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Abstract. Under the key assumption of finite ρ-variation, ρ ∈ [1,2), of the covariance of the underlying Gaussian process, sharp
a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional
Brownian motion (fBM), ρ = 1 resp. ρ = 1/(2H), we recover and extend the respective results of (Trans. Amer. Math. Soc.
361 (2009) 2689–2718) and (Ann. Inst. Henri Poincasé Probab. Stat. 48 (2012) 518–550). In particular, we establish an a.s. rate
k−(1/ρ−1/2−ε), any ε > 0, for Wong–Zakai and Milstein-type approximations with mesh-size 1/k. When applied to fBM this
answers a conjecture in the afore-mentioned references.

Résumé. Nous établissons des vitesses fines de convergence presque sûre pour les approximations des chemins rugueux Gaussiens,
sous l’hypothèse que la fonction de covariance du processus Gaussien sous-jacent ait une ρ-variation finie, ρ ∈ [1,2). Dans le cas
du mouvement Brownien, respectivement du Brownien fractionnaire (fBM), pour lesquels ρ = 1 resp. ρ = 1/(2H), ce résultat
généralise les résultats respectifs de (Trans. Amer. Math. Soc. 361 (2009) 2689–2718) et (Ann. Inst. Henri Poincasé Probab. Stat.
48 (2012) 518–550).

Notamment, nous établissons le taux de convergence presque sure k−(1/ρ−1/2−ε), tout ε > 0, pour les approximations de
Wong–Zakai et de type Milstein avec pas de discrétisation 1/k. Dans le cas du fBM, ce résultat résout une conjecture posée par les
références ci-dessus.
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1. Introduction

Recall that rough path theory [7,14,15] is a general framework that allows to establish existence, uniqueness and
stability of differential equations driven by multi-dimensional continuous signals x : [0, T ] → R

d of low regularity.
Formally, a rough differential equation (RDE) is of the form

dyt =
d∑

i=1

Vi(yt )dxi
t ≡ V (yt )dxt ; y0 ∈ R

e, (1.1)
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where (Vi)i=1,...,d is a family of vector fields in R
e. When x has finite p-variation, p < 2, such differential equa-

tions can be handled by Young integration theory. Of course, this point of view does not allow to handle differential
equations driven by Brownian motion, indeed

sup
D⊂[0,T ]

∑
ti∈D

|Bti+1 − Bti |2 = +∞ a.s.,

leave alone differential equations driven by stochastic processes with less sample path regularity than Brownian mo-
tion (such as fractional Brownian motion (fBM) with Hurst parameter H < 1/2). Lyons’ key insight was that low
regularity of x, say p-variation or 1/p-Hölder for some p ∈ [1,∞), can be compensated by including “enough”
higher order information of x such as all increments

xn
s,t ≡

∫
s<t1<...<tn<t

dxt1 ⊗ · · · ⊗ dxtn (1.2)

≡
∑

1≤i1,...,in≤d

(∫
s<t1<···<tn<t

dx
i1
t1

· · ·dx
in
tn

)
ei1 ⊗ · · · ⊗ ein ∈ (

R
d
)⊗n

, (1.3)

where “enough” means n ≤ [p] ({e1, . . . , ed} denotes just the usual Euclidean basis in R
d here). Subject to some

generalized p-variation (or 1/p-Hölder) regularity, the ensemble (x1, . . . ,x[p]) then constitutes what is known as a
rough path.3 In particular, no higher order information is necessary in the Young case; whereas the regime relevant
for Brownian motion requires second order – or level 2 – information (“Lévy’s area”), and so on. Note that the
iterated integral on the r.h.s. of (1.2) is not – in general – a well-defined Riemann–Stieltjes integral. Instead one
typically proceeds by mollification – given a multi-dimensional sample path x = X(ω), consider piecewise linear
approximations or convolution with a smooth kernel, compute the iterated integrals and then pass, if possible, to a
limit in probability. Following this strategy one can often construct a “canonical” enhancement of some stochastic
process to a (random) rough path. Stochastic integration and differential equations are then discussed in a (rough)
pathwise fashion; even in the complete absence of a semi-martingale structure.

It should be emphasized that rough path theory was – from the very beginning – closely related to higher order
Euler schemes. Let D = {0 = t0 < · · · < t#D−1 = 1} be a partition of the unit interval.4 Considering the solution y of
(1.1), the step-N Euler approximation yEulerN ;D is given by

y
EulerN ;D
0 = y0,

y
EulerN ;D
tj+1

= y
EulerN ;D
tj

+ Vi

(
y

EulerN ;D
tj

)
xi
tj ,tj+1

+ Vi1Vi2

(
y

EulerN ;D
tj

)
xi1,i2
tj ,tj+1

+ · · · + Vi1 · · · ViN−1ViN

(
y

EulerN ;D
tj

)
xi1,...,iN
tj ,tj+1

at the points tj ∈ D where we use the Einstein summation convention, Vi stands for the differential operator∑e
k=1 V k

i ∂xk
and xi1,...,in

s,t = ∫
s<t1<···<tn<t

dx
i1
t1

· · ·dx
in
tn

. An extension of the work of A. M. Davie (cf. [3,7]) shows

that the step-N Euler scheme5 for an RDE driven by a 1/p-Hölder rough path with step size 1/k (i.e. D = Dk =
{ j
k

: j = 0, . . . , k}) and N ≥ [p] will converge with rate O( 1
k
)(N+1)/p−1. Of course, in a probabilistic context, simu-

lation of the iterated (stochastic) integrals xn
tj ,tj+1

is not an easy matter. A natural simplification of the step-N Euler
scheme thus amounts to replace in each step

{
xn
tj ,tj+1

: n ∈ {1, . . . ,N}}↔
{

1

n!
(
x1
tj ,tj+1

)⊗n: n ∈ {1, . . . ,N}
}

3A basic theorem of rough path theory asserts that further iterated integrals up to any level N ≥ [p], i.e.

SN (x) := (
xn: n ∈ {1, . . . ,N})

are then deterministically determined and the map x �→ SN (x), known as Lyons lift, is continuous in rough path metrics.
4A general time horizon [0, T ] is handled by trivial reparametrization of time.
5. . . which one would call Milstein scheme when N = 2. . .
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which leads to the simplified step-N Euler scheme

y
sEulerN ;D
0 = y0,

y
sEulerN ;D
tj+1

= y
sEulerN ;D
tj

+ Vi

(
y

sEulerN ;D
tj

)
xi
tj ,tj+1

+ 1

2
Vi1Vi2

(
y

sEulerN ;D
tj

)
xi1
tj ,tj+1

xi2
tj ,tj+1

+ · · · + 1

N ! Vi1 · · · ViN−1ViN

(
y

sEulerN ;D
tj

)
xi1
tj ,tj+1

· · ·xiN
tj ,tj+1

.

Since x1
tj ,tj+1

= Xtj ,tj+1(ω) = Xtj+1(ω) − Xtj (ω) this is precisely the effect in replacing the underlying sample path
segment of X by its piecewise linear approximation, i.e.

{
Xt(ω): t ∈ [tj , tj+1]

}↔
{
Xtj (ω) + t − tj

tj+1 − tj
Xtj ,tj+1(ω): t ∈ [tj , tj+1]

}
.

Therefore, as pointed out in [4] in the level N = 2 Hölder rough path context, it is immediate that a Wong–Zakai type
result, i.e. a.s. convergence of y(k) → y for k → ∞ where y(k) solves

dy
(k)
t = V

(
y

(k)
t

)
dx

(k)
t ; y

(k)
0 = y0 ∈ R

e

and x(k) is the piecewise linear approximation of x at the points (tj )
k
j=0 = Dk , i.e.

x
(k)
t = xtj + t − tj

tj+1 − tj
xtj ,tj+1 if t ∈ [tj , tj+1], tj ∈ Dk,

leads to the convergence of the simplified (and implementable!) step-N Euler scheme.
While Wong–Zakai type results in rough path metrics are available for large classes of stochastic processes [7],

Chapters 13, 14, 15, 16 our focus here is on Gaussian processes which can be enhanced to rough paths. This problem
was first discussed in [2] where it was shown in particular that piecewise linear approximation to fBM are convergent
in p-variation rough path metric if and only if H > 1/4. A practical (and essentially sharp) structural condition for
the covariance, namely finite ρ-variation based on rectangular increments for some ρ < 2 of the underlying Gaussian
process was given in [6] and allowed for a unified and detailed analysis of the resulting class of Gaussian rough paths.
This framework has since proven useful in a variety of different applications ranging from non-Markovian Hörmander
theory [1] to non-linear PDEs perturbed by space–time white-noise [10]. Of course, fractional Brownian motion can
also be handled in this framework (for H > 1/4) and we shall make no attempt to survey its numerous applications in
engineering, finance and other fields.

Before describing our main result, let us recall in more detail some aspects of Gaussian rough path theory (e.g.
[6], [7], Chapter 15, [8]). The basic object is a centred, continuous Gaussian process with sample paths X(ω) =
(X1(ω), . . . ,Xd(ω)) : [0,1] → R

d where Xi and Xj are independent for i �= j . The law of this process is determined
by RX : [0,1]2 → R

d×d , the covariance function, given by

RX(s, t) = diag
(
E
(
X1

s X
1
t

)
, . . . ,E

(
Xd

s Xd
t

))
.

We need:

Definition 1. Let f = f (s, t) be a function from [0,1]2 into a normed space; for s ≤ t, u ≤ v we define rectangular
increments as

f

(
s, t

u, v

)
= f (t, v) − f (t, u) − f (s, v) + f (s,u).
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For ρ ≥ 1 we then set

Vρ

(
f, [s, t] × [u,v])=

⎛
⎜⎜⎜⎜⎝ sup

D⊂[s,t]
D̃⊂[u,v]

∑
ti∈D

t̃j ∈D̃

∣∣∣∣f
(

ti , ti+1
t̃j , t̃j+1

)∣∣∣∣ρ
⎞
⎟⎟⎟⎟⎠

1/ρ

,

where the supremum is taken over all partitions D and D̃ of the intervals [s, t] resp. [u,v]. If Vρ(f, [0,1]2) < ∞ we
say that f has finite (2D) ρ-variation.

The main result in this context (see e.g. [7], Theorem 15.33, [8]) now asserts that if there exists ρ < 2 such
that Vρ(RX, [0,1]2) < ∞ then X lifts to an enhanced Gaussian process X with sample paths in the p-variation
rough path space C0,p-var([0,1],G[p](Rd)), any p ∈ (2ρ,4). (This and other notations are introduced in Section 2.)
This lift is “natural” in the sense that for a large class of smooth approximations X(k) of X (say piecewise linear,
mollifier, Karhunen–Loeve) the corresponding iterated integrals of X(k) converge (in probability) to X with respect
to the p-variation rough path metric. (We recall from [7] that ρp-var, the so-called inhomogeneous p-variation metric
for GN(Rd)-valued paths, is called p-variation rough path metric when [p] = N ; the Itō–Lyons map enjoys local
Lipschitz regularity in this p-variation rough path metric.) Moreover, this condition is sharp; indeed fBM falls into
this framework with ρ = 1/(2H) and we known that piecewise-linear approximations to Lévy’s area diverge when
H = 1/4.

Our main result (cf. Theorem 5), when applied to (mesh-size 1/k) piecewise linear approximations X(k) of X,
reads as follows.

Theorem 1. Let X = (X1, . . . ,Xd) : [0,1] → R
d be a centred Gaussian process on a probability space (�, F ,P )

with continuous sample paths where Xi and Xj are independent for i �= j . Assume that the covariance RX has finite
ρ-variation for ρ ∈ [1,2) and K ≥ Vρ(RX, [0,1]2). Then there is an enhanced Gaussian process X with sample paths
a.s. in C0,p-var([0,1],G[p](Rd)) for any p ∈ (2ρ,4) and∣∣ρp-var

(
S[p]

(
X(k)

)
,X

)∣∣
Lr → 0

for k → ∞ and every r ≥ 1 (|·|Lr denotes just the usual Lr(P )-norm for real valued random variables here). More-
over, for any γ > ρ such that 1

γ
+ 1

ρ
> 1 and any q > 2γ and N ∈ N there is a constant C = C(q,ρ, γ,K,N) such

that ∣∣ρq-var
(
SN

(
X(k)

)
, SN(X)

)∣∣
Lr ≤ CrN/2 sup

0≤t≤1

∣∣X(k)
t − Xt

∣∣1−ρ/γ

L2

holds for every k ∈ N.

As an immediate consequence we obtain (essentially) sharp a.s. convergence rates for Wong–Zakai approximations
and the simplified step-3 Euler scheme.

Corollary 1. Consider a RDE with C∞-bounded vector fields driven by a Gaussian Hölder rough path X. Then
mesh-size 1/k Wong–Zakai approximations (i.e. solutions of ODEs driven by X(k)) converge uniformly with a.s. rate
k−(1/ρ−1/2−ε), any ε > 0, to the RDE solution. The same rate is valid for the simplified (and implementable) step-3
Euler scheme.

Proof. See Corollary 8 and Corollary 9. �

Several remarks are in order.
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• Rough path analysis usually dictates that N = 2 (resp. N = 3) levels need to be considered when ρ ∈ [1,3/2) resp.
ρ ∈ [3/2,2). Interestingly, the situation for the Wong–Zakai error is quite different here – referring to Theorem 1,
when ρ = 1 we can and will take γ arbitrarily large in order to obtain the optimal convergence rate. Since ρq-var is
a rough path metric only in the case N = [q] ≥ [2γ ], we see that we need to consider all levels N which is what
Theorem 1 allows us to do. On the other hand, as ρ approaches 2, there is not so much room left for taking γ > ρ.
Even so, we can always find γ with [γ ] = 2 such that 1/γ + 1/ρ > 1. Picking q > 2γ small enough shows that we
need N = [q] = 4.

• The assumption of C∞-bounded vector fields in the corollary was for simplicity only. In the proof we employ
local Lipschitz continuity of the Itō–Lyons map for q-variation rough paths (involving N = [q] levels). As is well-
known, this requires Lipq+ε-regularity of the vector fields.6 Curiously again, we need C∞-bounded vector fields
when ρ = 1 but only Lip4+ε as ρ approaches the critical value 2.

• Brownian motion falls in this framework with ρ = 1. While the a.s. (Wong–Zakai) rate k−(1/2−ε) is part of the
folklore of the subject (e.g. [9]) the C∞-boundedness assumption appears unnecessarily strong. Our explanation
here is that our rates are universal (i.e. valid away from one universal null-set, not dependent on starting points,
coefficients etc). In particular, the (Wong–Zakai) rates are valid on the level of stochastic flows of diffeomorphisms;
we previously discussed these issues in the Brownian context in [5].

• A surprising aspect appears in the proof of Theorem 1. The strategy is to give sharp estimates for the levels n =
1, . . . ,4 first, then performing an induction similar to the one used in Lyon’s extension theorem [14] for the higher
levels. This is in contrast to the usual considerations of level 1 to 3 only (without level 4!) which is typical for
Gaussian rough paths. (Recall that we deal with Gaussian processes which have sample paths of finite p-variation,
p ∈ (2ρ,4), hence [p] ≤ 3 which indicates that we would need to control the first 3 levels only before using the
extension theorem.)

• Although Theorem 1 was stated here for (step-size 1/k) piecewise linear approximations {X(k)}, the estimate holds
in great generality for (Gaussian) approximations whose covariance satisfies a uniform ρ-variation bound. The
statements of Theorem 5 and Theorem 6 reflect this generality.

• Wong–Zakai rates for the Brownian rough path (level 2) were first discussed in [12]. They prove that Wong–Zakai
approximations converge (in γ -Hölder metric) with rate k−(1/2−γ−ε) (in fact, a logarithmic sharpening thereof
without ε) provided γ ∈ (1/3,1/2). This restriction on γ is serious (for they fully rely on “level 2” rough path the-
ory); in particular, the best “uniform” Wong–Zakai convergence rate implied is k−(1/2−1/3−ε) = k−(1/6−ε) leaving
a significant gap to the well-known Brownian a.s. Wong–Zakai rate.

• Wong–Zakai (and Milstein) rates for the fractional Brownian rough path (level 2 only, Hurst parameter H > 1/3)
were first discussed in [4]. They prove that Wong–Zakai approximations converge (in γ -Hölder metric) with rate
k−(H−γ−ε) (again, in fact, a logarithmic sharpening thereof without ε) provided γ ∈ (1/3,H). Again, the restriction
on γ is serious and the best “uniform” Wong–Zakai convergence rate – and the resulting rate for the Milstein scheme
– is k−(H−1/3−ε). This should be compared to the rate k−(2H−1/2−ε) obtained from our corollary. In fact, this rate
was conjectured in [4] and is sharp as may be seen from a precise result concerning Levy’s stochastic area for fBM,
see [16].

