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Abstract. Nonequilibrium fluctuations of a tagged, or distinguished particle in a class of one dimensional mean-zero zero-range
systems with sublinear, increasing rates are derived. In Jara–Landim–Sethuraman (Probab. Theory Related Fields 145 (2009)
565–590), processes with at least linear rates are considered.

A different approach to establish a main “local replacement” limit is required for sublinear rate systems, given that their mixing
properties are much different. The method discussed also allows to capture the fluctuations of a “second-class” particle in unit rate,
symmetric zero-range models.

Résumé. Nous démontrons les fluctuations hors d’équilibre d’une particule marquée pour une classe de systèmes de particules
à portée nulle uni-dimensionels de moyenne nulle dont le taux de sauts croit de manière sous-linéaire. Dans Jara–Landim–
Sethuraman (Probab. Theory Related Fields 145 (2009) 565–590), ce résutat a été démontré pour des processus dont le taux
croit au moins linéairement.

La démonstration du lemme de remplacement dans le cas sous-linéaire exige une nouvelle approche en conséquence des diffé-
rences entre les propriétés de mélanges des deux processus. La méthode présentée permet également de démontrer les fluctuations
d’une particule de deuxième classe dans le modèle à portée nulle symmétrique dont le taux de sauts est égal à 1.

MSC: 60K35
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1. Introduction

Characterizing the motion of a distinguished, or tagged particle interacting with others is a long standing concern in
statistical physics, and connects with the problem of establishing a rigorous physical basis of Brownian motion (cf.
[18], Chapters 8.I, 6.II). Because of the particle interaction, the tagged particle is not usually Markovian with respect
to its own history, which complicates analysis. However, despite this difficulty, one expects its position to homogenize
to a diffusion with parameters given in terms of the “bulk” hydrodynamic density.

Although fluctuations of Markov processes are much examined in the literature (cf. [9]), and there are many central
limit theorems for types of tagged particles when the system is in “equilibrium” (cf. [8,16,17]), much less is understood
when particles both interact nontrivially, and begin in “nonequilibrium.” Virtually, the only fluctuations work in this
case takes advantage of special features in types of exclusion and interacting Brownian motion models, namely [4,5],
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and [3]. Note also “propagation of chaos” results yield homogenization limits for the average tagged particle position
in simple exclusion [15].

The main goal of this paper is to give a general method, which takes into account the evolution of the hydro-
dynamic density, to capture the “nonequilibrium” fluctuations of a tagged particle in zero-range interacting particle
systems. Such systems are well-established and have long served as models for types of queuing, traffic, fluid, gran-
ular flow etc. [2]. Informally, they follow a collection of random walks on a lattice which interact in the following
way: A particle at a location with k particles displaces by j with infinitesimal rate (g(k)/k)p(j) where the process
rate g : N0 → R+, where N0 = {0,1, . . .}, is a function on the nonnegative integers, and p(·) is a translation-invariant
single particle transition probability. The name ‘zero-range’ derives from the fact that the infinitesimal interaction is
only with the particle number at a vertex.

As might be suspected, different behaviors may be found by varying the choice of the rate g. For instance, when p

is nearest-neighbor and symmetric, the spectral gap or mixing properties of the zero-range system defined on a cube
of width n with k particles depend strongly on the form of g. For a class of models, when g grows linearly, the gap
is of order n−2 and does not depend on k [10]. However, when g grows at most sublinearly, the gap depends on the
number of particles k. In particular, when g is of form g(x) = xγ for 0 < γ ≤ 1, the gap is of the order n−2(1 +ρ)γ−1

where ρ = k/n [13]. Also, when g is the unit rate, g(x) = 1{x ≥ 1}, the gap is of order n−2(1 + ρ)−2 [12].
In this context, we prove a “nonequilibrium” scaling limit for a tagged particle in a large class of ‘bounded’ or

‘sublinear’ rate one dimensional zero-range interacting particle systems. This article can be thought of as a companion
to our previous work [6] which considered the problem in ‘linear growth’ rate zero-range systems. The proof in [6]
relies on an important estimate, a “local” hydrodynamic limit, which however makes strong use of the linear growth
assumption on the process rate, in particular, as mentioned above, that spectral gap bounds on a localized cube do
not depend on the number of particles in the cube. Unfortunately, this proof does not carry over to the bounded or
sublinear rate situation, where the mixing behavior must be more carefully understood.

Our main contribution then is to give a different approach for the “local hydrodynamic replacement” (Theorem 2.6)
with respect to a class of sublinear rate zero-range models so that the nonequilibrium limit for the tagged particle can
be established (Theorem 2.2). As in [6], a consequence of the argument is that the limit of the empirical density in the
reference frame of the tagged particle can be identified as the hydrodynamic density in the frame of the limit tagged
particle diffusion (Theorem 2.3).

We remark that the approach taken here with respect to the “local hydrodynamic replacement” is robust enough so
that it can apply to determine the nonequilibrium fluctuations of a “second-class” particle, and associated reference
frame empirical density, in the symmetric unit rate case, that is when g(k) = 1{k ≥ 1} (Theorems 2.4, 2.5). This is the
first work to address a nonequilibrium central limit theorem for a second-class particle.

We now give a sketch of the results, and discuss afterwards the differences in the argument with [6]. Define
configurations ξ ∈ N

Z

0 of the zero-range process, so that ξ(x), for x ∈ Z, denotes the number of particles at site x

in state ξ . With respect to a scale parameter, N ≥ 1, we diffusively rescale the process, that is space is scaled by
N−1 and time is speeded up by N2. Suppose this system {ξN

t : t ≥ 0} begins from a local equilibrium measure with
density profile ρ0 : R → R+ (cf. before Theorem 2.1). The bulk density evolution is captured by the well-known
“hydrodynamic limit” (Theorem 2.1), where the empirical density π

N,0
t , the measure found by assigning mass N−1

to each particle at times t ≥ 0, converges in probability to an absolutely continuous measure ρ(t, u)du, where ρ(t, u)

is the solution of a non-linear parabolic equation with initial condition ρ0.
The main point is to relate the “hydrodynamics” to the tagged particle behavior. Let XN

t be the position of a tagged
particle, initially at the origin, at time t . It isn’t difficult to see that the rescaled trajectory {XN

t /N : 0 ≤ t ≤ T } is tight
in the uniform topology. We now identify the limit points.

It turns out that in mean-zero zero-range processes, as opposed to other models with different interactions, XN
t is

a square integrable martingale with bounded quadratic variation given by

〈
XN

〉
t
= σ 2N2

∫ t

0

g(ηN
s (0))

ηN
s (0)

ds.

Here, σ 2 is the variance of the transition probability p(·), g(·) is the process rate already mentioned, and ηN
s = τXN

s
ξN
s

is the state of the process as seen in the reference frame of the tagged particle, where {τx : x ∈ Z} are translations.
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We now observe, if the rescaled position of the tagged particle xN
t = XN

t /N converges to some trajectory xt , this
process xt inherits the martingale property from XN

t . If in addition xt is continuous, by Levy’s characterization, one
needs only to examine the asymptotics of its quadratic variation to identify it.

Denote by {νρ : ρ ≥ 0} the family of invariant measures, indexed by the density, for the process as seen from the
tagged particle. Let πN

t be the associated empirical density πN
t = τXN

t
π

N,0
t and suppose that one can replace the

integrand g(ηN
s (0))/ηN

s (0) by a function of the empirical density. If we assume “conservation of local equilibrium”
for the reference process, that is πN

t converges to a certain density (cf. [7], Chapters I, III, VIII), this function should
be in the form h(λ(s,0)), where h(ρ) is the expected value of g(η(0))/η(0) under the invariant measure νρ and λ(s,0)

is the density of particles around the tagged particle.
Since we assume XN

t /N converges to xt , πN
t = τXN

t
π

N,0
t , and π

N,0
t converges to ρ(t, u)du, we conclude that

λ(s,0) = ρ(s, xs). Therefore, the quadratic variation of XN
t /N converges to the quadratic variation of xt , 〈x〉t =

σ 2
∫ t

0 h(ρ(s, xs))ds. In particular, by the characterization of continuous martingales, xt satisfies

dxt = σ

√
h
(
ρ(s, xs)

)
dBs,

where ρ is the solution of the hydrodynamic equation, h is defined above and B is a Brownian motion.
The main difficulty in this outline is to prove the “conservation of local equilibrium” around the tagged particle, or

what we have called “local hydrodynamic replacement.” A major complication is that since the local function is not
a space average, one cannot avoid pathologies, such as large densities near the tagged particle, by ‘averaging’ them
away as is the case with the usual hydrodynamics. It would seem then that the only robust tools available are local
central limit theorems, and spectral gap and localized Dirichlet form estimates. Our argument is in three steps.

