
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2013, Vol. 49, No. 3, 753–780
DOI: 10.1214/12-AIHP483
© Association des Publications de l’Institut Henri Poincaré, 2013

Strong disorder in semidirected random polymers

N. Zygouras

Department of Statistics, University of Warwick, Coventry CV4 7AL, UK. E-mail: N.Zygouras@warwick.ac.uk

Received 31 July 2011; revised 28 January 2012; accepted 13 February 2012

Abstract. We consider a random walk in a random potential, which models a situation of a random polymer and we study the
annealed and quenched costs to perform long crossings from a point to a hyperplane. These costs are measured by the so called
Lyapounov norms. We identify situations where the point-to-hyperplane annealed and quenched Lyapounov norms are different.
We also prove that in these cases the polymer path exhibits localization.

Résumé. Nous considérons une marche aléatoire dans un potentiel aléatoire qui modèle la situation d’un polymère aléatoire et
nous étudions les coûts “annealed” et “quenched” pour réaliser de longues traversées d’un point à un hyperplan. Ces coûts sont
mesurés en terme de normes de Lyapounov. Nous identifions des situations où les normes de Lyapounov d’un point à un hyperplan
“annealed” et “quenched” sont différentes. Nous démontrons également que dans ces cas le chemin du polymère présente une
localisation.

MSC: 60xx

Keywords: Random walks; Random potential; Lyapounov norms; Strong disorder; Localization; Fractional moments

1. Introduction

In the probabilistic literature polymers are modeled by a simple random walk (Xn)n≥1 on Z
d , d ≥ 1. We denote by

Px the distribution of the random walk, when it starts from x ∈ Z
d . When the starting point coincides with the origin

we will simply denote its distribution by P . We also consider a collection of i.i.d. random variables (ω(x))x∈Zd ,
independent of the walk. We denote by P the distribution of this collection. We assume that ω is nonnegative, does
not concentrate on a single point and that E[ω2] < ∞.The polymer (Xn)n≥1 interacts with the disorder (ω(x))x∈Zd ,
thus giving rise to the modeling of random polymers. This interaction can be modeled in a number of different ways,
corresponding to various physical considerations. In this work we consider the case where the distribution of the
random polymer is described in the following way: Let l̂ ∈ Z

d a unit vector, which plays the role of the direction and

T l̂
L := inf{n: (Xn − X0) · l̂ ≥ L}. Then the distribution of the random polymer is given by the Gibbs measure

dP
β,λ
L,ω := 1

Z
β,λ
L,ω

e−∑T l̂
L

n=1(λ+βω(Xn)) dP,

where Z
β,λ
L,ω := E[e−∑T l̂

L
n=1(λ+βω(Xn))], is the partition function, β > 0 is the inverse temperature. The parameter λ is

strictly positive and adds an additional penalization to the paths, which take very long time to reach the hyperplane
in direction l̂, lying at distance L from the origin. This has the effect that the path feels an additional drift towards
direction l̂, which justifies the term semidirected. We will make this point more precise later on.

Semidirected polymers can be considered as a generalization of directed polymers, which are known to exhibit
a very rich phenomenology. It is expected that the qualitative features of these phenomena should appear in the
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semidirected case, as well. A great difficulty establishing these features in the semidirected case is that most of the
techniques used in the study of directed polymers are based on martingale arguments (with the notable exception of
[14]). The martingale formulation is inherent in the directed case, since the path does not visit the same site twice.
In the semidirected case, though, the path can visit the same site many times and this introduces correlations which
destroy the martingale structure. Therefore, one has to resort to other more quantitative methods of analysis. An
attempt towards this direction was recently initiated in [7,9,13,21] and a purpose of the present work is to continue
building towards this direction. Before describing the goals of this work let us review some of the basic notions and
current results. A more complete review on the subject appears in the recent article [11].

A fundamental quantity is the point-to-hyperlane quenched Lyapounov norm

α∗
λ(l̂) := − lim

L→∞
1

L
logE

[
e−∑T l̂

L
n=1(λ+βω(Xn))

]
, (1.1)

defined for any unit vector l̂ ∈ Z
d . α∗

λ(l̂) is known to be independent of the realization of the disorder ω, i.e. the
limit exists P-a.s., and it can be extended so that to define a norm on R

d [17,20]. This norm can be thought of as a
measure of the cost that the random walk (Xn)n≥1 has to pay in order to perform a long crossing among the potential
−(λ + βω(x)), x ∈ Z

d , or alternatively as the quenched free energy of the semidirected polymer in direction l̂. The
point-to-hyperplane Lyapounov norms, as well as their dual point-to-point norms αλ(x) := sup

l̂∈Rd x · l̂/α∗
λ(l̂), were

first introduced by Sznitman as part of the program of studying the detailed large deviation properties of Brownian
motion among Poissonian obstacles. We will not detail further on this very interesting aspect, but a complete amount
of this work can be found in [17], Chapters 5 and 7. Let us point out that the results proved in the present paper could
be translated in order to yield information on the above mentioned large deviations rate functions. We will not go
down this route, though, since our main focus is to establish a phenomenology on semidirected polymers in analogy
with directed polymers.

Significant amount of information about the path properties of the semidirected polymer can be deduced from the
study of the quenched Lyapounov norm and in particular from its comparison with the annealed Lyapounov norm.
The latter is defined as follows

β∗
λ(l̂) := − lim

L→∞
1

L
logEE

[
e−∑T l̂

L
n=1(λ+βω(Xn))

]
. (1.2)

Borrowing the terminology from directed polymers, we will say that strong disorder holds when the annealed and the
quenched Lyapounov norms are different. Since it is always the case that α∗

λ(l̂) ≥ β∗
λ(l̂), strong disorder amounts to a

strict inequality between the norms.
It was established in [21] that for any l̂ ∈ Z

d , when d ≥ 4 and β < β0(λ), strong disorder fails, that is α∗
λ(l̂) = β∗

λ(l̂),
for every l̂ ∈ Z

d . In the case that l̂ is parallel to a vector of the standard orthonormal basis of R
d this result was

also established in [7]. Recently the equality of the Lyapounov norms was strengthened in [9], by establishing that,
in the same regime of parameters and for l̂ parallel to a vector of the standard orthonormal basis of R

d , the limit

E[e−∑T l̂
L

n=1(λ+βω(Xn))]/EE[e−∑T l̂
L

n=1(λ+βω(Xn))] exists P-a.s. and it is strictly positive. Furthermore, it was established

that, in this regime, the location of the end point X(T l̂
L) of the path, satisfies (after the appropriate centering) a central

limit theorem in P-probability, extending partially in this way the corresponding picture that is valid in directed
polymers [1].

In this paper we will establish the complementary results. Namely, we will identify situations where strong disorder
holds and we will further prove that at strong disorder the semidirected polymer exhibits localization phenomena. To
be more precise let us state our results. To simplify things we will restrict ourselves to the situation where l̂ = ê1, with
ê1, . . . , êd the canonical basis of Z

d . We will also simplify the notation by denoting α∗
λ := α∗

λ(ê1) and β∗
λ := β∗

λ(ê1).
Our first result is that

Theorem 1.1. Assume that the disorder ω is nonnegative, does not concentrate on a single point and E[ω2] < ∞.

A. For any λ > 0, β > 0 and d = 2,3 we have that α∗
λ > β∗

λ.
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B. The strict inequality between the annealed and quenched norms is also valid in any dimension, if β is large
enough and the disorder satisfies the additional assumptions that essinf(ω) = 0 and P(ω = 0) < pd , where pd is
the critical probability for site percolation in Z

d .

The first result identifies certain situations where the Lyapounov norms are different. The case d = 1 is not included,
since it can be easily deduced from the work of Sznitman [17], p. 233, that strong disorder holds in this case. The
one-dimensional case is particular since one can make a more quantitative use of the ergodic theorem. Theorem 1.1
also identifies situations where strong disorder is valid, due to the presence of low temperature, i.e. large β . Notice
that the assumption essinf(ω) = 0 is just a normalization, as we could readjust the value of the parameter λ. It is
a very interesting, open problem to obtain a quantitative description in dimensions three and above of the phase
transition between weak and strong disorder. In the case of directed polymers the existence of a critical value βc(d)

separating the two phases has been established [5], Lemma 3.3, but such a separation has not been established, yet,
for semidirected polymers. Even more interesting would be to understand how this phase transition depends on the
distribution of the disorder, as well as the dimension. This type of question is also widely open for directed polymers,
although, in that setting a non-quantitative characterization of βc(d), based on martingale arguments [6], exists.

Our second result is concerned with the distribution of the end point of the semidirected polymer when it reaches
a hyperplane at distance L from the origin. To this end let us define the measure

μ
β,λ
L,ω(x) := E[e−∑TL

n=1(λ+βω(Xn));X(TL) = x]
E[e−∑TL

n=1(λ+βω(Xn))]
, (1.3)

where TL := inf{n: (Xn − X0) · ê1 ≥ L}. Then we have

Theorem 1.2. If α∗
λ > β∗

λ then P-a.s. we have that

lim sup
L→∞

sup
x:x·ê1=L

μ
β,λ
L,ω(x) > 0.

This result should be contrasted with the one in [9] about diffusive behavior in the case of small β and high
dimension. Our result indicates that the mass of the distribution of the polymer, when this reaches certain hyperplanes,
does not spread out as in the case of diffusive behavior. Instead it develops atoms, which means that there are areas
(whose location is random) on the various hyperplanes, where the polymer concentrates with high probability. In other
words, the polymer localizes. This type of localization is known to exist in directed polymers [6,19] and our result can
be viewed as an extension to the semidirected case.

The organization of the paper is as follows. In Section 2 we introduce the necessary notation and recall a number of
basic results upon which the analysis is based. Most of these appear in previous works and we try to sketch the proofs
of a number of them. A number of new auxiliary results, is also included. In Section 3 we prove part B of Theorem 1.1.
In Section 4 we prove part A of Theorem 1.1. Here we use the method of estimating fractional moments in the way
this was developed through the study of random pinning polymers [8] and applied to directed polymers [14]. The
successful application of the fractional moment method in our case builds crucially on a certain renewal structure of
the semidirected polymers. Finally in Section 5 we prove the localization property stated in Theorem 1.2.

