−1)∨ 1

]]
. (4.7)

Let us comment on this result, fixing some value l ∈ I . The term d(s, g ◦ u) corresponds to the approximation
of s by functions of the form g(u1(·), . . . , ul(·)) with g in Fl,c and u1, . . . , ul in T1, . . . , Tl respectively. As to the
quantity A(g,Fl , γl), it corresponds to the estimation bound for estimating the function g alone if s were really of the
previous form. Finally, the quantity τ

∑l
j=1 kj i(g, j, Tj ) corresponds to the sum of the statistical errors for estimating

the uj . If for all j , the dimensions of the Tj remain bounded by some integer k independent of τ , which amounts to
making a parametric assumption on the uj , and if g is smooth enough the quantity τ

∑l
j=1 kj i(g, j, Tj ) is then of

order τ log τ−1 for small values of τ as seen in (4.7).

Proof of Theorem 6. For all j , we choose λj to be the Dirac mass at Tj so that Δλj
(Tj ) = 0 = d(uj , Tj ). The result

follows by applying Theorem 2 (for a fixed value of l ∈ I ) and then Theorem 3 with ν defined by ν(l) = e−l for all
l ∈ I . �

4.4.1. The multiple index model
As already mentioned, the multiple index model amounts to assuming that s is of the form

s(x) = g
(〈θ1, x〉, . . . , 〈θl, x〉) whatever x ∈ E

for some known l ≥ 1 and kj = k for all j . For L > 0 and α ∈ (R�+)l , let us denote by S α
l (L) the set of functions s

of this form with g ∈ Hα([−1,1]l ) satisfying ‖g‖α,∞ ≤ L. Applying Theorem 6 to this special case, we obtain the
following result.

Corollary 2. Assume that Theorem 1 holds with q = 2 and let I ⊂ N
�. There exists an estimator ŝ such that for all

l ∈ I , α ∈ (R�+)l and L > 0,

sup
s∈S α

l (L)

C′
Es

[
d2(s, ŝ)

] ≤ L2/(2α+1)τ 2α/(2α+1) + kτ L with L = log
(
τ−1)∨ log

(
L2k−1)∨ 1,

where C′ is a constant depending on l and α only.

The effect of the dimension k only appears in the remaining term. The latter is essentially proportional to
kτ(log(τ−1) ∨ 1), at least for k ≥ L2. It is not difficult to see that there is no hope to get a faster rate than kτ

over S α
l (L). Indeed, by taking l = L = 1 for simplicity and g the identity function, we see that S α

1 (1) contains the
unit ball of a k-dimensional linear space and this is enough to assert that, at least in the regression setting, the minimax
rate is of order kτ . As to the extra logarithmic factor log(τ−1), we do not know whether it is necessary or not.
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Proof of Corollary 2. Fix s = g ◦ u ∈ S α
l (L) and apply Theorem 6 with Tj = T0 for all j ≥ 1, I = {l}, Fl = Hl,r and

γl defined by (4.2) with k = l and r = α1 ∨ · · · ∨ αl�. Arguing as in the proof of Theorem 4, we obtain an estimator
ŝ(l,r) the risk of which satisfies

R(ŝ(l,r), g, u) = C′[ inf
D≥1

(
L2D−2α/l + Dτ

)+ τkL
]

≤ C′′[L2/(2α+1)τ 2α/(2α+1) + kτ L
]

for constants C′ and C′′ depending on l and α only. Finally, we conclude as in the proof of Theorem 4. �

4.4.2. Case of an additive function g

In the multiple index model, when the value of l is allowed to become large (typically not smaller than k) it is often
assumed that g is additive, i.e. of the form

g(y1, . . . , yl) = g1(y1) + · · · + gl(yl) for all y ∈ [−1,1]l , (4.8)

where the gj are smooth functions from [−1,1] to R. Hereafter, we shall denote by F Add
l,c the set of such additive

functions g. The functions s̄ = g ◦ u with g ∈ F Add
l,c and u ∈ T l

0 hence take the form

s̄(x) =
l∑

j=1

gj

(〈θj , x〉) for all x ∈ E. (4.9)

For each j = 1, . . . , l, let Fj be a countable family of finite dimensional linear subspaces of F1,∞ designed to ap-
proximate gj and γj some subprobability measure on Fj . Given (F1, . . . ,Fl) ∈∏l

j=1 Fj , we define the subspace F

of Fl,∞ as

F = {
f (y1, . . . , yl) = f1(y1) + · · · + fl(yl)|fj ∈ Fj for 1 ≤ j ≤ l

}
(4.10)

and denote by F the set of all such F when (F1, . . . ,Fl) varies among
∏l

j=1 Fj . Then, we define a subprobability
measure γ on F by setting

γ (F ) =
l∏

j=1

γj (Fj ) or equivalently Δγ (F) =
l∑

j=1

Δγj
(Fj ),

when F is given by (4.10). For such an F , d∞(g,F ) ≤∑l
j=1 d∞(gj ,Fj ), hence d2∞(g,F ) ≤ l

∑l
j=1 d2∞(gj ,Fj ) and

D(F ) ≤∑l
j=1 D(Fj ). We deduce from Theorem 6 the following result.

Corollary 3. Assume that Theorem 1 holds with q = 2 and let I ⊂ N
� and for j ≥ 1, let Fj be a collection of finite

dimensional linear subspaces of F1,∞ satisfying Assumption 1(i) and (iii) for some subprobability γj . There exists an
estimator ŝ such that

CE
[
d2(s, ŝ)

]≤ inf
l∈I

inf
g∈F Add

l,c ,u∈T l
0

[
d2(s, g ◦ u) +

l∑
j=1

(
Rj (g,Fj ,Δγj

) + τki(g, j, T0)
)]

,

where

Rj(g,Fj ,Δγj
) = inf

Fj ∈Fj

{
d2∞(gj ,Fj ) + τ

[
D(Fj ) + Δγj

(Fj )
]}

for 1 ≤ j ≤ l.

Moreover, if s is of the form (4.9) for some l ∈ I and functions gj ∈ Hαj ([−1,1]) satisfying ‖gj‖αj ,∞ ≤ Lj for
αj ,Lj > 0 and all j = 1, . . . , l, one can choose the Fj and γj in such a way that

Es

[
d2(s, ŝ)

]≤ C′
[

l∑
j=1

L
2/(2αj +1)

j τ 2αj /(2αj +1) + kτ L
]
, (4.11)

where L = log(τ−1) ∨ 1 ∨ [∨l
j=1 log(L2

j k
−1)] and C′ is a constant depending on l and α1, . . . , αl only.
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For j ≥ 1, Rj = Rj (g,Fj ,Δγj
) corresponds to the risk bound for the estimation of the function gj alone when we

use the family of models Fj , i.e. what we would get if we knew θj and that gi = 0 for all i �= j . In short,
∑l

j=1 Rj

corresponds to the estimation rate of the additive function g. If each gj belongs to some smoothness class, this rate
is similar to that of a real-valued function defined on the line with smoothness given by the worst component of g, as
seen in (4.11).