The remainder of the article is structured as follows: In Section 2, we repeat the basic notions of (Gaussian) rough
paths theory. Section 3 recalls the connection between the shuffle algebra and iterated integrals. In particular, we
will use the shuffle structure to see that in order to show the desired estimates, we can concentrate on some iterated
integrals which somehow generate all the others. Our main tool for showing L2 estimates on the lower levels is
multidimensional Young integration which we present in Section 4. The main work, namely showing the desired L2-
estimates for the difference of high-order iterated integrals, is done in Section 5. After some preliminary lemmas in
Section 5.1, we show the estimates for the lower levels, namely for n = 1,2,3,4 in Section 5.2 , then give an induction
argument in Section 5.3 for the higher levels n > 4. Section 6 contains our main result, namely sharp a.s. convergence
rates for a class of Wong–Zakai approximations, including piecewise-linear and mollifier approximations. We further
show in Section 6.3 how to use these results in order to obtain sharp convergence rates for the simplified Euler scheme.

6. . . in the sense of E. Stein; cf. [7,15] for instance.



Convergence rates for Gaussian rough paths 159

2. Notations and basic definitions

For N ∈ N we define

T N
(
R

d
)= R ⊕ R

d ⊕ (
R

d ⊗ R
d
)⊕ · · · ⊕ (

R
d
)⊗N =

N⊕
n=0

(
R

d
)⊗n

and write πn :T N(Rd) → (Rd)⊗n for the projection on the nth Tensor level. It is clear that T N(Rd) is a (finite-
dimensional) vector space. For elements g,h ∈ T N(Rd), we define g ⊗ h ∈ T N(Rd) by

πn(g ⊗ h) =
n∑

i=0

πn−i (g) ⊗ πi(h).

One can easily check that (T N(Rd),+,⊗) is an associative algebra with unit element 1 = exp(0) = 1+0+0+· · ·+0.
We call it the truncated tensor algebra of level N . A norm is defined by

|g|T N (Rd ) = max
n=0,...,N

∣∣πn(g)
∣∣

which turns T N(Rd) into a Banach space.
For s < t , we define

Δn
s,t = {

(u1, . . . , un) ∈ [s, t]n;u1 < · · · < un

}
which is the n-simplex on the square [s, t]n. We will use Δ = Δ2

0,1 for the 2-simplex over [0,1]2 . A continuous

map x :Δ → T N(Rd) is called multiplicative functional if for all s < u < t one has xs,t = xs,u ⊗ xu,t . For a path
x = (x1, . . . , xd) : [0,1] → R

d and s < t , we will use the notation xs,t = xt − xs . If x has finite variation, we define
its nth iterated integral by

xn
s,t =

∫
Δn

s,t

dx ⊗ · · · ⊗ dx

=
∑

1≤i1,...,in≤d

∫
Δn

s,t

dxi1 · · ·dxinei1 ⊗ · · · ⊗ ein ∈ (
R

d
)⊗n

,

where {e1, . . . , ed} denotes the Euclidean basis in R
d and (s, t) ∈ Δ. The canonical lift SN(x) :Δ → T N(Rd) is

defined by

πn

(
SN(x)s,t

)=
{

xn
s,t , if n ∈ {1, . . . ,N},

1, if n = 0.

It is well know (as a consequence of Chen’s theorem) that SN(x) is a multiplicative functional. Actually, one can show
that SN(x) takes values in the smaller set GN(Rd) ⊂ T N(Rd) defined by

GN
(
R

d
)= {

SN(x)0,1: x ∈ C1-var([0,1],R
d
)}

which is still a group with ⊗. If x,y :Δ → T N(Rd) are multiplicative functionals and p ≥ 1 we set

ρp-var(x,y) := max
n=1,...,N

sup
(ti )∈[0,1]

(∑
i

∣∣xn
ti ,ti+1

− yn
ti ,ti+1

∣∣p/n
)n/p

.

This generalizes the p-variation distance induced by the usual p-variation semi-norm

|x|p-var;[s,t] =
(

sup
(ti )⊂[s,t]

∑
i

|xti+1 − xti |p
)1/p
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for paths x : [0,1] → R
d . The Lie group GN(Rd) admits a natural norm ‖·‖, called the Carnot-Caratheodory norm

(cf. [7], Chapter 7). If x :Δ → GN(Rd), we set

‖x‖p-var;[s,t] =
(

sup
(ti )⊂[s,t]

∑
i

‖xti ,ti+1‖p

)1/p

.

Definition 2. The space C
0,p-var
o ([0,1],GN(Rd)) is defined as the set of continuous paths x :Δ → GN(Rd) for which

there exists a sequence of smooth paths xk : [0,1] → R
d such that ρp-var(x, SN(xk)) → 0 for k → ∞. If N = [p] =

max{n ∈ N: n < p} we call this the space of (geometric) p-rough paths.

It is clear by definition that every p-rough path is also a multiplicative functional. By Lyon’s First Theorem (or
Extension Theorem, see [14], Theorem 2.2.1 or [7], Theorem 9.5) every p-rough path x has a unique lift to a path in
GN(Rd) for N ≥ [p]. We denote this lift by SN(x) and call it the Lyons lift. For a p-rough path x, we will also use
the notation

xn
s,t = πn

(
SN(x)s,t

)
for N ≥ n. Note that this is consistent with our former definition in the case where x had finite variation. We will
always use small letters for paths x and capital letters for stochastic processes X. The same notation introduced here
will also be used for stochastic processes.

Definition 3. A function ω :Δ → R
+ is called a (1D) control if it is continuous and superadditive, i.e. if for all

s < u < t one has

ω(s,u) + ω(u, t) ≤ ω(s, t).

If x : [0,1] → R
d is a continuous path with finite p-variation, one can show that

(s, t) �→ Vp

(
x, [s, t])p := |x|p

p-var;[s,t]

is continuous and superadditive, hence defines a 1D-control function. Unfortunately, this is not the case for higher
dimensions. Recall Definition 1. If f : [0,1]2 → R has finite p-variation,

(s, t), (u, v) �→ Vp

(
f, [s, t] × [u,v])p

in general fails to be superadditive (cf. [8]). Therefore, we will need a second definition. If A = [s, t] × [u,v] is a
rectangle in [0,1]2, we will use the notation f (A) := f

(
s
u

t
v

)
. We call two rectangles essentially disjoint if their

intersection is empty or degenerate. A partition Π of a rectangle R ⊂ [0,1]2 is a finite set of essentially disjoint
rectangles whose union is R. The family of all such partitions is denoted by P (R).

Definition 4. A function ω :Δ × Δ → R
+ is called a (2D) control if it is continuous, zero on degenerate rectangles

and super-additive in the sense that for all rectangles R ⊂ [0,1]2,

n∑
i=1

ω(Ri) ≤ ω(R)

whenever {Ri : i = 1, . . . , n} ∈ P (R). ω is called symmetric if ω([s, t] × [u,v]) = ω([u,v] × [s, t]) holds for all s < t

and u < v. If f : [0,1]2 → B is a continuous function, we say that its p-variation is controlled by ω if |f (R)|p ≤ ω(R)

holds for all rectangles R ⊂ [0,1]2.

It is easy to see that if ω is a 2D control, (s, t) �→ ω([s, t]2) defines a 1D-control.
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Definition 5. For f : [0,1]2 → R, R ⊂ [0,1]2 a rectangle and p ≥ 1 we define

|f |p-var;R := sup
Π∈P (R)

(∑
A∈Π

∣∣f (A)
∣∣p)1/p

.

If |f |p-var;[0,1]2 < ∞ we say that f has finite controlled p-variation.

The difference of 2D p-variation introduced in Definition 1 and controlled p-variation is that in the former, one
only takes the supremum over grid-like partitions whereas in the latter, one takes the supremum over all partitions
of the rectangle. By superadditivity, the existence of a control ω which controls the p-variation of f implies that
f has finite controlled p-variation and |f |p-var;R ≤ ω(R)1/p . In this case, we can always assume w.l.o.g. that ω is
symmetric, otherwise we just substitute ω by its symmetrization ωsym given by

ωsym
([s, t] × [u,v])= ω

([s, t] × [u,v])+ ω
([u,v] × [s, t]).

The connection between finite variation and finite controlled p-variation is summarized in the following theorem.

Theorem 2. Let f : [0,1]2 → R be continuous and R ⊂ [0,1]2 be a rectangle.

(1) We have

V1(f,R) = |f |1-var;R.

(2) For any p ≥ 1 and ε > 0 there is a constant C = C(p, ε) such that

1

C
|f |(p+ε)-var;R ≤ Vp-var(f,R) ≤ |f |p-var;R.

(3) If f has finite controlled p-variation, then

R �→ |f |p
p-var;R

is a 2D-control. In particular, there exists a 2D-control ω such that for all rectangles R ⊂ [0,1]2 we have
|f (R)|p ≤ ω(R), i.e. ω controls the p-variation of f .

Proof. [8], Theorem 1. �

In the following, unless mentioned otherwise, X will always be a Gaussian process as in Theorem 1 and X denotes
the natural Gaussian rough path. We will need the following Proposition:

Proposition 1. Let X be as in Theorem 1 and assume that ω controls the ρ-variation of the covariance of X, ρ ∈ [1,2).
Then for every n ∈ N there is a constant C(n) = C(n,ρ) such that∣∣Xn

s,t

∣∣
L2 ≤ C(n)ω

([s, t]2)n/(2ρ)

for any s < t .

Proof. For n = 1,2,3 this is proven in [7], Proposition 15.28. For n ≥ 4 and fixed s < t , we set X̃τ :=
1

ω([s,t]2)1/(2ρ) Xs+τ(t−s). Then |R
X̃
|ρ
ρ-var;[0,1] ≤ 1 =: K and by the standard (deterministic) estimates for the Lyons

lift,

|Xn
s,t |1/n

ω([s, t]2)1/(2ρ)
≤ c1

∥∥Sn(X̃)
∥∥

p-var;[0,1] ≤ c2(n,p)‖X̃‖p-var;[0,1]
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for any p ∈ (2ρ,4). Now we take the L2-norm on both sides. From [7], Theorem 15.33, we know that
|‖X̃‖p-var;[0,1]|L2 is bounded by a constant only depending on p,ρ and K which shows the claim.

Alternatively (and more in the spirit of the forthcoming arguments), one performs an induction similar (but easier)
as in the proof of Proposition 8. �

3. Iterated integrals and the shuffle algebra

Let x = (x1, . . . , xd) : [0,1] → R
d be a path of finite variation. Forming finite linear combinations of iterated integrals

of the form∫
Δn

0,1

dxi1 · · ·dxin, i1, . . . , in ∈ {1, . . . , d}, n ∈ N

defines a vector space over R. In this section, we will see that this vector space is also an algebra where the product is
given simply by taking the usual multiplication. Moreover, we will describe precisely how the product of two iterated
integrals looks like.

3.1. The shuffle algebra

Let A be a set which we will call from now on the alphabet. In the following, we will only consider the finite alphabet
A = {a, b, . . .} = {a1, a2, . . . , ad} = {1, . . . , d}. We denote by A∗ the set of words composed by the letters of A, hence
w = ai1ai2 · · ·ain, aij ∈ A. The empty word is denoted by e. A+ is the set of non-empty words. The length of the
word is denoted by |w| and |w|a denotes the number of occurrences of the letter a. We denote by R〈A〉 the vector
space of noncommutative polynomials on A over R, hence every P ∈ R〈A〉 is a linear combination of words in A∗
with coefficients in R. (P,w) denotes the coefficient in P of the word w. Hence every polynomial P can be written
as

P =
∑

w∈A∗
(P,w)w

and the sum is finite since the (P,w) are non-zero only for a finite set of words w. We define the degree of P as

deg(P ) = max
{|w|; (P,w) �= 0

}
.

A polynomial is called homogeneous if all monomials have the same degree. We want to define a product on R〈A〉.
Since a polynomial is determined by its coefficients on each word, we can define the product PQ of P and Q by

(PQ,w) =
∑

w=uv

(P,u)(Q,v).

Note that this definition coincides with the usual multiplication in a (noncommutative) polynomial ring. We call this
product the concatenation product and the algebra R〈A〉 endowed with this product the concatenation algebra.

There is another product on R〈A〉 which will be of special interest for us. We need some notation first. Given a word
w = ai1ai2 · · ·ain and a subsequence U = (j1, j2, . . . , jk) of (i1, . . . , in), we denote by w(U) the word aj1aj2 · · ·ajk

and we call w(U) a subword of w. If w,u, v are words and if w has length n, we denote by
(

w
u v

)
the number of

subsequences U of (1, . . . , n) such that w(U) = u and w(Uc) = v.

Definition 6. The (homogeneous) polynomial

u ∗ v =
∑

w∈A∗

(
w

u v

)
w

is called the shuffle product of u and v. By linearity we extend it to a product on R〈A〉.
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In order to proof our main result, we want to use some sort of induction over the length of the words. Therefore,
the following definition will be useful.

Definition 7. If U is a set of words of the same length, we call a subset {w1, . . . ,wk} of U a generating set for U if
for every word w ∈ U there is a polynomial R and real numbers λ1, . . . , λk such that

w =
k∑

j=1

λjwj + R,

where R is of the form R =∑
u,v∈A+ μu,vu ∗ v for real numbers μu,v .

Definition 8. We say that a word w is composed by a
n1
1 , . . . , a

nd

d if w ∈ {a1, . . . , ad}∗ and |w|ai
= ni for i = 1, . . . , d ,

hence every letter appears in the word with the given multiplicity.

The aim now is to find a (possibly small) generating set for the set of all words composed by some given letters.
The next definition introduces a special class of words which will be important for us.

Definition 9. Let A be totally ordered and put on A∗ the alphabetical order. If w is a word such that whenever w = uv

for u,v ∈ A+ one has u < v, then w is called a Lyndon word.

Proposition 2.

(1) For the set {words composed by a, a, b} a generating set is given by {aab}.
(2) For the set {words composed by a, a, a, b} a generating set is given by {aaab}.
(3) For the set {words composed by a, a, b, b} a generating set is given by {aabb}.
(4) For the set {words composed by a, a, b, c} a generating set is given by {aabc, aacb, baac}.

Proof. Consider the alphabet A = {a, b, c}. We choose the order a < b < c. A general theorem states that every word
w has a unique decreasing factorization into Lyndon words, i.e. w = l

i1
1 · · · likk where l1 > · · · > lk are Lyndon words

and i1, . . . , ik ≥ 1 (see [17], Theorem 5.1 and Corollary 4.7), and the formula

1

i1! · · · ik! l
∗i1
1 ∗ · · · ∗ l

∗ik
k = w +

∑
u<w

αuu

holds, where αu are some natural integers (see again [17], Theorem 6.1). By repeatedly applying this formula for
the words in the sum on the right hand side, it follows that a generating set for each of the sets in (1) to (4) is
given exactly by the Lyndon words composed by these letters. One can easily show that indeed aab, aaab and aabb

are the only Lyndon words composed by the corresponding letters. The Lyndon words composed by a, a, b, c are
{aabc, abac, aacb} which therefore is a generating set for {words composed by a, a, b, c}. From the shuffle identity

abac = baac + aabc + aacb − b ∗ aac

it follows that also {aabc, aacb, baac} generates this set. �

3.2. The connection to iterated integrals

Let x = (x1, . . . , xd) : [0,1] → R
d be a path of finite variation and fix s < t ∈ [0,1]. For a word w = (ai1 · · ·ain) ∈ A∗,

A = {1, . . . , d} we define

xw =
{∫

Δn
s,t

dxi1 · · · dxin, if w ∈ A+,

1, if w = e.

Let (R〈A〉,+,∗) be the shuffle algebra over the alphabet A. We define a map Φ : R〈A〉 → R by Φ(w) = xw
s,t and

extend it linearly to polynomials P ∈ R〈A〉. The key observation is the following:



164 P. Friz and S. Riedel

Theorem 3. Φ is an algebra homomorphism from the shuffle algebra (R〈A〉,+,∗) to (R,+, ·).

Proof. [17], Corollary 3.5. �

The next proposition shows that we can restrict ourselves in showing the desired estimates only for the iterated
integrals which generate the others.

Proposition 3. Let (X,Y ) = (X1, Y 1, . . . ,Xd,Y d) be a Gaussian process on [0,1] with paths of finite variation. Let
A = {1, . . . , d} be the alphabet, let U be a set of words of length n and V = {w1, . . . ,wk} be a generating set for U .
Let ω be a control, ρ,γ ≥ 1 constants and s < t ∈ [0,1]. Assume that there are constants C = C(|w|) such that∣∣Xw

s,t

∣∣
L2 ≤ C

(|w|)ω(s, t)|w|/(2ρ) and
∣∣Yw

s,t

∣∣
L2 ≤ C

(|w|)ω(s, t)|w|/(2ρ)

holds for every word w ∈ A∗ with |w| ≤ n − 1. Assume also that for some ε > 0∣∣Xw
s,t − Yw

s,t

∣∣
L2 ≤ C

(|w|)εω(s, t)1/(2γ )ω(s, t)(|w|−1)/(2ρ)

holds for every word w with |w| ≤ n − 1 and w ∈ V . Then there is a constant C̃ which depends on the constants C,
on n and on d such that∣∣Xw

s,t − Yw
s,t

∣∣
L2 ≤ C̃εω(s, t)1/(2γ )ω(s, t)(n−1)/(2ρ)

holds for every w ∈ U .