Let us make a note on notation. C will denote some generic constant, whose values do not depend on any of the
other parameters, e.g. λ,β, d , etc. and whose value may be different in different appearances. In the case of some
important constants, whose value needs to be distinguished we will enumerate them, i.e. C1,C2, etc. When we want
to stress the dependence of the constant on some other parameter we will indicate this by a subscript, e.g. Cε . We
will also frequently use the decomposition x := (x(1), x⊥), for an arbitrary point x ∈ Z

d , where x(1) := x · ê1 ∈ Z and
x⊥ ∈ Z

d−1. For a set A, we will denote by A its complement. Finally in order to lighten the notation we will refrain
from using the symbol [x] to denote the integer part of a parameter x and instead we will be using the symbol x having
in mind that it means the closest lattice point to x. It is unlikely that this convention will lead to any confusion, but on
the other hand it will make the notation much lighter.
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2. Notation and preliminary results

Let us define the local time at x ∈ Z
d , between times M,N by �M,N(x) = ∑N−1

n=M 1x(Xn). Whenever M = 0 we will
simply denote it by �N(x). To simplify notation we will also drop the subscript N when it is clear when is the terminal
time within which we consider the local time.

We denote by HL := {x ∈ Z
d : x · ê1 = L}. We also define the hitting time and the hitting point of the hyperplane

at distance L from the starting point of the walk (this being HL if the starting point is the origin) as

TL := inf
{
n: (Xn − X0) · ê1 = L

}
,

X̂L := X(TL) (2.1)

and the last hitting point of the hyperplane at distance L from the starting point of the walk as

SL := sup
{
n: (Xn − X0) · ê1 = L

}
.

When proving the inequality of the norms in dimensions 2,3, it will be convenient to deal with mean zero envi-
ronments. We facilitate this via a Girsanov type argument. This will transform the problem to the study of a drifted
random walk in a mean zero potential and we will adapt this formulation through out the rest of the paper. To be more
precise let P κ

x the distribution of a random walk starting from x ∈ Z
d with transition probabilities

πκ(x, y) =
⎧⎨
⎩

eκ(y−x)·ê1

2(cosh(κ) + d − 1)
if |x − y| = 1,

0 if |x − y| �= 1.

(2.2)

The parameter κ := κ(λ,β) is chosen so that it satisfies the equation

log

(
cosh(κ) + d − 1

d

)
= λ + βE[ω]. (2.3)

In other words P κ
x is a random walk with a drift towards the ê1 direction. As usual, we will not include the subscript

x when this coincides with the origin. It will also be convenient to center the disorder ω. To this end we write
ωx := ωx − E[ωx], for every x ∈ Z

d and we have

E
[
e−∑TL

n=1(λ+βω(Xn))
] = E

[
e−∑TL

n=1(λ+βE[ω]+βω(Xn))
]

= Eκ

[
dP

dP κ

∣∣∣
FTL

e−∑TL
n=1(λ+βE[ω]+βω(Xn))

]

= Eκ
[
e−κ

∑TL
n=1(Xn−Xn−1)·ê1−TL log(d/(coshκ+d−1))e−∑TL

n=1(λ+βE[ω]+βω(Xn))
]
.

Here FTL
is the σ -algebra generated by the first TL steps of the random walk. The choice of κ in (2.3) and the fact

that κ
∑TL

n=1(Xn − Xn−1) · ê1 = κ(XTL
− X0) · ê1 = κL gives that the above is equal to

e−κLEκ
[
e−∑TL

n=1 βω(Xn)
]
. (2.4)

From this it is evident that

α∗
λ = κ − lim

L→∞
1

L
logEκ

[
e−∑TL

n=1 βω(Xn)
]

and

β∗
λ = κ − lim

L→∞
1

L
logEEκ

[
e−∑TL

n=1 βω(Xn)
]
.



Strong disorder in semidirected random polymers 757

Let us also denote the log-moment generating function of ω by

φ(t) := − log E
[
e−tω

]
(2.5)

and the annealed potential

Φβ(M,N) := − log E
[
e−β

∑
x ω(x)�M,N (x)

] =
∑
x

φ
(
β�M,N(x)

)
. (2.6)

Again, when M = 0 we will simply denote this by Φβ(N). The next proposition collects some properties of the
function Φβ , which are useful and easy to verify. Here, we will only give a sketch of the proof.

Proposition 2.1. (i) For M,N integers we have that

Φβ(M + N) ≤ Φβ(N) + Φβ(N,N + M).

(ii) Let N1 < N2 < N , then

Φβ(N) ≥ Φβ

([0,N1] ∪ [N2,N])− βE[ω](N2 − N1).

(iii) If (Xn)0≤n<N1 ∩ (Xn)N1≤n≤N1+N2 = ∅, then

Φβ(N1 + N2) = Φβ(N1) + Φβ(N1,N1 + N2).

The notation used on the right-hand side of (ii) means that in the evaluation of Φβ([0,N1] ∪ [N2,N]) we consider
the local time �[0,N1]∪[N2,N ] := �N1 + �N2,N . The proof of (ii) makes use of the monotonicity �N ≥ �[0,N1]∪[N2,N ] and
the fact that the potential βω is bounded below by −βE[ω]. The proof of (iii) uses the independence of the potentials
visited by the two parts of the walk. Finally, the proof of (i) makes an easy use of Hölder’s inequality. Alternatively
one can deduce it via the Harris–FKG inequality of positive association.

The following definitions set the grounds upon which the analysis of semidirected polymers is based. The notions
of break points and irreducible bridges, presented below, are in the core of the renewal structure upon which the
parallelisms with directed polymers are based. Formally speaking, a path going from the origin to a hyperplane, will
have points in its trajectory with the property that, once the path reaches them, it does not backtrack in the future
behind their level. Therefore, the trajectory can be decomposed into a sequence of nonintersecting cylinders. What is
important is that the range of the path within these cylinders as well as the potential encountered by the corresponding
parts of the path are independent with each other.

Definition 2.2. (i) Consider the walk (Xn)M≤n≤N . We will say that the walk forms a bridge of span L, and denote it
by Br(M,N;L), if

XM · ê1 ≤ Xn · ê1 < XN · ê1

for M ≤ n < N , and (XN − XM) · ê1 = L. When M = 0, we will write Br(N;L) instead.
(ii) Let us denote

Bx,ω(L) := Eκ
x

[
e−∑TL−1

n=0 βω(Xn);Br(TL,L)
] =

∞∑
N=1

Eκ
x

[
e−∑N−1

n=0 βω(Xn);Br(N,L)
]

and

Bx(L) = Eκ
x

[
e−Φβ(TL);Br(TL;L)

] =
∞∑

N=1

Eκ
x

[
e−Φβ(N);Br(N;L)

]
.
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If A is an event on the random walk we denote

Bx,ω(L;A) := Eκ
x

[
e−∑TL−1

n=0 βω(Xn);Br(TL;L) ∩ A
]

and

Bx(L;A) = Eκ
x

[
e−Φβ(TL);Br(TL;L) ∩ A

]
.

Definition 2.3. Consider the random walk (Xn)M≤n≤N . We will say that the random walk has a break point at level L,
if there exists an n, with M < n < N such that Xn · ê1 = L and

Xn1 · ê1 < Xn · ê1 ≤ Xn2 · ê1

for M ≤ n1 < n ≤ n2 ≤ N .

Definition 2.4. (i) Consider the random walk (Xn)M≤n≤N . We will say that the random walk forms an irreducible
bridge of span L, and we denote it by Ir(M,N;L), if it forms a bridge of span L with no break points. When M = 0
we will write Ir(N;L) instead.

(ii) Let us denote

I x,ω(L) := Eκ
x

[
e−∑TL−1

n=0 βω(Xn); Ir(TL;L)
] =

∞∑
N=1

Eκ
x

[
e−∑N−1

n=0 βω(Xn); Ir(N;L)
]

and

I x(L) = Eκ
x

[
e−Φβ(TL); Ir(TL;L)

] =
∞∑

N=1

Eκ
x

[
e−Φβ(N); Ir(N;L)

]
. (2.7)

If A is an event on the random walks we denote

I x,ω(L;A) := Eκ
x

[
e−∑TL−1

n=0 βω(Xn); Ir(TL;L) ∩ A
]

and

I x(L;A) = Eκ
x

[
e−Φβ(TL); Ir(TL;L) ∩ A

]
.

As usual we will refrain from including the subscript x in the above definitions, when this coincides with the origin.

Definition 2.5. Let us define the quenched and annealed mass for bridges, respectively, by

m
q
B := lim

L→∞− 1

L
logEκ

[
e−∑TL−1

n=0 βω(Xn);Br(TL;L)
]

= lim
L→∞− 1

L
logBω(L) (2.8)

and

ma
B := lim

L→∞− 1

L
log EEκ

[
e−∑TL−1

n=0 βω(Xn);Br(TL;L)
]

= lim
L→∞− 1

L
logB(L). (2.9)
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The existence of these limits follows standard subadditive arguments. The bridge masses ma
B,m

q
B depend on the

parameters λ,β , but for simplicity we will not include this dependence in the notation. It is easy to see that α∗
λ =

κ + m
q
B and that β∗

λ = κ + ma
B . Therefore Theorems 1.1 and 1.2 can be recast in terms of the quenched and annealed

masses. In fact our main goal will be to prove that m
q
B > ma

B under the conditions of Theorem 1.1 and then that the
situation of strict inequality between the masses implies that the conclusion of Theorem 1.2 holds.

The following proposition will be useful, since it gives a uniform bound on the decay of B(L).

Proposition 2.6. There exists a constant μ0 < 1, such that for every L,

μ0e−ma
BL ≤ B(L) ≤ e−ma

BL.

The proof of the right hand inequality is based on the basic supermultiplicative property of bridges, that is B(L1 +
L2) ≥ B(L1)B(L2), for any L1,L2. This can be deduced from the inclusion Br(TL1+L2;L1 + L2) ⊃ Br(TL1;L1) ∩
Br(TL1 , TL1,L1+L2;L2) and property (iii) of Proposition 2.1. The left-hand side inequality is based on the reverse

multiplicative property of the annealed potential, that is B(L1 + L2) ≤ B(L1)B(L2) × ∑∞
n=1 eβE[ω]nP κ(X

(1)
n = 0).

This is easily deduced by bounding from below the potential βω, encountered by the part of the path between the first
and the last time that it lies on level HL1 , by −βE[ω]. An easy computation shows that

∑∞
n=1 eβE[ω]nP κ(X

(1)
n = 0) =∑∞

n=1 e−λnP (X
(1)
n = 0) < ∞. μ0 is then chosen to be (

∑∞
n=1 e−λnP (X

(1)
n = 0))−1.