Proof of Corollary 3. The first part is a straightforward consequence of Theorem 6. For the second part, fix s = g ◦u

and r = �α1 ∨ · · · ∨ αl�. Since the gj are (αj ∧ 1,Lj )-Hölderian, i(g, j, T0) ≤ C′L for some C′ depending on the αj

only. By using Proposition 1, Lemma 1 and the collection Fj,r = H1,r with γj,r defined by (4.2), we see that

Rj ≤ C′ inf
D≥1

{
L2

jD
−2αj + Dτ

}≤ C′′(L2/(2αj +1)

j τ 2αj /(2αj +1) + τ
)

for j = 1, . . . , l

and for some constants C′,C′′ depending on the αj only. Putting these bounds together, we end up with an estimator
ŝr the risk of which is bounded from above by the right-hand side of (4.11). We get the result for all values of r by
using Theorem 3 and arguing as in the proof of Theorem 4. �

4.4.3. Artificial neural networks
In this section, we consider approximations of s on E = [−1,1]k by functions of the form

s̄(x) =
l∑

j=1

Rjψ
(〈aj , x〉 + bj

)
with |bj | + |aj |1 ≤ 2r (4.12)

for given values of (l, r) ∈ I = (N�)2. Here, R = (R1, . . . ,Rl) ∈ R
l , aj ∈ R

k , bj ∈ R for j = 1, . . . , l and ψ is a given
uniformly continuous function on R with modulus of continuity wψ . We denote by Sl,r the set of all functions s̄ of
the form (4.12).

Let us now set ψr(y) = ψ(2ry) for y ∈ R and, for x ∈ E, uj (x) = 2−r (〈aj , x〉 + bj ), so that uj ∈ T belongs to
the (k + 1)-dimensional spaces of functions of the form x �→ 〈a, x〉 + b. We can then rewrite s̄ in the form g ◦ u

with g(y1, . . . , yl) =∑l
j=1 Rjψr(yj ). Since g belongs to the l-dimensional linear space F spanned by the functions

ψr(yj ), we may set F = {F }, Δγ (F) = 0 and apply Theorem 6. With wg,j (y) = |Rj |wψ(2ry), (4.6) becomes,

CEs

[
d2(s, ŝl,r )

]≤ d2(s, s̄) + τ(k + 1)

l∑
j=1

inf
{
i ∈ N

�|lR2
j w2

ψ

(
2re−i

)≤ (k + 1)τ i
}
.

If wψ(y) ≤ Lyα for some L > 0, 0 < α ≤ 1 and all y ∈ R+, then, according to (3.4),

CEs

[
d2(s, ŝl,r )

] ≤ d2(s, s̄) + kτ

(
l∑

j=1

[
α−1 log

(
lR2

jL
222rα[kτ ]−1)]∨ 1

)

≤ d2(s, s̄) + lkτ
[
r log 4 + α−1 log+

(
l|R|2∞L2[kτ ]−1)]. (4.13)

These bounds being valid for all (l, r) ∈ I and s̄ ∈ Sl,r , we may apply Theorem 3 to the family of all estimators
ŝl,r , (l, r) ∈ I , with ν given by ν(l, r) = e−l−r . We then get the following result.

Theorem 7. Assume that Theorem 1 holds with q = 2 and that ψ is a continuous function with modulus of continuity
wψ(y) bounded by Lyα for some L > 0, 0 < α ≤ 1 and all y ∈ R+. Then one can build an estimator ŝ = ŝ(X) such
that

CEs

[
d2(s, ŝ)

]≤ inf
(l,r)∈I

inf
s̄∈Sl,r

{
d2(s, s̄) + lkτ r

[
1 + (rα)−1 log+

(
l|R|2∞L2[kτ ]−1)]}. (4.14)
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Approximation by functions of the form (4.12). Various authors have provided conditions on the function s so that it
can be approximated within η by functions s̄ of the form (4.12) for a given function ψ . An extensive list of authors
and results is provided in Section 4.2.2 of Barron, Birgé and Massart [5] and some proofs are provided in Section 8.2
of that paper. The starting point of such approximations is the assumed existence of a Fourier representation of s of
the form

s(x) = Ks

∫
Rk

cos
(〈a, x〉 + δ(a)

)
dFs(a), Ks ∈ R, |δ(a)| ≤ π

for some probability measure Fs on R
k . To each given function ψ that can be used for the approximation of s is

associated a positive number β = β(ψ) > 0 and one has to assume that

cs,β =
∫

|a|β1 dFs(a) < +∞, (4.15)

in order to control the approximation of s by functions of the form (4.12). A careful inspection of the proof of Propo-
sition 6 in Barron, Birgé and Massart [5] shows that, when (4.15) holds, one can derive the following approximation
result for s. There exist constants rψ ≥ 1, γψ > 0 and Cψ > 0 depending on ψ only, a number Rs,β ≥ 1 depending on
cs,β only and some s̄ ∈ Sl,r with |R|1 ≤ Rs,β such that

d(s, s̄) ≤ KsCψ

[
2−rγψ + Rs,β l−1/2] for r ≥ rψ . (4.16)

Putting this bound into (4.14) and omitting the various indices for simplicity, we get a risk bound of the form

R(l, r) = CK2[2−2rγ + R2l−1 + K−2lkτ r
[
1 + (rα)−1 log+

(
lR2L2[kτ ]−1)]],

to be optimized with respect to l ≥ 1 and r ≥ rψ . We shall actually perform the optimization with respect to the first
three terms, omitting the logarithmic one.

Let us first note that, if RK ≤√
rψkτ , one should set r = rψ and l = 1, which leads to

R(1, rψ) ≤ Ckτrψ
[
1 + (rψα)−1 log+

(
R2L2[kτ ]−1)].

Otherwise
√

rψkτ < RK and we set

r = r∗ = inf
{
r ≥ rψ |2−2rγ ≤ (R/K)

√
rkτ

}
and l = l∗ =

⌈
RK√
r∗kτ

⌉
.

If l∗ > 1, then RK(r∗kτ)−1/2 ≤ l∗ < 2RK(r∗kτ)−1/2 hence

R
(
l∗, r∗)≤ CRK

√
r∗kτ

[
1 + 1

r∗α
log+

(
2R3L2K

(kτ)3/2
√

r∗

)]
. (4.17)

If l∗ = 1, then R2 ≤ K−2r∗kτ and
√

rψkτ < RK ≤ √
r∗kτ , hence r∗ > rψ and r∗ − 1 ≥ r∗/2. Then, from the

definition of r∗,

RK−1
√(

r∗/2
)
kτ ≤ RK−1

√(
r∗ − 1

)
kτ < 2−2(r∗−1)γ ≤ 2−2γ ,

hence
√

r∗kτ < (K/R)2−2γ+(1/2) <
√

2K and (4.17) still holds. To conclude, we observe that either −2γ rψ log 2 ≤
log(RK−1

√
rψkτ) and r∗ = rψ or the solution z0 of the equation

2zγ log 2 = log
(
K/[R√

kτ ])− (1/2) log z
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satisfies rψ < z0 ≤ r∗. Since log z0 ≤ z0/e, it follows that r∗ ≥ log(K/[R√
kτ ])/(2γ log 2 + e−1) and, by monotonic-

ity, that

1

r∗ log+
(

2R3L2K

(kτ)3/2
√

r∗

)
≤ L = (

2γ log 2 + e−1) log+
(

2R3L2K

(kτ)3/2√rψ

)[
log

(
K

R
√

kτ

)]−1

,

where L is a bounded function of kτ . One can also check that

r∗ ≤ r =
⌈

log(K/[R√rψkτ ])
2γ log 2

⌉

and (4.17) finally leads, when r∗ > rψ , to

R
(
l∗, r∗)≤ CRK

(
kτ

⌈
log(K/[R√rψkτ ])

2γ log 2

⌉)1/2[
1 + α−1 L

]
. (4.18)

In the asymptotic situation where τ converges to zero, (4.18) prevails and we get a risk bound of order
[−kτ log(kτ )]1/2.