Remark 1. We could account for the factor ω(s, t)1/(2γ ) in ε here but the present form is how we shall use this
proposition later on.

Proof. Consider a copy Ā of A. If a ∈ A, we denote by ā the corresponding letter in Ā. If w = ai1 · · ·ain ∈ A∗,
we define w̄ = āi1 · · · āin ∈ A∗ and in the same way we define P̄ ∈ R〈Ā〉 for P ∈ R〈A〉. Now we consider R〈A∪̇Ā〉
equipped with the usual shuffle product. Define Ψ : R〈A∪̇Ā〉 → R by

Ψ (w) =
∫

Δn
s,t

dZbi1 · · · dZbin

for a word w = bi1 · · ·bin where

Zbj =
{

Xaj , for bj = aj ,
Y āj , for bj = āj

and extend this definition linearly. By Theorem 3, we know that Ψ is an algebra homomorphism. Take w ∈ U . By
assumption, we know that there is a vector λ = (λ1, . . . , λk) such that

w − w̄ =
k∑

j=1

λj (wj − w̄j ) + R − R̄,

where R is of the form R =∑
u,v∈A+,|u|+|v|=n μu,vu ∗ v with real numbers μu,v . Applying Ψ and taking the L2 norm

yields

∣∣Xw
s,t − Yw

s,t

∣∣
L2 ≤

k∑
l=1

|λj |
∣∣Xwj

s,t − Y
wj

s,t

∣∣
L2 + ∣∣Ψ (R − R̄)

∣∣
L2

≤ c1εω(s, t)1/(2γ )ω(s, t)(n−1)/(2ρ) + ∣∣Ψ (R − R̄)
∣∣
L2 .
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Now,

R − R̄ =
∑
u,v

μu,v(u ∗ v − ū ∗ v̄) =
∑
u,v

μu,v(u − ū) ∗ v + μu,vū ∗ (v − v̄).

Applying Ψ and taking the L2 norm gives then∣∣Ψ (R − R̄)
∣∣
L2 ≤

∑
u,v

|μu,v|
∣∣(Xu

s,t − Yu
s,t

)
Xv

s,t

∣∣
L2 + |μu,v|

∣∣Yu
s,t

(
Xv

s,t − Yv
s,t

)∣∣
L2

≤
∑
u,v

c2
(∣∣Xu

s,t − Yu
s,t

∣∣
L2

∣∣Xv
s,t

∣∣
L2 + ∣∣Yu

s,t

∣∣
L2

∣∣Xv
s,t − Yv

s,t

∣∣
L2

)
≤
∑
u,v

c3εω(s, t)1/(2γ )ω(s, t)(|v|+|u|−1)/(2ρ)

≤ c4εω(s, t)1/(2γ )ω(s, t)(n−1)/(2ρ),

where we used equivalence of Lq -norms in the Wiener Chaos (cf. [7, Proposition 15.19 and Theorem D.8]). Putting
all together shows the assertion. �

4. Multidimensional Young-integration and grid-controls

Let f : [0,1]n → R be a continuous function. If s1 < t1, . . . , sn < tn and u1, . . . , un are elements in [0,1], we make
the following recursive definition:

f

⎛
⎜⎜⎝

s1, t1
u2
...

un

⎞
⎟⎟⎠ := f

⎛
⎜⎜⎝

t1
u2
...

un

⎞
⎟⎟⎠− f

⎛
⎜⎜⎝

s1
u2
...

un

⎞
⎟⎟⎠ and

f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1, t1
...

sk−1, tk−1
sk, tk
uk+1

...

un

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:= f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1, t1
...

sk−1, tk−1
tk

uk+1
...

un

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1, t1
...

sk−1, tk−1
sk

uk+1
...

un

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We will also use the simpler notation

f (R) = f

⎛
⎝ s1, t1

...

sn, tn

⎞
⎠

for the rectangle R = [s1, t1] × · · · × [sn, tn] ⊂ [0,1]n. Note that for n = 2 this is consistent with our initial definition

of f
(

s1,t1
s2,t2

)
. If f,g : [0,1]n → R are continuous functions, the n-dimensional Young-integral is defined by

∫
[s1,t1]×···×[sn,tn]

f (x1, . . . , xn)dg(x1, . . . , xn) := lim|D1|,...,|Dn|→0

∑
(t1

i1
)⊂D1

...
(tnin

)⊂Dn

f
(
t1
i1
, . . . , tnin

)
g

⎛
⎜⎝

t1
i1
, t1

i1+1
...

tnin , t
n
in+1

⎞
⎟⎠
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if this limit exists. Take p ≥ 1. The n-dimensional p-variation of f is defined by

Vp

(
f, [s1, t1] × · · · × [sn, tn]

)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sup
D1⊂[s1,t1]

...
Dn⊂[sn,tn]

∑
(t1

i1
)⊂D1

...
(tnin

)⊂Dn

∣∣∣∣∣∣∣f
⎛
⎜⎝

t1
i1
, t1

i1+1
...

tnin , t
n
in+1

⎞
⎟⎠
∣∣∣∣∣∣∣
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/p

and if Vp(f, [0,1]n) < ∞ we say that f has finite (n-dimensional) p-variation. The fundamental theorem is the
following:

Theorem 4. Assume that f has finite p-variation and g finite q-variation where 1
p

+ 1
q

> 1. Then the joint Young-
integral below exists and there is a constant C = C(p,q) such that

∣∣∣∣∣
∫

[s1,t1]×···×[sn,tn]
f

⎛
⎝ s1, u1

...

sn, un

⎞
⎠ dg(u1, . . . , un)

∣∣∣∣∣
≤ CVp

(
f, [s1, t1] × · · · × [sn, tn]

)
Vq

(
g, [s1, t1] × · · · × [sn, tn]

)
.

Proof. [18], Theorem 1.2(c). �

We will mainly consider the case n = 2, but we will also need n = 3 and 4 later on. In particular, the discussion of
level n = 4 will require us to work with 4D grid control functions which we now introduce. With no extra complication
we make the following general definition.

Definition 10 (n-dimensional grid control). A map ω̃ :Δ × · · · × Δ︸ ︷︷ ︸
n-times

→ R
+ is called a n-D grid-control if it is con-

tinuous and partially super-additive, i.e. for all (s1, t1), . . . , (sn, tn) ∈ Δ and si < ui < ti we have

ω̃
([s1, t1] × · · · × [si , ui] × · · · × [sn, tn]

)+ ω̃
([s1, t1] × · · · × [ui, ti] × · · · × [sn, tn]

)
≤ ω̃

([s1, t1] × · · · × [si , ti] × · · · × [sn, tn]
)

for every i = 1, . . . , n. ω̃ is called symmetric if

ω̃
([s1, t1] × · · · × [sn, tn]

)= ω̃
([sσ(1), tσ (1)] × · · · × [sσ(n), tσ (n)]

)
holds for every σ ∈ Sn.

The point of this definition is that |f (A)|p ≤ ω̃(A) for every rectangle A ⊂ [0,1]n implies that Vp(f,R)p ≤ ω̃(R)

for every rectangle R ⊂ [0,1]n. Note that a 2D control in the sense of Definition 4 is automatically a 2D grid-control.
The following immediate properties will be used in Section 5.2.3 with m = n = 2.

Lemma 1.

(1) The restriction of a (m + n)-dimensional grid-control to m arguments is a m-dimensional grid-control.
(2) The product of a m- and a n-dimensional grid-control is a (m + n)-dimensional grid-control.
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4.1. Iterated 2D-integrals

In the 1-dimensional case, the classical Young-theory allows to define iterated integrals of functions with finite p-
variation where p < 2. There, the superadditivity of (s, t) �→ |·|p

p-var;[s,t] played an essential role. We will see that
Theorem 2 can be used to define and estimate iterated 2D-integrals. This will play an important role in Section 5
when we estimate the L2-norm of iterated integrals of Gaussian processes.

Lemma 2. Let f,g : [0,1]2 → R be continuous where f has finite p-variation and g finite controlled q-variation
with p−1 + q−1 > 1. Let (s, t) ∈ Δ and assume that f (s, ·) = f (·, s) = 0. Define Φ : [s, t]2 → R by

Φ(u,v) =
∫

[s,u]×[s,v]
f dg.

Then there is a constant C = C(p,q) such that

Vq-var
(
Φ; [s, t]2)≤ C(p,q)Vp-var

(
f ; [s, t]2)|g|q-var;[s,t]2 .

Proof. Let ti < ti+1 and t̃j < t̃j+1. Then,

Φ

(
ti , ti+1
t̃j , t̃j+1

)
=
∫

[ti ,ti+1]×[t̃j ,t̃j+1]
f dg.

Now let ti < u < ti+1 and t̃j < v < t̃j+1. Then one has

f

(
ti , u

t̃j , v

)
= f (u, v) − f (ti , v) − f (u, t̃j ) + f (ti , t̃j ).

Therefore,∣∣∣∣Φ
(

ti , ti+1
t̃j , t̃j+1

)∣∣∣∣ ≤
∣∣∣∣
∫

[ti ,ti+1]×[t̃j ,t̃j+1]
f

(
ti , u

t̃j , v

)
dg(u, v)

∣∣∣∣+
∣∣∣∣
∫

[ti ,ti+1]×[t̃j ,t̃j+1]
f (ti , v)dg(u, v)

∣∣∣∣
+
∣∣∣∣
∫

[ti ,ti+1]×[t̃j ,t̃j+1]
f (u, t̃j )dg(u, v)

∣∣∣∣+
∣∣∣∣
∫

[ti ,ti+1]×[t̃j ,t̃j+1]
f (ti , t̃j )dg(u, v)

∣∣∣∣.
For the first integral we use Young 2D-estimates to see that∣∣∣∣

∫
[ti ,ti+1]×[t̃j ,t̃j+1]

f

(
ti , u

t̃j , v

)
dg(u, v)

∣∣∣∣
≤ c1(p, q)Vp

(
f, [ti , ti+1] × [t̃j , t̃j+1]

)
Vq

(
g, [ti , ti+1] × [t̃j , t̃j+1]

)
≤ c1(p, q)Vp

(
f, [s, t]2)|g|q-var;[ti ,ti+1]×[t̃j ,t̃j+1].

For the second, one has by a Young 1D-estimate∣∣∣∣
∫

[ti ,ti+1]×[t̃j ,t̃j+1]
f (ti , v)dg(u, v)

∣∣∣∣ =
∣∣∣∣
∫

[t̃j ,t̃j+1]
f (ti , v)d

(
g(ti+1, v) − g(ti , v)

)∣∣∣∣
≤ c2 sup

u∈[s,t]
∣∣f (u, ·)∣∣

p-var;[s,t]|g|q-var;[ti ,ti+1]×[t̃j ,t̃j+1].

Similarly,∣∣∣∣
∫

[ti ,ti+1]×[t̃j ,t̃j+1]
f (u, t̃j )dg(u, v)

∣∣∣∣≤ c2 sup
v∈[s,t]

∣∣f (·, v)
∣∣
p-var;[s,t]|g|q-var;[ti ,ti+1]×[t̃j ,t̃j+1].



168 P. Friz and S. Riedel

Finally,∣∣∣∣
∫

[ti ,ti+1]×[t̃j ,t̃j+1]
f (ti , t̃j )dg(u, v)

∣∣∣∣= ∣∣f (ti , t̃j )
∣∣∣∣∣∣g

(
ti , ti+1
t̃j , t̃j+1

)∣∣∣∣≤ |f |∞;[s,t]|g|q-var;[ti ,ti+1]×[t̃j ,t̃j+1].

Putting all together, we get∣∣∣∣Φ
(

ti , ti+1
t̃j , t̃j+1

)∣∣∣∣q
≤ c3

(
Vp

(
f, [s, t]2)+ sup

u∈[s,t]
∣∣f (u, ·)∣∣

p-var;[s,t] + sup
v∈[s,t]

∣∣f (·, v)
∣∣
p-var;[s,t] + |f |∞;[s,t]

)q

× |g|q
q-var;[ti ,ti+1]×[t̃j ,t̃j+1].

Take a partition D ⊂ [s, t] and u ∈ [s, t]. Then

∑
ti∈D

∣∣f (u, ti+1) − f (u, ti)
∣∣p =

∑
ti∈D

∣∣∣∣f
(

s, u

ti, ti+1

)∣∣∣∣p ≤ Vp

(
f, [s, t]2)p

and hence

sup
u∈[s,t]

∣∣f (u, ·)∣∣
p-var;[s,t] ≤ Vp

(
f, [s, t]2).

The same way one obtains

sup
v∈[s,t]

∣∣f (·, v)
∣∣
p-var;[s,t] ≤ Vp

(
f, [s, t]2).

Finally, for u,v ∈ [s, t],
∣∣f (u, v)

∣∣= ∣∣∣∣f
(

s, u

s, v

)∣∣∣∣≤ Vp

(
f, [s, t]2)

and therefore |f |∞;[s,t] ≤ Vp(f, [s, t]2). Putting everything together, we end up with∣∣∣∣Φ
(

ti , ti+1
t̃j , t̃j+1

)∣∣∣∣q ≤ c4Vp

(
f, [s, t]2)q |g|q

q-var;[ti ,ti+1]×[t̃j ,t̃j+1].

Hence for every partition D,D̃ ⊂ [s, t] one gets, using superadditivity of |g|qq-var ,

∑
ti∈D,t̃j ∈D̃

∣∣∣∣Φ
(

ti , ti+1
t̃j , t̃j+1

)∣∣∣∣q ≤ c4Vp

(
f, [s, t]2)q ∑

ti∈D,t̃j ∈D̃

|g|q
q-var;[ti ,ti+1]×[t̃j ,t̃j+1]

≤ c4Vp

(
f, [s, t]2)q |g|q

q-var;[s,t]2 .

Passing to the supremum over all partitions shows the assertion. �

This lemma allows us to define iterated 2D-integrals. Let f,g1, . . . , gn : [0,1]2 → R. An iterated 2D-integral is
given by

∫
Δ1

s,t×Δ1
s′,t ′

f dg1 = ∫
[s,t]×[s′,t ′] f (u, v)dg1(u, v) for n = 1 and recursively defined by

∫
Δn

s,t×Δn
s′,t ′

f dg1 · · · dgn :=
∫

[s,t]×[s′,t ′]

(∫
Δn−1

s,u ×Δn−1
s′,v

f dg1 · · · dgn−1

)
dgn(u, v)

for n ≥ 2.
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Proposition 4. Let f,g1, g2, . . . : [0,1]2 → R and p,q1, q2, . . . be real numbers such that p−1 + q−1
1 > 1 and q−1

i +
q−1
i+1 > 1 for every i ≥ 1. Assume that f has finite p-variation and gi has finite qi -variation for i = 1,2, . . . and that

for (s, t) ∈ Δ we have f (s, ·) = f (·, s) = 0. Then for every n ∈ N there is a constant C = C(p,q1, . . . , qn) such that∣∣∣∣
∫

Δn
s,t×Δn

s,t

f dg1 · · · dgn

∣∣∣∣≤ CVp

(
f, [s, t]2)Vq1

(
g1, [s, t]2) · · ·Vqn

(
gn, [s, t]2).

Proof. Define Φ(n)(u, v) = ∫
Δn

s,u×Δn
s,v

f dg1 · · · dgn. We will show a stronger result; namely that for every n ∈ N and

q ′
n > qn there is a constant C = C(p,q1, . . . , qn, q

′
n) such that

Vq ′
n

(
Φ(n), [s, t]2)≤ CVp

(
f, [s, t]2)Vq1

(
g1, [s, t]2) · · ·Vqn

(
gn, [s, t]2).

To do so, let q̃1, q̃2, . . . be a sequence of real numbers such that q̃j > qj and 1
q̃j−1

+ 1
q̃j

> 1 for every j = 1,2, . . . where

we set q̃0 = p. We make an induction over n. For n = 1, we have q̃1 > q1 and 1
p

+ 1
q̃1

> 1, hence from Theorem 2 we
know that g1 has finite controlled q̃1-variation and Lemma 2 gives us

Vq̃1

(
Φ(1); [s, t]2)≤ c1Vp

(
f ; [s, t]2)|g1|q̃1;[s,t]2 ≤ c2Vp

(
f ; [s, t]2)Vq1

(
g1; [s, t]2).