Step 1, “local 1-block,” of our method is to replace the quadratic variation integral
∫ t

0 g(ηN
s (0))/ηN

s (0)ds by∫ t

0 H(Av�η
N
s ). Here, H(ρ) is the mean-value of g(η(0))/η(0) with respect to the reference frame invariant mea-

sure νρ with density ρ, and Av�η
N
s is the local density around the tagged particle in a window of size �, an introduced

intermediate scale. In step 2, “local 2-block,” we replace the integrand H(Av�η
N
s ) by (Nε)−1 ∑Nε

x=1 τxH(Av�η
N
s ),

the average of its translates in a block of size Nε where ε is small. Finally, in step 3, having now brought in an Nε-
block average into the integrand, which is a spatial average over O(N) translates of a local function on � sites, more
usual hydrodynamic techniques can be used to replace it by (Nε)−1 ∑Nε

x=1 τxH̄l(AvNκηN
s ). Here, H̄l(ρ) is the mean-

value of Hl(η) = H(Av�η) with respect to the invariant measure μρ in the usual undistinguished particles frame, and
AvNκηN

s , with another introduced small parameter κ � ε � 1, is an O(N) average which can be written in terms of
the reference frame empirical density.

In [6], as mentioned, the main assumption is that the process rate g is of “linear order,” a condition which ensures a
sharp lower bound on the spectral gap in a box of width n, independent of the number of particles k in the box, and also
which allows for uniform local central limit theorems. Because of such spectral gap bounds, uniform approximations,
with respect to local densities, in the scheme above may be performed. Intuitively, there is a lot of ‘local’ mixing
which can be exploited in this model.

However, in the current work, when g is assumed to be ‘sublinear,’ since the spectral gap depends on k, large local
densities slow down the mixing behavior, and need to be estimated. This observation would in fact likely prevent the
‘local replacement’ if the integrand of the quadratic variation integral were different. However, under the ‘sublinear’
assumption on g, the function H(ρ) vanishes as the density ρ diverges, which is useful to temper some of the large
density effects. [This is not the case in [6] where H(ρ) is bounded above and below by constants.] Even so, more con-
trol on large densities is needed in all steps 1, 2, and 3. In particular, in step 3, which performs a “global” replacement,
if g is not linearly growing, truncations, which are essential, are untractable in general. For this reason, we assume g

is also increasing, or “attractive,” so that certain couplings can be used (cf. [1]).
Step 2, in which H(Av�η

N
s ) and τxH(Av�η

N
s ) for 1 ≤ x ≤ Nε, functions of averages over distant blocks, are

compared, is the most difficult. With the idea that the process mixes faster within each block than between the blocks,
each term can be replaced by its conditional expectation given the number of particles in its block. This reduces the
between block dynamics to a birth–death process whose mixing properties, with some analysis and the assumption
limk↑∞ g(k)/k = 0, can be estimated and found suitable to complete the step. We remark that this last point rules out
the case in [6].
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2. Notation and results

Let ξt = {ξt (x): x ∈ TN } be the zero-range process on the discrete one dimensional torus TN = Z/NZ with single
particle transition probability p(·) and process rate g : N0 → R+. We will assume that g(0) = 0, g(1) > 0 and, as is
usual when dealing with sublinear rates, that g is increasing (or “attractive”), g(k + 1) ≥ g(k) for k ≥ 1. In addition,
throughout the paper, and in all results, we impose one of the following set of conditions (B) or (SL):

(B) g is bounded: For k ≥ 1, there are constants 0 < a0 ≤ a1 such that a0 ≤ g(k) ≤ a1.

To give the class of sublinear rates considered, let W(l, k) be the inverse of the spectral gap of the process, where
p is nearest-neighbor and symmetric, defined on the cube Λl = {−l, . . . , l} with k particles (cf. Section 3 for more
definitions).

(SL1) g is sublinear: limk→∞ g(k) = ∞, g(k)/k : N → R+ is decreasing, and limk→∞ g(k)/k = 0. In particular,
since g is increasing, there exists constants a0, a1 > 0 such that a0 ≤ g(k) and g(k)/k ≤ a1, k ≥ 1.

(SL2) g is Lipschitz: There is a constant a2 such that |g(k + 1) − g(k)| ≤ a2 for k ≥ 0.
(SL3) The spectral gap satisfies, for all constants C and l ≥ 1, that

lim
N↑∞N−1 max

1≤k≤C logN
k2W(l, k) = 0. (2.1)

It is proved in Lemma 3.2 that all processes with bounded rates g satisfy (2.1). In addition, by the spectral gap
estimate [13], processes with rates g(k) = kγ for 0 < γ ≤ 1 satisfy (2.1). In addition, we will assume that p is finite-
range, irreducible, and mean-zero, that is:

(MZ) There exists R > 0 such that p(z) = 0 for |z| > R, and
∑

zp(z) = 0.

We also will take the scaling parameter N larger than the support of p(·).
Denote by ΩN = N

TN

0 the state space and by ξ the configurations of ΩN so that ξ(x), x ∈ TN , stands for the
number of particles in the site x for the configuration ξ . The zero-range process is a continuous-time Markov chain
generated by

(LNf )(ξ) =
∑

x∈TN

∑
z

p(z)g
(
ξ(x)

)[
f
(
ξx,x+z

) − f (ξ)
]
, (2.2)

where ξx,y represents the configuration obtained from ξ by displacing a particle from x to y:

ξx,y(z) =
{

ξ(x) − 1 for z = x,
ξ(y) + 1 for z = y,
ξ(z) for z �= x, y.

The zero-range process ξ(t) has a well known explicit family product invariant measures μ̄ϕ , 0 ≤ ϕ < limg(k) =:
g(∞), on ΩN defined on the nonnegative integers,

μ̄ϕ

(
ξ(x) = k

) = 1

Zϕ

ϕk

g(k)! for k ≥ 1 and μ̄ϕ

(
ξ(x) = 0

) = 1

Zϕ

,

where g(k)! = g(1) · · ·g(k) and Zϕ is the normalization. Denote by ρ(ϕ) the mean of the marginal μ̄ϕ , ρ(ϕ) =∑
k kμϕ(ξ(x) = k). Since g is increasing, the radius of convergence of Zϕ is g(∞), and limϕ↑g(∞) ρ(ϕ) = ∞. As

ρ(0) = 0 and ρ(ϕ) is strictly increasing, for a given 0 ≤ ρ < ∞, there is a unique inverse ϕ = ϕ(ρ). Define then the
family in terms of the density ρ as μρ = μ̄ϕ(ρ).

Now consider an initial configuration ξ such that ξ(0) ≥ 1, and let Ω∗
N ⊂ ΩN be the set of such configurations.

Distinguish, or tag one of the particles initially at the origin, and follow its trajectory Xt , jointly with the evolution
of the process ξt . It will be convenient for our purposes to consider the process as seen by the tagged particle. This
reference process ηt (x) = ξt (x + Xt) is also Markovian and has generator in form LN = Lenv

N + L
tp
N , where Lenv

N , L
tp
N
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are defined by

(
Lenv

N f
)
(η) =

∑
x∈TN \{0}

∑
z

p(z)g
(
η(x)

)[
f
(
ηx,x+z

) − f (η)
]

+
∑
y

p(y)g
(
η(0)

)η(0) − 1

η(0)

[
f
(
η0,y

) − f (η)
]
, (2.3)

(
L

tp
Nf

)
(η) =

∑
z

p(z)
g(η(0))

η(0)

[
f (θzη) − f (η)

]
.

In this formula, the translation θz is defined by

(θzη)(x) =
{

η(x + z) for x �= 0,−z,
η(z) + 1 for x = 0,
η(0) − 1 for x = −z.

The operator L
tp
N corresponds to jumps of the tagged particle, while the operator Lenv

N corresponds to jumps of the
other particles, called environment.