4.5. Estimation of a regression function and PCA

We consider here the regression framework

Yi = s(Xi) + εi, i = 1, . . . , n,

where the Xi are random variables with values in some known compact subset K of R
k (with k > 1 to avoid trivialities)

the εi are i.i.d. centered random variables of common variance 1 for simplicity and s is an unknown function from
R

k to R. By a proper origin and scale change on the Xi , mapping K into the unit ball Bk of R
k , one may assume

that the Xi belong to Bk , hence that E = Bk , which we shall do from now on. We also assume that the Xi are
either i.i.d. with common distribution μ on E (random design) or deterministic (Xi = xi , fixed design), in which case
μ = n−1∑n

i=1 δxi
, where δx denotes the Dirac measure at x. In both cases, we choose for d the distance in L2(E,μ).

As already mentioned in Section 2.3, Theorem 1 with τ = n−1 applies to this framework, at least in the two cases when
the design is fixed and the errors Gaussian (or subgaussian) or when the design is random and the Yi are bounded, say
with values in [−1,1].

4.5.1. Introducing PCA
Our aim is to estimate s from the observation of the pairs (Xi, Yi) for i = 1, . . . , n, assuming that s belongs to some
smoothness class. More precisely, given a subset A of Rk and some concave modulus of continuity w on R+, we define
Hw(A) to be the class of functions h on A such that |h(x) − h(y)| ≤ w(|x − y|) for all x, y in A. Here we assume that
s is defined on Bk and belongs to Hw(Bk), in which case it can be extended to an element of Hw(Rk), which we shall
use when needed. Typically, if w(z) = Lzα with α ∈ (0,1] and the Xi are i.i.d. with uniform distribution μ on E, the
minimax risk bound over Hw(Bk) with respect to the L2(E,μ)-loss is C′L2k/(k+2α)n−2α/(k+2α) (where C′ depends
on k and the distribution of the εi ). It can be quite slow if k is large (see Stone [20]), although no improvement is
possible from the minimax point of view if the distribution of the Xi is uniform on Bk . Nevertheless, if the data Xi

were known to belong to an affine subspace V of R
k the dimension l of which is small as compared to k, so that

μ(V ) = 1, estimating the function s with L2(E,μ)-loss would amount to estimating s ◦ ΠV (where ΠV denotes the
orthogonal projector onto V ) and one would get the much better rate n−2α/(l+2α) with respect to n for the quadratic
risk. Such a situation is seldom encountered in practice but we may assume that it is approximately satisfied for some
well-chosen V . It therefore becomes natural to look for an affine space V with dimension l < k such that s and s ◦ΠV

are close with respect to the L2(E,μ)-distance. For s ∈ Hw(Rk), it follows from Lemma 3 below that,

∫
E

∣∣s(x) − s ◦ ΠV (x)
∣∣2 dμ(x) ≤

∫
E

w2(|x − ΠV x|)dμ(x) ≤ 2w2
[(∫

E

|x − ΠV x|2 dμ(x)

)1/2]
,



Estimating composite functions 303

and minimizing the right-hand side amounts to finding an affine space V with dimension l for which∫
E

|x − ΠV x|2 dμ(x) is minimum. This way of reducing the dimension is usually known as PCA (for Principal
Components Analysis). When the Xi are deterministic and μ = n−1∑n

i=1 δXi
, the solution to this minimization prob-

lem is given by the affine space Vl = a + Wl where the origin a = Xn = n−1∑n
i=1 Xi ∈ Bk and Wl is the linear space

generated by the eigenvectors associated to the l largest eigenvalues (counted with their multiplicity) of XX∗ (where
X is the k × n matrix with columns Xi − Xn and X∗ is the transpose of X). In the general case, it suffices to set
a = ∫

E
x dμ (so that a ∈ E) and replace XX∗ by the matrix

Γ =
∫

E

(x − a)(x − a)∗ dμ(x).

If λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 are the eigenvalues of Γ in nonincreasing order, then

inf{V |dim(V )=l}

∫
E

|x − ΠV x|2 dμ(x) =
k∑

j=l+1

λj (4.19)

(with the convention
∑

∅
= 0) and therefore

inf{V |dim(V )=l} ‖s − s ◦ ΠV ‖2
2 ≤ ‖s − s ◦ ΠVl

‖2
2 ≤ 2w2

(√√√√√ k∑
j=l+1

λj

)
. (4.20)

4.5.2. PCA and composite functions
In order to put the problem at hand into our framework, we have to express s ◦ ΠVl

in the form g ◦ u. To do so we
consider an orthonormal basis u1, . . . , uk of eigenvectors of XX∗ or Γ (according to the situation) corresponding to
the ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0. For a given value of l < k we denote by a⊥ the component of a

which is orthogonal to the linear span Wl of u1, . . . , ul and for x ∈ Bk , we define uj (x) = 〈x,uj 〉 for j = 1, . . . , l.
This results in an element u = (u1, . . . , ul) of T l and a⊥ +∑l

j=1 uj (x)uj = ΠVl
(x) is the projection of x onto the

affine space Vl = a⊥ + Wl . Setting

g(z) = s

(
a⊥ +

l∑
j=1

zjuj

)
for z ∈ [−1,1]l ,

leads to a function g ◦ u with u ∈ T l and g ∈ Fl,c which coincides with s ◦ ΠVl
on Bk as required. Consequently, the

right-hand side of (4.20) provides a bound on the distance between s and g ◦ u. Moreover, since s ∈ Hw(Rk),

∣∣g(z) − g
(
z′)∣∣≤ w

(∣∣∣∣∣
l∑

j=1

zjuj −
l∑

j=1

z′
j uj

∣∣∣∣∣
)

= w

(∣∣∣∣∣
l∑

j=1

(
zj − z′

j

)
uj

∣∣∣∣∣
)

= w
(∣∣z − z′∣∣), (4.21)

so that we may set wg,j = w for all j ∈ {1, . . . , l}.
In the following sections we shall use this preliminary result in order to establish risk bounds for estimators ŝl of

s, distinguishing between the two situations where μ is known and μ is unknown.

