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Abstract. The well-known Bennett–Hoeffding bound for sums of independent random variables is refined, by taking into account
positive-part third moments, and at that significantly improved by using, instead of the class of all increasing exponential functions,
a much larger class of generalized moment functions. The resulting bounds have certain optimality properties. The results can be
extended in a standard manner to (the maximal functions of) (super)martingales. The proof of the main result relies on an apparently
new method that may be referred to as infinitesimal spin-off. Parts of the proof also use the method of certificates of positivity in
real algebraic geometry.

Résumé. La borne de Bennett–Hoeffding pour des sommes de variables aléatoires indépendantes est précisée, en prenant en
compte la partie positive des troisièmes moments et sensiblement améliorée en utilisant, au lieu de la classe de toutes les fonctions
exponentielles croissantes, une classe beaucoup plus important de fonctions de moment généralisées. Les limites qui en résultent
ont certaines propriétés d’optimalité. Les résultats peuvent être étendus de manière standard pour (les fonctions maximales de)
(sur)martingales. La preuve du résultat principal repose sur une méthode apparemment nouvelle. Des éléments de la preuve utilisent
également la méthode des certificats de positivité de la géométrie algébrique réelle.
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1. Introduction

Let X1, . . . ,Xn be independent random variables (r.v.’s), with the sum S := X1 + . . . + Xn, such that for some real
positive constants y and σ and all i one has

Xi ≤ y, EXi ≤ 0, and
∑

EX2
i ≤ σ 2. (BH conds)

Essentially, a well-known result by Bennett [1] and Hoeffding [24] provides the exact upper bound on the exponential
moments EeλS (λ > 0) under (BH conds). To quote Bennett [1]: “Much work has been carried out on [asymptotics]
[. . . ]. The majority of this work does not provide estimates for accuracy [. . . ].” The Bennett–Hoeffding (BH) inequal-
ity provided such an estimate, and it has been used in hundreds of papers.

The BH inequality has been generalized to include cases when the Xi ’s are not independent and/or are not real-
valued; see e.g. [8–10,13,15,17,20,25,27,28,32,37,39,41,49,50,52]. Yet, there have been few publications that present
improvements even in the original case of sums of independent real-valued r.v.’s Xi – especially if one counts only
the bounds that are exact in their own terms.
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Pinelis and Utev (PU) (1989) ([38], Theorems 2 and 6) refined the BH bound by also taking into account the sum∑
E(Xi)

3+ of the positive-part third moments of the Xi ’s; as usual, we let x+ := max(0, x) and xα+ := (x+)α . Using
the upper bounds on the exponential moments EeλS and the Markov inequality, one can immediately obtain upper
bounds on the tail probability P(S ≥ x); however, such bounds, even the best possible ones, will be missing a factor
on the order of 1/x. This deficiency is caused by the fact that the class – say E – of all increasing exponential functions
is too small.

The exponential class E is contained, for each α > 0, in the much richer class Hα of functions f : R → R defined
as follows:

f ∈ Hα ⇐⇒ for some Borel measure μ ≥ 0 and all u ∈ R one has
(Hα)

f (u) =
∫ ∞

−∞
(u − t)α+μ(dt).

It is easy to see ([43], Proposition 1(ii)) that 0 < β < α implies Hα ⊆ Hβ . Moreover ([45], Proposition 1.1), for
natural α, one has f ∈ Hα if and only if f has finite derivatives f (0) := f , f (1) := f ′, . . . , f (α−1) on R such that
f (α−1) is convex on R and f (j)(−∞+) = 0 for j = 0,1, . . . , α − 1.

A class of moment functions similar to H3 was introduced by Eaton [18,19] (who considered Xi ’s bounded in
absolute value, taking into account only the first moments). This allowed one to restore the missing factor 1/x.
For another approach, see Talagrand [51]. Eaton’s idea was further developed in [41,42]. In particular, Pinelis [42]
provided a general device allowing one to extract the optimal tail comparison inequality from a generalized moment
comparison. Under (BH conds), Bentkus (2002, 2004) [2,4] obtained the exact upper bound (which we shall denote
by Be) on the moments Ef (S) for the moment functions f in the class H2, in place of the class E of all increasing
exponential functions – for a fixed n in [2] and for a freely varying n in [4]; similar results for (continuous-time)
martingales that are stochastic integrals were obtained by Klein, Ma and Privault [28].

In this paper, we shall extend the mentioned PU exponential bounds from the exponential class E to the class H3

of moment functions of S. The relations between the four related bounds – BH, PU, Be, and the bound – say Pin –
presented in this paper are illustrated by the following diagram:

BH

e

r

PU

e

Be
pr

Pin

In particular, it shows PU to be a refinement (denoted by r) of BH. This refinement is also an improvement, as is
obviously the case with any refinement that is exact in its own terms; indeed, the more specific the terms, the better
the best possible result is.

The relation of Pin with Be is almost parallel to that of PU with BH. However, the refinement, and hence the
improvement, here are only partial (pr) – because the class H3 (corresponding to Pin) is a bit smaller than H2

(corresponding to Be), even though, according to [35], Propositions 2.5 and 2.12, H3 is essentially the largest possible
class for Pin, just as H2 is for Be.

The relations of Be to BH, and of Pin to PU, are pure extensions (e), due to using the larger classes Hα in place
of the smaller class E of exponential moment functions. Therefore, when applied in order to obtain upper bounds
inf Ef (S)/f (x) on the tail P(S ≥ x), with the inf taken over the corresponding class of moment functions f , these
extensions result in improvements.