We also define

B̂ω(L) := ema
BLBω(L) (2.10)

and

B̂(L) := ema
BLB(L). (2.11)

Central tool in the study of semidirected polymers is the renewal structure, which governs the annealed and the
quenched irreducible bridges. This is summarized in the relation

B(L) =
N∑

k=1

I (k)B(L − k), (2.12)

which can be obtained by decomposing the bridge B(TL;L) according to when the first break point occurs. A number
of very useful properties can be deduced from the relation (2.12). The most fundamental one is that

∞∑
L=1

ema
BLI(L) = 1. (2.13)

The proof of this statement follows a generating functions calculation in the frame of standard renewal theory together
with the lower estimate of Proposition 2.6. The details of the proof (with a little different notation) can be found either
in [21], Proposition 4.2, or [7], Lemma 2.15. It follows that (Î (L))L=1,2,... := (ema

BLI(L))L=1,2,... is a probability
distribution. Furthermore, it can be shown to have exponential moments. In particular, we have that

Proposition 2.7. There exists a ρ = ρ(λ) > 0 such that, for any β > 0

∞∑
L=1

e(ρ+ma
B)LI (L) < ∞.

Such an estimate is known as mass gap estimate. In the context of self-avoiding walks it was first proven in [4]. It
was later adapted to the context of random walks in random potentials in [7,18]. Such type of estimate in the context of
Lyapounov norms, independent of the direction and for small β was established in [20] (in this same work a separate
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proof, valid for all β , along coordinate directions, that was meant to simplify the existing ones, appears to be flawed).
Finally, mass gap estimates that also apply on different contexts, such as Ising models appear in [3] and [10]. Based
on a coarse graining approach, the mass gap approach developed in [10] has the advantage that it extends to the case
when one considers Lyapounov norms in directions which do not coincide with one of the orthonormal vectors of R

d ,
and for arbitrary value of β .

A proof of Proposition 2.7 most relevant to our setting (with a little different notation) can be found in [7], Theo-
rem 2.18.

We will denote the mean of this probability distribution by μ, i.e.

μ :=
∞∑

L=1

Lema
BLI(L) < ∞. (2.14)

Using standard renewal theory arguments one can also easily deduce that B̂(L) → μ−1, as L tends to infinity, refining
in a sense Proposition 2.6.

The importance of the above considerations is that they lead to a Markovian structure of the triplet (Xτi
, Li , τi),

where τi denotes the time when the ith break point occurs, Li the span of the ith irreducible bridge and Xτi
the

position of the path at the break point. This Markovian structure is central in our considerations and is described by
the following Markov measure.

Definition 2.8. The measure P β denotes the distribution of the Markov process (Xτi
, Li , τi) with transition probabil-

ities given by

pβ(yi+1,Li+1, ni+1;yi,Li, ni)

:= ema
BLi+1 × Eκ

yi

[
e−Φβ(ni+1−ni); Ir(ni+1 − ni,Li+1),Xni+1−ni

= yi+1
]
.

It follows from Proposition 2.7 that Eβ [eρL1 ] < ∞. Some further elaboration on this relation leads to the following
proposition, which is a small modification of Proposition 4.3 of [20]. Results of this type are also established in [10],
Section 3.6.

Proposition 2.9. There exists ρ1 = ρ1(β,λ) > 0 such that, for every β > 0

P β(τ1 > u) ≤ e−ρ1u.

It moreover follows that Eβ [e(ρ1/2) supn<τ1
|Xn|] < ∞.

Proof. We have that

P β(τ1 > u) ≤ P β(L1 > hu) + P β(τ1 > u; L1 ≤ hu) (2.15)

for some h small enough that will be chosen below. The first term in (2.15) is estimated by

P β(L1 > hu) ≤ e−ρhuEβ
[
eρL1

] ≤ Ce−ρhu,

where the last inequality is thanks to Proposition 2.7. Regarding the second term in (2.15), this is estimated as follows

P β(τ1 > u; L1 ≤ hu) =
∑
N>u

∑
L≤hu

ema
BLEκ

[
e−Φβ(N); Ir(N;L)

]

=
∑
N>u

∑
L≤hu

e(ma
B+κ)Le−κLEκ

[
e−Φβ(N); Ir(N;L)

]

=
∑
N>u

∑
L≤hu

e(ma
B+κ)L

EE
[
e−λN−∑N

n=1 βω(XN); Ir(N;L)
]
,
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where the last follows as in (2.4), with κ being as in (2.3). Continuing on the above we have that

P β(τ1 > u; L1 ≤ hu) ≤ e(ma
B+κ)hue−(λ/2)u

∑
N>u

∑
L≤hu

EE
[
e−(λ/2)N−∑N

n=1 βω(XN); Ir(N;L)
]

≤ e−(λ/4)u,

with the last inequality valid if h ≤ 4−1(ma
B + κ)−1λ. Combining the two estimates we have that

P β(τ1 > u) ≤ Ce−ρhu + e−(λ/4)u.

From this, the proposition follows with ρ1 := ρ1(β,λ) = min(λ/4, ρ(ma
B + κ)−1λ/4). �

The following local limit theorem, proven in [2], Theorem 5.1, will be useful towards Proposition 2.11, below.

Theorem 2.10 ([2]). Consider a distribution p(·) on Z
d, d ≥ 1 with covariance matrix Σp and mean μp :=∑

x∈Zd xp(x) satisfying

∑
x∈Zd

p(x)eγ0|x| ≤ γ1, (2.16)

Σp ≥ γ2Id (2.17)

for certain strictly positive constants γ0, γ1, γ2. Denote by pn(·) its nth convolution. Then there exists an ε(γ0, γ1, γ2)

such that for ε < ε(γ0, γ1, γ2) there are positive constants δ̃ := δ̃γ0,γ1,γ2 , δ̃ε := δ̃ε(γ0, γ1, γ2) and C = C(γ0, γ1, γ2),
such that

pn(x) ≤ ϕC
n (x)1|x−nμp |<nε + Ce−δ̃ε |x−nμp |1|x−nμp |≥nε, (2.18)

where

ϕC
n (x) := C

nd/2
e−δ̃|x−nμp |2/(2n).

We close this section with the following local limit type annealed estimate that will be useful in several occasions
in our estimates towards the inequality of the norms in dimensions two and three. More precise annealed local limit
theorems have been established in [10], Section 4.3.

Proposition 2.11. For x⊥ ∈ Z
d−1 and L > 0 integer, there is a constant C such that

B̂(L; X̂L = x) ≤ C

L(d−1)/2
e−C|x⊥|2/(2L).

Proof. We use Theorem 2.10 with the distribution p(·) to be defined as

pβ
(
L,x⊥) := P β

(
L1 = L; X̂⊥(τ1) = x⊥) (2.19)

for L > 0 integer and x⊥ ∈ Z
d−1. Condition (2.16) is satisfied by Proposition 2.9, μp is given by relation (2.14) and,

finally, (2.17) is satisfied by the apparent nondegeneracy of the distribution P β . We then have

B̂(L; X̂L = x) =
∑
n

pβ
n

(
L,x⊥)

and the result easily follows by inserting (2.18) in the above summation. �
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3. Inequality of Lyapounov norms for large β

In this section we prove part B of Theorem 1.1. The argument is along the lines of first passage percolation [12],
similar to the case of Poissonian obstacles [15], Theorem 1.4. We consider the case when the distribution P sat-
isfies essinf(ω) = 0 and P(ω = 0) < pd , with pd the critical probability for site percolation in Z

d . Let φ(β) :=
− logE[exp(−βω)]. We first have the following upper bound on β∗

λ

β∗
λ = − lim

L→∞
1

L
logEE

[
e−∑TL

n=1(λ+βω(Xn))
]

≤ − lim
L→∞

1

L
logE

[
e−(λ+φ(β))TL

]
≤ C

(
λ + φ(β)

)
,

where for the first inequality we used Fubini and the fact that E[exp(−β�TL
(x)ω)] ≥ (E[exp(−βω)])�TL

(x). The
second inequality is a routine to establish. Notice that since essinf(ω) = 0, we have that limβ→∞ β−1φ(β) = 0 and
therefore it follows that for β large, β∗

λ = o(β).
We will now obtain a lower bound on the quenched Lyapounov norm. Consider ω∗

d a value such that P(ω <

ω∗
d) < pd , which is the critical probability of percolation in d dimensions. By our assumption there exist such ω∗

d ,
which is strictly positive. Then by a first passage percolation argument (see Theorem 2.3 in [12], or Proposition 2.2 in
[16]) we have that for every N > 0 there are constants C6,C7 such that

P

(
inf

PN

#
{
n ≤ N : ωXn > ω∗

d

} ≤ C6N
)

≤ e−C7N, (3.1)

where PN is the set of all self avoiding paths {X1, . . . ,XN } of length N . Borel–Cantelli then implies that for all large
enough N we have that infPN

#{n ≤ N : ωXn > ω∗
d} > C6N . To use this in the estimate of the quenched Lyapounov

norm, we notice that any path that starts at the origin makes at least L steps before it reaches the hyperplane HL. We
then have

α∗
λ ≥ − lim

1

L
logE

[
e
−∑TL

n=1(λ+βω(Xn))1ω(Xn)>ω∗
d

] ≥ C6
(
λ + βω∗

d

)
.

Comparing this with the fact that β∗
λ = o(β) for β large, that we obtained above, we arrive at the inequality of the

Lyapounov norms, when β is large.

4. Inequality of Lyapounov norms in d = 2,3

In this section we prove the first part of Theorem 1.1. The parameters λ > 0, β > 0 are fixed. To show that the annealed
and the quenched Lyapounov norms are different it is enough to show that

lim
N→∞

1

NL
E log B̂ω(NL) < 0, (4.1)

recall that B̂ω(L) := ema
BLBω(L). This is evident, since the left-hand side of (4.1) is equal to ma

B −m
q
B = β∗

λ −α∗
λ . To

establish (4.1), we use the fractional moment method, which was developed in [8,14]. The starting point is to trivially
write the left-hand side of (4.1) as (γNL)−1

E log B̂
γ
ω (NL), for a fixed γ ∈ (0,1). Then using Jensen’s inequality, it

suffices to show that

lim sup
N→∞

1

γNL
log EB̂γ

ω (NL) < 0.