A key feature of the tagged motion is that it can be written as a martingale in terms of the reference process:

Xt =
∑
j

jNt (j) =
∑
j

jMt(j) + m

∫ t

0

g(ηs(0))

ηs(0)
ds =

∑
j

jMt(j), (2.4)

where m = ∑
j jp(j) = 0 is the mean drift, Nt(j) is the counting process of translations of size j up to

time t , and Mt(j) = Nt(j) − p(j)
∫ t

0 g(ηs(0))/ηs(0)ds is its corresponding martingale. In addition, M2
t (j ) −

p(j)
∫ t

0 g(ηs(0))/ηs(0)ds are martingales which are orthogonal as jumps are not simultaneous a.s. Hence, the
quadratic variation of Xt is 〈X〉t = σ 2

∫ t

0 g(ηs(0))/ηs(0)ds where σ 2 = ∑
j2p(j).

For the reference process ηt , the “Palm” or origin size biased measures given by dνρ = (η(0)/ρ)dμρ are invariant
(cf. [14,16]). Note that νρ is also a product measure whose marginal at the origin differs from that at other points
x �= 0. Here, we take ν0 = δd0 , the Dirac measure concentrated on the configuration d0 with exactly one particle at the
origin, and note that νρ converges to δd0 as ρ ↓ 0.

The families {μρ : ρ ≥ 0} and {νρ : ρ ≥ 0} are stochastically ordered. Indeed, this follows as the marginals of μρ

and νρ are stochastically ordered. Also, since we assume that g is increasing, the system is “attractive,” that is by the
“basic coupling” (cf. [11]) if dR and dR′ are initial measures of two processes ξt and ξ ′

t , and dR � dR′ in stochastic
order, then the distributions of ξt and ξ ′

t are similarly stochastically ordered [11]. We also note, when p is symmetric,
that μρ and νρ are reversible with respect to LN , and LN and Lenv

N respectively.
From this point, to avoid uninteresting compactness issues, we define every process in a finite time interval [0, T ],

where T < ∞ is fixed. Let T be the unit torus and let M+(T) be the set of positive Radon measures in T.
For a continuous, positive function ρ0 : T → R+, define μN = μN

ρ0(·) as the product measure in ΩN given by
μN

ρ0(·)(η(x) = k) = μρ0(x/N)(η(x) = k).

Consider the process ξN
t =: ξtN2 , generated by N2 LN starting from the initial measure μN . Define the process

π
N,0
t in D([0, T ], M+(T)), the space of M+(T) valued right-continuous paths with left limits for times 0 ≤ t ≤ T

endowed with the Skorohod topology, as

π
N,0
t (du) = 1

N

∑
x∈TN

ξN
t (x)δx/N(du),

where δu is the Dirac distribution at the point u.
The next result, “hydrodynamics,” under the assumption p(·) is mean-zero, is well known (cf. [1,7]).
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Theorem 2.1. For each 0 ≤ t ≤ T , π
N,0
t converges in probability to the deterministic measure ρ(t, u)du, where

ρ(t, u) is the solution of the hydrodynamic equation{
∂tρ = σ 2 ∂2

xϕ(ρ),

ρ(0, u) = ρ0(u),
(2.5)

and ϕ(ρ) = ∫
g(ξ(0))dμρ .

We now state results for the tagged particle motion. Define the product measure νN = νN
ρ0(·) in Ω∗

N given by
νN
ρ0(·)(η(x) = k) = νρ0(x/N)(η(x) = k), and let ηN

t =: ηtN2 be the process generated by N2LN and starting from the

initial measure νN . Define the empirical measure πN
t in D([0, T ], M+(T)) by

πN
t (du) = 1

N

∑
x∈TN

ηN
t (x)δx/N(du).

Let also XN
t = XN2t be the position of the tagged particle at time N2t .

Define also the continuous function ψ : R+ → R+ by

ψ(ρ) =
∫

g(η(0))

η(0)
dνρ.

Note ψ(ρ) = ϕ(ρ)/ρ for ρ > 0, and ψ(0) = g(1). The first main result of the article is to identify the scaling limit of
the tagged particle as a diffusion process:

Theorem 2.2. Let xN
t = XN

t /N be the rescaled position of the tagged particle for the process ξN
t . Then, {xN

t : t ∈
[0, T ]} converges in distribution in the uniform topology to the diffusion {xt : t ∈ [0, T ]} defined by the stochastic
differential equation

dxt = σ

√
ψ
(
ρ(t, xt )

)
dBt , (2.6)

where Bt is a standard Brownian motion on T, and ρ(t, u) is the solution of the hydrodynamic Eq. (2.5) as in Theo-
rem 2.1.

In terms of this characterization, we can describe the evolution of the empirical measure as seen from the tagged
particle:

Theorem 2.3. We have {πN
t : t ∈ [0, T ]} converges in distribution with respect to the Skorohod topology on

D([0, T ], M+(T)) to the measure-valued process {ρ(t, u + xt )du: t ∈ [0, T ]}, where ρ(t, u) is the solution of the
hydrodynamic Eq. (2.5) and xt is given by (2.6).

When the rate g(k) = 1{k ≥ 1}, scaling limits of a “second-class” particle Xt can also be captured. Informally,
such a particle must wait until all the other particles, say “first-class” particles, have left its position before it can
displace by j with rate p(j). More precisely, its dynamics can be described in terms of its reference frame motion.
For an initial configuration ξ such that ξ(0) ≥ 1, let ζt (x) = ξt (x + Xt ) − δ0,x , where δa,b is Kronecker’s delta, be
the system of first-class particles in the reference frame of the second-class particle. The generator LN takes form
LN = Lenv

N + L
tp
N , where

(
Lenv

N f
)
(ζ ) =

∑
x∈TN

∑
z

p(z)1
{
ζ(x) ≥ 1

}[
f
(
ζ x,x+z

) − f (ζ )
]
,

(
L

tp
Nf

)
(ζ ) =

∑
z

p(z)1
{
ζ(0) = 0

}[
f (τzζ ) − f (ζ )

]
,
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where τz is the pure spatial translation by z, (τzζ )(y) = ζ(y + z) for y ∈ TN .
Then, as for the regular tagged particle, we have

Xt =
∑
j

j Nt (j ) =
∑
j

j Mt (j ) + m

∫ t

0
1
{
ζs(0) = 0

}
ds =

∑
j

j Mt (j ),

where m = ∑
j jp(j) = 0 is the mean drift, Nt (j ) is the counting process of translations of size j up to time t , and

Mt (j ) = Nt (j )−p(j)
∫ t

0 1{ζs(0) = 0}ds are the associated martingales. As before, since M2
t (j )−p(j)

∫ t

0 1{ζs(0) =
0}ds are orthogonal martingales, the quadratic variation of Xt is 〈X 〉t = σ 2

∫ t

0 1{ζs(0) = 0}ds.
For the second-class reference process ζt , under the assumption p(·) is symmetric, the family dχρ = (1 + ρ)−1 ×

(ζ(0) + 1)dμρ for ρ > 0 are invariant. We remark that symmetry of p(·) is needed to show χρ are invariant with
respect to the second-class tagged process.

Let χN = χN
ρ(·) be the product measure with χN

ρ0(·)(ζ(x) = k) = χρ0(x/N)(ζ(x) = k). Let also ζN
t = ζN2t

be the process generated by N2LN starting from χN . Correspondingly, define empirical measure π
N,1
t (du) =

(1/N)
∑

x∈TN
ζN
t (x)δx/N (du). In addition, let

υ(ρ) =
∫

1
{
ζ(0) = 0

}
dχρ = 1

1 + ρ

∫
1
{
ζ(0) = 0

}
dμρ = 1

(1 + ρ)2
.

In the case g(k) = 1{k ≥ 1}, ϕ(ρ) = ρ/[1 + ρ]. Denote by ρ1 the solution of (2.5) with such function ϕ. We may
now state results for the second-class tagged motion.

Theorem 2.4. Suppose p(·) is symmetric. Let yN
t = X N

t /N be the rescaled position of the second-class tagged
particle for the process ζN

t . Then, {yN
t : t ∈ [0, T ]} converges in distribution in the uniform topology to the diffusion

{yt : t ∈ [0, T ]} defined by the stochastic differential equation

dyt = σ

√
υ
(
ρ1(t, yt )

)
dBt , (2.7)

where Bt is a standard Brownian motion on T.

Theorem 2.5. Suppose p(·) is symmetric. Then, {πN,1
t : t ∈ [0, T ]} converges in distribution with respect to the

Skorohod topology on D([0, T ], M+(T)) to the measure-valued process {ρ1(t, u + yt )du: t ∈ [0, T ]} where yt is
given by (2.7).

The outline of the proofs of Theorems 2.2, 2.3, 2.4 and 2.5 are given at the end of this section. We now state the
main replacement estimate with respect to the process ηN

t for a (regular) tagged particle. A similar estimate holds with
respect to the process ζN

t and a “second-class” particle, stated in the proof of Theorem 2.4. As remarked earlier, this
replacement estimate is the main ingredient to show Theorems 2.2 and 2.3.