4.5.3. Case of a known μ

For D ∈ N
�, we consider the partition Pl,D of [−1,1]l into Dl cubes with edge length 2/D and denote by Fl,D the

linear space of functions which are piecewise constant on each element of Pl,D so that D(Fl,D) = Dl for all D ∈ N�.
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This leads to the family F = {Fl,D,D ∈ N�} and we set γ (Fl,D) = e−D for all D ≥ 1. We define uj as in the previous
section and take for Tj the family reduced to the single model Tj = {uj } for j = 1, . . . , l. Then D(Tj ) = 0 for all j

and we take for λj the Dirac measure on Tj . This leads to a set S which satisfies Assumption 1 and we may therefore
apply Theorem 2 which leads to an estimator ŝl with a risk bounded by

CEs

[‖s − ŝl‖2
2

]≤ d2(s, g ◦ u) + inf
D≥1

{
d2∞(g,Fl,D) + Dl + D

n

}
.

Since s ◦ ΠVl
and g ◦ u coincide on Bk , it follows from (4.20) that

‖s − g ◦ u‖2
2 = ‖s − s ◦ ΠVl

‖2
2 ≤ 2w2

(√√√√√ k∑
j=l+1

λj

)
.

Moreover, for all cubes I ∈ Pl,D and x ∈ I , the Euclidean distance between x and the center of I is at most
√

lD−1,
hence by (4.21), d∞(g,Fl,D) ≤ w(

√
lD−1) for all D ≥ 1. Putting these inequalities together we see that the risk of ŝl

is bounded by

CEs

[‖s − ŝl‖2
2

]≤ w2

(√√√√ k∑
j=l

λj

)
+ inf

D≥1

{
w2(√lD−1)+ Dl

n

}
. (4.22)

4.5.4. Case of an unknown μ

When μ corresponds to an unknown distribution of the Xi , the matrix Γ is unknown, its eigenvectors u1, . . . , uk and
the vector a as well and therefore also the elements u1, . . . , ul of T . In order to cope with this problem, we have to
approximate the unknown uj which requires to modify the definition of Tj given in the previous section, keeping
all other things unchanged. For each v ∈ R

k with |v| ≤ 1, we denote by tv the linear map, element of T , given by
tv(x) = 〈x, v〉. Denoting by B◦

k the unit sphere in R
k we then set, for all j , Tj = T = {tv, v ∈ B◦

k} which is a subset
of a k-dimensional linear subspace of L2(μ). It follows that Assumption 1 remains satisfied but now with D(Tj ) = k.
Since uj ∈ Tj for all j , an application of Theorem 2 leads to

CEs

[
d2(s, ŝ)

] ≤ k

n

l∑
j=1

i(g, j, T ) + d2(s, g ◦ u) + inf
D≥1

{
d2∞(g,Fl,D) + Dl + D

n

}
,

where i(g, j, T ) is given by (3.3). Since, by (4.21), wg,j = w for all j ∈ {1, . . . , l},

i(g, j, T ) = i = inf

{
i ∈ N

�|lw2(e−i
)≤ ik

n

}
.

Arguing as in the case of a known μ, we get

CEs

[‖s − ŝl‖2
2

]≤ kli

n
+ w2

(√√√√√ k∑
j=l+1

λj

)
+ inf

D≥1

{
w2(√lD−1)+ Dl

n

}
.

Let iD = log(D/
√

l)�. If i ≤ iD , then kli/n ≤ klD/n since iD ≤ D. Otherwise, i ≥ iD + 1 ≥ 2 and

l2w2(e−iD
)≥ l2w2(e−i+1)>

kl(i − 1)

n
≥ kli

2n
,
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which shows that kli/n < 2l2w2(
√

lD−1) + klD/n. Finally

CEs

[‖s − ŝl‖2
2

] ≤ w2

(√√√√√ k∑
j=l+1

λj

)
+ inf

D≥1

{
l2w2(√lD−1)+ Dl + klD

n

}

≤ w2

(√√√√√ k∑
j=l+1

λj

)
+ lk inf

D≥1

{
w2(√lD−1)+ 2Dl

n

}
,

which is, up to constants, the same as (4.22). We do not know whether the multiplicative factor lk arising here and
missing in (4.22) can be improved or not.

4.5.5. Varying l

The previous bounds are valid for all values of l ∈ I = {1, . . . , k} but we do not know which value of l will lead to
the best estimator. We may therefore apply Theorem 3 with ν(l) = l−2/2 for l ∈ I which leads to the following risk
bound for the new estimator ŝ in the case of a known μ:

CEs

[‖s − ŝ‖2
2

]≤ inf
l∈{1,...,k} inf

D≥1

[
w2

(√√√√√ k∑
j=l+1

λj

)
+ w2(√lD−1)+ Dl + log l

n

]
.

Apart from multiplicative constants depending only on k, the same result holds when μ is unknown. If w(z) = Lzα

for some L > 0 and α ∈ (0,1], we get, since
∑k

j=l+1 λj ≤ (k − l)λl+1 (with the convention λk+1 = 0),

CEs

[‖s − ŝ‖2
2

]≤ inf
l∈{1,...,k} inf

D≥1

{
L2[(k − l)λl+1

]α + L2lαD−2α + Dl + log l

n

}
.

Assuming that n ≥ L−2 to avoid trivialities and choosing D = �(nL2lα)1/(l+2α)�, we finally get

CEs

[‖s − ŝ‖2
2

]≤ inf
l∈{1,...,k}

{
L2[(k − l)λl+1

]α + log l

n
+ L2l/(l+2α)

n2α/(l+2α)

}
.

For l = k, we recover the minimax risk bound over Hw(Bk), namely C′(k)L2k/(k+2α)n−2α/(k+2α), up to constants.
Therefore our procedure can only improve the risk as compared to the minimax approach.

4.6. Introducing parametric models

In this section, we approximate s by functions of the form s̄ = g ◦u where g belongs to Fl,c and the components uj of
u to parametric models Tj = {uj (θ , ·), θ ∈ Θj } ⊂ T indexed by subsets Θj of R

kj with kj ≥ 1. Besides, we assume
that the following holds.