The reason of considering a system of length NL is that the fractional moment estimates are based on a coarse
graining. The scale L plays the role of a correlation length and its careful choice will be important. For the coarse
graining we need to introduce the following skeletons:
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Let V = {0 = v0, v1, . . . , vN } ⊂ Z
d , such that v

(1)
i = i, for i = 0,1, . . . ,N . We define the skeletons

I C1
V :=

N⋃
i=0

{
x ∈ Z

d : x(1) = v
(1)
i L,0 ≤ x(j) − v

(j)
i C1

√
L < C1

√
L,j = 2, . . . , d

}

:=
N⋃

i=0

IC1
vi

,

J V :=
N−1⋃
i=0

{
x ∈ Z

d : 0 ≤ x(1) − v
(1)
i L < L,

∣∣x(j) − v
(j)
i C1

√
L
∣∣ < C3

√
L,j = 2, . . . , d

}

:=
N−1⋃
i=0

Jvi
.

We also define

I
C2
0 := {

x ∈ Z
d : x(1) = 0,

∣∣x⊥∣∣ < C2
√

L
}
.

The constants satisfy the relation C1 � C2 � C3. We now proceed as follows

1

γ

1

NL
log E

[
B̂ω(NL)γ

] = 1

γ

1

NL
logE

[(∑
V

B̂ω

(
NL;

N⋂
i=1

X̂iL ∈ IC1
vi

))γ]

≤ 1

γ

1

NL
log

∑
V

E

[(
B̂ω

(
NL;

N⋂
i=1

X̂iL ∈ IC1
vi

))γ]
, (4.2)

where we recall that X̂L was defined at (2.1). Using Hölder’s inequality we have the bound

E

[(
B̂ω

(
NL;

N⋂
i=1

X̂iL ∈ IC1
vi

))γ]

≤ (
E
[
g

(d)

V (ω)−γ /(1−γ )
])1−γ

(
E

[
g

(d)

V (ω)B̂ω

(
NL;

N⋂
i=1

X̂iL ∈ IC1
vi

)])γ

, (4.3)

where we define

g
(d)

V (ω) :=
N−1∏
i=0

g
(d)
Jvi

(ω) := exp

(
N−1∑
i=0

F
(
G

(d)
Jvi

(ω)
))

,

F (x) := −K11x>eK2 ,

the constants K1,K2 will be chosen later on to be large enough. The index d corresponds to the dimensions 2,3, since
we will require a different choice of the functions G

(d)
Jvi

for each dimension. In particular, we will have the choices:

G
(2)
Jvi

(ω) = δL

∑
x∈Jvi

ωx, (4.4)

with δL := −L3/4 and

G
(3)
Jvi

(ω) =
∑

y,z∈Jvi

Vy,zωyωz, (4.5)
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with

Vy,z = 1

L(logL)1/2

1|y⊥−z⊥|<C4

√
|y(1)−z(1)|

|y(1) − z(1)| + 1
1y �=z, (4.6)

with the constant C4 to be chosen large enough. The notation ωx := ωx − E[ωx], x ∈ Z
d , will be used through out.

For shorthand we will be using the notation

dPV := g
(d)

V (ω)dP,

dPJvi
:= g

(d)
Jvi

(ω)dP for i = 1,2, . . . ,N − 1,

to denote the related measures. Notice that we have dropped the index d from the notation of the PV and PJvi
, in order

to keep the notation light, since no confusion is likely to occur.
Our goal will now be to use (4.3) into (4.2) in order to show that

ma
B − m

q
B ≤ 1

L
lim sup
N→∞

1

γN
log

∑
V

E

[(
B̂ω

(
NL;

N⋂
i=1

X̂iL ∈ IC1
vi

))γ]
< 0, (4.7)

when L is chosen appropriately and large enough and so are the constants K1,K2,C1,C2, C3,C4. To achieve this
we will need a number of estimates. We start with the following estimate on the term involving the Radon–Nikodym
derivative.

Proposition 4.1. For K2 large enough, depending on E[ω2],K1,C3,C4 and for the above choices of the parameters
δL and Vy,z we have that

E
[
g

(d)

V (ω)−γ /(1−γ )
]
< 2N

for d = 2,3.

Proof. It is easy to see, by the independence of the functions G
(d)
Jvi

(ω) for different i’s, that

E
[
g

(d)

V (ω)−γ /(1−γ )
] =

(
E

[
exp

(
− γ

1 − γ
F
(
G

(d)
J0

(ω)
))])N

.

We proceed by estimating separately the expectation in the cases of d = 2,3.
Case d = 2: We have the bound on the expectation

1 + e(γ /(1−γ ))K1P

[
δL

∑
x∈J0

ωx > eK2

]
≤ 1 + e(γ /(1−γ ))K1−2K2E

[
ω2]|J0|δ2

L

= 1 + 2C3e(γ /(1−γ ))K1−2K2E
[
ω2]

< 2 (4.8)

for K2 large enough.
Case d = 3: We have the bound on the expectation

1 + e(γ /(1−γ ))K1P

[ ∑
y,z∈J0

Vy,zωyωz > eK2

]
≤ 1 + e(γ /(1−γ ))K1−2K2E

[( ∑
y,z∈J0

Vy,zωyωz

)2]

= 1 + 2e(γ /(1−γ ))K1−2K2E
[
ω2]2 ∑

y,z∈J0

V 2
y,z
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≤ 1 + CC2
3C2

4e(γ /(1−γ ))K1−2K2E
[
ω2]2

< 2

for K2 large enough. �

We continue by estimating the second term of (4.3). The first part of this estimate is identical for both d = 2,3.

Proposition 4.2. For any ε > 0 we can choose L large enough such that

∑
V

(
EV

[
B̂ω

(
NL;

N⋂
i=1

X̂iL ∈ IC1
vi

)])γ

≤
(

C
∑

v

(
max
x∈I

C2
0

EJ0B̂x,ω

(
L; X̂L ∈ IC1

v

))γ + ε

)N

(4.9)

for a positive constant C.

Proof. We start by

EV B̂ω

(
NL;

N⋂
i=1

X̂iL ∈ IC1
vi

)
= EV

∑
xi∈I

C1
vi

;i=1,2,...,N

ema
BLEκ

[
e−β

∑
x ωx�TL

(x); X̂L = x1,Br(L)
]

×
N−1∏
i=1

ema
BLEκ

xi

[
e−β

∑
x ωx�TL

(x); X̂L = xi+1
]
, (4.10)

where we use as a shorthand the notation Br(L) = Br(TL,L). The terms of the product are not independent and a
priori we cannot interchange the product and the EV . We can recover the independence by looking at when is the last
time the path starting from xi ∈ I

C1
vi

lies on the hyperplane HiL := {x: x · ê1 = iL} and then bound below the potential
βω of the sites visited by this segment of the walk by −βE[ω]. We then have

ema
BLEκ

xi

[
e−β

∑
x ωx�TL

(x); X̂L = xi+1
]

=
∑

x̃∈HiL

∞∑
M=1

ema
BLEκ

xi

[
e−β

∑
x ωx�TL

(x);XM = x̃
]
Bx̃,ω(L; X̂L = xi+1)

≤ ema
BL

∑
x̃∈HiL

∞∑
M=1

eβE[ω]MP κ
xi

(XM = x̃)Bx̃,ω(L; X̂L = xi+1) (4.11)

for i = 1, . . . ,N − 1. Since xi, x̃ ∈ HiL, we can use the identity eβE[ω]MP κ
xi

(XM = x̃) = e−λMPxi
(XM = x̃) =

e−λMP (X
(1)
M = 0) into (4.11), to get that (4.10) is bounded by

N−1∏
i=0

ema
BL max

x∈I
C1
vi

∑
x̃∈HiL

∞∑
M=1

e−λMPx(XM = x̃)EJvi
Bx̃,ω

(
L; X̂L ∈ IC1

vi+1

)

and therefore the left-hand side of (4.9) can be bounded by

(∑
v

(
ema

BL max
x∈I

C1
0

∑
x̃∈H0

∞∑
M=1

e−λMPx(XM = x̃)EJ0Bx̃,ω

(
L; X̂L ∈ IC1

v

))γ)N

. (4.12)
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To further estimate this, we decompose the term inside the “max
x∈I

C1
0

” as follows

∞∑
M=1

( ∑
x̃∈H0:|x̃|≤C2

√
L

+
∑

x̃∈H0:|x̃|>C2
√

L

)
e−λMPx(XM = x̃)EJ0B̂x̃,ω

(
L; X̂L ∈ IC1

v

)
. (4.13)

Notice that since g
(d)
J0

(ω) ≤ 1 we have that

EJ0B̂x̃,ω

(
L; X̂L ∈ IC1

v

) ≤ EB̂x̃,ω

(
L; X̂L ∈ IC1

v

)
= EB̂ω

(
L; X̂L ∈ IC1

v − x̃
)
. (4.14)

Using this, (4.13) and the fractional inequality (a + b)γ ≤ aγ + bγ , γ ≤ 1, we get that the part of (4.12) inside the N

power is bounded by the sum of the terms

∑
v

(
max
x∈I

C1
0

∞∑
M=1

∑
x̃∈H0:|x̃|≤C2

√
L

e−λMPx(XM = x̃)EJ0B̂x̃,ω

(
L; X̂L ∈ IC1

v

))γ

(4.15)

and

∑
v

(
max
x∈I

C1
0

∞∑
M=1

∑
x̃∈H0:|x̃|>C2

√
L

e−λMPx(XM = x̃)EB̂ω

(
L; X̂L ∈ IC1

v − x̃
))γ

. (4.16)

Bound on (4.15). Clearly, (4.15) is bounded by

∑
v

(
max
x̃∈I

C2
0

EJ0B̂x̃,ω

(
L; X̂L ∈ IC1

v

)
max
x∈I

C1
0

∞∑
M=1

∑
x̃∈H0:|x̃|≤C2

√
L

e−λMPx(XM = x̃)

)γ

.

Since x, x̃ ∈ H0, it holds that

∞∑
M=1

∑
x̃∈H0:|x̃|≤C2

√
L

e−λMPx(XM = x̃) ≤
∞∑

M=1

e−λMP
(
X

(1)
M = 0

) := μ−1
0 .