Denote by Pν the probability measure in D([0, T ],ΩN) induced by the process ηN
t , starting from the initial measure

ν, and by Eν the corresponding expectation. When ν = νN , we abbreviate PνN = P
N and EνN = E

N . With respect
to the process ξN

t , denote by Pμ the probability measure in D([0, T ],ΩN) starting from measure μ, and by Eμ the
associated expectation. Denote also by Eμ[h] and 〈h〉μ the expectation of a function h :ΩN → R with respect to the
measure μ; when μ = νρ , let Eρ[h], 〈h〉ρ stand for Eνρ [h], 〈h〉νρ . Define also the inner product 〈f,g〉μ = Eμ[fg],
and covariance 〈f ;g〉μ = Eμ[fg] − Eμ[f ]Eμ[g] with the same convention when μ = νρ . To simplify notation, we
will drop the superscript N in the speeded-up process ηN

t .
For l ≥ 0, let

ηl(x) = 1

2l + 1

∑
|y|≤l

η(x + y).
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Theorem 2.6. Let h : N → R+ be a nonnegative, bounded, Lipschitz function such that there exists a constant C such
that h(k) ≤ C[g(k)/k] for k ≥ 1. Then,

lim sup
l→∞

lim sup
ε→0

lim sup
κ→0

lim sup
N→∞

E
N

[∣∣∣∣
∫ t

0
h
(
ηs(0)

) − 1

εN

εN∑
x=1

H̄l

(
ηκN

s (x)
)

ds

∣∣∣∣
]

= 0,

where H(ρ) = Eνρ [h(η(0))], Hl(η) = H(ηl(0)), and H̄l(ρ) = Eμρ [Hl].

We now give the outlines of the proof of the main theorems.

Proofs of Theorems 2.2 and 2.3. First, the replacement estimate, Theorem 2.6, applies when h(k) = g(k)/k: Under
the assumptions on g, clearly h is positive, bounded, and Lipschitz. Given Theorem 2.6, the proof of the main theorems
straightforwardly follow the same steps as in [6]. Namely, (1) tightness is proved for (xN

t ,AN
t ,π

N,0
t , πN

t ) where
AN

t = 〈xN
t 〉 is the quadratic variation of the martingale xN

t . (2) Using the hydrodynamic limit, Theorem 2.1, one
determines the limit points of π

N,0
t , and πN

t = τxN
t
π

N,0
t . Limit points of AN

t are obtained through the replacement

estimate, Theorem 2.6. Finally, one obtains that all limits of xN
t are characterized as continuous martingales with

certain quadratic variations. Theorems 2.2 and 2.3 follow now by Levy’s theorem. More details on these last points
can be found in [6]. �

Proofs of Theorems 2.4 and 2.5. The proofs follow the same scheme as for Theorems 2.2 and 2.3, given a replace-
ment estimate. One can rewrite Theorem 2.6 in terms of ζN

s :

lim sup
l→∞

lim sup
ε→0

lim sup
κ→0

lim sup
N→∞

E
N
sec

[∣∣∣∣
∫ t

0
h
(
ζs(0)

) − 1

εN

εN∑
x=1

H̄l

(
ζ κN
s (x)

)
ds

∣∣∣∣
]

= 0.

Here, h(k) = 1{k = 0}, H(ρ) = Eχρ [h(ζ(0))], Hl(ζ ) = H(ζ l(0)), and H̄l(ρ) = Eμρ [Hl]. Also, E
N
sec is the process

expectation with respect to ζN
s .

Given dχρ = (1 + ρ)−1 dμρ + ρ(1 + ρ)−1 dνρ , the proof of this replacement follows quite closely the proof of
Theorem 2.6 with straightforward modifications. �

The plan of the paper now is to give some spectral gap estimates, “global,” “local 1-block” and “local 2-blocks”
estimates in Sections 3, 4, 5, and 6, which are used to give the proof of Theorem 2.6 in Section 6.2.

For simplicity in the proofs, we will suppose that p(·) is symmetric, and nearest-neighbor, but our results hold, with
straightforward modifications, when p(·) is finite-range, irreducible, and mean-zero, because mean-zero zero-range
processes are gradient processes.

3. Spectral gap estimates

We discuss some spectral gap bounds which will be useful in the sequel. For l ≥ 0, let Λl = {x: |x| ≤ l} be a cube of
length 2l + 1 around the origin, and let ν

Λl
ρ and μ

Λl
ρ be the measures νρ and μρ restricted to Λl .

For j ≥ 0, define the sets of configurations ΣΛl,j = {η ∈ N
Λl

0 :
∑

x∈Λl
η(x) = j}, and Σ∗

Λl,j
= {η ∈ N

Λl

0 : η(0) ≥
1,

∑
x∈Λl

η(x) = j}. Define also the canonical measures νΛl,j (·) = ν
Λl
ρ (·|Σ∗

Λl,j
), and μΛl,j (·) = μ

Λl
ρ (·|ΣΛl,j ). Note

that both νΛl,j and μΛl,j do not depend on ρ.
Denote by LΛl

, Lenv
Λl

the restrictions of the generators LN , Lenv
N on ΣΛl,j , Σ∗

Λl,j
, respectively. These generators

are obtained by restricting the sums over x, y, z in (2.2) and (2.3) to x, x + z, y ∈ Λl . Clearly, νΛl,j , μΛl,j are
invariant with respect to Lenv

Λl
, LΛl

, respectively. Denote the Dirichlet forms D(μΛl,j , f ) = 〈f, (−LΛl
f )〉μΛl ,j

and
D(νΛl,j , f ) = 〈f, (−Lenv

Λl
f )〉νΛl ,j

. One can compute

D(μΛl,j , f ) = 1

2

∑
x,y∈Λl

p(y − x)EμΛl,j

[
g
(
η(x)

)(
f
(
ηx,y

) − f (η)
)2]

,
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D(νΛl,j , f ) = 1

2

∑
x∈Λl\{0}

∑
y∈Λl

p(y − x)EνΛl ,j

[
g
(
η(x)

)(
f
(
ηx,y

) − f (η)
)2]

+ 1

2

∑
z∈Λl

p(z)EνΛl ,j

[
g
(
η(0)

)η(0) − 1

η(0)

(
f
(
η0,z

) − f (η)
)2
]
.

Let W(l, j) and W env(l, j) be the inverse of the spectral gaps of LΛl
and Lenv

Λl
with respect to ΣΛl,j and Σ∗

Λl,j

respectively. In particular, the following Poincaré inequalities are satisfied: For all L2 functions,

〈f ;f 〉μΛl,j
≤ W(l, j)D(μΛl,j , f ),

〈f ;f 〉νΛl ,j
≤ W env(l, j)D(νΛl,j , f ).

In the next two lemmas, we do not assume that g is increasing. We first relate the environment spectral gap to the
untagged process spectral gap.

Lemma 3.1. Suppose on Σ∗
Λl,j

that a−1
1 ≤ η(0)/g(η(0)) ≤ ja−1

0 . Then, for j ≥ 1, we have that W env(l, j) ≤
(a1a

−1
0 j)2W(l, j − 1).

Proof. Note Eμρ [g(η(0))f (η)] = ϕ(ρ)Eμρ [f ′(η)] with f ′(η) = f (η + d0), where we recall d0 is the configura-
tion with exactly one particle at the origin. By a suitable change of variables one can show that D(μΛl,j−1, f

′) ≤
a1a

−1
0 jD(νΛl,j , f ).
By the assumption on g, for every c ∈ R,

EνΛl,j

[
(f − EνΛl,j

f )2] ≤ Eμρ [η(0)(f − c)21{Σ∗
Λl,j

}]
Eμρ [η(0)1{Σ∗

Λl,j
}]

≤ a1a
−1
0 j

Eμρ [g(η(0))(f − c)21{Σ∗
Λl,j

}]
Eμρ [g(η(0))1{Σ∗

Λl,j
}] .

The change of variables η′ = η − d0 and an appropriate choice of the constant c permits to rewrite last expression as

a1a
−1
0 jEμΛl,j−1

[(
f ′ − EμΛl,j−1f

′)2] ≤ a1a
−1
0 jW(l, j − 1)D

(
μΛl,j−1, f

′),
where the last inequality follows from the spectral gap for the zero range process. By the observation made at the
beginning of the proof, this expression is bounded by

(
a1a

−1
0 j

)2
W(l, j − 1)D(νΛl,j , f ),

which concludes the proof of the lemma. �

Lemma 3.2. Suppose g satisfies a0 ≤ g(k) ≤ a1 for k ≥ 1, and limk↑∞ g(k) = L. For every α > 0, there is a constant
B = Bα such that W(l, j) ≤ Bl(1 + α)j (l + j)2.