Assumption 3. For each j = 1, . . . , l, Θj ⊂ Bkj
(0,Mj ) for some positive number Mj and the mapping θ �→ uj (θ , ·)

from Θj to (T , d) is (βj ,Rj )-Hölderian for βj ∈ (0,1] and Rj > 0 which means that

d
(
uj (θ , ·), uj

(
θ ′, ·))≤ Rj

∣∣θ − θ ′∣∣βj for all θ , θ ′ ∈ Θj . (4.23)

Under such an assumption, the following result holds.
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Theorem 8. Assume that Theorem 1 holds and let l ≥ 1, T1, . . . ,Tl be parametric sets satisfying Assumption 3, F be
a collection of models satisfying Assumption 1(i) and γ be a subprobability on F. There exists an estimator ŝ such
that

CEs

[
d2(s, ŝ)

] ≤ d2(s, g ◦ u) + inf
F∈F

[
d2∞(g,F ) + τ

[
Δγ (F) + D(F )

]]

+ τ

[
l∑

j=1

kj log
(
1 + 2MjR

1/βj

j

)]+
l∑

j=1

inf
i≥1

[
lw2

g,j

(
e−i

)+ iτ
(
1 + kjβ

−1
j

)]

for all g ∈ Fl,c and uj ∈ Tj , j = 1, . . . , l.
In particular, for all (α,L)-Hölderian functions g with α ∈ (0,1]l and L ∈ (R�+)l ,

CEs

[
d2(s, ŝ)

] ≤ d2(s, g ◦ u) + inf
F∈F

[
d2∞(g,F ) + τ

[
Δγ (F) + D(F )

]]

+ τ

l∑
j=1

[
kj log

(
1 + 2MjR

1/βj

j

)+ (Lj ∨ 1)
(
1 + kjβ

−1
j

)]
, (4.24)

where

Lj = 1

2αj

log

(
lL2

j

(1 + kjβ
−1
j )τ

)
for j = 1, . . . , l. (4.25)

Although this theorem is stated for a given value of l, we may, arguing as before, let l vary and design a new
estimator which achieves the same risk bounds (apart for the constant C) whatever the value of l.

As usual, the quantity infF∈F[d2∞(g,F ) + τ(Δγ (F ) + D(F ))] corresponds to the estimation rate for the function
g alone by using the collection F. In particular, if g ∈ Hα([−1,1]l ) with α ∈ (R�+)l , this bound is of order τ 2α/(2α+l)

as τ tends to 0 for a classical choice of F (see Section 4.1). Since for all j , g is also (αj ∧ 1)-Hölderian as a function
of xj alone, the last term in the right-hand side of (4.24), which is of order −τ log τ , becomes negligible as compared
to τ 2α/(2α+l) and therefore, when s is really of the form g ◦ u with g ∈ Hα([−1,1]l ) the rate we get for estimating s

is the same as that for estimating g.

Proof of Theorem 8. For η > 0 and j = 1, . . . , l, let Θj [η] be a maximal subset of Θj satisfying |t − t ′| > η for all
t, t ′ in Θj [η]. Since Θj is a subset of the Euclidean ball in R

kj centered at 0 with radius Mj , it follows from classical
entropy computations (see for instance Lemma 4 in Birgé [8]) that log |Θj [η]| ≤ kj log(1 + 2Mjη

−1). For all i ∈ N
�,

let Tj,i be the image of Θj,i = Θj [(Rj ei )−1/βj ] by the mapping θ �→ uj (θ , ·). Clearly,

log |Tj,i | ≤ log |Θj,i | ≤ kj log
(
1 + 2MjR

1/βj

j ei/βj
)≤ kj

[
log

(
1 + 2MjR

1/βj

j

)+ iβ−1
j

]
.

By the maximality of Θj,i and (4.23), for all θ ∈ Θj there exists θ ∈ Θj,i such that d(uj (θ , ·), uj (θ , ·)) ≤
Rj |θ − θ |βj ≤ e−i , therefore Tj,i is an e−i -net for Tj . For j = 1, . . . , l, we set Tj = ⋃

i≥1 Tj,i so that the mod-

els in Tj are merely the elements of the sets Tj,i . For a model T that belongs to Tj,i \ ⋃1≤i′<i Tj [e−i′ ] (with the
convention

⋃
∅

= ∅) we set

Δλj
(T ) = log |Tj,i | + i ≤ kj log

(
1 + 2MjR

1/βj

j

)+ i
(
1 + kjβ

−1
j

)
,

which defines a measure λj on Tj satisfying

∑
T ∈Tj

λj (T ) ≤
∑
i≥1

∑
t∈Tj,i

λj

({t})≤
∑
i≥1

e−i < 1.
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Since for all j and T ∈ Tj , D(T ) = 0, we get the first risk bound by applying Theorem 2 to the corresponding set S.
To prove (4.24), let us set i(j) = �Lj� ∨ 1 for j = 1, . . . , l with Lj given by (4.25), so that 1 ≤ i(j) ≤ Lj ∨ 1 and
notice that, if z ≥ Lj ∨ 1, then lL2

j e−2αj z ≤ zτ(1 + kjβ
−1
j ). If Lj ≥ 1, then Lj ≤ i(j) + 1 ≤ 2Lj , hence

lL2
j e−2αj (i(j)+1) ≤ (

i(j) + 1
)
τ
(
1 + kjβ

−1
j

)≤ 2Lj τ
(
1 + kjβ

−1
j

)
and

lw2
g,j

(
e−i(j)

)≤ lL2
j e−2αj i(j) ≤ 2e2αj Lj τ

(
1 + kjβ

−1
j

)≤ 2e2 Lj τ
(
1 + kjβ

−1
j

)
.

Otherwise, Lj < 1, i(j) = 1 ≥ Lj ∨ 1 and lw2
g,j (e

−i(j)) ≤ lL2
j e−2αj ≤ τ(1 + kjβ

−1
j ), so that in both cases

lw2
g,j (e

−i(j)) ≤ 2e2(Lj ∨ 1)τ (1 + kjβ
−1
j ), which leads to the conclusion. �

4.6.1. Estimating a density by a mixture of Gaussian densities
In this section, we consider the problem of estimating a bounded density s with respect to some probability μ (to
be specified later) on E = R

k , d denoting, as before, the L2-distance on L2(E,μ). We recall from Section 2.3 that
Theorem 1 applies to this situation with τ = n−1‖s‖∞(1 ∨ log‖s‖∞). A common way of modeling a density on
E = R

k is to assume that it is a mixture of Gaussian densities (or close enough to it). More precisely, we wish to
approximate s by functions s̄ of the form

s̄(x) =
l∑

j=1

qjp(mj ,Σj , x) for all x ∈ R
k, (4.26)

where l ≥ 1, q = (q1, . . . , ql) ∈ [0,1]l satisfies
∑l

j=1 qj = 1 and for j = 1, . . . , l, p(mj ,Σj , ·) = dN (mj ,Σ
2
j )/dμ

denotes the density (with respect to μ) of the Gaussian distribution N (mj ,Σ
2
j ) centered at mj ∈ R

k with covariance

matrix Σ2
j for some symmetric positive definite matrix Σj . Throughout this section, we shall restrict to means mj

with Euclidean norms not larger than some positive number r and to matrices Σj with eigenvalues ρ satisfying
ρ ≤ ρ ≤ ρ for positive numbers ρ < ρ. In order to parametrize the corresponding densities, we introduce the set Θ

gathering the elements θ of the form θ = (m,Σ) where Σ is a positive symmetric matrix with eigenvalues in [ρ,ρ]
and m ∈ Bk(0, r). We shall consider Θ as a subset of R

k(k+1) endowed with the Euclidean distance. In particular, the
set Mk of square k × k matrices of dimension k is identified to R

k2
and endowed with the Euclidean distance and the

corresponding norm N defined by

N2(A) =
k∑

i=1

k∑
j=1

A2
i,j if A = (Ai,j )1≤i≤k

1≤j≤k

.