Various forms of comparison between the bounds BH, PU, Be, and Pin – inequalities, asymptotics, numerics, and
graphics are systematically presented in the detailed version of this paper [35], along with other related results.

Compared with the preceding results of the Bennett–Hoeffding type, the results in the present paper require proofs
at a significantly higher level of difficulty, with novel ideas. The main idea, described in the proof of Lemma 3.6 on
page 23, may be referred to as that of infinitesimal spin-off.

A common feature of all the Bennett–Hoeffding type bounds is that they pertain to sums of independent random
variables, which by themselves are the most common type of statistics – linear ones, which in turn also serve as the
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most common approximation to other, nonlinear statistics; see e.g. [7,12,36]. Moreover, the results presented here
naturally and effortlessly extend to martingales and supermartingales, and even to their maximal functions, as is done
e.g. in [46,47]. In view of the general devices presented in [41] that provide for an automatic Banach-space analogue
(with optimal constants) of any exponential bound for real-valued r.v.’s, one may ask whether similar devices exist
for moment functions more general than the exponential ones, so that the mentioned results of Eaton, Bentkus, and
Pinelis for the classes Hα be similarly extended to Banach spaces. Other dimensionality reduction devices for sums
of random vectors were given in [5,40,44].

Moment functions f of the classes Hα (especially the functions of the form x �→ (x − t)α+) naturally arise in
mathematical finance. For example, (S −K)+ is the value of a call option with the strike price K when the stock price
is S.

However, applications of the Bennett–Hoeffding type bounds are mainly in statistics and theoretical probability.
In fact, this paper was motivated by certain work on nonuniform bounds (NUB’s) of a Berry–Esseen type on the
convergence of P(S > z

√
n) to the corresponding normal tail. Beginning with the classical paper by Nagaev [33],

it became clear that Bennett–Hoeffding type bounds on large deviation probabilities play a crucial role in obtaining
NUB’s. The Nagaev NUB decreases only as fast as 1/z3, which naturally corresponds to his assumption of finite third
moments of the Xi ’s. However, if the summands Xi are known to be bounded, the best known (to this author) rate of
decrease of the NUB is e−cz, for some constant c > 0. Results such as the ones presented in this paper are expected to
allow one to get an NUB with a rate of decrease between the normal (e−cz2

) and Poissonian (e−cz ln z) ones. Hoeffding
[24] also described certain applications to U -statistics and other related statistics. Similar applications can be given
for the results presented in this paper. Yet another kind of applications is to skewness-corrected self-normalized sums
as in [47,48].

There is a rather natural and usual trade-off between the results in this paper and the previous ones: the new bounds
are more accurate, but harder to compute (and much harder to prove). Yet, as shown in [35], Section 3.1, these new
bounds are quite effectively computable. With currently available standard computing tools, one can very quickly
produce entire graphs of such bounds (as they depend on the parameters) – see [35], p. 19.

2. Statements of the main results

As in the Introduction, let X1, . . . ,Xn be independent r.v.’s, with the sum S = X1 +· · ·+Xn. For any a > 0 and θ > 0,
let Γa2 and Πθ stand for any independent r.v.’s such that

Γa2 ∼ N
(
0, a2) and Πθ ∼ Pois(θ);

that is, Γa2 has the normal distribution with parameters 0 and a2, and Πθ has the Poisson distribution with parameter θ ;
at that, let Γ0 and Π0 be defined as the constant zero r.v. Let also

Π̃θ := Πθ − EΠθ = Πθ − θ.

Theorem 2.1. Let σ , y, and β be any (strictly) positive real numbers such that

ε := β

σ 2y
∈ (0,1). (2.1)

Suppose that the conditions (BH conds) hold, as well as

∑
E(Xi)

3+ ≤ β. (2.2)

Then for all f ∈ H3

Ef (S) ≤ Ef (Γ(1−ε)σ 2 + yΠ̃εσ 2/y2). (2.3)
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Table 1
Attributes of the bounds BH, PU, Be, and Pin

Bound F Condition
∑

E(Xi)
3+ ≤ β imposed? η

BH E no yΠ̃
σ2/y2

PU E yes Γ
(1−ε)σ2 + yΠ̃

εσ2/y2

Be H2 no yΠ̃
σ2/y2

Pin H3 yes Γ
(1−ε)σ2 + yΠ̃

εσ2/y2

The proof of Theorem 2.1 will be given in Section 3, where all the necessary proofs are deferred to.
Note that the condition ε ∈ (0,1) in (2.1) does not diminish generality, since

∑
E(Xi)

3+ ≤ y
∑

EX2
i . Note also that

the bound in (2.3) is exact, in the following two senses. First ([35], Proposition 2.5), for any given real p ∈ (0,3) one
cannot replace H3 in Theorem 2.1 by the larger class Hp . Second ([35], Proposition 2.3), for each f ∈ H3 the right-
hand side of (2.3) is the supremum of its left-hand side under the restrictions (BH conds) and (2.2); one particular case
when the upper bound in (2.3) is attained (in the limit) is when the Xi ’s are identically distributed (and satisfy certain
other conditions); more generally, the nearly extremal distributions of the Xi ’s have to satisfy some kind of uniform
asymptotic negligibility condition or be already close to Gauss–Poisson convolutions.

The mentioned bounds BH, PU, Be, and Pin on the generalized moments of S can each be presented in the
following form: for each f ∈ F ,

sup Ef (S) = Ef (η),

where the sup is taken over all independent Xi ’s satisfying the conditions (BH conds) (and possibly, depending on the
class F , condition (2.2)), and where the class F of functions and the r.v. η are as in Table 1.