Therefore, it follows that (4.15) is bounded by

∑
v

(
μ−1

0 max
x∈I

C2
0

EJ0B̂x,ω

(
L; X̂L ∈ IC1

v

))γ

= C
∑

v

(
max
x∈I

C2
0

EJ0B̂x,ω

(
L; X̂L ∈ IC1

v

))γ

, (4.17)

where C := μ
−γ

0 .
Bound on (4.16). We first use the usual fractional inequality to pass the γ power inside the summations and then

notice that the summation over v ∈ Z
d effectively eliminates the dependence on x̃ in the expectation. (4.16) is then

bounded by

∑
v

(
EB̂ω

(
L; X̂L ∈ IC1

v

))γ ∞∑
M=1

∑
x⊥∈Zd−1:|x⊥|>C2

√
L

e−γ λMP
(
X

(1)
M = 0

)γ
P
(
X⊥

M = x⊥)γ . (4.18)
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The process (X⊥
M)M≥1 is a simple random walk on Z

d−1 and therefore we can use standard estimates to get P(X⊥
M =

x⊥) ≤ C/M(d−1)/2e−C|x⊥|2/M . We therefore have the simple computation

∞∑
M=1

∑
x⊥∈Zd−1:|x⊥|>C2

√
L

e−γ λMP
(
X

(1)
M = 0

)γ
P
(
X⊥

M = x⊥)γ

≤ C

∞∑
M=1

∑
|x⊥|>C2

√
L

e−γ λM 1

Mγ(d−1)/2
e−γC|x⊥|2/M

≤ C

( √
L∑

M=1

+
∞∑

M=√
L+1

)
e−γ λM/2e−γCC2

2L/M ≤ Ce−γC
√

L

and therefore (4.18) can be bounded by

Ce−γC
√

L
∑

v

(
EB̂ω

(
L; X̂L ∈ IC1

v

))γ
< ε, (4.19)

with the last inequality valid for L large enough, depending on ε. Notice that here we used the fact that Proposition 2.11
guarantees the uniform boundedness of

∑
v(EB̂ω(L; X̂L ∈ I

C1
v ))γ in L.

The combination of (4.19) and (4.17) completes the proof of the proposition. �

The next proposition is the last step towards the proof of Theorem 1.1, part A.

Proposition 4.3. Consider L chosen as

L :=
(

e2K2

|φ′
(β)|

)4

, d = 2 (4.20)

and

L := exp

[(
e2K2

|φ′
(β)|2

)2]
, d = 3. (4.21)

For any ε > 0 we can choose C3 large, K1 large enough, depending on ε and K2 large enough depending on
C3,C4,E[ω2], ε, β (the dependence on β is such that the length scale L is large enough), such that

∑
v

(
max
x∈I

C2
0

EJ0B̂x,ω

(
L; X̂L ∈ IC1

v

))γ

< ε. (4.22)

The proof of this proposition requires different choices of the parameters in dimensions 2,3 and is presented
in the following subsections respectively. Before embarking into the proof of Proposition 4.3 we will show how
Propositions 4.1–4.3 can be used to conclude the proof of Theorem 1.1, part A.

Proof of Theorem 1.1, part A. Using (4.3) into (4.7) and using Propositions 4.1–4.3 we have that

ma
B − m

q
B ≤ 1

L
γ −1 log

(
2(1−γ )(C + 1)ε

)
< 0,

by choosing ε small enough. Notice that the choice of L in (4.20) and (4.21) provides also a bound on the gap between
the annealed and quenched norms. When β ∼ 0 is small, then φ

′
(β) ∼ −βE[ω2] and therefore the gap is bounded

below by O(β4) in d = 2 and O(exp(−β−4)) in d = 3. When β is large the choice of L being large imposes that K2
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must be chosen so that exp(2K2) := exp(2K ′
2)|φ′

(β)|, in d = 2, and exp(2K2) := exp(2K ′
2)|φ′

(β)|2, in d = 3, with
K ′

2 large and therefore the bound on the gap in this case is O(1). �

For the proof of Proposition 4.3 we will need the following notation

X C3
L = {

(X.): (Xn)1≤n≤TL
⊂ J0

}
, (4.23)

BC3
v,L := X C3

L ∩ Br(L) ∩ {
X̂L ∈ IC1

v

}
, (4.24)

BC3
L := X C3

L ∩ Br(L). (4.25)

4.1. Proof of Proposition 4.3 in dimension d = 2

In this case the coarse graining scale is chosen as

L :=
(

e2K2

|φ′
(β)|

)4

. (4.26)

Consider a parameter R to be chosen later on and split the sum in (4.22) as follows

∑
v

(
max
x∈I

C2
0

EJ0B̂x,ω

(
L; X̂L ∈ IC1

v

))γ =
∑

v:|v|<R

(
max
x∈I

C2
0

EJ0B̂x,ω

(
L; X̂L ∈ IC1

v

))γ

+
∑

v:|v|≥R

(
max
x∈I

C2
0

EJ0B̂x,ω

(
L; X̂L ∈ IC1

v

))γ

≤ R max|v|<R
max
x∈I

C2
0

(
EJ0B̂x,ω

(
L; X̂L ∈ IC1

v

))γ

+
∑

v:|v|≥R

(
max
x∈I

C2
0

EB̂x,ω

(
L; X̂L ∈ IC1

v

))γ

< R max|v|<R
max
x∈I

C2
0

(
EJ0B̂x,ω

(
L; X̂L ∈ IC1

v

))γ + ε

2
, (4.27)

where the last inequality follows from the local limit estimate of Proposition 2.11, by choosing R large enough. To
estimate the first term of (4.27) we recall the definitions (4.23), (4.24), (4.25) and write

EJ0B̂x,ω

(
L; X̂L ∈ IC1

v

) = EJ0B̂x,ω

(
L; X C3

L , X̂L ∈ IC1
v

)+ EJ0B̂x,ω

(
L; X C3

L , X̂L ∈ IC1
v

)
, (4.28)

where for a set A recall that we denote by A its complement. The estimate of (4.28) is based on the two following
lemmas.

Lemma 4.4. We have the estimate

EJ0B̂x,ω

(
L; X C3

L , X̂L ∈ IC1
v

)
< 4C3E

[
ω2]e−2K2 + e−K1,

which can be made smaller than ε/4R, if K1,K2 are chosen large enough.

Lemma 4.5. For C3 chosen large enough and L chosen large enough, i.e. K2 is chosen large enough, we have the
estimate

EJ0B̂x,ω

(
L; X C3

L , X̂L ∈ IC1
v

)
<

ε

4R
.
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Having established these two lemmas and inserting the corresponding estimates into (4.27), the proof of Proposi-
tion 4.3 is completed. We therefore proceed to provide the proof of the lemmas.

Proof of Lemma 4.4. For x ∈ I
C2
0 we have

EJ0B̂x,ω

(
L; X C3

L , X̂L ∈ IC1
v

) = ema
BL

E
[
g

(2)
J0

(ω)Eκ
x

[
e−β

∑
x ωx�TL

(x); BC3
v,L

]]
≤ ema

BL
E

[
Eκ

x

[
e−β

∑
x ωx�TL

(x); BC3
v,L

]; δL

∑
y∈J0

ωy < eK2

]
+ e−K1

= ema
BLEκ

x

[
E

[
e−β

∑
x ωx�TL

(x); δL

∑
y∈J0

ωy < eK2

]
; BC3

v,L

]
+ e−K1 . (4.29)

For a fixed path we define the measure PX by

dPX

dP
:= exp

(∑
x

−βωx�TL
(x) + φ

(
β�TL

(x)
))

and we write (4.29) as

ema
BLEκ

x

[
e−Φβ(TL)

PX

[
δL

∑
y∈J0

ωy < eK2

]
; BC3

v,L

]
+ e−K1

≤ ema
BLEκ

x

[
e−Φβ(TL)

PX

[
δL

∑
y∈J0

ωy < eK2

]
; BC3

L

]
+ e−K1, (4.30)

where in the last inequality we used the fact that BC3
v,L ⊂ BC3

L .

We denote by A(1)
L the event that EX[δL

∑
y∈J0

ωy] > 2eK2 . The first term of (4.30) is then bounded by

ema
BLEκ

x

[
e−Φβ(TL)

PX

[
δL

∑
y∈J0

ωy − EX

[
δL

∑
y∈J0

ωy

]
< −eK2

]
; BC3

L ∩ A(1)
L

]
+ ema

BLEκ
x

[
e−Φβ(TL); BC3

L ∩ A(1)

L

]

and we can use Chebyshev’s inequality to bound this by

e−2K2ema
BLEκ

x

[
e−Φβ(TL)

EX

[(
δL

∑
y∈J0

(
ωy − EX[ωy]

))2]
; BC3

L ∩ A(1)
L

]

+ ema
BLEκ

x

[
e−Φβ(TL); BC3

L ∩ A(1)

L

]
. (4.31)

Estimate on the first term of (4.31). We first notice that (ωy)y∈J0 are independent under the measure PX . Then it is
easy to conclude that the first term of (4.31) equals

e−2K2δ2
L

∑
y∈J0

ema
BLEκ

x

[
e−Φβ(TL)

EX

[(
ωy − EX[ωy]

)2]; BC3
L ∩ A(1)

L

]

≤ e−2K2δ2
L

∑
y∈J0

ema
BLEκ

x

[
e−Φβ(TL)

EX

[
ω2

y

]; BC3
L ∩ A(1)

L

]

= e−2K2δ2
L

∑
y∈J0

ema
BLEκ

x

[
e−Φβ(TL)

E
[
ω2

ye−βωy�TL
(y)+φ(β�TL

(y))
]; BC3

L ∩ A(1)
L

]

≤ 2e−2K2E
[
ω2]δ2

L|J0|ema
BLEκ

x

[
e−Φβ(TL); BC3

L ∩ A(1)
L

]
,
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where in the last inequality we used the fact that ωx ≥ −E[ωx], or x ∈ Z
d , together with Harris–FKG implies easily

that E[ω2
ye−βωy�TL

(y)+φ(β�TL
(y))] ≤ 2E[ω2]. Finally using the fact that ema

BLEκ
x [e−Φβ(TL);Br(L)] ≤ 1, see Proposi-

tion 2.6, and the fact that δ2
L|J0| = 2C3 we have the following bound on the first term of (4.31)

ema
BLEκ

x

[
e−Φβ(TL)

EX

[(
δL

∑
y∈J0

(
ωy − EX[ωy]

))2]
; BC3

L ∩ A(1)
L

]
< 4C3E

[
ω2]e−2K2, (4.32)

which can be made small by choosing K2 large enough depending on C3,E[ω2].
Estimate on the second term of (4.31). We first compute

EX

[
δL

∑
y∈J0

ωy

]
= δL

∑
y∈J0

EX[ωy]

= δL

∑
y∈J0

E
[
ωye−βωy�TL

(y)+φ(β�TL
(y))

]

= δL

∑
y∈J0

φ
′(
β�TL

(y)
)
1�TL

(y)>0

≥ φ
′
(β)δL

∑
y∈J0

1�TL
(y)>0

≥ φ
′
(β)δLL1X C3

L

= e2K2 1X C3
L

,

where in the first inequality we used the concavity of the log-moment generating function φ(·), as this is defined
in (2.5), and the fact that δL := −L−3/4 is negative. Since on BC3