W.l.o.g, we may assume that q ′
1 > q̃1 > q1, otherwise we choose q̃1 smaller in the beginning. From Vq ′

1
(Φ(1); [s, t]2) ≤

Vq̃1(Φ
(1); [s, t]2) the assertion follows for n = 1. Now take n ∈ N. Note that

Φ(n)(u, v) =
∫

[s,u]×[s,v]
Φ(n−1) dgn

and clearly Φ(n−1)(s, ·) = Φ(n−1)(·, s) = 0. We can use Lemma 2 again to see that

Vq̃n

(
Φ(n), [s, t]2) ≤ c3Vq̃n−1

(
Φ(n−1); [s, t]2)|gn|q̃n-var;[s,t]2

≤ c4Vq̃n−1

(
Φ(n−1); [s, t]2)Vqn

(
gn; [s, t]2).

Using our induction hypothesis shows the result for q̃n. By choosing q̃n smaller in the beginning if necessary, we may
assume that q ′

n > q̃n and the assertion follows. �

5. The main estimates

In the following section, (X,Y ) = (X1, Y 1, . . . ,Xd,Y d) will always denote a centred continuous Gaussian process
where (Xi, Y i) and (Xj ,Y j ) are independent for i �= j . We will also assume that the ρ-variation of R(X,Y ) is finite
for a ρ < 2 and controlled by a symmetric 2D-control ω (this in particular implies that the ρ-variation of RX,RY and
RX−Y is controlled by ω, see [7], Section 15.3.2). Let γ > ρ such that 1

ρ
+ 1

γ
> 1. The aim of this section is to show

that for every n ∈ N there are constants C(n) such that7∣∣Xn
s,t − Yn

s,t

∣∣
L2((Rd )⊗n)

≤ C(n)εω
([s, t]2)1/(2γ )

ω
([s, t]2)(n−1)/(2ρ) for every s < t, (5.1)

where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ (see Definition 11 below for the exact definition of V∞). Equivalently, we might
show (5.1) coordinate-wise, i.e. proving that the same estimate holds for |Xw − Yw|L2(R) for every word w formed by
the alphabet A = {1, . . . , d}. In some special cases, i.e. if a word w has a very simple structure, we can do this directly
using multidimensional Young integration. This is done in Section 5.1. Section 5.2 shows (5.1) for n = 1,2,3,4

7We prefer to write it in this notation instead of writing ω([s, t]2)1/(2γ )+(n−1)/(2ρ) to emphasize the different roles of the two terms. The first term
will play no particular role and just comes from interpolation whereas the second one will be crucial when doing the induction step from lower to
higher levels in Proposition 8.
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coordinate-wise, using the shuffle algebra structure for iterated integrals and multidimensional Young integration. In
Section 5.3, we show (5.1) coordinate-free for all n > 4, using an induction argument very similar to the one Lyon’s
used for proving the Extension Theorem (cf. [14]).

We start with giving a 2-dimensional analogue for the one-dimensional interpolation inequality.

Definition 11. If f : [0,1]2 → B is a continuous function in a Banach space and (s, t) × (u, v) ∈ Δ × Δ we set

V∞
(
f, [s, t] × [u,v])= sup

A⊂[s,t]×[u,v]
∣∣f (A)

∣∣.
Lemma 3. For γ > ρ ≥ 1 we have the interpolation inequality

Vγ -var
(
f, [s, t] × [u,v])≤ V∞

(
f, [s, t] × [u,v])1−ρ/γ

Vρ-var
(
f, [s, t] × [u,v])ρ/γ

for all (s, t), (u, v) ∈ Δ.

Proof. Exactly as 1D-interpolation, see [7], Proposition 5.5. �

5.1. Some special cases

If Z : [0,1] → R is a process with smooth sample paths, we will use the notation

Z(n)
s,t =

∫
Δn

s,t

dZ · · · dZ

for s < t .

Lemma 4. Let X : [0,1] → R be a centred Gaussian process with continuous paths of finite variation and assume
that the ρ-variation of the covariance RX is controlled by a 2D-control ω. For fixed s < t , define

f (u, v) = E
(
X(n)

s,uX(n)
s,v

)
.

Then there is a constant C = C(ρ,n) such that

Vρ

(
f, [s, t]2)≤ Cω

([s, t]2)n/ρ
.

Proof. Let ti < ti+1, t̃j < t̃j+1. Then

f

(
ti , ti+1
t̃j , t̃j+1

)
= E

((
X(n)

s,ti+1
− X(n)

s,ti

)(
X(n)

s,t̃j+1
− X(n)

s,t̃j

))
.

We know that X(n) = (X)n

n! . From the identity

bn − an = (b − a)
(
an−1 + an−2b + · · · + abn−2 + bn−1)

we deduce that

f

(
ti , ti+1
t̃j , t̃j+1

)
= 1

(n!)2

n−1∑
k,l=0

E
(
Xti,ti+1Xt̃j ,t̃j+1

(Xs,ti+1)
n−1−k(Xs,ti )

k(Xs,t̃j+1
)n−1−l (Xs,t̃j

)l
)
.

We want to apply Wick’s formula now (cf. [13], Theorem 1.28). If Z, Z̃ ∈ {Xs,ti+1,Xs,ti ,Xs,t̃j+1
,Xs,t̃j

} we know that∣∣E(Xti ,ti+1Z)
∣∣ρ ≤ ω

([ti , ti+1] × [s, t]),∣∣E(Xti ,ti+1Xt̃j ,t̃j+1
)
∣∣ρ ≤ ω

([ti , ti+1] × [t̃j , t̃j+1]
)
,∣∣E(ZZ̃)

∣∣ρ ≤ ω
([s, t]2)
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and the same holds for Xt̃j ,t̃j+1
. Now take two partitions D,D̃ ∈ [0,1]. Then, by Wick’s formula and the estimates

above,

∑
ti∈D,t̃j ∈D̃

∣∣∣∣f
(

ti , ti+1
t̃j , t̃j+1

)∣∣∣∣ρ ≤ c1(ρ,n)ω
([s, t]2)n−2 ∑

ti∈D,t̃j ∈D̃

ω
([ti , ti+1] × [s, t])ω([t̃j , t̃j+1] × [s, t])

+ c2(ρ,n)ω
([s, t]2)n−1 ∑

ti∈D,t̃j ∈D̃

ω
([ti , ti+1] × [t̃j , t̃j+1]

)

≤ c3ω
([s, t]2)n. �

Lemma 5. Let (X,Y ) be a centred Gaussian process in R
2 with continuous paths of finite variation. Assume that

the ρ-variation of R(X,Y ) is controlled by a 2D-control ω for ρ < 2 and take γ > ρ. Then for every n ∈ N there is a
constant C = C(n) such that∣∣X(n)

s,t − Y(n)
s,t

∣∣
L2 ≤ C(n)εω

([s, t]2)1/(2γ )
ω
([s, t]2)(n−1)/(2ρ)

for any s < t where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

Proof. By induction. For n = 1 we simply have from Lemma 3

|Xs,t − Ys,t |2L2 = E
[
(Xs,t − Ys,t )(Xs,t − Ys,t )

]≤ Vγ -var
(
RX−Y , [s, t]2)

≤ ε2Vρ-var
(
RX−Y , [s, t]2)ρ/γ ≤ ε2ω

([s, t]2)1/γ
.

For n ∈ N we use the identity

X(n)
s,t − Y(n)

s,t = 1

n

(
Xs,tX

(n−1)
s,t − Ys,tY

(n−1)
s,t

)
and hence∣∣X(n)

s,t − Y(n)
s,t

∣∣
L2 ≤ c1

(|Xs,t − Ys,t |L2

∣∣X(n−1)
s,t

∣∣
L2 + ∣∣X(n−1)

s,t − Y(n−1)
s,t

∣∣
L2 |Ys,t |L2

)
≤ c2εω

([s, t]2)1/(2γ )
ω
([s, t]2)(n−1)/(2ρ)

. �

Assume that (Z1,Z2) is a centred, continuous Gaussian process in R
2 with smooth sample paths and that both

components are independent. Then (at least formally, cf. [6]),∣∣∣∣
∫ 1

0
Z1

0,u dZ2
u

∣∣∣∣2
L2

= E

[(∫ 1

0
Z1

0,u dZ2
u

)2]
= E

[∫
[0,1]2

Z1
0,uZ

1
0,v dZ2 dZ2

v

]
(5.2)

=
∫

[0,1]2
E
[
Z1

0,uZ
1
0,v

]
dE

[
Z2

uZ
2
v

]=
∫

[0,1]2
RZ1

(
0 ·
0 ·

)
dRZ2, (5.3)

where the integrals in the second row are 2D Young-integrals (to make this rigorous, one uses that the integrals are a.s.
limits of Riemann sums and that a.s. convergence implies convergence in L1 in the (inhomogeneous) Wiener chaos).
These kinds of computations together with our estimates for 2D Young-integrals will be heavily used from now on.

Lemma 6. Let (X,Y ) = (X1, Y 1, . . . ,Xd,Y d) be a centred Gaussian process with continuous paths of finite variation
where (Xi, Y i)and (Xj ,Y j ) are independent for i �= j . Assume that the ρ-variation of R(X,Y ) is controlled by a 2D-
control ω for ρ < 2. Let w be a word of the form w = i1 · · · in where i1, . . . , in ∈ {1, . . . , d} are all distinct. Take γ > ρ

such that 1
ρ

+ 1
γ

> 1. Then there is a constant C = C(ρ,γ,n) such that

∣∣Xw
s,t − Yw

s,t

∣∣
L2 ≤ C(n)εω

([s, t]2)1/(2γ )
ω
([s, t]2)(n−1)/(2ρ)
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for any s < t where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

Proof. By the triangle inequality,

∣∣Xw
s,t − Yw

s,t

∣∣
L2 =

∣∣∣∣
∫

Δn
s,t

dXi1 · · · dXin −
∫

Δn
s,t

dY i1 · · · dY in

∣∣∣∣
L2

≤
n∑

k=1

∣∣∣∣
∫

Δn
s,t

dY i1 · · · dY ik−1 d
(
Xik − Y ik

)
dXik+1 · · · dXin

∣∣∣∣
L2

.

From independence, Proposition 4 and Lemma 3∣∣∣∣
∫

Δn
s,t

dY i1 · · · dY ik−1 d
(
Xik − Y ik

)
dXik+1 · · · dXin

∣∣∣∣2
L2

=
∫

Δn
s,t×Δn

s,t

dRYi1 · · · dR
Yik−1 dRXik −Y ik dR

Xik+1 · · · dRXin

≤ c1Vρ

(
RYi1 , [s, t]2) · · ·Vρ

(
R

Yik−1 , [s, t]2)Vγ

(
RXik −Y ik , [s, t]2)

× Vρ

(
R

Xik+1 , [s, t]2) · · ·Vρ

(
RXin , [s, t]2)

≤ c1Vγ

(
RX−Y , [s, t]2)ω([s, t]2)(n−1)/ρ ≤ c1ε

2ω
([s, t]2)1/γ

ω
([s, t]2)(n−1)/ρ

.

The first inequality above is an immediate generalization of the calculations made in (5.2) and (5.3). Note that the
respective random terms are not only pairwise but mutually independent here since we are dealing with a Gaussian
process (X,Y ). Interchanging the limits is allowed since convergence in probability implies convergence in Lp , any
p > 0, in the Wiener chaos. �

5.2. Lower levels

5.2.1. n = 1,2
Proposition 5. Let (X,Y ), ω, ρ and γ as in Lemma 6. Then there are constants C(1),C(2) which depend on ρ and
γ such that∣∣Xn

s,t − Yn
s,t

∣∣
L2 ≤ C(n)εω

([s, t]2)1/(2γ )
ω
([s, t]2)(n−1)/(2ρ)

holds for n = 1,2 and every (s, t) ∈ Δ where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

Proof. The coordinate-wise estimates are just special cases of Lemma 5 and Lemma 6. �

5.2.2. n = 3
Proposition 6. Let (X,Y ), ω, ρ and γ as in Lemma 6. Then there is a constant C(3) which depends on ρ and γ such
that ∣∣X3

s,t − Y3
s,t

∣∣
L2 ≤ C(3)εω

([s, t]2)1/(2γ )
ω
([s, t]2)2/(2ρ)

holds for every (s, t) ∈ Δ where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

Proof. We have to show the estimate for Xi,j,k − Yi,j,k where i, j, k ∈ {1, . . . , d}. From Proposition 3 and 2 it follows
that it is enough to show the estimate for Xw − Yw where

w ∈ {
iii, ijk, iij : i, j, k ∈ {1, . . . , d} distinct

}
.
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The cases w = iii and w = ijk are special cases of Lemma 5 and Lemma 6. The rest of this section is devoted to
show the estimate for w = iij . �

Lemma 7. Let (X,Y ) : [0,1] → R
2 be a centred Gaussian process and consider

f (u, v) = E
(
(Xu − Yu)Xv

)
.

Assume that the ρ-variation of R(X,Y ) is controlled by a 2D-control ω where ρ ≥ 1. Let s < t and consider a rectangle
[σ, τ ] × [σ ′, τ ′] ⊂ [s, t]2. Let γ > ρ. Then

Vγ -var
(
f, [σ, τ ] × [

σ ′, τ ′])≤ εω
([s, t]2)1/2(1/ρ−1/γ )

ω
([σ, τ ] × [

σ ′, τ ′])1/γ
,

where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

Proof. Let u < v and u′ < v′ ∈ [s, t]. Then∣∣E(
(Xu,v − Yu,v)Xu′,v′

)∣∣ ≤ |Xu,v − Yu,v|L2 |Xu′,v′ |L2

≤ V∞
(
RX−Y , [s, t]2)1/2

Vρ-var
(
R(X,Y ), [s, t]2)1/2

and hence

sup
u<v,u′<v′

∣∣E(
(Xu,v − Yu,v)Xu′,v′

)∣∣≤ V∞
(
RX−Y , [s, t]2)1/2

ω
([s, t]2)1/(2ρ)

.

Now take a partition D of [σ, τ ] and a partition D̃ of [σ ′, τ ′]. Then∑
ti∈D,t̃j ∈D̃

∣∣E(
(Xti ,ti+1 − Yti ,ti+1)Xt̃j ,t̃j+1

)∣∣γ

≤ sup
u<v,u′<v′

∣∣E(
(Xu,v − Yu,v)Xu′,v′

)∣∣γ−ρ
∑

ti∈D,t̃j ∈D̃

∣∣E(
(Xti ,ti+1 − Yti ,ti+1)Xt̃j ,t̃j+1

)∣∣ρ

≤ V∞
(
RX−Y , [s, t]2)1/2(γ−ρ)

ω
([s, t]2)1/2(γ /ρ−1)

ω
([σ, τ ] × [

σ ′, τ ′])
and taking the supremum over all partitions shows the result. �

Lemma 8. Let (X,Y ) : [0,1] → R
2 be a centred Gaussian process with continuous paths of finite variation. Assume

that the ρ-variation of R(X,Y ) is controlled by a 2D-control ω where ρ ≥ 1. Consider the function

g(u, v) = E
[(

X(2)
s,u − Y(2)

s,u

)(
X(2)

s,v − Y(2)
s,v

)]
.

Then for every γ > ρ there is a constant C = C(ρ,γ ) such that

Vγ -var
(
g, [s, t]2)≤ Cε2ω

([s, t]2)1/γ+1/ρ

holds for every (s, t) ∈ Δ where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

Proof. Let u < v and u′ < v′. Then

g

(
u,v

u′, v′
)

= E
[((

X(2)
s,v − X(2)

s,u

)− (
Y(2)

s,v − Y(2)
s,u

))((
X(2)

s,v′ − X(2)

s,u′
)− (

Y(2)

s,v′ − Y(2)

s,u′
))]

= 1

22
E
[((

X2
s,v − X2

s,u

)− (
Y 2

s,v − Y 2
s,u

))((
X2

s,v′ − X2
s,u′

)− (
Y 2

s,v′ − Y 2
s,u′

))]
.
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Now,

(
X2

s,v − X2
s,u

)− (
Y 2

s,v − Y 2
s,u

) = Xu,v(Xs,u + Xs,v) − Yu,v(Ys,u + Ys,v)

= Xu,v(Xs,u − Ys,u) + (Xu,v − Yu,v)Ys,u

+ Xu,v(Xs,v − Ys,v) + (Xu,v − Yu,v)Ys,v.

The same way one gets

(
X2

s,v′ − X2
s,u′

)− (
Y 2

s,v′ − Y 2
s,u′

) = Xu′,v′(Xs,u′ − Ys,u′) + (Xu′,v′ − Yu′,v′)Ys,u′

+ Xu′,v′(Xs,v′ − Ys,v′) + (Xu′,v′ − Yu′,v′)Ys,v′ .