Since in all the mentioned Bennett–Hoeffding type inequalities the Xi ’s are supposed to be bounded from above,
one may say that such Xi ’s have no right tails. Of course, in applications one would truncate whatever tails the Xi ’s
may have and then apply the Bennett–Hoeffding type bounds to the sum of the truncated random variables, as was
done e.g. by Nagaev and Fuk [21,34].

By [42,43], one immediately obtains the following corollary of Theorem 2.1.

Corollary 2.2. Under the conditions of Theorem 2.1, for all x ∈ R

P(S ≥ x) ≤ 2e3

9
PLC(Γ(1−ε)σ 2 + yΠ̃εσ 2/y2 ≥ x), (2.4)

where, for any r.v. η, the function PLC(η ≥ ·) denotes the least log-concave majorant of the tail function P(η ≥ ·).

The right-hand side of (2.4) can be effectively bounded from above by using [35], Propositions 3.10 and 3.11;
asymptotically, for large x > 0, this is done in ([35], (3.26)).

A complete description of the best possible upper bound on the tail P(S ≥ x) given a moment comparison of
the form Ef (S) ≤ Ef (η) for a r.v. η and all f ∈ Hα is provided in [42], Theorem 2.5; for more on this, see [35],
Proposition 3.2. Special cases of η and α are considered in [3,16].

Remark 2.3. Quite similarly to how it was done e.g. in [46,47], it is easy to extend Theorem 2.1 and Corollary 2.2
to the more general case when the Xi ’s are the incremental differences of a (discrete-time) (super)martingale and/or
replace S by the maximum of the partial sums; cf. e.g. [47], Corollary 5. Let us omit the details.

3. Proofs

In Section 3.1, we shall first state several lemmas; based on these lemmas, we shall provide a proof of Theorem 2.1.
Proofs of the lemmas will be deferred to Section 3.2. Such a structure will allow us to effectively present first the main
ideas of the proofs and then the details.
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Briefly, the scheme of proof of Theorem 2.1 is as follows. In a standard manner one can reduce the consideration
to the case n = 1, so that it will remain to prove Lemma 3.6, for one r.v. X. By the definition (Hα), without loss of
generality (w.l.o.g.) the moment function f ∈ H3 may be assumed to be of the form (· − w)3+ for some w ∈ R. Next,
by Lemma 3.4, w.l.o.g. the r.v. X may be assumed to be a zero-mean r.v. Xa,b taking on only two values (−a) and b,
which depend on the sign of w, though. Thus and by a monotonicity property (Lemma 3.5), it will remain to prove
(3.10) for f (·) = (· − w)3+ and X = Xa,b; this final part of the proof is done by the infinitesimal spin-off method,
described on page 23.

3.1. Statements of lemmas, and the proof of Theorem 2.1

First here, let us state a few lemmas, from which Theorem 2.1 easily follows. As before, let σ and y be any (strictly)
positive real numbers. For any pair of numbers (a, b) such that a ≥ 0 and b > 0, let Xa,b denote any zero-mean r.v.
with values (−a) and b.

Lemma 3.1. For all x ∈ (−∞, y], one has x3+ ≤ y5

(y2+σ 2)2 (x + σ 2/y)2.

Lemma 3.2. Let X be any r.v. such that X ≤ y, EX ≤ 0, and EX2 ≤ σ 2. Then

EX3+ ≤ y3σ 2

y2 + σ 2
. (3.1)

Lemma 3.3. For any

β ∈
(

0,
y3σ 2

y2 + σ 2

]
(3.2)

there exists a unique pair (a, b) ∈ (0,∞) × (0,∞) such that Xa,b ≤ y, EX2
a,b = σ 2, and E(Xa,b)

3+ = β; more specif-
ically, b is the only positive root of equation

σ 2b3 = β
(
b2 + σ 2) (3.3)

and

a = σ 2

b
= βb

b3 − β
. (3.4)

In particular, Lemma 3.3 implies that inequality (3.1) is exact.

Lemma 3.4. Fix any w ∈ R, y > 0, σ > 0, and β satisfying condition (3.2), and let (a, b) be the unique pair of
numbers described in Lemma 3.3. Then

sup
{
E(X − w)3+: X ≤ y,EX = 0,EX2 = σ 2,EX3+ = β

}
= max

{
E(X − w)3+: X ≤ y,EX = 0,EX2 = σ 2,EX3+ = β

}
(3.5)

= max
{
E(X − w)3+: X ≤ y,EX ≤ 0,EX2 ≤ σ 2,EX3+ ≤ β

}
(3.6)

=
{

E(Xa,b − w)3+ if w ≤ 0,

E(X
ã,b̃

− w)3+ if w ≥ 0,
(3.7)

where

b̃ := y and ã := βy

y3 − β
(3.8)
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(cf. (3.4)). At that, ã > 0, X
ã,b̃

≤ y, EX
ã,b̃

= 0, and E(X
ã,b̃

)3+ = β , but one can only say that EX2
ã,b̃

≤ σ 2, and the

latter inequality is strict if β �= y3σ 2

y2+σ 2 .

Lemma 3.5. Let σ0, β0, σ,β be any real numbers such that 0 ≤ σ0 ≤ σ , 0 ≤ β0 ≤ β , β0 ≤ σ 2
0 y, and β ≤ σ 2y. Then

Ef (Γσ 2
0 −β0/y

+ yΠ̃β0/y
3) ≤ Ef (Γσ 2−β/y + yΠ̃β/y3) (3.9)

for all f ∈ H2, and hence for all f ∈ H3.