This norm derives from the inner product [A,B] = tr(AB∗) (where B∗ denotes the transpose of B) on Mk and satisfies
N(AB) ≤ N(A)N(B) (by Cauchy–Schwarz inequality) and N(A) = N(UAU−1) for all orthogonal matrices U . In
particular, if A is symmetric and positive with eigenvalues bounded from above by c, N(A) ≤ √

kc. We shall use these
properties later on. For b = r2/(2ρ2) + k log(

√
2ρ/ρ) and μ the Gaussian distribution N (0,2ρ2Ik) on R

k (where Ik

denotes the identity matrix) we define the parametric set T by

T = {
u(θ, ·) = e−b/2

√
p(θ, ·), θ ∈ Θ

}
.

For parameters θ1 = (m1,Σ1), . . . , θl = (ml,Σl) in Θ , the density s̄ can be viewed as a composite function g ◦ u

with

g(y1, . . . , yl) = ebq1y
2
1 + · · · + ebqly

2
l (4.27)
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and u = (u1, . . . , ul) with uj (·) = u(θj , ·) for j = 1, . . . , l. With our choices of b and μ, u(θ, ·) ∈ T for all
θ = (m,Σ) ∈ Θ as required, since for all x ∈ E

p(θ, x) = (2ρ2)k/2

detΣ
exp

[ |x|2
4ρ2

− |Σ−1(x − m)|2
2

]

≤ (
2ρ2ρ−2)k/2 exp

[ |x − m|2
2ρ2

+ |m|2
2ρ2

− |Σ−1(x − m)|2
2

]
≤ (

2ρ2ρ−2)k/2er2/(2ρ2),

hence p(θ, x) ≤ eb. An application of Theorem 8 leads to the following result.

Corollary 4. Let s be a bounded density in L2(E,μ), d(·, ·) be the L2-distance, τ = n−1‖s‖∞(1 ∨ log‖s‖∞), M =√
kρ + r , b = r2/(2ρ2) + k log(

√
2ρ/ρ), R = √

k/2e−b/2ρ−1 and

L(τ ) = 1

2
log

(
4le2bτ−1

1 + k(k + 1)

)
.

There exists an estimator ŝ satisfying for some universal constant C > 0

CEs

[
d2(s, ŝ)

]≤ inf
g,u

{
d2(s, g ◦ u)

}+ lk(k + 1)τ
[
log(1 + 2MR) + (

L(τ ) ∨ 1
)]

, (4.28)

where the infimum runs among all functions g of the form (4.27) and u = (u1, . . . , ul) ∈ Tl .

The second term in the right-hand side of (4.28) does not depend on g nor u and is of order −τ log τ as τ tends
to 0. As already mentioned, one can also consider many values of l simultaneously and find the best one by using
Theorem 3. Up to a possibly different constant C, the risk of the resulting estimator then satisfies (4.28) for all l ≥ 1
simultaneously. The problem of estimating the parameters involved in a mixture of Gaussian densities in R

k has also
been considered by Maugis and Michel [19]. Their approach is based on model selection among a family of parametric
models consisting of densities of the form (4.26). Nevertheless, they restrict to Gaussian densities with specific forms
of covariance matrices only.

Proof of Corollary 4. First note that for all θ ∈ Θ , |θ | = |m| + N(Σ) ≤ r + √
kρ. Hence, if we can prove that for all

θ0 = (m0,Σ0), θ1 = (m1,Σ1) in Θ ,

d
(
u(θ0, ·), u(θ1, ·)

)≤
√

k/2e−b/2

ρ
|θ0 − θ1|, (4.29)

Assumption 3 will be satisfied with

Mj = M = r + √
kρ and Rj =√

k/2e−b/2ρ−1 = R for j = 1, . . . , l.

We shall therefore be able to apply Theorem 8 with Tj = T for all j , τ = n−1‖s‖∞(1 ∨ log‖s‖∞), F = {F } where
F is the linear span of dimension D(F ) = l of functions g of the form (4.27) and γ the Dirac mass at F . Since the
functions g of the form (4.27) are L-Lipschitz with Lj = 2qj eb ≤ 2eb for all j , we shall finally deduce (4.28) from
(4.24). We therefore only have to prove (4.29). Let us first note that

d2(u(θ0, ·), u(θ1, ·)
)= 2e−bh2(N

(
m0,Σ

2
0

)
, N

(
m1,Σ

2
1

))
, (4.30)

where h denotes the Hellinger distance defined by (1.1). Some classical calculations show that

h2(N
(
m0,Σ

2
0

)
, N

(
m1,Σ

2
1

))= 1 − exp[−(1/4)〈m1 − m0, (Σ
2
0 + Σ2

1 )−1(m1 − m0)〉]√
det((Σ−1

0 Σ1 + Σ0Σ
−1
1 )/2)

,
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and from the inequalities, 1 − e−z ≤ z and log(detA) ≤ tr(A − Ik) which hold for all z ∈ R and all matrices A such
that detA > 0, by setting Σ2 = Σ2

0 + Σ2
1 we deduce that

4h2(N
(
m0,Σ

2
0

)
, N

(
m1,Σ

2
1

))
≤ 2 log

[
det

(
Σ−1

0 Σ1 + Σ0Σ
−1
1

2

)]
+ 〈

m1 − m0,Σ
−2(m1 − m0)

〉
≤ tr

(
Σ−1

0 Σ1 + Σ0Σ
−1
1 − 2Ik

)+ 〈
m1 − m0,Σ

−2(m1 − m0)
〉

= tr
(
(Σ0 − Σ1)Σ

−1
0 (Σ0 − Σ1)Σ

−1
1

)+ 〈
m1 − m0,Σ

−2(m1 − m0)
〉= U1 + U2,

with

U1 = tr
(
(Σ0 − Σ1)Σ

−1
0 (Σ0 − Σ1)Σ

−1
1

)
and U2 = 〈

m1 − m0,Σ
−2(m1 − m0)

〉
.

It remains to bound U1 and U2 from above. For U1, taking A = (Σ0 − Σ1)Σ
−1
0 and B = Σ−1

1 (Σ0 − Σ1) and using
the fact that the eigenvalues of Σ−1

0 and Σ−1
1 are not larger than ρ−1, we get

U1 = [A,B] ≤ N(A)N(B) = N
(
(Σ0 − Σ1)Σ

−1
0

)
N
(
Σ−1

1 (Σ0 − Σ1)
)

≤ N
(
Σ−1

0

)
N
(
Σ−1

1

)
N2(Σ0 − Σ1) ≤ kN2(Σ0 − Σ1)

ρ2
.

Let us now turn to U2. It follows from the same arguments that the symmetric matrix Σ2 = Σ2
0 + Σ2

1 satisfies for all
x ∈ R

k , 〈Σ2x, x〉 = |Σ0x|2 + |Σ1x|2 ≥ 2ρ2|x|2, hence

U2 = 〈
m1 − m0,Σ

−2(m1 − m0)
〉≤ |m0 − m1|2

2ρ2
.