Proof. We need only to establish, for all L2 functions f , that

〈f ;f 〉μΛl,j
≤ Bl(1 + α)j (l + j)2D(μΛl,j , f ).

To argue the bound, we make a comparison with the measure μΛl,j when g(k) = 1{k ≥ 1}. Denote this measure
by μ1

Λl,j
, and recall, by conversion to the simple exclusion process (cf. [10], Example 1.1 and [12]), that

Eμ1
Λl ,j

[
(f − Eμ1

Λl ,j
f )2] ≤ b0(l + j)2Dμ1

Λl ,j
(f ) (3.1)
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for some finite constant b0. Write

EμΛl,j

[
(f − EμΛl,j

f )2] = inf
c

EμΛl,j

[
(f − c)2]

= inf
c

∑
η

∏l
x=−l (ϕ

η(x))/(g(η(x))!)(f (η) − c)21{∑x η(x) = j}∑
η

∏l
x=−l (ϕ

η(x))/(g(η(x))!)1{∑x η(x) = j} .

Without loss of generality, we may now assume that L = 1 since we can replace g by its scaled version, g′ = g/L, in
the above expression.

For β > 0, let r0 be so large that 1 − β ≤ g(z) ≤ 1 + β for z ≥ r0. Then,

a
−r0
1 (1 + β)−η(x) ≤ 1

g(η(x))! ≤ a
−r0
0 (1 − β)−η(x).

This bound is achieved by overestimating the first r0 factors by the bound a01{z ≥ 1} ≤ g(z) ≤ a1, and the remaining
factors by

(1 + β)−η(x) ≤ 1∏η(x)
z=r0+1 g(z)

≤ (1 − β)−η(x),

where by convention an empty product is defined as 1.
As there are 2l + 1 sites, we bound the right hand side of the displayed expression appearing just below (3.1) by(

a−1
0 a1

)(2l+1)r0
[
(1 + β)(1 − β)−1]jEμ1

Λl ,j

[
(f − Eμ1

Λl ,j
f )2].

By the spectral gap estimate (3.1) and the same bounds on the Radon–Nikodym derivative of dμ1
Λl,j

/dμΛl,j , the
previous expression is less than or equal to(

a−1
0 a1

)2(2l+1)r0
[
(1 + β)(1 − β)−1]2j

b0(l + j)2DμΛl,j
(f ).

We may now choose β = β(α) appropriately to finish the proof. �

We claim that for any constant C > 0,

lim
N→∞

1

N
max

1≤j≤Cl logN
W env(l, j) = 0. (3.2)

Indeed, under the conditions (SL) this follows by Lemma 3.1 and by assumption (SL3). On the other hand, under
the condition (B), by Lemma 3.2 we may choose α appropriately to have max1≤j≤Cl logN W(l, j) ≤ C2(�)N

1/2. This
proves (3.2) in view of Lemma 3.1.

4. “Global” replacement

In this section, we replace the full, or “global” empirical average of a local, bounded and Lipschitz function, with
respect to the process ηs , in terms of the density field πN

s . By a local function r :Ω∗
N → R, we mean a function

r supported on a finite number of occupation variables. In addition, we say that a local function r , supported on
coordinates A ⊂ Z, is Lipschitz if there exists a finite constant C0 such that∣∣r(η) − r

(
η′)∣∣ ≤ C0

∑
x∈A

∣∣η(x) − η′(x)
∣∣

for all configurations η, η′ of Ω∗
N , and N larger than the support size |A|.

The proof involves only a few changes to the hydrodynamics proof of [1], Theorem 3.2.1, and is similar to that in
[6]. However, since the rate g is bounded, some details with respect to the “2-blocks” lemma below are different.
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Proposition 4.1 (“Global” replacement). Let r :Ω∗
N → R be a local, bounded and Lipschitz function. Then, for

every δ > 0,

lim sup
κ→∞

lim sup
N→∞

P
N

[∫ T

0

1

N

∑
x∈TN

τx VκN(ηs)ds ≥ δ

]
= 0,

where

Vl(η) =
∣∣∣∣ 1

2l + 1

∑
|y|≤l

τyr(η) − r̄
(
ηl(0)

)∣∣∣∣ and r̄(a) = Eμa [r].

Denote by H(μ|ν) the entropy of μ with respect to ν:

H(μ|ν) = sup
f

{∫
f dμ − log

∫
ef dν

}
,

where the supremum is over bounded continuous functions f .
We may compute, with respect to the product measures νN

ρ0(·) and νρ , that the initial entropy H(νN
ρ0(·)|νρ) ≤ C0N

for some finite constant C0 depending only on ρ0(·) and g. Let f N
t (η) be the density of ηt under P

N with respect to a
reference measure νρ for ρ > 0, and let f̂ N

t (η) = t−1
∫ t

0 f N
s (η)ds. By usual arguments (cf. Section V.2 in [7]),

HN

(
f̂ N

t

) := H
(
f̂ N

t dνρ |νρ

) ≤ C0N and DN

(
f̂ N

t

) := 〈√
f̂ N

t ,
(−LN

√
f̂ N

t

)〉
ρ

≤ C0

N
,

where 〈u,v〉ρ stands for the scalar product in L2(νρ), as defined in the first section.
Consequently, to prove Proposition 4.1 it is enough to show, for any finite constant C, that

lim sup
κ→0

lim sup
N→∞

sup
HN (f )≤CN

DN(f )≤C/N

∫
1

N

∑
x∈TN

τx VκN(η)f (η)dνρ = 0, (4.1)

where the supremum is with respect to νρ -densities f .
We may remove from the sum in (4.1) the integers x close to the origin, say |x| ≤ 2κN , as VκN is bounded. Now,

the underlying reference measure νρ may be treated as homogeneous, and a standard strategy may be employed as
follows.

Proposition 4.1 now follows from the two standard lemmas below. In this context, see also [1], and [7] where the
same method is used to prove [1], Theorem 3.2.1 and [7], Lemma V.1.10 respectively.

Lemma 4.2 (Global 1-block estimate).

lim sup
k→∞

lim sup
N→∞

E
N

[∫ T

0

1

N

∑
|x|>2κN

τx Vk(ηs)ds

]
= 0.

The proof of Lemma 4.2 is the same as for [6], Lemma 5.2, and follows the scheme of [7], Lemma V.3.1, using
that g has “sub-linear growth (SLG).” Details are omitted here.

Lemma 4.3 (Global 2-blocks estimate).

lim sup
k→∞

lim sup
κ→0

lim sup
N→∞

E
N

[∫ T

0

1

2Nκ + 1

∑
|y|≤Nκ

1

N

∑
|x|>3κN

∣∣ηk
s (x + y) − ηk

s (x)
∣∣ds

]
= 0.
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Proof. We discuss in terms of modifications to the argument in [7], Section V.4. The first step is to cut-off high
densities. We claim that

lim sup
A→∞

lim sup
k→∞

lim sup
N→∞

E
N

[∫ T

0

1

N

∑
|x|>3κN

ηk
s (x)1

{
ηk

s (x) > A
}

ds

]
= 0.

To prove this assertion, we first replace the sum over x by a sum over all sites of TN . At this point, since the
environment at time t is obtained from the system by a shift, we may replace the variable ηt by ξt . We need therefore
to estimate

EμN
ρ0(·)

[
ξ0(0)

ρ0(0)

∫ T

0

1

N

∑
x∈TN

ξk
s (x)1

{
ξk
s (x) > A

}
ds

]
.

Let ρ̄ = ‖ρ0‖L∞ , and note that μρ0(·) is stochastically dominated by μρ̄ . By attractiveness we may replace μN
ρ0(·) by

μρ̄ in the previous expression and bound this expectation by

Eμρ̄

[
ξ0(0)

ρ0(0)

∫ T

0

1

AN

∑
x∈TN

(
ξk
s (x)

)2 ds

]
.

By Schwarz inequality, and noting that μρ̄ is invariant with respect to the untagged process ξs , the last expression is
of order A−1, which proves the claim.