Lemma 3.6. Let X be any r.v. such that X ≤ y, EX ≤ 0, EX2 ≤ σ 2, and EX3+ ≤ β , where β satisfies condition (3.2).
Then for all f ∈ H3

Ef (X) ≤ Ef (Γσ 2−β/y + yΠ̃β/y3). (3.10)

Proof of Theorem 2.1. Let σ 2
i := EX2

i , βi := E(Xi)
3+, σ 2

0 := ∑n
i=1 σ 2

i , β0 := ∑n
i=1 βi , Yi := Γσ 2

i −βi/y
+ yΠ̃βi/y

3 ,

and T := ∑n
i=1 Yi ; at that, assume the Yi ’s to be independent. Then, by a standard argument (cf. e.g. the proof of [45],

Theorem 2.1) based on Lemma 3.6,

Ef (S) ≤ Ef (T ) = Ef (Γσ 2
0 −β0/y

+ yΠ̃β0/y
3) for all f ∈ H3.

On the other hand, it is clear from (BH conds) and (2.2) that 0 ≤ σ 2
0 ≤ σ 2 and 0 ≤ β0 ≤ β; next, βi ≤ σ 2

i y for
all i = 1, . . . , n and hence β0 ≤ σ 2

0 y; also, by (2.1), σ 2 − β/y = (1 − ε)σ 2 and β/y3 = εσ 2/y2. It remains to use
Lemma 3.5. �

3.2. Proofs of the lemmas

Proof of Lemma 3.1. This follows because x3

(x+σ 2/y)2 is nondecreasing in x ∈ [0, y] from 0 to y3

(y+σ 2/y)2 =
y5

(y2+σ 2)2 . �

Proof of Lemma 3.2. This follows by Lemma 3.1:

EX3+ ≤ y5

(y2 + σ 2)2

(
EX2 + (

σ 2/y
)2) ≤ y3σ 2

y2 + σ 2
. �

Proof of Lemma 3.3. Take any β satisfying condition (3.2). Let f (x) := σ 2x3/2 − β(x + σ 2). Then f (0) =
−βσ 2 < 0, f (y2) = σ 2y3 − β(y2 + σ 2) ≥ 0 by (3.2), and the function f is convex on [0,∞). Hence, f has
exactly one positive root, say x∗, and at that x∗ ∈ (0, y2]. Let b := x

1/2∗ , so that b ∈ (0, y] and b is the only
positive root of equation (3.3). Letting now a := σ 2/b, one has Xa,b ≤ y, EXa,b = 0, EX2

a,b = ab = σ 2, and

E(Xa,b)
3+ = ab3

a+b
= σ 2b3

σ 2+b2 = β , by (3.3). It also follows that a = βb

b3−β
. Finally, the uniqueness of the pair (a, b)

follows from the uniqueness of the positive root b of equation (3.3). �

Proof of Lemma 3.4. Let X be any r.v. such that X ≤ y, EX ≤ 0, EX2 ≤ σ 2, and EX3+ ≤ β . Let us consider separately
the following possible cases: w ≤ −a, −a ≤ w ≤ 0, and w ≥ 0.

Case 1: w ≤ −a. In this case, it is obvious that w < 0, and we claim that

f1(x) := A0 + A1x + A2x
2 + A3x

3+ − (x − w)3+ ≥ 0 (3.11)



On the Bennett–Hoeffding inequality 21

for all x ∈ R, where

2A0 := 2a3b

3a + b
− w3, A1 := 3

b(a2 + w2) + a(3w2 − a2)

3a + b
,

A2 := −3
(a + b)w + 2a(a + w)

3a + b
, A3 := (a + b)3

b2(3a + b)

are obviously nonnegative constants. To verify the inequality in (3.11), note first that

f1(x) =

⎧⎪⎪⎨
⎪⎪⎩

a2(b − x)2(x(a + 3b) + 2ab)

b2(3a + b)
≥ 0 if x ≥ 0,

(a + x)2(2ab − x(3a + b))

3a + b
≥ 0 if w ≤ x < 0.

It remains to verify (3.11) for x ∈ (−∞,w), in which latter case f ′′
1 (x) 3a+b

2 = −6a(a + w) − 3w(a + b) ≥ 0, so that
f1 is convex on (−∞,w]. Also, f1(w)(3a + b) = (a + w)2(2ab − (3a + b)w) ≥ 0 and f ′

1(w)(3a + b) = −3(a +
w)(a(a + w) − ab + (2a + b)w) ≤ 0. Thus, (3.11) holds for x ∈ (−∞,w) as well. Moreover, one can check that
f1(x) = 0 for x ∈ {−a, b}.

Therefore and because EX ≤ 0 = EXa,b , EX2 ≤ σ 2 = EX2
a,b , and EX3+ ≤ β = E(Xa,b)

3+, one has

E(X − w)3+ ≤ A0 + A1EX + A2EX2 + A3EX3+
≤ A0 + A1EXa,b + A2EX2

a,b + A3E(Xa,b)
3+ = E(Xa,b − w)3+.

Case 2: −a ≤ w ≤ 0. For this case, the counterpart of (3.11) is that

f2(x) := λ2(x + a)2 + λ3x
3+ − (x − w)3+ ≥ 0 (3.12)

for all x ∈ R, where

λ2 := −3w(b − w)2

(a + b)(3a + b)
and λ3 := (b − w)2(2(w + a) + a + b)

b2(3a + b)

are obviously nonnegative constants. As in Case 1, let us consider here the three subcases, according as x ≥ 0, w ≤
x < 0, or x < w.