Putting these bounds together, we obtain that

4h2(N
(
m0,Σ

2
0

)
, N

(
m1,Σ

2
1

))≤ k

ρ2

(
N2(Σ1 − Σ0) + |m0 − m1|2

)= k

ρ2
|θ0 − θ1|2,

which, together with (4.30), leads to (4.29). �

5. Proofs of the main results

Let us recall that, in this section, d denotes the distance associated to the norm ‖ · ‖q of Lq(E,μ) and d∞ the distance
associated to the supnorm on Fl,∞.

5.1. Preliminary approximation results

The purpose of this section is to see how well f ◦ t approximates g ◦ u when we know how well f approximates g

and t = (t1, . . . , tl) approximates u.

Proposition 4. Let p ≥ 1, g ∈ Fl,c , f ∈ Fl,∞ and t, u ∈ T l . If wg is a modulus of continuity for g, then

‖g ◦ u − f ◦ t‖p ≤ d∞(g, f ) + 21/p
l∑

j=1

wg,j

(‖uj − tj‖p

)
,

with the convention 21/∞ = 1.
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Proof. It relies on the following lemma the proof of which is postponed to the end of the section.

Lemma 3. Let (E, E ,μ) be some probability space and w some nondecreasing and nonnegative concave function
on R+ such that w(0) = 0. Then ‖w(|h|)‖p ≤ 21/pw(‖h‖p) for all p ∈ [1,+∞] and h ∈ Lp(μ), with the convention
21/∞ = 1.

We argue as follows. For all y, y′ ∈ [−1,1]l , |g(y) − g(y′)| ≤∑l
j=1 wg,j (|yj − y′

j |) and, since μ is a probability
on E,

‖g ◦ u − f ◦ t‖p ≤ ‖g ◦ u − g ◦ t‖p + ‖g ◦ t − f ◦ t‖p

≤
∥∥∥∥∥

l∑
j=1

wg,j

(|uj − tj |
)∥∥∥∥∥

p

+ ‖g ◦ t − f ◦ t‖p

≤
l∑

j=1

∥∥wg,j

(|uj − tj |
)∥∥

p
+ sup

y∈[−1,1]l
∣∣g(y) − f (y)

∣∣

≤ 21/p

l∑
j=1

wg,j

(‖uj − tj‖p

)+ d∞(g, f ),

which proves the proposition. �

Proof of Lemma 3. Since there is nothing to prove if ‖h‖p = 0, we shall assume that ‖h‖p > 0. The assumptions on
w imply that, for all 0 < a < b, b−1w(b) ≤ a−1w(a) and w(a) ≤ w(b). Consequently, for p ∈ [1,+∞[,

∫
E

wp
(|h|)dμ =

∫
E

wp
(|h|)1|h|≤b dμ +

∫
E

wp
(|h|)1|h|>b dμ

≤ wp(b) +
∫

E

wp(|h|)
|h|p |h|p1|h|>b dμ ≤ wp(b) + wp(b)

bp

∫
E

|h|p dμ,

and the result follows by choosing b = ‖h‖p . The case p = ∞ can be deduced by letting p go to +∞. �

5.2. Basic theorem

We shall first prove a general theorem of independent interest that applies to finite models T for functions in T l and
is at the core of all our further developments.

Theorem 9. Let I be a countable set and ν a subprobability on I . Assume that, for each  ∈ I , we are given two
countable families T and F of subsets of T l and Fl,∞ respectively such that each element T of T is finite and
each F ∈ F is a linear subspace of dimension D(F ) ≥ 1 of Fl,∞. Let λ and γ be subprobabilities on T and F

respectively. One can design an estimator ŝ = ŝ(X) satisfying, for all  ∈ I , all u ∈ T l and g ∈ Fl,c with modulus of
continuity wg ,

CEs

[
d2(s, ŝ)

] ≤ d2(s, g ◦ u) + inf
T∈T

{
l inf
t∈T

l∑
j=1

w2
g,j

(‖uj − tj‖p

)+ τ
[
Δλ

(T) + log |T| + Δν()
]}

+ inf
F∈F

{
d2∞(g,F ) + τ

[
D(F ) + Δγ

(F )
]}

.



Estimating composite functions 311

Proof. For each t ∈ ⋃
T∈T

T and F ∈ F we consider the set Ft = {f ◦ t, f ∈ F } ⊂ Lq(E,μ), which is a D(F )-
dimensional linear space. This leads to a new countable family of models S together with a subprobability π on S

given by

S =
{
Ft , t ∈

⋃
T∈T

T,F ∈ F

}
; π(Ft ) = γ(F ) inf

T∈T,T�t
|T|−1λ(T). (5.1)

We then set

S =
⋃
∈I

S and π(Ft ) = ν()π(Ft ) for Ft ∈ S.

It follows that

Δπ(Ft ) = Δγ
(F ) + inf

T∈T,T�t

[
Δλ

(T) + log
(|T|)]+ Δν() for Ft ∈ S.

Applying Theorem 1 to S and π leads to an estimator ŝ satisfying, for each  ∈ I ,

CEs

[
d2(s, ŝ)

]≤ inf
F∈F,T∈T,t∈T

{
d2(s,Ft ) + τ

[
D(F ) + Δγ

(F ) + Δλ
(T) + log |T| + Δν()

]}
.

We now use Proposition 4 which implies that, for each f ◦ t ∈ Ft ,

d2(s, f ◦ t) ≤ (‖s − g ◦ u‖q + ‖g ◦ u − f ◦ t‖q

)2

≤
(

‖s − g ◦ u‖q + d∞(g, f ) + 21/q
l∑

j=1

wg,j

(‖uj − tj‖q

))2

≤ 3

(
‖s − g ◦ u‖2

q + d2∞(g, f ) + 4l

l∑
j=1

w2
g,j

(‖uj − tj‖q

))

for some universal constant C since 21/q ≤ 2. The conclusion follows from a minimization over all possible choices
for f and t . �

5.3. Building new models

In order to use Theorem 9, which applies to finite sets T, starting from the models T which satisfy Assumption 1, we
need to derive new models from the original ones. Let us first observe that, since uj takes its values in [−1,1] and μ

is a probability on E, d(0, uj ) ≤ 1. It is consequently useless to try to approximate uj by elements of Lq(E,μ) that
do not belong to B(0,2) since 0 always does better. We may therefore replace T ⊂ Lq(E,μ) by (T ∩ B(0,2)) ∪ {0},
denoting again the resulting set, which remains a subset of some D(T )-dimensional linear space, by T . Moreover, this
modification can only decrease the value of d(T ,uj ). Since now T ⊂ B(0,2), we can use the discretization argument
described by the following lemma.