In view of the truncation just proved and the entropy calculations presented at the beginning of this section, to
prove the lemma it is enough to show that for every A > 0,

lim sup
k→∞

lim sup
N→∞

sup
HN (f )≤CN

DN(f )≤C/N

∫
1

2Nκ + 1

∑
|y|≤Nκ

1

N

∑
|x|>3κN

Wk,A
x,y (η)f (η)dνρ = 0,

where

Wk,A
x,y (η) = ∣∣ηk(x + y) − ηk(x)

∣∣1{max
{
ηk(x), ηk(x + y)

} ≤ A
}
.

The argument is now the same as in the proof of Lemma 5.3 in [6] following [7], Section V.5. �

5. “Local” one-block estimate

We now detail a “local” one-block limit. Let h : N0 → R be a bounded, Lipschitz function, and H(a) = Eνa [h(η(0))].
Define also

Vl(η) = h
(
η(0)

) − H
(
ηl(0)

)
.

Lemma 5.1 (One-block estimate). For every 0 ≤ t ≤ T ,

lim sup
l→∞

lim sup
N→∞

E
N

[∣∣∣∣
∫ t

0
Vl(ηs)ds

∣∣∣∣
]

= 0.

Proof. The proof is in four steps.
Step 1. The first step is to introduce a truncation. Since the dynamics is not attractive, we cannot bound η(0) > A

for some constant A in a simple way. However, by considering the maximum of such quantities over the torus, we
may rewrite the maximum in terms of the original system ξs , which is attractive:

max
x∈TN

ηs(x) = max
x∈TN

ξs(x).
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Also, by simple estimates, recalling ρ̄ = ‖ρ0‖∞
L , we have that

Pνρ0(·)
[
max

x
ξs(x) ≥ C logN

]
= Eμρ0(·)

[
ξ0(0)

ρ0(0)
1
{

max
x

ξs(x) ≥ C logN
}]

≤ Eμρ̄

[
ξ0(0)

ρ0(0)
1
{

max
x

ξs(x) ≥ C logN
}]

.

Under the stationary measure μρ̄ , the variables ξs(x) are independent and identically distributed, with finite expo-
nential moments of some order. Hence, by Chebychev’s inequality, the last expression vanishes as N ↑ ∞ for a well
chosen constant C = C1. Therefore, as ηl(0) ≤ maxx η(x), it is enough to estimate

E
N

[∣∣∣∣
∫ t

0
Vl(ηs)1{GN,l}(ηs)ds

∣∣∣∣
]
,

where GN,l = {η: ηl(0) ≤ C1 logN}.
Step 2. Since the initial entropy H(νN

ρ0(·)|νρ) is bounded by C0N , by the entropy inequality,

E
N

[∣∣∣∣
∫ t

0
Vl(ηs)1{GN,l}(ηs)ds

∣∣∣∣
]

≤ C0

γ
+ 1

γN
logEνρ

[
exp

{
γN

∣∣∣∣
∫ t

0
Vl(ηs)1{GN,l}(ηs)ds

∣∣∣∣
}]

.

We can get rid of the absolute value in the previous integral, using the inequality e|x| ≤ ex +e−x . By the Feynman–Kac
formula, the second term on the right hand side is bounded by (γN)−1T λN,l , where λN,l is the largest eigenvalue of
N2LN + γNVl1{GN,l}. Therefore, to prove the lemma, it is enough to show that (γN)−1λN,l vanishes, as N ↑ ∞
and then l ↑ ∞, for every γ > 0.

Step 3. By the variational formula for λN,l ,

(γN)−1λN,l = sup
f

{〈
Vl1{GN,l}, f 2〉

ρ
− γ −1N

〈
f, (−LNf )

〉
ρ

}
, (5.1)

where the supremum is carried over all densities f 2 with respect to νρ . As the Dirichlet forms satisfy 〈f, (−Lenv
Λl

f )〉ρ ≤
〈f, (−LNf )〉ρ (cf. [17], equation (3.1)), we may bound the previous expression by a similar one where LN is replaced
by Lenv

Λl
.

Denote by f̂ 2
l the conditional expectation of f 2 given {η(z): z ∈ Λl}. Since Vl1{GN,l} depends on the configuration

η only through {η(z): z ∈ Λl} and since the Dirichlet form is convex, the expression inside braces in (5.1) is less than
or equal to∫

Vl1{GN,l}f̂ 2
l dνΛl

ρ − γ −1N

∫
f̂l

(−Lenv
Λl

f̂l

)
dνΛl

ρ . (5.2)

The first term in this formula, decomposing in terms of canonical measures νΛl,j , is equal to

C1l logN∑
j=1

cl,j (f )

∫
Vl1{GN,l}f̂ 2

l,j dνΛl,j ,

where the value of the constant C1 changed and

cl,j (f ) =
∫

ΣΛl,j

f̂ 2
l dνΛl

ρ , f̂ 2
l,j (η) = cl,j (f )−1νΛl

ρ (ΣΛl,j )f̂
2
l (η).

The sum starts at j = 1 because there is always a particle at the origin. Note also that
∑

j≥1 cl,j (f ) = 1 and that

f̂ 2
l,j (·) is a density with respect to νΛl,j .
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Also, the Dirichlet form term of (5.2) can be written as

γ −1N
∑

1≤j≤C1l logN

cl,j (f )

∫
f̂l,j

(−Lenv
Λl

f̂l,j

)
dνΛl,j .

In view of this decomposition, (5.1) is bounded above by

sup
1≤j≤C1l logN

sup
f

{∫
Vlf

2 dνΛl,j − γ −1N

∫
f
(−Lenv

Λl
f
)

dνΛl,j

}
,

where the second supremum is over all densities f 2 with respect to νΛl,j .
Step 4. Recall that Vl(η) = h(η(0)) − H(ηl(0)). Let

Vl,j (η) = Vl − EνΛl,j
[Vl].

By (3.2), N−1 max1≤j≤C1l logN W env(l, j) vanishes as N ↑ ∞. Then, as h is bounded, by Rayleigh expansion [7],
Theorem A3.1.1, for j ≤ C1l logN and sufficiently large N ,∫

Vlf
2 dνΛl,j − γ −1N

∫
f
(−Lenv

Λl
f
)

dνΛl,j

≤
∫

Vl dνΛl,j + γN−1

1 − 2‖Vl‖L∞W env(l, j)γN−1

∫
Vl,j

(−Lenv
Λl

)−1
Vl,j dνΛl,j

≤
∫

Vl dνΛl,j + 2γN−1
∫

Vl,j

(−Lenv
Λl

)−1
Vl,j dνΛl,j .

The second term is bounded as follows. By the spectral theorem, the second term is less than or equal to

2W env(l, j)γN−1
∫

V 2
l,j dνΛl,j ≤ 8‖h‖2

L∞W env(l, j)γN−1. (5.3)

This expression vanishes as N ↑ ∞ in view of (3.2).
On the other hand, the first term is written as∫

Vl dνΛl,j =
∫

h
(
η(0)

)
dνΛl,j − H(j/2l + 1).

By Lemma 5.2 below, this difference vanishes uniformly in j as l ↑ ∞. This proves that (5.1) vanishes as N ↑ ∞ and
then l ↑ ∞, finishing the proof. �

Lemma 5.2. Let h : N0 → R be a bounded Lipschitz function which vanishes at infinity. Then, we have

lim sup
l→∞

sup
k≥1

∣∣EνΛl,k

[
h
(
η(0)

)] − Eνk/|Λl |
[
h
(
η(0)

)]∣∣ = 0.

Proof. The argument is in three steps.
Step 1. We first consider the case 1 ≤ k ≤ K0. By adding and subtracting h(1), we need only to estimate∣∣EνΛl,k

[
h
(
η(0)

)] − h(1)
∣∣ and

∣∣Eνk/|Λl |
[
h
(
η(0)

)] − h(1)
∣∣. (5.4)

The first term is bounded by 2‖h‖L∞νΛl,k{η(0) ≥ 2}. To show that it vanishes as l ↑ ∞, note that η(0) ≤ k and that
EμΛl,k

[η(0)] = k/(2l + 1) to write

νΛl,k

{
η(0) ≥ 2

} = 1

EμΛl,k
[η(0)]EμΛl,k

[
η(0)1

{
η(0) ≥ 2

}]
≤ (2l + 1)μΛl,k

{
η(0) ≥ 2

}
.
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For 2 ≤ s ≤ k, we may write the canonical measure in terms of the grand canonical:

μΛl,k

{
η(0) = s

} = μρ

{
η(0) = s

}μρ{∑0<|x|≤l η(x) = k − s}
μρ{∑|x|≤l η(x) = k}

for any choice of the parameter ρ. Recall μ1
Λl,j

is the canonical measure when g(k) = 1{k ≥ 1}. In the numerator and
the denominator, at least 2�− k sites receive no particles. We may therefore replace in these sites the rate g by the rate
constant equal to one with no cost. Since a0 ≤ g(�) ≤ a1�, in the remaining sites we have that C(k)−1 ≤ an

0 ≤ g(n)! ≤
an

1n! ≤ C(k) if n ≤ k. The previous expression is thus bounded above by

C(k)μ1
Λl,k

{
η(0) = s

} = C(k)

(
2l

k − s

)/(
2l + 1

k

)
= O

(
l−s

)
.