For x ≥ 0, one has f2(x)b2(a + b)(3a + b) = −w(b − x)2(p0(w) + (a + b)p1(w)x), where p0(w) := 3a2b2 −
6a2bw− (4ab+b2)w2 and p1(w) := 6ab+3(b−a)w−2w2. So, in this subcase, it is enough to show that p0(w) ≥ 0
and p1(w) ≥ 0 for w ∈ [−a,0], which follows because p0 and p1 are concave, with p0(−a) = 2a3b + 2a2b2 ≥ 0,
p0(0) = 3a2b2 ≥ 0, p1(−a) = a2 + 3ab ≥ 0, and p1(0) = 6ab ≥ 0.

For x ∈ [w,0), note that f22(x) := f2(x)(a + b)(3a + b) is a third-degree polynomial, with the leading coefficient
−3a2 − 4ab − b2 < 0. So, on any interval f22 may change in its direction of convexity at most once, and only from
convexity to concavity (when moving left to right). At that, f22(w) = −3(b − w)2w(a + w)2 ≥ 0 and f ′

22(w) =
−6(b − w)2w(a + w) ≥ 0. So, in this subcase, it is enough to show that f22(0) ≥ 0, which follows because f22(0) =
−bwp22(w), where p22(w) := 3a2b − 6a2w − (4a + b)w2 is concave in w, with p22(−a) = 2a3 + 2a2b ≥ 0 and
p22(0) = 3a2b ≥ 0.

To complete the proof of inequality (3.12) in Case 2, it remains to note that in the subcase x < w one has f2(x)(a +
b)(3a + b) = −3(b − w)2w(a + x)2 ≥ 0.

Moreover, f2(x) = 0 for x ∈ {−a, b}.
It follows that

E(X − w)3+ ≤ λ2E(X + a)2 + λ3EX3+
≤ λ2E(Xa,b + a)2 + λ3E(Xa,b)

3+ = E(Xa,b − w)3+.
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Case 3: w ≥ 0. Then

f3(x) := (y − w)3+
y3

x3+ − (x − w)3+ ≥ 0

for all x ∈ (−∞, y], since (x−w)3

x3 is nondecreasing in x ∈ [w,∞) for each w ≥ 0; moreover, it is obvious that f3(x) =
0 for x ∈ (−∞,0] ∪ {y}.

Further, y3 ≥ b3 > ab3

a+b
= β; hence, again by (3.8), ã > 0. It follows that f3(x) = (x − w)3+ for x ∈ {−ã, b̃}.

Moreover, E(X
ã,b̃

)3+ = β . Thus,

E(X − w)3+ ≤ (y − w)3+
y3

EX3+ ≤ (y − w)3+
y3

E(X
ã,b̃

)3+ = E(X
ã,b̃

− w)3+.

Moreover,

EX2
ã,b̃

= ãb̃ = βy2

y3 − β
≤ βb2

b3 − β
= ab = σ 2; (3.13)

the inequality here takes place because βu2

u3−β
decreases in u > β1/3, while, as shown, y3 ≥ b3 > β; the inequality in

(3.13) is strict if β �= y3σ 2

y2+σ 2 (because then b3σ 2

b2+σ 2 = β <
y3σ 2

y2+σ 2 , and hence b < y).
Thus, in all the three cases, one has equality (3.7). Moreover, in the case w ≤ 0 the maximum in (3.5) is attained and

equals E(Xa,b − w)3+, since Xa,b ≤ y, EXa,b = 0, EX2
a,b = σ 2, and E(Xa,b)

3+ = β . The last sentence of Lemma 3.4
has also been proved.

To complete the proof of the lemma, it remains to show that in the case w ≥ 0 the maxima in (3.5) and (3.6) are
attained and equal E(X

ã,b̃
− w)3+; the same last sentence of Lemma 3.4 shows that in this case the max in (3.5) is not

attained at X = X
ã,b̃

if β �= y3σ 2

y2+σ 2 – because then EX2
ã,b̃

< σ 2.

Thus, it suffices to construct a r.v., say Xv , such that E(Xv − w)3+ = E(X
ã,b̃

− w)3+, while Xv ≤ y, EXv = 0,

EX2
v = σ 2, and E(Xv)

3+ = β . One way to satisfy all these conditions is to let Xv ∼ p̃δy + q1δ−a1 + r1δv , where v

is close enough to −∞, r1 := −�q , q1 := q̃ + �q , a1 := ã + �a, p̃ := β/y3, q̃ := 1 − p̃, �q := − q̃d2

d2+q̃(v+ã)2 ,

�a := d2

q̃(v+ã)
, d :=

√
σ 2 − ãb̃ = √

σ 2 − ãy, and ã and b̃ are given by (3.8). �

Proof of Lemma 3.5. In view of the relation H3 ⊆ H2, definition (Hα), and the Fubini theorem, it is enough to
prove inequality (3.9) for all functions of the form u �→ (u − w)2+ for w ∈ R. By rescaling, w.l.o.g. y = 1. Further,
r.v. Γσ 2−β0

+ Π̃β0 equals in distribution Γ + Γσ 2
0 −β0

+ Π̃β0 , where Γ is any r.v. such that Γ ∼ N(0, σ 2 − σ 2
0 ) and

Γ is independent of Γσ 2
0 −β0

and Π̃β0 . Now, conditioning on Γσ 2
0 −β0

and Π̃β0 and using Jensen’s inequality, one has

E(Γσ 2
0 −β0

+ Π̃β0 − w)2+ ≤ E(Γσ 2−β0
+ Π̃β0 − w)2+ for all w ∈ R, so that w.l.o.g. σ0 = σ and β0 < β ≤ σ 2. Moreover,

r.v.’s Γσ 2−β0
+Π̃β0 and Γσ 2−β +Π̃β equal in distribution Γd2 +W and Π̃d2 +W , respectively, where d := (β −β0)