Now we expand the product of both sums and take expectation. For the first term we obtain, using the Wick formula
and Lemma 7,∣∣E(

Xu,v(Xs,u − Ys,u)Xu′,v′(Xs,u′ − Ys,u′)
)∣∣

≤ ∣∣E(Xu,vXu′,v′)E
[
(Xs,u − Ys,u)(Xs,u′ − Ys,u′)

]∣∣
+ ∣∣E[

Xu,v(Xs,u′ − Ys,u′)
]
E
[
Xu′,v′(Xs,u − Ys,u)

]∣∣
+ ∣∣E[

Xu′,v′(Xs,u′ − Ys,u′)
]
E
[
Xu,v(Xs,u − Ys,u)

]∣∣
≤ Vρ-var

(
R(X,Y ), [u,v] × [

u′, v′])Vγ -var
(
RX−Y , [s, t]2)

+ 2Vγ -var
(
R(X,X−Y), [u,v] × [s, t])Vγ -var

(
R(X,X−Y),

[
u′, v′]× [s, t])

≤ ε2ω
([u,v] × [

u′, v′])1/ρ
ω
([s, t]2)1/γ

+ 2ε2ω
([s, t]2)1/ρ−1/γ

ω
([u,v] × [s, t])1/γ

ω
([

u′, v′]× [s, t])1/γ
.

Now take two partitions D,D̃ of [s, t]. With our calculations above,

∑
ti∈D,t̃j ∈D̃

∣∣E(
Xti,ti+1(Xs,ti − Ys,ti )Xt̃j ,t̃j+1

(Xs,t̃j
− Ys,t̃j

)
)∣∣γ

≤ c1ε
2γ ω

([s, t]2) ∑
ti∈D,t̃j ∈D̃

ω
([ti , ti+1] × [t̃j , t̃j+1]

)γ /ρ

+ c2ε
2γ ω

([s, t]2)γ /ρ−1 ∑
ti∈D,t̃j ∈D̃

ω
([ti , ti+1] × [s, t])ω([t̃j , t̃j+1] × [s, t])

≤ c3ε
2γ
(
ω
([s, t]2)ω([s, t]2)γ /ρ + ω

([s, t]2)γ /ρ−1
ω
([s, t]2)2)

.

The other terms are treated exactly the same way. Taking the supremum over all partitions shows the result. �

The next corollary completes the proof of Proposition 6.

Corollary 2. Let (X,Y ), ω, ρ and γ as in Lemma 6. Then there is a constant C = C(ρ,γ ) such that

∣∣Xi,i,j
s,t − Yi,i,j

s,t

∣∣
L2 ≤ Cεω

([s, t]2)1/(2γ )
ω
([s, t]2)2/(2ρ)

holds for every (s, t) ∈ Δ and i �= j where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .
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Proof. From the triangle inequality,

∣∣Xi,i,j
s,t − Yi,i,j

s,t

∣∣
L2 ≤

∣∣∣∣
∫

[s,t]
(
Xi,i

s,u − Yi,i
s,u

)
dY

j
u

∣∣∣∣
L2

+
∣∣∣∣
∫

[s,t]
Yi,i

s,u d
(
Xj − Y j

)
u

∣∣∣∣
L2

.

For the first integral, we use independence to move the expectation inside the integral as seen in the proof of Lemma 6,
then we use 2D Young integration and Lemma 8 to obtain the desired estimate. The second integral is estimated in
the same way using Lemma 4. �

5.2.3. n = 4
Proposition 7. Let (X,Y ), ω, ρ and γ as in Lemma 6. Then there is a constant C(4) which depends on ρ and γ such
that ∣∣X4

s,t − Y4
s,t

∣∣
L2 ≤ C(4)εω

([s, t]2)1/(2γ )
ω
([s, t]2)3/(2ρ)

holds for every (s, t) ∈ Δ where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

Proof. From Propositions 3 and 2 one sees that it is enough to show the estimate for Xw − Yw where

w ∈ {
iiii, ijkl, iijj, iiij, iijk, j iik: i, j, k, l ∈ {1, . . . , d} distinct

}
.

The cases w = iiii and w = ijkl are special cases of Lemma 5 and Lemma 6. Hence it remains to show the estimate
for

w ∈ {
iijj, iiij, iijk, j iik: i, j, k ∈ {1, . . . , d} pairwise distinct

}
.

This is the content of the remaining section. �

Lemma 9. Let (X,Y ), ω, ρ and γ as in Lemma 6. Then there is a constant C = C(ρ,γ ) such that∣∣Xi,i,j,k
s,t − Yi,i,j,k

s,t

∣∣
L2 ≤ Cεω

([s, t]2)1/(2γ )
ω
([s, t]2)3/(2ρ)

holds for every (s, t) ∈ Δ where i, j, k are distinct and ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

Proof. From the triangle inequality,

|Xi,i,j,k
s,t − Yi,i,j,k

s,t |L2

=
∣∣∣∣
∫

{s<u<v<t}
Xi,i

s,u dX
j
u dXk

v −
∫

{s<u<v<t}
Yi,i

s,u dY
j
u dY k

v

∣∣∣∣
L2

≤
∣∣∣∣
∫

{s<u<v<t}
(
Xi,i

s,u − Yi,i
s,u

)
dX

j
u dXk

v

∣∣∣∣
L2

+
∣∣∣∣
∫

{s<u<v<t}
Yi,i

s,u d
(
Xj − Y j

)
u

dXk
v

∣∣∣∣
L2

+
∣∣∣∣
∫

{s<u<v<t}
Yi,i

s,u dY
j
u d

(
Xk − Y k

)
v

∣∣∣∣
L2

.

For the first integral, we use Proposition 4 and Lemma 8 to obtain∣∣∣∣
∫

{s<u<v<t}
(
Xi,i

s,u − Yi,i
s,u

)
dX

j
u dXk

v

∣∣∣∣2
L2

=
∫

Δ2
s,t×Δ2

s,t

E
[(

Xi,i
s,· − Yi,i

s,·
)(

Xi,i
s,· − Yi,i

s,·
)]

dRXj dRXk

≤ c1ε
2ω

([s, t]2)1/γ+1/ρ
ω
([s, t]2)2/ρ

.

For the other two integrals we also use Proposition 4 together with Lemma 4 to obtain the same estimate. �
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Lemma 10. Let (X,Y ) : [0,1] → R
2 be a centred Gaussian process with continuous paths of finite variation. Assume

that the ρ-variation of R(X,Y ) is controlled by a 2D-control ω where ρ ≥ 1. Consider the function

g(u, v) = E
[(

X(3)
s,u − Y(3)

s,u

)(
X(3)

s,v − Y(3)
s,v

)]
.

Then for every γ > ρ there is a constant C = C(ρ,γ ) such that

Vγ -var
(
g, [s, t]2)≤ Cε2ω

([s, t]2)1/γ+2/ρ

holds for every (s, t) ∈ Δ where ε2 = V∞(RX−Y , [s, t]2)(1−ρ/γ ).

Proof. Similar to the one of Lemma 8 applying again Wick’s formula. �

Corollary 3. Let (X,Y ), ω, ρ and γ as in Lemma 6. Then there is a constant C = C(ρ,γ ) such that∣∣Xi,i,i,j
s,t − Yi,i,i,j

s,t

∣∣
L2 ≤ Cεω

([s, t]2)1/(2γ )
ω
([s, t]2)3/(2ρ)

holds for every (s, t) ∈ Δ and i �= j where ε2 = V∞(RX−Y , [s, t]2)(1−ρ/γ ).

Proof. The triangle inequality gives

∣∣Xi,i,i,j
s,t − Yi,i,i,j

s,t

∣∣
L2 =

∣∣∣∣
∫

[s,t]
Xi,i,i

s,u dX
j
u −

∫
[s,t]

Yi,i,i
s,u dY

j
u

∣∣∣∣
≤
∣∣∣∣
∫

[s,t]
(
Xi,i,i

s,u − Yi,i,i
s,u

)
dX

j
u

∣∣∣∣
L2

+
∣∣∣∣
∫

[s,t]
Yi,i,i

s,u d
(
Xj − Y j

)
u

∣∣∣∣
L2

.

For the first integral, we move the expectation inside the integral, use 2D Young integration and Lemma 10 to conclude
the estimate. The second integral is estimated the same way applying Lemma 4. �

It remains to show the estimates for Xw − Yw where w ∈ {iijj, j iik}. We need to be a bit careful here for the
following reason: It is clear that Xi,i,j

0,1 = ∫
[0,1] Xi,i

u dX
j
u . One might expect that also Xj,i,i

0,1 = ∫
[0,1] X

j
u dXi,i

u holds, but
this is not true in general. Indeed, just take f (u) = g(u) = u. Then∫ 1

0
f (u)d

(∫ u

0
g(v)dg(v)

)
= 1

2

∫ 1

0
ud

(
u2)=

∫ 1

0
u2 du = 1

3

but ∫
Δ2

0,1

f (u)dg(u)dg(v) =
∫

Δ3
0,1

du1 du2 du3 = 1

6
.

One the other hand, if g is smooth, we can use Fubini to see that∫
Δ2

0,1

f (u)dg(u)dg(v) =
∫

[0,1]2
f (u)g′(u)g′(v)1{u<v} dudv

= 1

2

∫
[0,1]2

f (u)g′(u)g′(v)1{u<v} dudv

+ 1

2

∫
[0,1]2

f (v)g′(v)g′(u)1{v<u} dudv

= 1

2

∫
[0,1]2

(
f (u)1{u<v} + f (v)1{v<u}

)
g′(u)g′(v)dudv



Convergence rates for Gaussian rough paths 177

= 1

2

∫
[0,1]2

f (u ∧ v)g′(u)g′(v)dudv

= 1

2

∫
[0,1]2

f (u ∧ v)d
(
g(u)g(v)

)
,

where the last integral is a 2D Young integral. Hence we have seen that an iterated 1D-integral can be transformed
into a usual 2D-integral. We will use this trick for the remaining estimates.

Lemma 11. Let f : [0,1]2 → R be a continuous function. Set

f̄ (u1, u2, v1, v2) = f (u1 ∧ u2, v1 ∧ v2).

(1) Let u1 < ũ1, u2 < ũ2, v1 < ṽ1, v2 < ṽ2 be all in [0,1]. Then

f̄

⎛
⎜⎝

u1, ũ1
u2, ũ2
v1, ṽ1
v2, ṽ2

⎞
⎟⎠= f

(
u, ũ

v, ṽ

)
,

where we set

[u, ũ] =
{ [u1, ũ1] ∩ [u2, ũ2], if [u1, ũ1] ∩ [u2, ũ2] �= ∅,

[0,0], if [u1, ũ1] ∩ [u2, ũ2] = ∅,

[v, ṽ] =
{ [v1, ṽ1] ∩ [v2, ṽ2], if [v1, ṽ1] ∩ [v2, ṽ2] �= ∅,

[0,0], if [v1, ṽ1] ∩ [v2, ṽ2] = ∅.

(2) For s < t , σ < t and p ≥ 1 we have

Vp

(
f, [s, t] × [σ, τ ])= Vp

(
f̄ , [s, t]2 × [σ, τ ]2).

Proof.

(1) By definition of the higher dimensional increments,

f̄

⎛
⎜⎝

u1, ũ1
u2, ũ2

v1
v2

⎞
⎟⎠ = f̄

⎛
⎜⎝

ũ1
ũ2
v1
v2

⎞
⎟⎠− f̄

⎛
⎜⎝

ũ1
u2
v1
v2

⎞
⎟⎠− f̄

⎛
⎜⎝

u1
ũ2
v1
v2

⎞
⎟⎠+ f̄

⎛
⎜⎝

u1
u2
v1
v2

⎞
⎟⎠

= f (ũ1 ∧ ũ2, v1 ∧ v2) − f (ũ1 ∧ u2, v1 ∧ v2)

− f (u1 ∧ ũ2, v1 ∧ v2) + f (u1 ∧ u2, v1 ∧ v2).

By a case distinction, one sees that this is equal to f (ũ, v1 ∧ v2) − f (u, v1 ∧ v2). One goes on with

f̄

⎛
⎜⎝

u1, ũ1
u2, ũ2
v1, ṽ1
v2, ṽ2

⎞
⎟⎠ = f̄

⎛
⎜⎝

u1, ũ1
u2, ũ2

ṽ1
ṽ2

⎞
⎟⎠− f̄

⎛
⎜⎝

u1, ũ1
u2, ũ2

ṽ1
v2

⎞
⎟⎠− f̄

⎛
⎜⎝

u1, ũ1
u2, ũ2

v1
ṽ2

⎞
⎟⎠+ f̄

⎛
⎜⎝

u1, ũ1
u2, ũ2

v1
v2

⎞
⎟⎠

= h(ṽ1 ∧ ṽ2) − h(ṽ1 ∧ v2) − h(v1 ∧ ṽ2) + h(v1 ∧ v2)

= h(ṽ) − h(v),

where h(·) = f (ũ, ·) − f (u, ·). Hence

h(ṽ) − h(v) = f (ũ, ṽ) − f (u, ṽ) − f (ũ, v) + f (u, v) = f

(
u, ũ

v, ṽ

)
.
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Fig. 1. The union of 2 partitions

(2) Let D be a partition of [s, t] and D̃ a partition of [σ, τ ]. Then by 1,

∑
ti∈D,t̃∈D̃

∣∣∣∣f
(

ti , ti+1
t̃j , t̃j+1

)∣∣∣∣p =
∑

ti∈D,t̃∈D̃

∣∣∣∣∣∣∣f̄
⎛
⎜⎝

ti , ti+1
ti , ti+1
t̃j , t̃j+1
t̃j , t̃j+1

⎞
⎟⎠
∣∣∣∣∣∣∣
p

≤ (
Vp

(
f̄ , [s, t]2 × [σ, τ ]2))p,

hence Vp(f, [s, t] × [σ, τ ]) ≤ Vp(f̄ , [s, t]2 × [σ, τ ]2). Now let D1,D2 be partitions of [s, t] and D̃1, D̃2 be par-
titions of [σ, τ ]. Set D = D1 ∪ D2, D̃ = D̃1 ∪ D̃2. Then D is a partition of [s, t] and D̃ a partition of [σ, τ ] (see
Fig. 1).

By (1),

∑
t1
i1

∈D1,t
2
i2

∈D2

t̃1
j1

∈D̃1,t̃
2
j2

∈D̃2

∣∣∣∣∣∣∣∣f
⎛
⎜⎜⎝

t1
i1
, t1

i1+1

t2
i2
, t2

i2+1

t̃1
j1

, t̃1
j1+1

t̃2
j2

, t̃2
j2+1

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

p

=
∑

ti∈D,t̃∈D̃

∣∣∣∣f
(

ti , ti+1
t̃j , t̃j+1

)∣∣∣∣p ≤ (
Vp

(
f, [s, t] × [σ, τ ]))p

and we also get Vp(f̄ , [s, t]2 × [σ, τ ]2) ≤ Vp(f, [s, t] × [σ, τ ]).
�

Lemma 12. Let (X,Y ) : [0,1] → R
2 be a centred Gaussian process with continuous paths of finite variation and

assume that ω is a symmetric control which controls the ρ-variation of R(X,Y ) where ρ ≥ 1. Take (s, t) ∈ Δ, γ > ρ

and set ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

(1) Set f (u1, u2, v1, v2) = E[Xu1Xu2Xv1Xv2]. Then there is a constant C1 = C1(ρ) and a symmetric 4D grid-control
ω̃1 which controls the ρ-variation of f and

Vρ

(
f, [s, t]4)≤ ω̃1

([s, t]4)1/ρ = C1ω
([s, t]2)2/ρ

.

(2) Set f̃ (u1, u2, v1, v2) = E[X(2)
s,u1∧u2

X(2)
s,v1∧v2

]. Then there is a constant C2 = C2(ρ) such that

Vρ

(
f̃ , [s, t]4)≤ C2ω

([s, t]2)2/ρ
.
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(3) Set

g(u1, u2, v1, v2) = E
[
(Xu1Xu2 − Yu1Yu2)(Xv1Xv2 − Yv1Yv2)

]
.

Then there is a constant C3 = C3(ρ, γ ) and a symmetric 4D grid-control ω̃2 which controls the γ -variation of g

and

Vγ

(
g, [s, t]4)≤ ω̃2

([s, t]4)1/γ = C3ε
2ω

([s, t]2)1/γ+1/ρ
.

(4) Set

g̃(u1, u2, v1, v2) = E
[(

X(2) − Y(2)
)
s,u1∧u2

(
X(2) − Y(2)

)
s,v1∧v2

]
.

Then there is a constant C4 = C4(ρ, γ ) such that

Vγ

(
g̃, [s, t]4)≤ C4ε

2ω
([s, t]2)1/γ+1/ρ

.

Proof.

(1) Let u1 < ũ1, u2 < ũ2, v1 < ṽ1, v2 < ṽ2. By the Wick-formula,∣∣E[Xu1,ũ1Xu2,ũ2Xv1,ṽ1Xv2,ṽ2 ]
∣∣ρ

≤ 3ρ−1
∣∣E[Xu1,ũ1Xu2,ũ2]E[Xv1,ṽ1Xv2,ṽ2]

∣∣ρ + 3ρ−1
∣∣E[Xu1,ũ1Xv1,ṽ1]E[Xu2,ũ2Xv2,ṽ2 ]

∣∣ρ
+ 3ρ−1

∣∣E[Xu1,ũ1Xv2,ṽ2]E[Xu2,ũ2Xv1,ṽ1 ]
∣∣ρ

≤ 3ρ−1ω
([u1, ũ1] × [u2, ũ2]

)
ω
([v1, ṽ1] × [v2, ṽ2]

)
+ 3ρ−1ω

([u1, ũ1] × [v1, ṽ1]
)
ω
([u2, ũ2] × [v2, ṽ2]

)
+ 3ρ−1ω

([u1, ũ1] × [v2, ṽ2]
)
ω
([u2, ũ2] × [v1, ṽ1]

)
=: ω̃1

([u1, ũ1] × [u2, ũ2] × [v1, ṽ1] × [v2, ṽ2]
)
.