To bound the second term in (5.4), we proceed in a similar way. The absolute value of the difference Eνρ [h(η(0))]−
h(1) is bounded by 2‖h‖∞νρ{η(0) ≥ 2}. Last probability is equal to ρ−1Eμρ [η(0)1{η(0) ≥ 2}]. Since g(n) ≥ a0,
change of variables η′ = η − 2d0 permits to bound the previous expression by C0ϕ(ρ)2[ρ + 2]/ρ for some finite con-
stant C0. Since g(n) ≤ a1n, ϕ(ρ) ≤ a1ρ. In conclusion, the second term in (5.4) is bounded above by C0‖h‖∞(k/ l)2,
which concludes the proof of Step 1.

Step 2. Next, we consider the case in which K0 ≤ k ≤ B|Λl | for some B < ∞. By definition of the Palm measure,
the difference EνΛl,k

[h(η(0))] − Eνk/|Λl | [h(η(0))] is equal to

|Λl |
k

{
EμΛl,k

[
η(0)h

(
η(0)

)] − Eμk/|Λl |
[
η(0)h

(
η(0)

)]}
.

By [7], Corollary 1.7, Appendix 2.1, this expression is bounded above by C0k
−1 for some finite constant C0. This

expression can be made as small as need by choosing K0 large.
Step 3. Finally, we consider the case k ≥ B|Λl |. We shall take advantage of the fact that h vanishes at infinity. Fix

A > 0 to bound EνΛl,k
[h(η(0))] by

EνΛl,k

[
h
(
η(0)

)
1
{
η(0) ≤ A

}] + sup
x≥A

h(x).

By definition of the Palm measure and since the density k/|Λl | is bounded below by B , the first term is less than or
equal to

‖h‖L∞|Λl |
k

EμΛl,k

[
η(0)1

{
η(0) ≤ A

}] ≤ A‖h‖L∞

B
.

In view of the previous estimates, we see that the expectation EνΛl,k
[h(η(0))] can be made arbitrarily small by choos-

ing A and B sufficiently large. The expectation Eνk/|Λl | [h(η(0)] can be estimated similarly. �

6. Local two-blocks estimate

In this section we show how to go from a box of size l to a box of size εN .

Lemma 6.1 (Two-blocks estimate). Let H : R+ → R be a bounded, Lipschitz function, which vanishes at infinity,
limx→∞ H(x) = 0. Then, for every t > 0,

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

E
N

[∣∣∣∣∣
∫ t

0

{
H

(
ηl

s(0)
) − 1

εN

εN∑
x=1

H
(
ηl

s(x)
)}

ds

∣∣∣∣∣
]

= 0. (6.1)
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Proof. The proof is handled in several steps.
Step 1. As H is bounded, the expectation in (6.1) is bounded by

1

εN

εN∑
x=4l+2

E
N

[∣∣∣∣
∫ t

0

{
H

(
ηl

s(0)
) − H

(
ηl

s(x)
)}

ds

∣∣∣∣
]

+ C0‖H‖L∞ l

εN

for some finite constant C0. Hence, we need to estimate, uniformly over 4l + 2 ≤ x ≤ εN ,

E
N

[∣∣∣∣
∫ t

0

{
H

(
ηl

s(0)
) − H

(
ηl

s(x)
)}

ds

∣∣∣∣
]
.

Step 2. Write

H
(
ηl(0)

) − H
(
ηl(x)

) = H
(
ηl(0)

) − H
(
ηl(2l + 1)

) + H
(
ηl(2l + 1)

) − H
(
ηl(x)

)
.

We now claim that

lim
l→∞ lim

N→∞EN

[∣∣∣∣
∫ t

0

{
H

(
ηl

s(0)
) − H

(
ηl

s(2l + 1)
)}

ds

∣∣∣∣
]

= 0.

Indeed, since H(ηl(0)) − H(ηl(2l + 1)) is a function of Λ̂l = {−l, . . . ,3l + 1}, we may apply the “local 1-block”
argument for Lemma 5.1 up to (5.3), with respect to V ′

l = H(ηl(0))−H(ηl(2l + 1)). Now, in the last line of the proof
of Lemma 5.1, instead of using Lemma 5.2, we use Lemma 6.4 to show the expectation under the canonical measure
ν
Λ̂l ,k

vanishes, liml↑∞ supk≥1 E
Λ̂l,k

[V ′
l ] = 0.

Step 3. Therefore, we need only estimate when the integrand is H(ηl(2l + 1)) − H(ηl(x)). As for the “local 1-
block” development (Lemma 5.1), we may introduce a truncation, and restrict to the set GN,l,x = {η: ηl(2l + 1) +
ηl(x) ≤ 2C1 logN}. That is, we need only bound, uniformly over x

E
N

[∣∣∣∣
∫ t

0

[
H

(
ηl

s(2l + 1)
) − H

(
ηl

s(x)
)]

1{GN,l,x}ds

∣∣∣∣
]
.

Step 4. Following the first part of the proof of Lemma 5.1, appealing to entropy estimates and eigenvalue estimates,
we need only to bound, uniformly in 4l + 2 ≤ x ≤ εN ,

sup
f

{〈[
H

(
ηl(2l + 1)

) − H
(
ηl(x)

)]
1{GN,l,x}, f 2〉

ρ
− Nγ −1〈f, (−LNf )

〉
ρ

}
, (6.2)

where the supremum is over all density functions f 2 with
∫

f 2 dνρ = 1.
Since Vl,x(η) = H(ηl(2l + 1)) − H(ηl(x)) does not involve the origin, we can avoid details involving the inhomo-

geneity at point 0 in the following. Define disjoint blocks Λ′
l = {l + 1, . . . ,3l + 1} and Λl(x) = {x − l, . . . , x + l}. Let

LΛl,x
be the restriction of Lenv

N to the set Λl,x = Λ′
l ∪ Λl(x), and define also Ll,x by

Ll,xf (η) = 1

2
g
(
η(x − l)

)[
f
(
ηx−l,3l+1) − f (η)

]
+ 1

2
g
(
η(3l + 1)

)[
f
(
η3l+1,x−l

) − f (η)
]
.

The operator Ll,x corresponds to zero-range dynamics where particles jump between endpoints 3l + 1 and x − l.
As x ≤ εN , by adding and subtracting at most εN terms (cf. [7], pp. 94–95 and [17], equation (3.1)), we have that〈

f, (−Ll,xf )
〉
ρ

≤ εN
〈
f,

(−Lenv
N f

)〉
ρ
.

Hence,〈
f,−(

Nγ −1LΛl,x
+ ε−1γ −1Ll,x

)
f
〉
ρ

≤ 2Nγ −1〈f, (−LNf )
〉
ρ
,



Nonequilibrium fluctuations for a tagged particle 627

and we may replace Nγ −1LN in (6.2) by (1/2)(Nγ −1LΛl,x
+ ε−1γ −1Ll,x).

Step 5. To simplify notation, we shift the indices so that the blocks are to the left and right of the origin. In

particular, let Λ−
l = {−(2l + 1), . . . ,−1}, Λ+

l = {1, . . . , (2l + 1)} and Λ∗
l = Λ−

l ∪ Λ+
l . Configurations of N

Λ−
l

0 will

be denoted by the Greek letter η, while configurations of N
Λ+

l

0 are denoted by the Greek letter ζ . Recall dz stands for
the configuration with no particles but one at z.

Consider the generator LN,κ,l with respect to N
Λ∗

l

0 , LN,κ,l = NL−
l + NL+

l + κ−1L0
l . Here,

(
L−

l f
)
(η, ζ ) =

∑
x,y∈Λ−

l

p(y − x)g
(
η(x)

)[
f
(
ηx,y, ζ

) − f (η, ζ )
]
,

(
L+

l f
)
(η, ζ ) =

∑
x,y∈Λ+

l

p(y − x)g
(
ζ(x)

)[
f
(
η, ζ x,y

) − f (η, ζ )
]
,

(
L0

l f
)
(η, ζ ) = (1/2)g

(
η(−1)

)[
f (η − d−1, ζ + d1) − f (η, ζ )

]
+ (1/2)g

(
ζ(1)

)[
f (η + d−1, ζ − d1) − f (η, ζ )

]
.