1/2

and W is any r.v. which is independent of Γd2 and Π̃d2 and equals Γσ 2−β + Π̃β0 in distribution. Thus, by conditioning
on W , it suffices to prove that

E(Γd2 − w)2+ ≤ E(Π̃d2 − w)2+ (3.14)

for all d > 0 and w ∈ R. Note that Γd2 and Π̃d2 are limits in distribution of Un := ∑n
i=1 Ui;n and Vn := ∑n

i=1 Vi;n, re-
spectively, as n → ∞, where the Ui;n’s are i.i.d. copies of Xd/

√
n,d/

√
n and the Vi;n’s are i.i.d. copies of Xd2/n,1.

By [2,4], one has (3.14) with Un and Vn in place of Γd2 and Π̃d2 , respectively, provided that n ≥ d2 (so that
Xd/

√
n,d/

√
n ≤ 1).

Finally, it is clear that, for each w ∈ R, (x − w)2+ = o(ex) as x → ∞. Hence and in view of the Bennett–Hoeffding
exponential bound, for each w ∈ R the sequences of r.v.’s ((Un − w)2+) and ((Vn − w)2+) are uniformly integrable.
Now (3.14) follows by a limit transition; see e.g. [6], Theorem 5.4. �
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Proof of Lemma 3.6. In view of definition (Hα) and the Fubini theorem, it is enough to prove inequality (3.9) for
all functions of the form u �→ (u − w)3+ for w ∈ R. By Lemma 3.4, E(X − w)3+ ≤ E(Xa,b − w)3+ for some a and b

such that a > 0, b > 0, Xa,b ≤ y, EX2
a,b = ab ≤ σ 2, and E(Xa,b)

3+ = β; at that, one of course also has EXa,b = 0. So,

if one could prove inequality (3.10) with Xa,b in place of X and ab in place of σ 2, then it would remain to refer to
Lemma 3.5. Thus, w.l.o.g. one has X = Xa0,b0 for some positive a0 and b0, and at that

b0 ≤ y, EX2
a0,b0

= a0b0 = σ 2 and E(Xa0,b0)
3+ = a0b

3
0

b0 + a0
= β.

By rescaling, w.l.o.g.

y = 1, whence b0 ≤ 1.

The main idea of the proof of Lemma 3.6 may be referred to as that of infinitesimal spin-off, and it may be in-
formally described as follows. Starting with the r.v. Xa0,b0 , decrease both a0 and b0 simultaneously by infinitesimal
amounts (say �a and �b) so that E(Xa0,b0 − w)3+ ≤ E(Xa,b + X�1,�1 + X�2,1 − w)3+ for all w ∈ R, where the
r.v.’s Xa,b,X�1,�1 ,X�2,1 are independent, a = a0 − �a and b = b0 − �b, and �1 and �2 are infinitesimal posi-
tive numbers which, together with �a and �b, are chosen in such a manner that EX2

a,b + EX2
�1,�1

+ EX2
�2,1

and

E(Xa,b)
3+ + E(X�1,�1)

3+ + E(X�2,1)
3+ match (exactly or closely enough) EX2

a0,b0
and E(Xa0,b0)

3+, respectively. Con-
tinue decreasing a and b while “spinning off” the current infinitesimal r.v.’s X�1,�1 and X�2,1, at that keeping the
balance of the total variance and the sum of the positive-part third moments, as described above. Stop when Xa,b = 0
almost surely, that is, when a or b is decreased to 0 (if ever); one can see that such a termination point is indeed at-
tainable. Then the sum of all the symmetric independent infinitesimal spin-offs X�1,�1 will have a centered Gaussian
distribution, while the sum of the highly asymmetric X�2,1’s with the infinitesimal �2’s will give a centered Poisson
component. At that, the balances of the variances and positive-part third moments will each be kept (the infinitesimal
X�1,�1 ’s will provide in the limit a total zero contribution to the latter of the two balances).

To formalize this idea, introduce a family of r.v.’s of the form

ηb := Xa(b),b + ξτ(b) for b ∈ [ε, b0],

where

ε := b2
0

b0 + a0
= β

σ 2
,

a(b) := b

ε
(b − ε), τ (b) := a0b0 − a(b)b,

ξt := W(1−ε)t + Π̃εt , Π̃s := Πs − EΠs,

W· is a standard Wiener process, Π· is a Poisson process with intensity 1, and Xa(b),b , W·, Π· are independent for each
b ∈ [ε, b0]. Note that ε ∈ (0, b0) ⊆ (0,1); also, τ is decreasing and hence nonnegative on the interval [ε, b0], since
a(b)b is increasing in b ∈ [ε, b0] and a(b0) = a0.

Let further

E (b) := E (b,w) := E(ηb − w)3+ = bE(ξτ(b) − a(b) − w)3+ + a(b)E(ξτ(b) + b − w)3+
b + a(b)

.