It is easy to see that ω̃1 is a symmetric grid-control and that it fulfils the stated property.
(2) A direct consequence of Lemma 4 and Lemma 11.
(3) We have

Xu1Xu2 − Yu1Yu2 = (Xu1 − Yu1)Xu2 + Yu1(Xu2 − Yu2).

Hence for u1 < ũ1, u2 < ũ2, v1 < ṽ1, v2 < ṽ2,

f̃

⎛
⎜⎝

u1, ũ1
u2, ũ2
v1, ṽ1
v2, ṽ2

⎞
⎟⎠ = E

[
(X − Y)u1,ũ1Xu2,ũ2(X − Y)v1,ṽ1Xv2,ṽ2

]

+ E
[
Yu1,ũ1(X − Y)u2,ũ2(X − Y)v1,ṽ1Xv2,ṽ2

]
+ E

[
(X − Y)u1,ũ1Xu2,ũ2Yv1,ṽ1(X − Y)v2,ṽ2

]
+ E

[
Yu1,ũ1(X − Y)u2,ũ2Yv1,ṽ1(X − Y)v2,ṽ2

]
.

For the first term we have, using Lemma 7,∣∣E[
(X − Y)u1,ũ1Xu2,ũ2(X − Y)v1,ṽ1Xv2,ṽ2

]∣∣γ
≤ 3γ−1

∣∣E[
(X − Y)u1,ũ1Xu2,ũ2

]∣∣γ ∣∣E[
(X − Y)v1,ṽ1Xv2,ṽ2

]∣∣γ
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+ 3γ−1
∣∣E[

(X − Y)u1,ũ1(X − Y)v1,ṽ1

]∣∣γ ∣∣E[Xu2,ũ2Xv2,ṽ2 ]
∣∣γ

+ 3γ−1
∣∣E[

(X − Y)u1,ũ1Xv2,ṽ2

]∣∣γ ∣∣E[
Xu2,ũ2(X − Y)v1,ṽ1

]∣∣γ
≤ 3γ−1ε2γ ω

([s, t]2)γ /ρ−1
ω
([u1, ũ1] × [u2, ũ2]

)
ω
([v1, ṽ1] × [v2, ṽ2]

)
+ 3γ−1ε2γ ω

([u1, ũ1] × [v1, ṽ1]
)
ω
([u2, ũ2] × [v2, ṽ2]

)γ /ρ

+ 3γ−1ε2γ ω
([s, t]2)γ /ρ−1

ω
([u1, ũ1] × [v2, ṽ2]

)
ω
([u2, ũ2] × [v1, ṽ1]

)
≤ 3γ−1ε2γ ω

([s, t]2)γ /ρ−1(
ω
([u1, ũ1] × [u2, ũ2]

)
ω
([v1, ṽ1] × [v2, ṽ2]

)
+ ω

([u1, ũ1] × [v1, ṽ1]
)
ω
([u2, ũ2] × [v2, ṽ2]

)
+ ω

([u1, ũ1] × [v2, ṽ2]
)
ω
([u2, ũ2] × [v1, ṽ1]

))
=: ω̃([u1, ũ1] × [u2, ũ2] × [v1, ṽ1] × [v2, ṽ2]

)
.

ω̃ is a symmetric grid-control and fulfils the stated property. The other terms are treated in the same way.
(4) Follows from Lemma 8 and Lemma 11. �

Corollary 4. Let (X,Y ), ω, ρ and γ as in Lemma 6. Then there is a constant C = C(ρ,γ ) such that∣∣Xi,i,j,j
s,t − Yi,i,j,j

s,t

∣∣
L2 ≤ Cεω

([s, t]2)1/(2γ )
ω
([s, t]2)3/(2ρ)

holds for every (s, t) ∈ Δ and i �= j where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

Proof. As seen before, we can use Fubini to obtain

Xi,i,j,j
s,t =

∫
Δ2

s,t

Xi,i
s,u1

dX
j
u1 dX

j
u2 = 1

2

∫
[s,t]2

Xi,i
s,u1∧u2

d
(
X

j
u1X

j
u2

)
and hence

∣∣Xi,i,j,j
s,t − Yi,i,j,j

s,t

∣∣
L2 ≤ 1

2

∣∣∣∣
∫

[s,t]2

(
Xi,i

s,u1∧u2
− Yi,i

s,u1∧u2

)
d
(
X

j
u1X

j
u2

)∣∣∣∣
L2

+ 1

2

∣∣∣∣
∫

[s,t]2
Yi,i

s,u1∧u2
d
(
X

j
u1X

j
u2 − Y

j
u1Y

j
u2

)∣∣∣∣
L2

.

We use a Young 4D-estimate and the estimates of Lemma 12 to see that∣∣∣∣
∫

[s,t]2

(
Xi,i

s,u1∧u2
− Yi,i

s,u1∧u2

)
d
(
X

j
u1X

j
u2

)∣∣∣∣2
L2

=
∫

[s,t]4
E
[(

Xi,i
s,u1∧u2

− Yi,i
s,u1∧u2

)(
Xi,i

s,v1∧v2
− Yi,i

s,v1∧v2

)]
dE

[
X

j
u1X

j
u2X

j
v1

Xj
v2

]
≤ c1ε

2ω
([s, t]2)1/γ

ω
([s, t]2)3/ρ

.

The second term is estimated in the same way using again Lemma 12. �

Lemma 13. Let f : [0,1]2 → R and g : [0,1]2 × [0,1]2 → R be continuous where g is symmetric in the first and the
last two variables. Let (s, t) ∈ Δ and assume that f (s, ·) = f (·, s) = 0. Assume also that f has finite p-variation and
that the q-variation of g is controlled by a symmetric 4D grid-control ω̃ where 1

p
+ 1

q
> 1. Define

Ψ (u,v) =
∫

[s,u]2×[s,v]2
f (u1 ∧ u2, v1 ∧ v2)dg(u1, u2;v1, v2).
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Then there is a constant C = C(p,q) such that

Vq

(
Ψ ; [s, t]2)≤ CVp

(
f ; [s, t]2)ω̃([s, t]4)1/q

.

Proof. Set

f̃ (u1, u2, v1, v2) = f (u1 ∧ u2, v1 ∧ v2).

Let u < v and u′ < v′. Note that

1[s,v]2×[s,v′]2 − 1[s,u]2×[s,v′]2 − 1[s,v]2×[s,u′]2 + 1[s,u]2×[s,u′]2

= 1([s,v]2\[s,u]2)×[s,v′]2 − 1([s,v]2\[s,u]2)×[s,u′]2

= 1([s,v]2\[s,u]2)×([s,v′]2\[s,u′]2).

If we take out the square [s, u]2 of the larger square [s, v]2, what is left is the union of three essentially disjoint
squares. More precisely,

[s, v]2 \ [s, u]2 = [u,v]2 ∪ ([s, u] × [u,v])∪ ([u,v] × [s, u]).
The same holds for u′ and v′. Hence,

([s, v]2 \ [s, u]2
)× ([

s, v′]2 \ [s, u′]2
)

= ([u,v]2 ∪ ([s, u] × [u,v])∪ ([u,v] × [s, u]))
× ([

u′, v′]2 ∪ ([
s, u′]× [

u′, v′])∪ ([
u′, v′]× [

s, u′]))
= ([u,v]2 × [

u′, v′]2)∪ ([
u,v

]2 × [
s, u′]× [

u′, v′])∪ ([u,v]2 × [
u′, v′]× [

s, u′])
∪ ([s, u] × [u,v] × [

u′, v′]2)∪ ([s, u] × [u,v] × [
s, u′]× [

u′, v′])
∪ ([s, u] × [u,v] × [

u′, v′]× [
s, u′])

∪ ([u,v] × [s, u] × [
u′, v′]2)∪ ([u,v] × [s, u] × [

s, u′]× [
u′, v′])

∪ ([u,v] × [s, u] × [
u′, v′]× [

s, u′])
and all these are unions of essentially disjoint sets. Using continuity and the symmetry of f̃ and g we have then

Ψ

(
u,v

u′, v′
)

=
∫

([s,v]2\[s,u]2)×([s,v′]2\[s,u′]2)

f̃ dg

=
∫

[u,v]2×[u′,v′]2
f̃ dg + 2

∫
[u,v]2×[s,u′]×[u′,v′]

f̃ dg

+ 2
∫

[s,u]×[u,v]×[u′,v′]2
f̃ dg + 4

∫
[s,u]×[u,v]×[s,u′]×[u′,v′]

f̃ dg.

For the first integral we use Young 4D-estimates. Since f̃ (s, ·, ·, ·) = · · · = f̃ (·, ·, ·, s) = 0, we can proceed as in the
proof of Lemma 2 and use Lemma 11 to see that∣∣∣∣

∫
[u,v]2×[u′,v′]2

f̃ dg

∣∣∣∣ ≤ c1Vp

(
f, [s, t]2)Vq

(
g, [u,v]2 × [

u′, v′]2)
≤ c1Vp

(
f, [s, t]2)ω̃([u,v]2 × [

u′, v′]2)1/q
.
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For the second integral, we have∫
[u,v]2×[s,u′]×[u′,v′]

f̃ dg

=
∫

[u,v]2×[s,u′]×[u′,v′]
f (u1 ∧ u2, v1 ∧ v2)dg(u1, u2;v1, v2)

=
∫

[u,v]2×[s,u′]
f (u1 ∧ u2, v1)d

[
g
(
u1, u2;v1, v

′)− g
(
u1, u2;v1, u

′)].
We now use a Young 3D-estimate to see that∣∣∣∣

∫
[u,v]2×[s,u′]×[u′,v′]

f̃ dg

∣∣∣∣ ≤ c2Vp

(
f (· ∧ ·, ·), [s, t]3)

× Vq

(
g
(·, ·; ·, v′)− g

(·, ·; ·, u′), [u,v]2 × [
s, u′]).

As in Lemma 11, one can show that Vp(f (· ∧ ·, ·), [s, t]3) = Vp(f, [s, t]2). For g, we have

Vq

(
g
(·, ·; ·, v′)− g

(·, ·; ·, u′), [u,v]2 × [
s, u′]) ≤ Vq

(
g, [u,v]2 × [

s, u′]× [
u′, v′])

≤ ω̃
([u,v]2 × [s, t] × [

u′, v′])1/q
.

Hence∣∣∣∣
∫

[u,v]2×[s,u′]×[u′,v′]
f̃ dg

∣∣∣∣≤ c2Vp

(
f, [s, t]2)ω̃([u,v]2 × [s, t] × [

u′, v′])1/q
.

Similarly, using Young 3D and 2D estimates, we get∣∣∣∣
∫

[s,u]×[u,v]×[u′,v′]2
f̃ dg

∣∣∣∣≤ c3Vp

(
f, [s, t]2)ω̃([s, t] × [u,v] × [

u′, v′]2)1/q

and ∣∣∣∣
∫

[s,u]×[u,v]×[s,u′]×[u′,v′]
f̃ dg

∣∣∣∣≤ c4Vp

(
f, [s, t]2)ω̃([s, t] × [u,v] × [s, t] × [

u′, v′])1/q
.

Putting all together, using the symmetry of ω̃ we have shown that∣∣∣∣Ψ
(

u,v

u′, v′
)∣∣∣∣q ≤ c5Vp

(
f, [s, t]2)qω̃

([u,v] × [
u′, v′]× [s, t]2).

Since ω̃2([u,v] × [u′, v′]) := ω̃([u,v] × [u′, v′] × [s, t]2) is a 2D grid-control this shows the claim. �

We are now able to prove the remaining estimate.

Corollary 5. Let (X,Y ), ω, ρ and γ as in Lemma 6. Then there is a constant C = C(ρ,γ ) such that∣∣Xj,i,i,k
s,t − Yj,i,i,k

s,t

∣∣
L2 ≤ Cεω

([s, t]2)1/(2γ )
ω
([s, t]2)3/(2ρ)

holds for every (s, t) ∈ Δ and i, j, k pairwise distinct where ε2 = V∞(RX−Y , [s, t]2)1−ρ/γ .

Proof. From∫
Δ2

s,w

X
j
s,u1 dXi

u1
dXi

u2
= 1

2

∫
[s,w]2

X
j
s,u1∧u2

d
(
Xi

u1
Xi

u2

)
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we see that

Xj,i,i,k
s,t = 1

2

∫ t

s

(∫
[s,w]2

X
j
s,u1∧u2

d
(
Xi

u1
Xi

u2

))
dXk

w.

Hence∣∣Xj,i,i,k
s,t − Yj,i,i,k

s,t

∣∣
L2

≤ 1

2

∣∣∣∣
∫ t

s

Ψ1(w)dXk
w

∣∣∣∣
L2

+ 1

2

∣∣∣∣
∫ t

s

Ψ2(w)dXk
w

∣∣∣∣
L2

+ 1

2

∣∣∣∣
∫ t

s

Ψ3(w)d
(
Xk − Y k

)
w

∣∣∣∣
L2

,

where

Ψ1(w) =
∫

[s,w]2

(
X

j
s,u1∧u2

− Y
j
s,u1∧u2

)
d
(
Xi

u1
Xi

u2

)
,

Ψ2(w) =
∫

[s,w]2
Y

j
s,u1∧u2

d
(
Xi

u1
Xi

u2
− Y i

u1
Y i

u2

)
,

Ψ3(w) =
∫

[s,w]2
Y

j
s,u1∧u2

d
(
Y i

u1
Y i

u2

)
.

We start with the first integral. From independence and Young 2D-estimates,

∣∣∣∣
∫ t

s

Ψ1(w)dXk
w

∣∣∣∣2
L2

=
∫

[s,t]2
E
[
Ψ1(w1)Ψ1(w2)

]
dE

[
Xk

w1
Xk

w2

]
≤ c1Vρ

(
E
[
Ψ1(·)Ψ1(·)

]
, [s, t]2)Vρ

(
RXk [s, t]2).

Now,

E
[
Ψ1(w1)Ψ1(w2)

]
=
∫

[s,w1]2×[s,w2]2
E
[(

X
j
s,u1∧u2

− Y
j
s,u1∧u2

)(
X

j
s,v1∧v2

− Y
j
s,v1∧v2

)]
dE

[
Xi

u1
Xi

u2
Xi

v1
Xi

v2

]
.

In Lemma 12 we have seen that the ρ-variation of E[Xi·Xi· Xi· Xi· ] is controlled by a symmetric grid-control ω̃1 . Hence
we can apply Lemma 13 to conclude that

Vρ

(
E
[
Ψ1(·)Ψ1(·)

]
, [s, t]2) ≤ c2Vγ

(
RX−Y ; [s, t]2)ω̃1

([s, t]4)1/ρ

≤ c3ε
2ω

([s, t]2)1/γ
ω
([s, t]2)2/ρ

.

Clearly, Vρ(RXk [s, t]2) ≤ ω([s, t]2)1/ρ and therefore

∣∣∣∣
∫ t

s

Ψ1(w)dXk
w

∣∣∣∣2
L2

≤ c4ε
2ω

([s, t]2)1/γ
ω
([s, t]2)3/ρ

.

Now we come to the second integral. From independence,

∣∣∣∣
∫ t

s

Ψ2(w)dXk
w

∣∣∣∣2
L2

=
∫

[s,t]2
E
[
Ψ2(w1)Ψ2(w2)

]
dE

[
Xk

w1
Xk

w2

]
≤ c5Vγ

(
E
[
Ψ2(·)Ψ2(·)

]
, [s, t]2)Vρ

(
RXk [s, t]2).
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Now

E
[
Ψ2(w1)Ψ2(w2)

]
=
∫

[s,w1]2×[s,w2]2
E
[
Y

j
s,u1∧u2

Y
j
s,v1∧v2

]
dE

[(
Xi

u1
Xi

u2
− Y i

u1
Y i

u2

)(
Xi

v1
Xi

v2
− Y i

v1
Y i

v2

)]
=:

∫
[s,w1]2×[s,w2]2

E
[
Y

j
s,u1∧u2

Y
j
s,v1∧v2

]
dg(u1, u2, v1, v2).

In Lemma 12 we have seen that the 4D γ -variation of g is controlled by a symmetric 4D grid-control ω̃2 where

ω̃2
([s, t]4)1/γ = c6ε

2ω
([s, t]2)1/ρ+1/γ

.