L it holds that 1X C3
L

= 1, we have that e2K21X C3
L

>

2eK2 and therefore the second term of (4.31) vanishes.
This fact together with (4.32), (4.31) and (4.29) imply that

EJ0B̂x,ω

(
L; X C3

L , X̂L ∈ IC1
v

)
< 4C3E

[
ω2]e−2K2 + e−K1 (4.33)

and this completes the estimate of the first term of Lemma 4.4. �

Proof of Lemma 4.5. The term on the left-hand side of the inequality is bounded by EB̂ω(L; X C3
L ). We further have

EB̂ω

(
L; X C3

L

) = ema
BLEκ

[
e−Φβ(TL);Br(L) ∩ X C3

L

]
=

∞∑
n=1

∑
L1+···+Ln=L

ema
BLEκ

[
e−Φβ(TL); X C3

L ∩
n⋂

i=1

Ir(Li)

]

=
( ∑

|n−μ−1L|<ε0L

+
∑

|n−μ−1L|>ε0L

) ∑
L1+···+Ln=L

ema
BLEκ

[
e−Φβ(TL); X C3

L ∩
n⋂

i=1

Ir(Li)

]

:= I + II,

where μ is defined in (2.14) and ε0 is fixed satisfying ε0μ < ε(γ0, γ1, γ2), as in Proposition 2.10.
Control on II. We have that

II ≤
∑

n:|n−μ−1L|>ε0L

∑
L1+···+Ln=L

ema
BLEκ

[
e−Φβ(TL);

n⋂
i=1

Ir(Li)

]
=

∑
n:|n−μ−1L|>ε0L

pβ
n (L),
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where p
β
n (L) := ∑

x p
β
n (L,x), with the latter defined in Proposition 2.11. Using Proposition 2.11 we have that

II ≤
∑

n:|L−nμ|>ε0μL

Ce−δ̃ε0μ|L−nμ| < Cε0e−δ̃ε0με0μL.

Control on I . We have

I ≤
∑

n:|n−μ−1L|<ε0L

∑
L1+···+Ln=L

ema
BLEκ

[
e−Φβ(TL);

n⋂
i=1

Ir(Li)

n⋃
i=1

{∣∣X⊥(τi)
∣∣ >

C3

2

√
L

}]

+
∑

n:|n−μ−1L|<ε0L

∑
L1+···+Ln=L

ema
BLEκ

[
e−Φβ(TL);

n⋂
i=1

Ir(Li)

n⋂
i=1

{∣∣X⊥(τi)
∣∣ <

C3

2

√
L

}

n⋃
i=1

{
sup

τi<m<τi+1

∣∣X⊥
m

∣∣ > C3
√

L
}]

:= Ii + Iii.

To bound the term Iii notice that the event {|X⊥(τi)| <
C3
2

√
L} ∩ {|X⊥(τi+1)| <

C3
2

√
L} ∩ {supτi<m<τi+1

|X⊥
m| >

C3
√

L} implies that τi+1 − τi >
C3
2

√
L. Therefore the term Iii is bounded above by

P β

(
(μ−1+ε0)L⋃

i=1

{
τi − τi−1 >

C3

2

√
L

})
≤ (

μ−1 + ε0
)
LP β

(
τ1 >

C3

2

√
L

)

≤ (
μ−1 + ε0

)
Le−(1/4)ρ1C3

√
L

since τ1 has exponential moments under P β , as this is implied by Proposition 2.9. Finally, we bound the term Ii . It is
easy to see that

Ii ≤ P β

(
(μ−1+ε0)L⋃

i=1

{∣∣X⊥(τi)
∣∣ > C3

2

√
L

})
. (4.34)

Since the increments of X⊥(τi) are independent under P β with exponential moments, see Proposition 2.9, it follows
from the standard theory of random walks that (4.34) can be made arbitrarily small if C3 is chosen large enough.

Summing up, we can choose C3 and L large enough (e.g. choosing K2 large), so that

EJ0B̂x,ω

(
L; X C3

L , X̂L ∈ IC1
v

) ≤ EB̂ω

(
L; X C3

L

)
<

ε

4R
(4.35)

for every v. This concludes the proof of the lemma. �

4.2. Proof of Proposition 4.3 in dimension d = 3

In this case we recall the definitions (4.5), (4.6). We will be choosing L such that

logL :=
(

e2K2

|φ′
(β)|2

)2

. (4.36)

The first steps are the same as in the d = 2 case. In particular, inequality (4.27) and decomposition (4.28) are still
valid. Lemma 4.5 is still valid and used to estimate the second term in (4.28). We therefore need to control the first
term of (4.28). This is done in the following lemma, which is the analogue of Lemma 4.4.
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Lemma 4.6. Given δ0 > 0 we can choose C4 large enough, depending on δ0 and also K2 large enough, such that

EJ0B̂x,ω

(
L; X C3

L , X̂L ∈ IC1
v

)
< CC2

3C2
4E

[
ω2]2e−2K2 + 2δ0 + e−K1 .

Once this lemma is established Proposition 4.3 follows by choosing K1 large, δ0 small, C4 large, depending on δ0
and K2 large depending on C3,C4 and E[ω2]. We are now left with the proof of Lemma 4.6.

Proof of Lemma 4.6. The beginning of the proof is identical to that of Lemma 4.4 up to inequality (4.29), which now
writes as

EJ0B̂x,ω

(
L; X C3

L , X̂L ∈ IC1
v

) ≤ ema
BLEκ

x

[
e−Φβ(TL)

PX

[ ∑
y,z∈J0

Vy,zωyωz < eK2

]
; BC3

L

]
+ e−K1 .

Denote by A(2)
L the event that EX[∑y,z∈J0

Vy,zωyωz] > 2eK2 . Then the first term in the right-hand side of the above
inequality is bounded by

ema
BLEκ

x

[
e−Φβ(TL)

PX

[ ∑
y,z∈J0

Vy,zωyωz < eK2

]
; BC3

L ∩ A(2)
L

]

+ ema
BLEκ

x

[
e−Φβ(TL); BC3

L ∩ A(2)

L

]
. (4.37)

Estimate on the first term of (4.37). We subtract the quantity EX[∑y,z∈J0
Vy,zωyωz] from both sides in the event

{∑y,z∈J0
Vy,zωyωz < exp(K2)} in the first term of (4.37) and we use Chebyshev’s inequality to obtain the upper

bound

e−2K2 ema
BLEκ

x

[
e−Φβ(TL)

EX

( ∑
y,z∈J0

Vy,zωyωz − EX

[ ∑
y,z∈J0

Vy,zωyωz

])2

; BC3
L ∩ A(2)

L

]
. (4.38)

Notice that

EX

[ ∑
y,z∈J0

Vy,zωyωz

]
=

∑
y,z∈J0

Vy,zE
[
ωye−βωy�TL

(y)+φ(β�TL
(y))

]
E
[
ωze−βωz�TL

(z)+φ(β�TL
(z))

]
.

Recall that Vy,y = 0. Write the quantity inside the square of (4.38) as

∑
y,z∈J0

Vy,z

(
ωy − E

[
ωye−βωy�TL

(y)+φ(β�TL
(y))

])(
ωz − E

[
ωze−βωz�TL

(z)+φ(β�TL
(z))

])

+ 2
∑

y,z∈J0

Vy,zE
[
ωye−βωy�TL

(y)+φ(β�TL
(y))

](
ωz − E

[
ωze−βωz�TL

(z)+φ(β�TL
(z))

])

and proceed to the estimate

EX

( ∑
y,z∈J0

Vy,zωyωz − EX

[ ∑
y,z∈J0

Vy,zωyωz

])2

≤ 2EX

[( ∑
y,z∈J0

Vy,z

(
ωy − E

[
ωye−βωy�TL

(y)+φ(β�TL
(y))

])(
ωz − E

[
ωze−βωz�TL

(z)+φ(β�TL
(z))

]))2]

+ 8EX

[(∑
z∈J0

∑
y∈J0

Vy,zE
[
ωye−βωy�TL

(y)+φ(β�TL
(y))

](
ωz − E

[
ωze−βωz�TL

(z)+φ(β�TL
(z))

]))2]
. (4.39)
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We can now use the fact that PX is a product measure and thus the ω’s at different sites are independent. Recalling
that Vy,y = 0, we write (4.39) as

2
∑

y,z∈J0

V 2
y,z

∏
x=y,z

E
[
e−βωx�TL

(x)+φ(β�TL
(x))

(
ωx − E

[
ωxe−βωx�TL

(x)+φ(β�TL
(x))

])2]

+ 8
∑
z∈J0

(∑
y∈J0

Vy,zE
[
ωye−βωy�TL

(y)+φ(β�TL
(y))

])2

× E
[
e−βωz�TL

(z)+φ(β�TL
(z))

(
ωz − E

[
ωze−βωz�TL

(z)+φ(β�TL
(z))

])2]
≤ 2

∑
y,z∈J0

V 2
y,z

∏
x=y,z

E
[
ω2

xe−βωx�TL
(x)+φ(β�TL

(x))
]

+ 8
∑
z∈J0

(∑
y∈J0

Vy,zE
[
ωye−βωy�TL

(y)+φ(β�TL
(y))

])2

E
[
ω2

ze−βωx�TL
(x)+φ(β�TL

(x))
]
. (4.40)

By Harris–FKG and the fact that ωx ≥ −E[ωx], for x ∈ Z
d , it is easy to conclude that E[ω2

xe−βωx�TL
(x)+φ(β�TL

(x))] ≤
2E[ω2]. Using once again the fact that ωx ≥ −E[ωx], we also obtain that

(∑
y∈J0

Vy,zE
[
ωye−βωy�TL

(y)+φ(β�TL
(y))

])2

≤
(∑

y∈J0

Vy,z1�TL
(y)>0

)2

E[ω]2. (4.41)

Using these two facts we bound (4.40) by

8E
[
ω2]2 ∑

y,z∈J0

V 2
y,z + 16E

[
ω2]2 ∑

z∈J0

(∑
y∈J0

Vy,z1�TL
(y)>0

)2

. (4.42)

Clearly, from the choice of Vy,z we have
∑

y,z∈J0
V 2

y,z < CC2
3C2

4 and therefore (4.42) is bounded by

CE
[
ω2]2

(
C2

3C2
4 +

∑
z∈J0

(∑
y∈J0

Vy,z1�TL
(y)>0

)2)
.

We can then bound (4.38) by

CE
[
ω2]2e−2K2

(
C2

3C2
4 + ema

BLEκ
x

[
e−Φβ(TL)

∑
z∈J0

(∑
y∈J0

Vy,z1�TL
(y)>0

)2

;Br(L)

])
.