Lemma 4. Let T ⊂ B(0,2) be either a singleton (in which case D(T ) = 0) or a subset of some D(T )-dimensional
linear subspace of Lq(E,μ) with D(T ) ≥ 1. For each η ∈ (0,1], one can find a subset T [η] of T with cardinality
bounded by (5/η)D(T ) such that

inf
t∈T [η]d(t, v) ≤ inf

t∈T
d(t, v) + [

η ∧ D(T )
]

for all v ∈ T . (5.2)

Proof. If D(T ) = 0, then T = {t}, we set T [η] = {(−1 ∨ t) ∧ 1} and the result is immediate since v takes its values
in [−1,1]. Otherwise, let T ′ be a maximal subset of T such that d(t, t ′) > η for each pair (t, t ′) of distinct points
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in T ′. Then, for each t ∈ T there exists t ′ ∈ T ′ such that d(t, t ′) ≤ η and it follows from Lemma 4 in Birgé [8] that
|T ′| ≤ (5/η)D(T ). Now set T [η] = {(−1 ∨ t) ∧ 1, t ∈ T ′}. Then (5.2) holds since D(T ) ≥ 1. �

We are now in a position to build discrete models for approximating the elements of T l . Given j ∈ {1, . . . , l},
Tj in Tj and some i ∈ N

�, the previous lemma provides a set Tj [e−i] satisfying |Tj [e−i]| ≤ exp[D(Tj )(i + log 5)].
Moreover,

d
(
uj ,Tj

[
e−i

])≤ d(uj , Tj ) + [
e−i ∧ D(Tj )

]
for all u ∈ T l and i ∈ N

�. (5.3)

We then define the family T of models by

T =
{

T =
l∏

j=1

Tj

[
e−ij

]
with (ij , Tj ) ∈ N

� × Tj for j = 1, . . . , l

}
. (5.4)

Then each T = T1[e−i1] × · · · × Tl[e−il ] in T has a finite cardinality bounded by

log |T| ≤
l∑

j=1

D(Tj )(ij + log 5). (5.5)

5.4. Proof of Theorem 2

Starting from the families Tj , 1 ≤ j ≤ l, we build the set T given by (5.4) as indicated in the previous section and we
apply Theorem 9 to F and T. This requires to define a suitable subprobability λ on T, which can be done by setting,
for each T = T1[e−i1] × · · · × Tl[e−il ] in T,

λ(T) =
l∏

j=1

λj (Tj ) exp
[−ij D(Tj )

]
or Δλ(T) =

l∑
j=1

[
Δλj

(Tj ) + ij D(Tj )
]
.

Applying Theorem 9 to F and T with I reduced to a single element and ν the Dirac measure and using (5.5) and (5.3)
which implies that

inf
tj ∈Tj [e−ij ]

wg,j

(‖uj − tj‖p

) ≤ wg,j

([
e−ij ∧ D(Tj )

]+ d(uj , Tj )
)

≤ wg,j

(
e−ij ∧ D(Tj )

)+ wg,j

(
d(uj , Tj )

)
by the subadditivity property of the modulus of continuity wg,j , we get the risk bound

CEs

[
d2(s, ŝ)

]
≤ inf

l∑
j=1

{
2l
[
w2

g,j

(
d(uj , Tj )

)+ w2
g,j

(
e−ij ∧ D(Tj )

)]+ τ
[
Δλj

(Tj ) + (2ij + log 5)D(Tj )
]}

+ d2(s, g ◦ u) + inf
F∈F

{
d2∞(g,F ) + τ

[
D(F ) + Δγ (F)

]}
,

where the first infimum runs among all Tj ∈ Tj and all ij ∈ N
� for j = 1, . . . , l. Setting ij = i(g, j, Tj ) implies that

lw2
g,j (e

−ij ∧ D(Tj )) ≤ τ ij D(Tj ), which proves (3.2). As to (3.6), it simply derives from the fact that, if D(T ) ≥ 1,
then

i(g, j, T ) ≤ ⌈
(2αj )

−1 log
(
lL2

j

[
τ D(T )

]−1)⌉≤ [
α−1

j log
(
lL2

j

[
τ D(T )

]−1)]∨ 1 = Lj,T .
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5.5. Proof of Theorem 3

It follows exactly the line of proof of Theorem 2 via Theorem 9 with an additional step in order to mix the differ-
ent families of models corresponding to the various sets S. To each S corresponds a family of models S and a
subprobability π on S given by (5.1). We again apply Theorem 9 with I and ν as given in Theorem 3.

5.6. Proof of Lemma 1

If D = 1, we get the bound a + b. When a > b, we can choose D such that (a/b)1/(θ+1) ≤ D < (a/b)1/(θ+1) + 1, so
that

aD−θ + bD < a(a/b)−θ/(θ+1) + b
[
(a/b)1/(θ+1) + 1

]= b + 2a1/(θ+1)bθ/(θ+1)

and the bound b + [2a1/(θ+1)bθ/(θ+1) ∧ a] follows. If b ≥ a, the bound 2b holds, otherwise b < a1/(θ+1)bθ/(θ+1) and
the conclusion follows.

5.7. Proof of Proposition 3

Let us consider, for i ∈ {1, . . . , k} and x ∈ [−1,1]k , the map g ◦ ux(t) = g ◦ u(x1, . . . , xi−1, t, xi+1, . . . , xk) from
[−1,1] into R. It suffices to show that it belongs to Hθ ([−1,1]k) for all i and x. If at least α or βi are not larger than
1, the result is clear. Otherwise both are larger than 1 and we can write βi = bi + β ′

i and α = a + α′ with a, bi ∈ N
�

and β ′
i , α

′ ∈ (0,1]. Both functions g and ux are bi ∧ a times differentiable and the derivatives g() ◦ ux and u
()
x

for  = 0, . . . , bi ∧ a are Hölderian with smoothness ρ = (βi − bi ∧ a) ∧ (α − bi ∧ a) ∈ (0,1]. Since the derivative
of order bi ∧ a of g ◦ ux is a polynomial with respect to these functions, we derive (4.4) from the fact that the set
(Hρ([−1,1]k),+, ·) is an algebra on R.

We shall prove the second part of the proposition for the case k = 1 only since the general case can be proved by
similar arguments. For ρ > 0, let hρ ∈ Hρ([−1,1])\⋃ρ′>ρ Hρ′

([−1,1]). Given α,β > 0, we distinguish between the

cases below and the reader can check that for each of these g ∈ Hα([−1,1]), u ∈ Hβ([−1,1]), g ◦ u ∈ Hθ ([−1,1])
with θ = φ(α,β) but g ◦ u /∈ Hθ ′

([−1,1]) whatever θ ′ > θ . If α,β ≤ 1, take g(x) = |x|α and u(y) = |y|β for all
x, y ∈ [−1,1], if 1 < β and α ≤ β , take g = hα and u(y) = y for all y ∈ [−1,1], finally, if α > 1 and α > β , take
g(x) = x for all x ∈ [−1,1] and u = hβ .

5.8. Proof of Lemma 2

For all α > 0, the map defined for y in (0,+∞) by

φα(y) = 1

φ(α,1/y)
=
{

y(α ∧ 1)−1 if y ≥ (α ∨ 1)−1;
α−1 otherwise,

is positive, piecewise linear and convex. Hence,

1

θ
= 1

k

k∑
i=1

φα

(
1

βi

)
≥ φα

(
1

β

)
= 1

φ(α,β)

and equality holds if and only if βi ≤ (α ∨ 1) for all i or if for all i, βi ≥ (α ∨ 1). We conclude by using the fact that
φ(α, z) ≤ z(α ∧ 1) for all positive number z and that equality holds if and only if z ≤ α ∨ 1.
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