Hence

Vγ

(
E
[
Ψ2(·)Ψ2(·)

]
, [s, t]2)≤ c7Vρ

(
RYj ; [s, t]2)ω̃2

([s, t]4)1/γ ≤ c8ε
2ω

([s, t]2)2/ρ+1/γ
.

This gives us∣∣∣∣
∫ t

s

Ψ2(w)dXk
w

∣∣∣∣2
L2

≤ c9ε
2ω

([s, t]2)1/γ
ω
([s, t]2)3/ρ

.

For the third integral we see again that∣∣∣∣
∫ t

s

Ψ3(w)d
(
Xk − Y k

)
w

∣∣∣∣2
L2

=
∫

[s,t]2
E
[
Ψ3(w1)Ψ3(w2)

]
dE

[(
Xk − Y k

)
w1

(
Xk − Y k

)
w2

]
≤ c10Vρ

(
E
[
Ψ3(·)Ψ3(·)

]
, [s, t]2)Vγ

(
RX−Y , [s, t]2).

From

E
[
Ψ3(w1)Ψ3(w2)

]=
∫

[s,w1]2×[s,w2]2
E
[
Y

j
s,u1∧u2

Y
j
s,v1∧v2

]
dE

[
Y i

u1
Y i

u2
Y i

v1
Y i

v2

]
we see that we can apply Lemma 13 to obtain

Vρ

(
E
[
Ψ3(·)Ψ3(·)

]
, [s, t]2)≤ c11Vρ

(
RYj ; [s, t]2)ω([s, t]2)2/ρ ≤ c11ω

([s, t]2)3/ρ
.

Clearly, Vγ (RX−Y , [s, t]2) ≤ ε2ω([s, t]2)1/γ and hence

∣∣∣∣
∫ t

s

Ψ3(w)d
(
Xk − Y k

)
w

∣∣∣∣2
L2

≤ c12ε
2ω

([s, t]2)1/γ
ω
([s, t]2)3/ρ

which gives the claim. �

Remark 2. Even though Propositions 5, 6 and 7 are only formulated for Gaussian processes with sample paths of
finite variation, the estimate (5.1) is valid also for general Gaussian rough paths for n = 1,2,3,4. Indeed, this follows
from the fact that Gaussian rough paths are just defined as L2 limits of smooth paths, cf. [6].

5.3. Higher levels

Once we have shown our desired estimates for the first four levels, we can use induction to obtain also the higher
levels. This is done in the next proposition.
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Proposition 8. Let X and Y be Gaussian processes as in Theorem 1. Let ρ, γ be fixed and ω be a control. Assume
that there are constants C̃ = C̃(n) such that

∣∣Xn
s,t

∣∣
L2 ,

∣∣Yn
s,t

∣∣
L2 ≤ C̃(n)

ω(s, t)n/(2ρ)

β(n/(2ρ))!
holds for n = 1, . . . , [2ρ] and constants C = C(n) such that

∣∣Xn
s,t − Yn

s,t

∣∣
L2 ≤ C(n)εω(s, t)1/(2γ ) ω(s, t)(n−1)/(2ρ)

β((n − 1)/(2ρ))!
holds for n = 1, . . . , [2ρ] + 1 and every (s, t) ∈ Δ. Here, ε > 0 and β is a positive constant such that

β ≥ 4ρ

(
1 + 2([2ρ]+1)/2ρ

(
ζ

( [2ρ] + 1

2ρ

)
− 1

))
,

where ζ is just the usual Riemann zeta function. Then for every n ∈ N there is a constant C = C(n) such that

∣∣Xn
s,t − Yn

s,t

∣∣
L2 ≤ Cεω(s, t)1/(2γ ) ω(s, t)(n−1)/(2ρ)

β((n − 1)/(2ρ))!
holds for every (s, t) ∈ Δ.

Proof. From Proposition 1 we know that for every n ∈ N there are constants C̃(n) such that

∣∣Xn
s,t

∣∣
L2 ,

∣∣Yn
s,t

∣∣
L2 ≤ C̃

ω(s, t)n/(2ρ)

β(n/(2ρ))!
holds for all s < t . We will proof the assertion by induction over n. The induction basis is fulfiled by assumption.
Suppose that the statement is true for k = 1, . . . , n where n ≥ [2ρ] + 1. We will show the statement for n + 1. Let
D = {s = t0 < t1 < · · · < tj = t} be any partition of [s, t]. Set

X̄s,t := (
1,X1

s,t , . . . ,Xn
s,t ,0

) ∈ T n+1(
R

d
)
,

X̄D
s,t := X̄s,t1 ⊗ · · · ⊗ X̄tj−1,t

and the same for Y. We know that lim|D|→0 X̄D
s,t = Sn+1(X)s,t a.s. and the same holds for Y (indeed, this is just the

definition of the Lyons lift, cf. [14], Theorem 2.2.1). By multiplicativity, πk(X̄D
s,t ) = Xk

s,t for k ≤ n. We will show that
for any dissection D we have

∣∣πn+1
(
X̄D

s,t − ȲD
s,t

)∣∣
L2 ≤ C(n + 1)εω(s, t)1/(2γ ) ω(s, t)n/(2ρ)

β(n/(2ρ))! .

We use the notation (XD)k := πk(X̄D). Assume that j ≥ 2. Let D′ be the partition of [s, t] obtained by removing a
point ti of the dissection D for which

ω(ti−1, ti+1) ≤
{

2ω(s,t)
j−1 for j ≥ 3,

ω(s, t) for j = 2

holds (Lemma 2.2.1 in [14] shows that there is indeed such a point). By the triangle inequality,

∣∣(XD − YD
)n+1∣∣

L2 ≤ ∣∣(XD − XD′)n+1 − (
YD − YD′)n+1∣∣

L2 + ∣∣(XD′ − YD′)n+1∣∣
L2 .
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We estimate the first term on the right hand side. As seen in the proof of [14, Theorem 2.2.1], (XD
s,t − XD′

s,t )
n+1 =∑n

l=1 Xl
ti−1,ti

Xn+1−l
ti ,ti+1

. Set Rl = Yl−Xl . Then

(
XD

s,t − XD′
s,t

)n+1 − (
YD

s,t − YD′
s,t

)n+1

=
n∑

l=1

Xl
ti−1,ti

Xn+1−l
ti ,ti+1

− (
Xl

ti−1,ti
+ Rl

ti−1,ti

)(
Xn+1−l

ti ,ti+1
+ Rn+1−l

ti ,ti+1

)

=
n∑

l=1

−Xl
ti−1,ti

Rn+1−l
ti ,ti+1

− Rl
ti−1,ti

Yn+1−l
ti ,ti+1

.

By the triangle inequality, equivalence of Lq -norms in the Wiener Chaos, our moment estimate for Xk and Yk and the
induction hypothesis,

∣∣(XD
s,t − XD′

s,t

)n+1 − (
YD

s,t − YD′
s,t

)n+1∣∣
L2

≤ c1(n + 1)

n∑
l=1

∣∣Xl
ti−1,ti

∣∣
L2

∣∣Rn+1−l
ti ,ti+1

∣∣
L2 + ∣∣Rl

ti−1,ti

∣∣
L2

∣∣Yn+1−l
ti ,ti+1

∣∣
L2

≤ c2(n + 1)

n∑
l=1

εω(ti , ti+1)
1/(2γ ) ω(ti−1, ti )

l/(2ρ)

β(l/(2ρ))!
ω(ti, ti+1)

(n−l)/(2ρ)

β((n − l)/(2ρ))!

+ εω(ti−1, ti)
1/(2γ ) ω(ti−1, ti )

(l−1)/(2ρ)

β((l − 1)/(2ρ))!
ω(ti, ti+1)

(n+1−l)/(2ρ)

β((n + 1 − l)/(2ρ))!

≤ 2c2εω(s, t)1/(2γ )
n∑

l=0

ω(ti−1, ti)
l/(2ρ)

β(l/(2ρ))!
ω(ti, ti+1)

(n−l)/(2ρ)

β(n − l/(2ρ))!

= 4ρ

β2
c2εω(s, t)1/(2γ ) 1

2ρ

n∑
l=0

ω(ti−1, ti )
l/(2ρ)

(l/(2ρ))!
ω(ti, ti+1)

(n−l)/(2ρ)

((n − l)/(2ρ))!

≤ 4ρc2εω(s, t)1/(2γ ) ω(ti−1, ti+1)
n/(2ρ)

β2(n/(2ρ))! ,

where we used the neo-classical inequality (cf. [11]) and superadditivity of the control function. Hence for j ≥ 3,

∣∣(XD
s,t − XD′

s,t

)n+1 − (
YD

s,t − YD′
s,t

)n+1∣∣
L2 ≤ 4ρc2εω(s, t)1/(2γ ) ω(ti−1, ti+1)

n/(2ρ)

β2(n/(2ρ))!

≤
(

2

j − 1

)n/(2ρ)

4ρc2εω(s, t)1/(2γ ) ω(s, t)n/(2ρ)

β2(n/(2ρ))! .

For j = 2 we get

∣∣(XD
s,t − XD′

s,t

)n+1 − (
YD

s,t − YD′
s,t

)n+1∣∣
L2 ≤ 4ρc2εω(s, t)1/(2γ ) ω(s, t)n/(2ρ)

β2(n/(2ρ))!

but then D′ = {s, t} and therefore |(XD′
s,t − YD′

s,t )
n+1|L2 = 0. Hence by successively dropping points we see that

∣∣(XD
s,t − YD

s,t

)n+1∣∣
L2 ≤

(
1 +

∞∑
j=3

(
2

j − 1

)n/(2ρ)
)

4ρc2εω(s, t)1/(2γ ) ω(s, t)n/(2ρ)

β2(n/(2ρ))!
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holds for all partitions D. Since n ≥ [2ρ] + 1,

∞∑
j=3

(
2

j − 1

)n/(2ρ)

≤
∞∑

j=3

(
2

j − 1

)([2ρ]+1)/(2ρ)

≤ 2([2ρ]+1)/(2ρ)

(
ζ

( [2ρ] + 1

2ρ

)
− 1

)

and thus

∣∣(XD
s,t − YD

s,t

)n+1∣∣
L2 ≤ 4ρ(1 + 2([2ρ]+1)/(2ρ)(ζ(([2ρ] + 1)/(2ρ)) − 1))

β
c2εω(s, t)1/(2γ ) ω(s, t)n/(2ρ)

β(n/(2ρ))! .

By the choice of β , we get the uniform bound

∣∣(XD
s,t − YD

s,t

)n+1∣∣
L2 ≤ c2εω(s, t)1/(2γ ) ω(s, t)n/(2ρ)

β(n/(2ρ))!
which holds for all partitions D. Noting that a.s. convergence implies convergence in L2 in the Wiener chaos, we
obtain our claim by sending |D| → 0. �

Corollary 6. Let (X,Y ), ω, ρ and γ as in Lemma 6. Then for all n ∈ N there are constants C = C(ρ,γ,n) such that∣∣Xn
s,t − Yn

s,t

∣∣
L2 ≤ Cεω

([s, t]2)1/(2γ )
ω
([s, t]2)(n−1)/(2ρ)

holds for every (s, t) ∈ Δ where ε2 = V∞(RX−Y , [0,1]2)1−ρ/γ .

Proof. For n = 1,2,3,4 this is the content of Propositions 5, 6 and 7. By making the constants larger if necessary,
we also get

∣∣Xn
s,t − Yn

s,t

∣∣
L2 ≤ c(n)εω

([s, t]2)1/(2γ ) ω([s, t]2)(n−1)/(2ρ)

β((n − 1)/(2ρ))!
with β chosen as in Proposition 8. We have already seen that

∣∣Xn
s,t

∣∣
L2 ,

∣∣Yn
s,t

∣∣
L2 ≤ c̃(n)

ω([s, t]2)n/(2ρ)

β(n/(2ρ))!
holds for constants c̃(n) where n = 1,2,3. Since ρ < 2, we have [2ρ] + 1 ≤ 4. From Proposition 8 we can conclude
that

∣∣Xn
s,t − Yn

s,t

∣∣
L2 ≤ c(n)εω

([s, t]2)1/(2γ ) ω([s, t]2)(n−1)/(2ρ)

β((n − 1)/(2ρ))!
holds for every n ∈ N and constants c(n). Setting C(n) = c(n)

β((n−1)/(2ρ))! gives our claim. �

6. Main result

Assume that X is a Gaussian process as in Theorem 1 with paths of finite p-variation. Consider a sequence (Λk)k∈N

of continuous operators

Λk :Cp-var([0,1],R
)→ C1-var([0,1],R

)
.

If x = (x1, . . . , xd) ∈ Cp-var([0,1],R
d), we will write Λk(x) = (Λk(x

1), . . . ,Λk(x
d)). Assume that Λk fulfils the

following conditions:

(1) Λk(x) → x in the |·|∞-norm if k → ∞ for every x ∈ Cp-var([0,1],R
d).
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(2) If RX has finite controlled ρ-variation, then, for some C = C(ρ),

sup
k,l∈N

|R(Λk(X),Λl(X))|ρ-var;[0,1]2 ≤ C|RX|ρ-var;[0,1]2 .

Our main result is the following:

Theorem 5. Let X be a Gaussian process as in Theorem 1 for ρ < 2 and K ≥ Vρ(RX, [0,1]2). Then there is an
enhanced Gaussian process X with sample paths in C0,p-var([0,1],G[p](Rd)) w.r.t. (Λk)k∈N where p ∈ (2ρ,4), i.e.∣∣ρp-var

(
S[p]

(
Λk(X)

)
,X

)∣∣
Lr → 0

for k → ∞ and every r ≥ 1. Moreover, choose γ such that γ > ρ and 1
γ

+ 1
ρ

> 1. Then for q > 2γ and every N ∈ N

there is a constant C = C(q,ρ, γ,K,N) such that∣∣ρq-var
(
SN

(
Λk(X)

)
, SN(X)

)∣∣
Lr ≤ CrN/2 sup

0≤t≤1

∣∣Λk(X)t − Xt

∣∣1−ρ/γ

L2(Rd )

holds for every k ∈ N.

Proof. The first statement is a fundamental result about Gaussian rough paths, see [7], Theorem 15.33. For the second,
take δ > 0 and set

γ ′ = (1 + δ)γ and ρ′ = (1 + δ)ρ.

By choosing δ smaller if necessary we can assume that 1
ρ′ + 1

γ ′ > 1 and q > 2γ ′. Set

ωk,l(A) = |R(Λk(X),Λl(X))|ρ
′

ρ′-var;A

for a rectangle A ⊂ [0,1]2 and

εk,l = V∞
(
R(Λk(X)−Λl(X)), [0,1]2)1/2−ρ′/(2γ ′) = V∞

(
R(Λk(X)−Λl(X)), [0,1]2)1/2−ρ/(2γ )

.

From Theorem 2 we know that ωk,l is a 2D control function which controls the ρ′-variation of R(Λk(X),Λl(X)). From
Corollary 6 we can conclude that there is a constant c1 such that∣∣πn

(
SN

(
Λk(X)

)
s,t

− SN

(
Λl(X)

)
s,t

)∣∣
L2 ≤ c1εk,lωk,l

([s, t]2)1/(2γ ′)
ωk,l

([s, t]2)(n−1)/(2ρ′)

holds for every n = 1, . . . ,N , (s, t) ∈ Δ and k, l ∈ N. Now,

ωk,l

([s, t]2)(n−1)/(2ρ′) =
(

ωk,l([s, t]2)

ωk,l([0,1]2)

)(n−1)/(2ρ′)
ωk,l

([0,1]2)(n−1)/(2ρ′)

≤ ωk,l

([s, t]2)(n−1)/(2γ ′)
ωk,l

([0,1]2)(n−1)/(2ρ′)−(n−1)/(2γ ′)
.

From Theorem 2 and our assumptions on the Λk we know that

ωk,l

([0,1]2)1/ρ′ ≤ c2|RX|ρ′-var;[0,1]2 ≤ c3Vρ

(
RX, [0,1]2)≤ c4

(
ρ,ρ′,K

)
holds uniformly over all k, l. Hence∣∣πn

(
SN

(
Λk(X)

)
s,t

− SN

(
Λl(X)

)
s,t

)∣∣
L2 ≤ c5εk,lωk,l

([s, t]2)n/(2γ ′)
.

Proposition 1 shows with the same argument that∣∣πn

(
SN

(
Λk(X)

)
s,t

)∣∣
L2 ≤ c6ωk,l

([s, t]2)n/(2ρ′) ≤ c7ωk,l

([s, t]2)n/(2γ ′)
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for every k ∈ N and the same holds for SN(Λl(X))s,t . From [7], Proposition 15.24 we can conclude that there is a
constant c8 such that∣∣ρq-var

(
SN

(
Λk(X)

)
, SN

(
Λl(X)

))∣∣
Lr ≤ c8r

N/2εk,l

holds for all k, l ∈ N. In particular, we have shown that (SN(Λk(X)))k∈N is a Cauchy sequence in Lrand it is clear
that the limit is given by the Lyons lift SN(X) of the enhanced Gaussian process X. Now fix k ∈ N. For every l ∈ N,∣∣ρq-var

(
SN

(
Λk(X)

)
, SN(X)

)∣∣
Lr ≤ ∣∣ρq-var

(
SN

(
Λk(X)

)
, SN

(
Λl(X)

))∣∣
Lr

+ ∣∣ρq-var
(
SN

(
Λl(X)

)
, SN(X)

)∣∣
Lr

≤ c8r
N/2εk,l + ∣∣ρq-var

(
SN

(
Λl(X)

)
, SN(X)

)∣∣
Lr .