Since a(b0) = a0 and a(ε) = 0, one has Xa(ε),ε = 0. Thus, Lemma 3.6 is reduced to the inequality E (ε) ≥ E (b0).
Note that E (b) is continuous in b ∈ [ε, b0]; this follows because of the uniform integrability (cf. the last paragraph in
the proof of Lemma 3.5). So, it is enough to show that the left derivative E ′(b) of E (b) is no greater than 0 for all
b ∈ (ε, b0). To compute this derivative, one can use the following
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Lemma 3.7. Consider any function f : (ε, b0) × R � (b, x) �→ f (b, x) ∈ R such that |f ′′
bb(b, x)| + |f ′′

bx(b, x)| +
|f ′′

xx(b, x)| + |f ′
x(b, x)| ≤ Cf e|x| and |f ′′

xx(b, x1) − f ′′
xx(b, x2)| ≤ Cf |x1 − x2|(e|x1| + e|x2|) for some constant Cf , all

b ∈ (ε, b0), and all x, x1, x2 in R. Then for all b ∈ (ε, b0)

lim
h↓0

Ef (b − h, ξτ(b−h)) − Ef (b, ξτ(b))

−h
= EFf (b, ξτ(b)),

where

Ff (b, x) := f ′
b(b, x) +

(
(1 − ε)f ′′

xx(b, x)

2
+ ε

(
f (b, x + 1) − f (b, x) − f ′

x(b, x)
))

τ ′(b).

The proof of this lemma involves little more than routine Taylor expansions; for details, see Lemma 4.10 in [35]
and its proof therein; cf. the well-known formula for the Lévy process generator, e.g. [26], Theorem 19.10.

By Lemma 3.7, for all b ∈ (ε, b0) one has E ′(b) = EG(b, ξτ(b) − w), where

G(b,x) :=
(

b

b + a(b)

)′

b

(
f1(b, x) − f2(b, x)

) + bFf1(b, x) + a(b)Ff2(b, x)

b + a(b)
,

(3.15)
f1(b, x) := (

x − a(b)
)3
+, f2(b, x) := (x + b)3+.

Thus, it suffices to show that G(b,u) ≤ 0 for all b ∈ (ε, b0) and u ∈ R. Observe now that ( b
b+a(b)

)′b = − 1
b+a(b)

,

a′(b) = 1 + 2a(b)
b

, τ ′(b) = −(3a(b) + b), and ε = b2

b+a(b)
. Substituting into (3.15) these expressions of ( b

b+a(b)
)′b ,

a′(b), τ ′(b), and ε in terms of only b and a(b), one has (b + a(b))2G(b,u) = −G̃(a(b), b,−u), where

G̃(a, b, t) := (
a + b − 3ab3 − b4)(−a − t)3+
− (

a + b + 3a2b2 + ab3)(b − t)3+
+ b2(3a + b)

(
b(1 − a − t)3+ + a(1 + b − t)3+

)
+ 3

(
2a2 + 3ab + b2 − 3ab3 − b4)(−a − t)2+

− 3a
(
a + b + 3ab2 + b3)(b − t)2+

+ 3(3a + b)
(
a + b − b2)(b(−a − t)+ + a(b − t)+

)
.

To complete the proof of the theorem, it is enough to show that G̃(a, b, t) ≥ 0 for all a > 0, b ∈ (0,1], and t ∈ R.
At that, w.l.o.g. t < 1 + b, since G̃(a, b, t) = 0 for all a > 0, b ∈ (0,1], and t ≥ 1 + b. Next, one has either a + b ≤ 1
or a + b > 1. In the first case, −a ≤ b ≤ 1 − a ≤ 1 + b, while in the second case −a ≤ 1 − a ≤ b ≤ 1 + b. Therefore,
it remains to verify that G̃(a, b, t) ≥ 0 in each of the following 8 (sub)cases:

Case 10: a > 0 and b > 0 and a + b ≤ 1 and t ≤ −a;
Case 11: a > 0 and b > 0 and a + b ≤ 1 and −a ≤ t ≤ b;
Case 12: a > 0 and b > 0 and a + b ≤ 1 and b ≤ t ≤ 1 − a;
Case 13: a > 0 and b > 0 and a + b ≤ 1 and 1 − a ≤ t ≤ 1 + b;
Case 20: a > 0 and 0 < b ≤ 1 and a + b > 1 and t ≤ −a;
Case 21: a > 0 and 0 < b ≤ 1 and a + b > 1 and −a ≤ t ≤ 1 − a;
Case 22: a > 0 and 0 < b ≤ 1 and a + b > 1 and 1 − a ≤ t ≤ b;
Case 23: a > 0 and 0 < b ≤ 1 and a + b > 1 and b ≤ t ≤ 1 + b

(actually, the condition a > 0 is redundant in Cases 20 through 23).
Clearly, G̃(a, b, t) is piecewise polynomial in a, b, t . More specifically, for each pair (i, j) ∈ {1,2} × {0,1,2,3}

there exists a polynomial Gij = Gij(t) = Gij(a, b, t) such that G̃(a, b, t) = Gij for all (a, b, t) satifying the conditions

of Case ij. It is also clear that the function G̃ is continuous on R
3.



On the Bennett–Hoeffding inequality 25

Note that the expressions G10 = G20 = a2(5a2 + 8ab + 3b2), G12 = b2(3a + b)(a(1 + b − t)3 + b(1 − a − t)3),
and G13 = G23 = ab2(3a + b)(1 + b − t)3 are all manifestly nonnegative, in the respective cases. So, of the 8 cases,
there remain only three cases to consider: Cases 11, 21, and 22.