It remains to bound uniformly in L the above expectation, which is done as follows. First, we expand the square by
summing up over y, ỹ ∈ J0 and then interchange the summations and use Cauchy–Schwarz:

∑
y,ỹ∈J0

ema
BL

L2 logL
Eκ

x

[
e−Φβ(TL)1�TL

(y),�TL
(ỹ)>0;Br(L)

]

×
(∑

z∈J0

1|y⊥−z⊥|<C4

√
|y(1)−z(1)|

|y(1) − z(1)|2 + 1

)1/2(∑
z∈J0

1|ỹ⊥−z⊥|<C4

√
|ỹ(1)−z(1)|

|ỹ(1) − z(1)|2 + 1

)1/2

≤ CC2
4

∑
y,ỹ∈J0

L−2ema
BLEκ

x

[
e−Φβ(TL)1�TL

(y),�TL
(ỹ)>0;Br(L)

]
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= CC2
4L−2ema

BLEκ
x

[
e−Φβ(TL)

(∑
y∈J0

1�TL
(y)>0

)2

;Br(L)

]

≤ CC2
4 .

To justify the last inequality we use Theorem 2.10 which implies that with P β probability which is exponen-
tially in L close to one, the number of break points until TL will be close to μ−1L. Moreover by Proposi-
tion 2.9 the range of the path within an irreducible bridge has exponential moments and these two facts yield that
ema

BLEx[e−Φβ(TL)(
∑

y∈J0
1�TL

(y)>0)
2] ≤ CL2.

We finally get that (4.38) is bounded by CC2
3C2

4E[ω2]2e−2K2 . This gives the first term of the right-hand side
inequality of the lemma.

It remains to show that the second term in (4.37) can be made smaller than 2δ0. This is done in the following
paragraph.

Estimate on the second term of (4.37). We start by using once again the observation that φ
′
(β�TL

(y)) ≤ φ
′
(β) ≤ 0.

This will lead to

EX

[ ∑
y,z∈J0

Vy,zωyωz

]
=

∑
y,z∈J0

Vy,zφ
′(
β�TL

(y)
)
φ

′(
β�TL

(z)
)

≥ φ
′
(β)2

∑
y,z∈J0

Vy,z1{�TL
(y),�TL

(z)>0}

= φ
′
(β)2

L(logL)1/2

∑
y,z∈J0

1|y⊥−z⊥|<C4

√
|y(1)−z(1)|

|y(1) − z(1)| + 1
1y �=z1{�TL

(y),�TL
(z)>0}

≥ 2φ
′
(β)2

L(logL)1/2

L∑
L1=0

∑
y∈J0∩HL1

1{�TL
(y)>0}

L∑
L2=L1+1

1

|L2 − L1| + 1

×
∑

z∈J0∩HL2

1{|y⊥−z⊥|<C4
√|L2−L1|}1{�TL

(z)>0}.

Since we are restricted on the set BC3
L , the path stays within the box J0, and so we can drop the restriction that

y, z ∈ J0. Recall that X(SL1) is the last hitting point of the hyperplane HL1 and that X(TL2) is the first hitting point
of the hyperplane HL2 . We then have

2φ
′
(β)2

L(logL)1/2

L∑
L1=0

∑
y∈HL1

1{�TL
(y)>0}

L∑
L2=L1+1

1

|L2 − L1| + 1

∑
z∈HL2

1{|y⊥−z⊥|<C4
√|L2−L1|}1{�TL

(z)>0}

≥ 2φ
′
(β)2

L(logL)1/2

L∑
L1=0

L∑
L2=L1+1

1{|X⊥(TL2 )−X⊥(SL1 )|<C4
√|L2−L1|}

|L2 − L1| + 1
.

Let us denote the quantity on the right-hand side of the above inequality by YL. Inserting the above estimate into
the second term of (4.37) we have that

ema
BLEκ

x

[
e−Φβ(TL); BC3

L ∩ A(2)

L

] ≤ ema
BLEκ

x

[
e−Φβ(TL)1{YL<2eK2 }; BC3

L

]
< ema

BLEκ
x

[
e−Φβ(TL)1{YL<2eK2 };Br(L)

]
. (4.43)
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To proceed, notice that we have the bound YL ≤ D(L) := 2φ
′
(β)2

L(logL)1/2

∑L
L1=0

∑L
L2=L1+1(|L2 −L1|+1)−1 and D(L) ≥

Cφ
′
(β)2(logL)1/2. Moreover,

ema
BLEκ

x

[
e−Φβ(TL)

YL;Br(L)
] = ema

BLEκ
x

[
e−Φβ(TL)

YL;{YL < 2−1D(L)
}
,Br(L)

]
+ ema

BLEκ
x

[
e−Φβ(TL)

YL;{YL ≥ 2−1D(L)
}
,Br(L)

]
≤ 2−1D(L)ema

BLEκ
x

[
e−Φβ(TL);{YL < 2−1D(L)

}
,Br(L)

]
+ D(L)ema

BLEκ
x

[
e−Φβ(TL);{YL ≥ 2−1D(L)

}
,Br(L)

]
. (4.44)

On the other hand we have

ema
BLEκ

x

[
e−Φβ(TL)

YL;Br(L)
]

= D(L)ema
BLEκ

x

[
e−Φβ(TL);Br(L)

]− 2φ
′
(β)2

L(logL)1/2

L∑
L1=0

L∑
L2=L1+1

1

|L2 − L1| + 1

× ema
BLEκ

x

[
e−Φβ(TL);{∣∣X⊥(TL2) − X⊥(SL1)

∣∣ ≥ C4
√|L2 − L1|

}
,Br(L)

]
≥ D(L)ema

BLEκ
x

[
e−Φβ(TL);Br(L)

]− δ0D(L), (4.45)

where the last inequality holds for δ0 small by Lemma 4.7, below. The combination of (4.44) and (4.45) gives that

ema
BLEκ

x

[
e−Φβ(TL);{YL < 2−1D(L)

}
,Br(L)

]
< 2δ0. (4.46)

By the choice of L in (4.36) we have that D(L)/2 ≥ Cφ
′
(β)2(logL)1/2 = Ce2K2 . The latter is larger than 2eK2 , when

K2 is chosen large. Therefore (4.43) implies via (4.46) that

ema
BLEκ

x

[
e−Φβ(TL); BC3

L ∩ A(2)

L

] ≤ 2δ0.

This implies that the second term in (4.37) can be made arbitrarily small.
To complete we need to establish the following lemma.

Lemma 4.7. Given δ0 > 0 we can choose C4 large enough such that for any 0 ≤ L1 ≤ L2 ≤ L we have

ema
BLEκ

[
e−Φβ(TL);{∣∣X⊥(TL2) − X⊥(SL1)

∣∣ ≥ C4
√|L2 − L1|

}
,Br(L)

]
< δ0.

Proof. By Proposition 2.1, part (ii), we have that

Φβ(TL) ≥ Φβ(TL1) + Φβ(SL1, TL2) + Φβ(SL2 , TL) − βE[ω](SL1 − TL1) − βE[ω](SL2 − TL2)

and therefore we have that

ema
BLEκ

[
e−Φβ(TL);{∣∣X⊥(TL2) − X⊥(SL1)

∣∣ ≥ C4
√|L2 − L1|

}
,Br(L)

]
≤

∑
x1,x2 HL1

∑
x3,x4 HL2

ema
BL1Eκ

[
e−Φβ(TL1 );Br(L1),X(TL1) = x1

]

×
∑
n≥1

e−λnPx1

(
X(n) = x2

)
ema

B(L2−L1)Eκ
x2

[
e−Φβ(TL2−L1 );

{∣∣X⊥(TL2−L1)
∣∣ ≥ C4

√|L2 − L1|
}
,X(TL2−L1) = x3,Br(L2 − L1)

]
×

∑
n≥1

e−λnPx3

(
X(n) = x4

)
ema

B(L−L2)Eκ
x4

[
e−Φβ(TL−L2 );Br(L − L2)

]
. (4.47)
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To further bound this we use Proposition 2.6, which assures that

ema
B(L−L2)Eκ

x4

[
e−Φβ(TL−L2 );Br(L − L2)

] ≤ 1.

We also have that
∑

xj+1 HLj

∑
n≥1 e−λnPxj

(X(n) = xj+1) := μ−1
0 , for j = 1,3 and xj ∈ HLj

. Setting for shorthand

l := L2 − L1 we are lead to the following bound for (4.47)

μ−2
0 ema

BlEκ
[
e−Φβ(Tl);{∣∣X⊥(Tl)

∣∣ ≥ C4
√

l
}
,Br(l)

]
= μ−2

0 B̂
(
l; ∣∣X̂⊥

l

∣∣ > C4
√

l
)
. (4.48)

It is now immediate to conclude, using Proposition 2.11, that (4.48) can be made small when C4 is chosen large. �

5. Path localization

In this section we will prove Theorem 1.2, that is that the measure μ
β,λ
L,ω(·) defined in (1.3) develops atoms, whenever

the annealed and quenched Lyapounov norms are different. It will be more convenient and equivalent to prove the
analogous statement for the measure

μ̂
β,λ
L,ω(x) := Bω(L;x)

Bω(L)
,

where Bω(L;x) is a shorthand notation for Bω(L;X(TL) = x). In other words we will prove that

lim sup
L→∞

sup
x∈HL

μ̂
β,λ
L,ω(x) > 0, P-a.s., (5.1)

whenever the annealed and quenched Lyapounov masses ma
B and m

q
B are different.

Before proceeding with the proof let us give the heuristic argument. The symbols � and � in this heuristic argument
are meant to be interpreted as almost equal to and asymptotically less than, in the limit when the length scales N,L,
are large.

Suppose that the annealed and quenched Lyapounov masses are different, or equivalently that there is an ε1 > 0
such that

ma
B + ε1 < m

q
B. (5.2)

We then have that P-a.s., for N large enough,

m
q
B � − 1

NL
logBω(NL) = − 1

N

N∑
n=1

1

L
log

Bω(nL)

Bω((n − 1)L)

≤ − 1

N

N∑
n=1

1

L
log

∑
x∈H(n−1)L

Bω((n − 1)L;x)

Bω((n − 1)L)
Bx,ω(L)

= − 1

N

N∑
n=1

1

L
log

∑
x∈H(n−1)L

μ̂
β,λ

(n−1)L,ω(x)Bx,ω(L). (5.3)

Moreover, the inequality above is obtained by restricting the path not to backtrack once it reached level H(n−1)L. No-

tice that μ̂
β,λ

(n−1)L,ω
(x) and Bx,ω(L) are independent if x ∈ H(n−1)L. If (5.1) is not valid, that is the measure μ̂

β,λ

(n−1)L,ω
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does not develop atoms but it rather spreads out, then an ergodicity argument should imply that, for n large∑
x∈H(n−1)L

μ̂
β,λ

(n−1)L,ω(x)Bx,ω(L) � EBω(L) = B(L).