It is easy to see that

εk,l → V∞
(
R(Λk(X)−X), [0,1]2)1/2−ρ/(2γ ) for l → ∞

and since∣∣ρq-var
(
SN

(
Λl(X)

)
, SN(X)

)∣∣
Lr → 0 for l → ∞

we can conclude that∣∣ρq-var
(
SN

(
Λk(X)

)
, SN(X)

)∣∣
Lr ≤ c8r

N/2V∞
(
R(Λk(X)−X), [0,1]2)1/2−ρ/(2γ )

holds for every k ∈ N. Finally, we have for [σ, τ ] × [σ ′, τ ′] ⊂ [0,1]2

∣∣∣∣R(Λk(X)−X)

(
σ, τ

σ ′, τ ′
)∣∣∣∣

Rd×d

≤ 4 sup
0≤s<t≤1

∣∣R(Λk(X)−X)(s, t)
∣∣
Rd×d

and hence

V∞
(
R(Λk(X)−X), [0,1]2)≤ 4 sup

0≤s<t≤1

∣∣R(Λk(X)−X)(s, t)
∣∣
Rd×d .

Furthermore, for any s < t ,∣∣R(Λk(X)−X)(s, t)
∣∣
Rd×d ≤ ∣∣Λk(X)s − Xs

∣∣
L2(Rd )

∣∣Λk(X)t − Xt

∣∣
L2(Rd )

≤ sup
0≤t≤1

∣∣Λk(X)t − Xt

∣∣2
L2(Rd )

and therefore

V∞
(
R(Λk(X)−X), [0,1]2)1/2−ρ/(2γ ) ≤ c9 sup

0≤t≤1

∣∣Λk(X)t − Xt

∣∣1−ρ/γ

L2(Rd )

which shows the result. �

The next Theorem gives pathwise convergence rates for the Wong–Zakai error for suitable approximations of the
driving signal.

Theorem 6. Let X be as in Theorem 1 for ρ < 2, K ≥ Vρ(RX, [0,1]2) and X(k) = Λk(X). Consider the SDEs

dYt = V (Yt )dXt , Y0 ∈ R
n, (6.1)

dY
(k)
t = V

(
Y

(k)
t

)
dX

(k)
t , Y

(k)
0 = Y0 ∈ R

n, (6.2)
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where |V |Lipθ ≤ ν < ∞ for a θ > 2ρ. Assume that there is a constant C1 and a sequence (εk)k∈N ⊂⋃
r≥1 lr such that

sup
0≤t≤1

∣∣X(k)
t − Xt

∣∣2
L2 ≤ C1ε

1/ρ
k for all k ∈ N.

Choose η, q such that

0 ≤ η < min

{
1

ρ
− 1

2
,

1

2ρ
− 1

θ

}
and q ∈

(
2ρ

1 − 2ρη
, θ

)
.

Then both SDEs (6.1) and (6.2) have unique solutions Y and Y (k) and there is a finite random variable C and a null
set M such that∣∣Y (k)(ω) − Y(ω)

∣∣∞;[0,1] ≤ ∣∣Y (k)(ω) − Y(ω)
∣∣
q-var;[0,1] ≤ C(ω)ε

η
k (6.3)

holds for all k ∈ N and ω ∈ � \ M . The random variable C depends on ρ,q, η, ν, θ,K,C1, the sequence (εk)k∈N and
the driving process X but not on the equation itself. The same holds for the set M .

Remark 3. Note that this means that we have universal rates, i.e. the set M and the random variable C are valid for
all starting points (and also vector fields subject to a uniform Lipθ -bound). In particular, our convergence rates apply
to solutions viewed as Cl-diffeomorphisms where l = [θ − q], cf. [7], Theorem 11.12 and [5].

Proof of Theorem 6. Note that γ > ρ and 1
ρ

+ 1
γ

> 1 is equivalent to 0 < 1
2ρ

− 1
2γ

< 1
ρ

− 1
2 . Hence there is a γ0 > ρ

such that η = 1
2ρ

− 1
2γ0

and 1
ρ

+ 1
γ0

> 1. Furthermore, 2γ0 = 2ρ
1−2ρη

< q . Choose γ1 > γ0 such that still 2γ1 < q and

η < 1
2ρ

− 1
2γ1

< 1
ρ

− 1
2 , hence 1

ρ
+ 1

γ1
> 1 hold. Set α := 1

2ρ
− 1

2γ1
− η > 0. From Theorem 5 we know that for every

r ≥ 1 and N ∈ N there is a constant c1 such that∣∣ρq-var
(
SN

(
X(k)

)
, SN(X)

)∣∣
Lr ≤ c1r

N/2 sup
0≤t≤1

∣∣X(k)
t − Xt

∣∣1−ρ/γ

L2 ≤ c2r
N/2ε

1/(2ρ)−1/(2γ )

k

holds for every k ∈ N. Hence∣∣∣∣ρq-var(SN(X(k)), SN(X))

ε
η
k

∣∣∣∣
Lr

≤ c2r
N/2εα

k

for every k ∈ N. From the Markov inequality, for any δ > 0,

∞∑
k=1

P

[
ρq-var(SN(X(k)), SN(X))

ε
η
k

≥ δ

]
≤ 1

δr

∞∑
k=1

∣∣∣∣ρq-var(SN(X(k)), SN(X))

ε
η
k

∣∣∣∣r
Lr

≤ c3

∞∑
k=1

εαr
k .

By assumption, we can choose r large enough such that the series converges. With Borel–Cantelli we can conclude
that

ρq-var(SN(X(k)), SN(X))

ε
η
k

→ 0

outside a null set M for k → ∞. We set

C2 := sup
k∈N

ρq-var(SN(X(k)), SN(X))

ε
η
k

< ∞ a.s.

Since C2 is the supremum of F -measurable random variables it is itself F -measurable. Now set N = [q] which turns
ρq-var into a rough path metric. Note that since θ > 2ρ, (6.1) and (6.2) have indeed unique solutions Y and Y (k).
We substitute the driver X by SN(X) resp. X(k) by SN(X(k)) in the above equations, now considered as RDEs in the
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q-rough paths space. Since θ > q , both (RDE-) equations have again unique solutions and it is clear that they coincide
with Y and Y (k). From

ρq-var
(
SN

(
X(k)

)
,1
)≤ ρq-var

(
SN

(
X(k)

)
, SN(X)

)+ ρq-var
(
SN(X),1

)≤ C1 + ρq-var
(
SN(X),1

)
we see that for every ω ∈ � \ M the SN(X(k)(ω)) are uniformly bounded for all k in the topology given by the metric
ρq-var . Thus we can apply local Lipschitz-continuity of the Itō–Lyons map (see [7], Theorem 10.26) to see that there
is a random variable C3 such that∣∣Y (k) − Y

∣∣
q-var;[0,1] ≤ C3ρq-var

(
SN

(
X(k)

)
, SN(X)

)≤ C3 · C2ε
η
k

holds for every k ∈ N outside M . Finally,∣∣Y (k)
t − Yt

∣∣= ∣∣Y (k)
0,t − Y0,t

∣∣≤ ∣∣Y (k) − Y
∣∣
q-var;[0,t] ≤ ∣∣Y (k) − Y

∣∣
q-var;[0,1]

is true for all t ∈ [0,1] and the claim follows. �

6.1. Mollifier approximations

Let φ be a mollifier function with support [−1,1], i.e. φ ∈ C∞
0 ([−1,1]) is positive and |φ|L1 = 1. If x : [0,1] → R is

a continuous path, we denote by x̄ : R → R its continuous extension to the whole real line, i.e.

x̄u =
⎧⎨
⎩

x0 for x ∈ (−∞,0],
xu for x ∈ [0,1],
x1 for x ∈ [1,∞)

.

For ε > 0 set

φε(u) := 1

ε
φ(u/ε) and

xε
t :=

∫
R

φε(t − u)x̄u du.

Let (εk)k∈N be a sequence of real numbers such that εk → 0 for k → ∞. Define

Λk(x) := xεk .

In [7], Chapter 15.2.3 it is shown that the sequence (Λk)k∈N fulfils the conditions of Theorem 5.

Corollary 7. Let X be as in Theorem 1 and assume that there is a constant C such that Vρ(RX; [s, t]2) ≤ C|t − s|1/ρ

holds for all s < t . Choose (εk)k∈N ∈ ⋃
r≥1 lr and set X(k) = Xεk . Then the solutions Y (k) of the SDE (6.2) converge

pathwise to the solution Y of (6.1) in the sense of (6.3) with rate O(ε
η
k ) where η is chosen as in Theorem 6.

Proof. It suffices to note that for every ε > 0, Z ∈ {X1, . . . ,Xd} and t ∈ [0,1] we have

E
[∣∣Zε

t − Zt

∣∣2] = E

[(∫
R

φε(t − u)(Z̄u − Zt)du

)2]

= E

[(∫
[t−ε,t+ε]

φε(t − u)(Z̄u − Zt)du

)2]

= E

[∫
[t−ε,t+ε]2

φε(t − u)φε(t − v)(Z̄u − Zt)(Z̄v − Zt)dudv

]
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=
∫

[t−ε,t+ε]2
φε(t − u)φε(t − v)E

[
(Z̄u − Zt)(Z̄v − Zt)

]
dudv

≤ sup
t∈[0,1]

|h1|,|h2|≤ε

∣∣E[
(Z̄t+h1 − Zt)(Z̄t+h2 − Zt)

]∣∣
≤ sup

t∈[0,1]
|h|≤ε

E
[
(Z̄t+h − Zt)

2]≤ c1ε
1/ρ

from which follows that sup0≤t≤1 |Xεk
t − Xt |2L2 ≤ c1ε

1/ρ
k . We conclude with Theorem 6. �

6.2. Piecewise linear approximations

If D = {0 = t0 < t1 < · · · < t#D−1 = 1} is a partition of [0,1] and x : [0,1] → R a continuous path, we denote by xD

the piecewise linear approximation of x at the points of D, i.e. xD coincides with x at the points ti and if ti ≤ t < ti+1
we have

xD
ti+1

− xD
t

ti+1 − t
= xti+1 − xti

ti+1 − ti
.

Let (Dk)k∈N be a sequence of partitions of [0,1] such that |Dk| := maxti∈Dk
{|ti+1 − ti |} → 0 for k → ∞. If

x : [0,1] → R is continuous, we define

Λk(x) := xDk .

In [7], Chapter 15.2.3 it is shown that (Λk)k∈N fulfils the conditions of Theorem 5. If RX is the covariance of a
Gaussian process, we set

|D|RX,ρ =
(

max
ti∈D

Vρ

(
RX; [ti , ti+1]2))ρ

.

Corollary 8. Let X be as in Theorem 1. Choose a sequence of partitions (Dk)k∈N of the interval [0,1] such that
(|Dk|RX,ρ)k∈N ∈ ⋃

r≥1 lr and set X(k) = XDk . Then the solutions Y (k) of the SDE (6.2) converge pathwise to the
solution Y of (6.1) in the sense of (6.3) with rate O(ε

η
k ) where (εk)k∈N = (|Dk|RX,ρ)k∈N and η is chosen as in

Theorem 6.

Proof. Let D be any partition of [0,1] and t ∈ [ti , ti+1] where ti , ti+1 ∈ D. Take Z ∈ {X1, . . . ,Xd}. Then

ZD
t − Zt = Zti ,ti+1

t − ti

ti+1 − ti
− Zti ,t .

Therefore∣∣ZD
t − Zt

∣∣
L2 ≤ |Zti ,ti+1 |L2 + |Zti ,t |L2 ≤ 2Vρ

(
RX; [ti , ti+1]2)1/2 ≤ 2|D|1/(2ρ)

RX,ρ .

We conclude with Theorem 6. �

Example 1. Let X = BH be the fractional Brownian motion with Hurst parameter H ∈ (1/4,1/2]. Set ρ = 1
2H

< 2.
Then one can show that RX has finite ρ-variation and Vρ(RX; [s, t]2) ≤ c(H)|t − s|1/ρ for all (s, t) ∈ Δ (see [8],
Example 1). Assume that the vector fields in (6.1) are sufficiently smooth by which we mean that 1/ρ − 1/2 ≤
1/(2ρ) − 1/θ , i.e.

θ ≥ 2ρ

ρ − 1
= 1

1/2 − H
.
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Let (Dk)k∈N be the sequence of uniform partitions. By Corollary 8, for every η < 2H −1/2 there is a random variable
C such that

∣∣Y (k) − Y
∣∣∞ ≤ C

(
1

k

)η

a.s.

hence we have a Wong–Zakai convergence rate arbitrary close to 2H − 1/2. In particular, for the Brownian motion,
we obtain a rate close to 1/2, see also [9] and [5]. For H → 1/4, the convergence rate tends to 0 which reflects the
fact that the Lévy area indeed diverges for H = 1/4, see [2].

6.3. The simplified step-N Euler scheme

Consider again the SDE

dYt = V (Yt )dXt, Y0 ∈ R
n

interpreted as a pathwise RDE driven by the lift X of a Gaussian process X which fulfils the conditions of Theorem 1.
Let D be a partition of [0,1]. We recall the simplified step-N Euler scheme from the introduction:

Y
sEulerN ;D
0 = Y0,

Y
sEulerN ;D
tj+1

= Y
sEulerN ;D
tj

+ Vi

(
Y

sEulerN ;D
tj

)
Xi

tj ,tj+1
+ 1

2
Vi1Vi2

(
Y

sEulerN ;D
tj

)
X

i1
tj ,tj+1

X
i2
tj ,tj+1

+ · · · + 1

N ! Vi1 · · · ViN−1ViN

(
Y

sEulerN ;D
tj

)
X

i1
tj ,tj+1

· · ·XiN
tj ,tj+1

,

where tj ∈ D. In this section, we will investigate the convergence rate of this scheme. For simplicity, we will assume
that

Vρ

(
RX; [s, t]2)= O

(|t − s|1/ρ
)

which can always be achieved at the price of a deterministic time-change based on

[0,1] � t �→ Vρ(RX; [0, t]2)ρ

Vρ(RX; [0,1]2)ρ
∈ [0,1].

Set Dk = { i
k

: i = 0, . . . , k}.

Corollary 9. Let p > 2ρ and assume that |V |Lipθ < ∞ for θ > p. Choose η and N such that

η < min

{
1

ρ
− 1

2
,

1

2ρ
− 1

θ

}
and N ≤ [θ ].

Then there are random variables C1 and C2 such that

max
tj ∈Dk

∣∣Ytj − Y
sEulerN ;Dk
tj

∣∣≤ C1

(
1

k

)η

+ C2

(
1

k

)(N+1)/p−1

a.s. for all k ∈ N.

Proof. Recall the step-N Euler scheme from the introduction (or cf. [7], Chapter 10). Set X(k) = XDk and let Y (k) be

the solution of the SDE (6.2). Then Y
sEulerN ;Dk
tj

= (Y (k))
EulerN ;Dk
tj

for every tj ∈ Dk and therefore, using the triangle
inequality,

max
tj ∈Dk

∣∣Ytj − Y
sEulerN ;Dk
tj

∣∣≤ sup
t∈[0,1]

∣∣Yt − Y
(k)
t

∣∣+ max
tj ∈Dk

∣∣Y (k)
tj

− (
Y (k)

)EulerN ;Dk

tj

∣∣.
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By the choice of Dk we have |Dk|RX,ρ = O(k−1). Applying Corollary 8 we obtain for the first term |Y − Y (k)|∞ =
O(k−η). Refering to [7], Theorem 10.30 we see that the second term is of order O(k−((N+1)/p−1)). �

Remark 4. Assume that the vector fields are sufficiently smooth, i.e. θ ≥ 2ρ
ρ−1 . Then we obtain an error of

O(k−(2/p−1/2)) + O(k−((N+1)/p−1)), any p > 2ρ. That means that in the case ρ = 1, the step-2 scheme (i.e. the
simplified Milstein scheme) gives an optimal convergence rate of (almost) 1/2. For ρ ∈ (1,2), the step-3 scheme gives
an optimal rate of (almost) 1/ρ −1/2. In particular, we see that using higher order schemes does not improve the con-
vergence rate since in that case, the Wong–Zakai error persists. In the fractional Brownian motion case, the simplified
Milstein scheme gives an optimal convergence rate of (almost) 1/2 for the Brownian motion and for H ∈ (1/4,1/2)

the step-3 scheme gives an optimal rate of (almost) 2H − 1/2. This answers a conjecture stated in [4].
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