One can check that

4G11 = 10p00231 + 10p00321 + 2p01210 + 10p01211 + 20p01300 + 10p01311 + 10p03210

+ 2p10120 + 6p10122 + 10p10220 + 4p10222 + 7p11110 + 5p11111 + 6p11121 + 16p11200

+ 6p11210 + 34p11220 + p11221 + 17p11310 + 12p12011 + 4p12100 + 11p12110 + 3p12211

+ 3p12310 + 4p20023 + 2p20130 + 4p20131 + 8p21012 + 4p21022 + 15p21111 + 7p21121 + 11p21130,

where

pijklm := vi
1 · · ·vm

5 and (v1, . . . , v5) := (t + a, b − t, a, b,1 − a − b). (3.16)

Since all the terms pijklm in the above representation of the polynomial 4G11 are nonnegative for (a, b, t) as in Case 11,
this representation immediately “certifies” the nonnegativity of G11; the existence of such a “certificate” follows by
certain results in real algebraic geometry; see e.g. [11,22,23,29,30].

Since the verification of the above, purely algebraic representation of 4G11 is quite tedious (and better done with
the aid of a computer algebra software package), let us present an alternative proof of the nonnegativity of G11, which
involves some calculus. Toward this end, first note that G11 is a third-degree polynomial (in t ) and hence on any
interval may change in its direction of convexity at most once. At that,

G11(−a) = a2(a + b)(5a + 3b) ≥ 0,

G′
11(−a) = 3b(3a + b)

(
a + b − b2) ≥ 0,

G11(b) = b2(a + b)(3a + b)
(
a + a(1 − a − b) + a(1 − a − b)2 + (1 − a − b)3) ≥ 0,

G′
11(b) = −3(3a + b)

(
a + ab + b2)(b(1 − b)2 + a

(
1 − b + b2)) ≤ 0

for (a, b) as in Case 11, so that indeed G11(t) ≥ 0 for t ∈ [−a, b].
Next, concerning Case 21, one can verify the following certificate of the nonnegativity of G21:

2G21 = 10p00014 + 16p00021 + 24p00023 + 10p00104 + 24p00113 + 4p00211 + 4p00240

+ 3p00302 + 4p00340 + 4p00430 + 8p01011 + 16p01021 + 60p01022 + 10p01040 + 3p01102

+ 45p01112 + 6p01120 + 6p01130 + 4p01140 + 3p01212 + 16p02003 + 16p10003 + 45p10012

+ 3p10032 + 2p10101 + 2p10111 + 9p10202 + 2p10311 + 4p10320 + 4p11001 + 12p11002

+ 16p11003 + 8p11010 + 20p11011 + 2p11120 + 14p11211 + 8p11220 + 4p11221 + 2p12010

+ 2p12110 + 12p12111 + 2p12311 + 6p20111 + 4p21101 + 4p21310 + 2p30041 + 2p30210,

where (cf. (3.16))

pijklm := vi
1 · · ·vm

5 and (v1, . . . , v5) := (t + a,1 − a − t, b,1 − b, a + b − 1).

In this case too, let us present an alternative proof of the nonnegativity of G21, involving calculus. Here, similarly,
first note that G21 is a third-degree polynomial (in t ) and hence on any interval may change in its direction of convexity
at most once. At that,

G21(−a) = a2(a + b)(5a + 3b) ≥ 0,

G′
21(−a) = 3b(3a + b)

(
a + b − b2) ≥ 0,
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G21(1 − a) = p001 + 6p002 + 8p003 + 5p004 + p011 + 9p012 + 12p013 + 7p021

+ 9p022 + 5p211 + 3p220 + p320 + p410 ≥ 0,

G′
21(1 − a) = −3(a + b)

[
(1 − b) + 2(1 − b)2 + (a + b − 1)

(
1 + 3(1 − b)

)] ≤ 0

for (a, b) as in Case 21, where pklm := bk(1 − b)l(a + b − 1)m. So, indeed G21(t) ≥ 0 for t ∈ [−a,1 − a].
It remains to consider Case 22. In this case, a certificate of nonnegativity is as follows:

G22 = p00201 + 3p00220 + p00310 + 5p01003 + 6p01010 + 20p01012 + 3p01030 + 2p01210

+ 3p01302 + 24p02020 + 21p02110 + 8p02121 + 6p02200 + 5p03200 + 11p03210 + 5p10210

+ 7p11001 + 4p11012 + 27p11030 + 2p11101 + 42p11110 + 9p11130 + 9p11400 + p12021 + p12030

+ 6p12100 + 6p12111 + 5p12201 + 13p12210 + 3p20210 + 3p20300 + 4p21111 + 3p21120 + 4p21201

+ 6p21210,

where

pijklm := vi
1 · · ·vm

5 and (v1, . . . , v5) := (t + a − 1, b − t, b,1 − b, a + b − 1).

For a proof (for Case 22) involving calculus, first note that G22 is a third-degree polynomial (in t ), and

the coefficient of t3 in G22 is a + b > 0. (3.17)

So, on any interval G22 may change in its direction of convexity at most once, and only from concavity to convexity
(when moving left to right). At that, G22(b) = ab2(3a + b) ≥ 0 and G′

22(b) = −3a(a + b)(3a + b) ≤ 0 for (a, b)

as in Case 22; moreover, G22(1 − a) = G21(1 − a) ≥ 0. Thus, G22(t) ≥ 0 for t ∈ [1 − a, b]. (In view of (3.17), the
sign of G′

22(1 − a) is irrelevant for these considerations.) This concludes the proof of Lemma 3.6. (Yet another proof
of the nonnegativity of G̃(a, b, t), based in essence on a theory by Tarski [14,31,53], can be found in the mentioned
paper [35].) �
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