Then, by a standard Cesaro argument, we will have that

− 1

N

N∑
n=1

1

L
log

∑
x∈H(n−1)L

μ̂
β,λ

(n−1)L,ω(x)Bx,ω(L) � − 1

L
logB(L),

for N large. Then (5.3) would lead to

m
q
B � − 1

L
logB(L) � ma

B,

when L is large enough, which contradicts (5.2). To make this argument rigorous we need essentially to make the
ergodicity argument precise. Before doing so, let us point out that the representation of the logarithm of the partition
function as a telescoping series of sorts, as in the first step of the heuristcs, was introduced in [19] in the frame of
directed polymers. The analysis here, though, is quite different and further enhanced with the idea of multiple scales.

We now start by using the fact that B(L) ≥ μ0e−ma
BL (from Proposition 2.6) in the first inequality below and

Chebyshev’s inequality in the second one to obtain the following estimate, for L large depending on ε1,

P

(
− 1

NL

N−1∑
n=0

log
∑

x∈HnL

μ̂
β,λ
nL,ω(x)Bx,ω(L) > ma

B + ε1

2

)

≤ P

(
− 1

NL

N−1∑
n=0

log
∑

x∈HnL

μ̂
β,λ
nL,ω(x)Bx,ω(L) > − 1

L
logB(L) + ε1

4

)

= P

(
− 1

N

N−1∑
n=0

1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

Bx,ω(L)

B(L)
>

ε1

4

)

≤ 4

ε1
E

[∣∣∣∣∣ 1

N

N−1∑
n=0

1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

Bx,ω(L)

B(L)

∣∣∣∣∣
]

≤ 4

ε1

1

N

(
δ1N∑
n=0

+
N−1∑

n=δ1N+1

)
E

[∣∣∣∣ 1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

Bx,ω(L)

B(L)

∣∣∣∣
]
, (5.4)

where in the last inequality δ1 = δ1(ε1) will be chosen to be small enough. The first sum is bounded as follows. First,
notice that Bx,ω(L) ≤ Eκ [eβE[ω]TL ] = eκLE[e−λTL] ≤ eκL. We can now use the fact that B(L) ≥ μ0e−ma

BL together
with Jensen’s inequality (employ also the fact that Bx,ω(L)e−κL is less than one) to obtain∣∣∣∣ 1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

Bx,ω(L)

B(L)

∣∣∣∣ ≤
∣∣∣∣ 1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)Bx,ω(L)e−κL

∣∣∣∣+
∣∣∣∣ 1

L
logB(L)e−κL

∣∣∣∣
≤ −

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

1

L
logBx,ω(L) + 2ma

B + 2κ.

Taking first the conditional expectation in the last inequality, conditioned on (ωx){x:x(1)<nL}, we obtain that the expec-
tation of the right-hand side of the last inequality can be bounded by

− 1

L
E logBω(L) + 2ma

B + 2κ ≤ 2
(
m

q
B + ma

B + κ
)
,
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when L is large enough. The first sum in (5.4) is then bounded by

8δ1

ε1

(
m

q
B + ma

B + κ
)
. (5.5)

To estimate the second summation in (5.4) we first choose δ2 = δ2(ε1) small enough. We also denote by Cn,L,δ2 the

event that |L−1 log
∑

x∈HnL
μ̂

β,λ
nL,ω(x)

Bx,ω(L)

B(L)
| > δ2. We then estimate the expectation in (5.4) as follows

E

[∣∣∣∣ 1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

Bx,ω(L)

B(L)

∣∣∣∣
]

≤ δ2 + E

[∣∣∣∣ 1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

Bx,ω(L)

B(L)

∣∣∣∣; Cn,L,δ2

]

≤ δ2 + E

[∣∣∣∣ 1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

Bx,ω(L)

B(L)

∣∣∣∣
2]1/2

P(Cn,L,δ2)
1/2. (5.6)

To proceed further we need an a priori bound on the last expectation, which is independent of n. This is as follows.
For each x ∈ HnL choose the sequence of points x0 := x, xi := x + iê1, for i = 1,2, . . . ,L. We have that

Bx,ω(L) ≥
L∏

i=1

Bxi−1,ω(1;xi),

where Bxi−1,ω(1;xi) denotes the bridge of span 1, starting from xi−1 and ending at xi . Using this, Jensen’s inequality
and the fact that B(L) ≥ μ0e−ma

BL, in the same fashion as the route to obtaining (5.5), we have that

∣∣∣∣ 1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

Bx,ω(L)

B(L)

∣∣∣∣
2

≤ 2
∑

x∈HnL

μ̂
β,λ
nL,ω(x)

∣∣∣∣∣ 1

L

L∑
i=1

logBxi−1,ω(1;xi)e
−κ

∣∣∣∣∣
2

+ 2
(
2ma

B + κ
)2

≤ 2
∑

x∈HnL

μ̂
β,λ
nL,ω(x)

1

L

L∑
i=1

∣∣logBxi−1,ω(1;xi)e
−κ

∣∣2

+ 2
(
2ma

B + κ
)2

and to estimate the expectation in (5.6) we first take the conditional expectation conditioned on (ωx){x:x(1)<nL} leading
to the bound

E

[∣∣∣∣ 1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

Bx,ω(L)

B(L)

∣∣∣∣
2]

≤ 2E
[∣∣logBω(1;0, ê1)e

−κ
∣∣2]+ 2

(
2ma

B + κ
)2

:= C∗
β,λ. (5.7)

Next we control the probability P(Cn,L,δ2) as follows

P(Cn,L,δ2) = P

( ∑
x∈HnL

μ̂
β,λ
nL,ω(x)Bx,ω(L) > eδ2LB(L)

)
+ P

( ∑
x∈HnL

μ̂
β,λ
nL,ω(x)Bx,ω(L) < e−δ2LB(L)

)
,
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denoting B̃x,ω(L) := Bx,ω(L) − B(L) and using Chebyshev’s inequality we have

P(Cn,L,δ2) ≤ 1

B(L)2

(
1

(eδ2L − 1)2
+ 1

(1 − e−δ2L)2

)

× E

[( ∑
x∈HnL

μ̂
β,λ
nL,ω(x)B̃x,ω(L)

)2]
. (5.8)

To estimate the expectation in (5.8) we write

B̃x,ω(L) = Eκ
x

[(
e−β

∑
y ωy�TL

(y) − e−Φβ(TL)
);Br(L), sup

n≤TL

|Xn − x| ≤ C5L
]

+ Eκ
x

[(
e−β

∑
y ωy�TL

(y) − e−Φβ(TL)
);Br(L), sup

n≤TL

|Xn − x| > C5L
]
,

where C5 is a large constant. We denote the first term above by B̃ loc
x,ω(L) and we note that it satisfies E[B̃ loc

x,ω(L)] = 0.
Moreover the second term is bounded in absolute value by

2Eκ
x

[
eβE[ω]TL; sup

n≤TL

|Xn − x| > C5L
]

≤ 2Eκ
[
eβE[ω]TL;TL > C5L

]
= 2eκLE

[
e−λTL;TL > C5L

]
≤ 2e−(λ/2)C5L+κLE

[
e−(λ/2)TL

]
≤ e−(λ/4)C5L

provided that C5 is chosen large enough. Notice also that B̃ loc
x,ω(L) and B̃ loc

y,ω(L) are independent when |x −y| > 2C5L.
Using all these and expanding the square in the expectation of (5.8) we have that

E

[( ∑
x∈HnL

μ̂
β,λ
nL,ω(x)B̃x,ω(L)

)2]

=
∑

x,y∈HnL

E
[
μ̂

β,λ
nL,ω(x)μ̂

β,λ
nL,ω(y)

(
B̃ loc

x,ω(L) + O
(
e−(λC5/4)L

))(
B̃ loc

y,ω(L) + O
(
e−(λC5/4)L

))]

=
∑

x,y∈HnL

E
[
μ̂

β,λ
nL,ω(x)μ̂

β,λ
nL,ω(y)

]
E
[
B̃ loc

x,ω(L)B̃ loc
y,ω(L)

]+ O
(
e−(λC5/8)L

)

≤ e2κL
∑

x,y∈HnL:|x−y|≤2C5L

E
[
μ̂

β,λ
nL,ω(x)μ̂

β,λ
nL,ω(y)

]+ O
(
e−(λC5/8)L

)

≤ CCd−1
5 Ld−1e2κL

E

[
sup

x∈HnL

μ̂
β,λ
nL,ω(x)

]
+ O

(
e−(λC5/8)L

)
.

Assuming that (5.1) is false we have that lim supn→∞ supx∈HnL
μω,nL(x) = 0, P-a.s, and inserting this into (5.8) we

get that, for n large enough, depending on L,δ1, δ2 and having chosen C5 large enough so that also 2ma
B − λC5/8 <

−λC5/16, we have

P(Cn,L) ≤ δ2
2 . (5.9)

This estimate together with (5.7) inserted into (5.6) leads to

4

ε1

1

N

N−1∑
n=δ1N+1

E

[∣∣∣∣ 1

L
log

∑
x∈HnL

μ̂
β,λ
nL,ω(x)

Bx,ω(L)

B(L)

∣∣∣∣
]

≤ 4δ2

ε1

(
1 + (

C∗
β,λ

)1/2)
,
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which is of course valid if N > N0(δ1, δ2,L), large enough. This together with (5.5) and (5.4) show that, if δ1, δ2 are
chosen small enough, both depending on ε1, we have that

P

(
− 1

NL

N−1∑
n=0

log
∑

x∈HnL

μ̂
β,λ
nL,ω(x)Bx,ω(L) > ma

B + ε1

2

)
< ε1.

Therefore, with probability greater than 1 − ε1 we have that

− 1

NL

N−1∑
n=0

log
∑

x∈HnL

μ̂
β,λ
nL,ω(x)Bx,ω(L) < ma

B + ε1

2
, (5.10)

which leads to contradiction since by (5.3), the left-hand side of (5.10) is larger than − 1
NL

logBω(NL), which, for N

large, converges a.s. to m
q
B > ma

B + ε1.
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