Note that inside each set Λ±
l particles jump at rate N while jumps between sets are performed at rate κ−1.

Recall μ
Λ−

l
ρ , μ

Λ+
l

ρ , μ
Λ∗

l
ρ are the restrictions of μρ to N

Λ−
l

0 , N
Λ+

l

0 , N
Λ∗

l

0 , respectively. The Dirichlet forms associated
to the generators L−

l , L+
l , L0

l are given by

DΛ−
l

(
μ

Λ∗
l

ρ , f
) = 〈

f,
(−L−

l f
)〉

μ
Λ∗

l
ρ

, DΛ+
l

(
μ

Λ∗
l

ρ , f
) = 〈

f,
(−L+

l f
)〉

μ
Λ∗

l
ρ

,

(6.3)
D0

(
μ

Λ∗
l

ρ , f
) = 〈

f,
(−L0

l f
)〉

μ
Λ∗

l
ρ

.

A simple computation shows that the Dirichlet form can be written as

DΛ−
l

(
μ

Λ∗
l

ρ , f
) = ϕ(ρ)

2

−2∑
x=−(2l+1)

∫ {
f (η + dx+1, ζ ) − f (η + dx, ζ )

}2
μ

Λ∗
l

ρ (dη,dζ ),

D0
(
μ

Λ∗
l

ρ , f
) = ϕ(ρ)

2

∫ {
f (η + d−1, ζ ) − f (η, ζ + d1)

}2
μ

Λ∗
l

ρ (dη,dζ ).

In this notation, it will be enough, with respect to Eq. (6.2), to bound for a > 0 the quantity

sup
f

{〈[
H

(
ηl
) − H

(
ζ l

)]
1
{
G′

N,l

}
, f 2〉

ρ
− a

〈
f, (−LN,κ,lf )

〉
ρ

}
, (6.4)

where ηl = (2l + 1)−1 ∑
x∈Λ−

l
η(x), ζ l = (2l + 1)−1 ∑

x∈Λ+
l

ζ (x), and G′
N,l = {(η, ζ ): ηl + ζ l ≤ 2C1 logN}. By

convexity of the Dirichlet form, as in the proof of Lemma 5.1, the supremum may be taken over functions f on N
Λ∗

l

0

such that 〈f 2〉
μ

Λ∗
l

ρ

= 1, and the measure μρ in (6.4) may be replaced by μ
Λ∗

l
ρ .

Step 6. This quantity is estimated in three parts. The first part restricts to the set S1
N,l = {(η, ζ ): ηl + ζ l ≤ B} for

some B fixed. In this case, where we have truncated at a fixed level B , we can use the “local 1-block” method of
Lemma 5.1 to show that

sup
f

{〈[
H

(
ηl
) − H

(
ζ l

)]
1
{
S1

N,l

}
, f 2〉

μ
Λ∗

l
ρ

− a
〈
f, (−LN,κ,lf )

〉
μ

Λ∗
l

ρ

}

vanishes as N ↑ ∞, ε ↓ 0 and then l ↑ ∞.
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Indeed, by convexity considerations, we can decompose the expression in braces in terms of canonical measures
μΛ∗

l ,k
concentrating on k particles in Λ∗

l . Since for the generator LN,κ,l jumps are speeded up by N inside each cube,

〈[
H

(
ηl
) − H

(
ζ l

)]
1
{
S1

N,l

}
, f 2〉

μΛ∗
l
,k

− a
〈
f, (−LN,κ,lf )

〉
μΛ∗

l
,k

≤ 〈[
H

(
ηl
) − H

(
ζ l

)]
1
{
S1

N,l

}
, f 2〉

μΛ∗
l
,k

− aε−1〈f,−(
L−

l + L+
l + L0

l f
)〉

μΛ∗
l
,k
.

Let Ṽl = [H(ηl) − H(ζ l)]1{S1
N,l}. Note that Ṽl has mean-zero with respect to μΛ∗

l ,k
and that ‖Ṽl‖L∞ ≤ 2‖H‖L∞ . By

the Rayleigh estimate [7], Theorem A3.1.1 and by the spectral gap, for k ≤ 2(2l + 1)B , the previous expression is
bounded above by

a−1ε

1 − 4‖H‖L∞W ∗(l, k)a−1ε

∫
Ṽl

(−L−
l − L+

l − L0
l

)−1
Ṽl dμΛ∗

l ,k

≤ 2a−1εW ∗(l, k)

∫
Ṽ 2

l dμΛ∗
l ,k

,

where W ∗(l, k) is the inverse of the spectral gap of L− + L+ + L0
l with respect to the process on Λ∗

l with k particles.
As ε ↓ 0, the previous expression vanishes.

Step 7. The second part now restricts to S2
N,l = {(η, ζ ): ζ l ≥ A,ηl ≥ A} for some constant A. On this event, the

sum H(ηl) + H(ζ l) is absolutely bounded by 2 supz≥A |H(z)| so that〈[
H

(
ηl
) − H

(
ζ l

)]
1
{
S2

N,l

}
, f 2〉

μ
Λ∗

l
ρ

− a
〈
f, (−LN,κ,lf )

〉
μ

Λ∗
l

ρ

≤ 2 sup
z≥A

∣∣H(z)
∣∣.

Since H(n) vanishes as n ↑ ∞, the right hand side can be made arbitrarily small.
Step 8. Let now S3

N,l = Al ∩ RN,l where Al = {η: ηl ≤ A} and RN,l = {(η, ζ ): B ≤ ηl + ζ l ≤ 2C1 logN}. This
case is the difficult part of the proof and is treated in Lemma 6.2 below. �

The proof of Lemma 6.2 is reserved to the next subsection.

Lemma 6.2. Suppose that B > 4A. Then, for every a > 0,

lim
l→∞ lim sup

κ→0
lim sup
N→∞

sup
f

{∫
1{RN,l}1{Al}f (η, ζ )2 dμ

Λ∗
l

ρ − a
〈
f, (−LN,κ,lf )

〉
μΛ∗

l
,ρ

}
≤ 0, (6.5)

where the supremum over f is over functions f on N
Λ∗

l

0 such that 〈f,f 〉
μ

Λ∗
l

ρ

= 1.

Lemma 6.3. For s, r ≥ 0, we have μΛs,r � μΛs,r+1, and νΛs,r � νΛs,r+1.

Proof. The first estimate is [10], Lemma 4.4. The second bound has a similar argument: Note νΛs,r is the unique
invariant measure for the Markov chain on Σ∗

Λs,r
= {η: η(0) ≥ 1,

∑
|x|≤s η(x) = r} generated by Lenv

Λs
.

Since g is increasing, we can couple two systems starting from configurations η1 ∈ Σ∗
Λs,r

and η2 ∈ Σ∗
Λs,r+1 such

that η1 ≤ η2 coordinatewise, so that the ordering is preserved at later times. Hence, in the limit we obtain limt↑∞ η1
t =

νΛs,r , limt↑∞ η2
t = νΛs,r+1, and νΛs,r � νΛs,r+1. �

Recall the set Λ̂l = {−l, . . . ,3l + 1}.
Lemma 6.4. Let H : R+ → R+ be a nonnegative, bounded, Lipschitz function which vanishes at infinity. Then, we
have

lim sup
l→∞

sup
k≥0

∣∣Eν
Λ̂l ,k

[
H

(
ηl(0)

) − H
(
ηl(2l + 1)

)]∣∣ = 0.
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Proof. The argument is in three parts.
Step 1. Fix ε > 0 and consider (k, l) such that k/|Λ̂l | ≤ ε. Add and subtract H(0) in the absolute value. Then, the

expectation is less than 2 max0≤x≤2ε |H(x) − H(0)| = O(ε) given that H is Lipschitz.
Step 2. Assume now that ε ≤ k/|Λ̂l | ≤ B1. The proof is the same as in Lemma 6.6 in [6] for this case. For the

convenience of the reader, we give it here. By definition of ν
Λ̂l,k

, the expectation appearing in the display of the
lemma equals

1

Eμ
Λ̂l ,k

[η(0)]Eμ
Λ̂l ,k

[
η(0)

{
H

(
ηl(0)

) − H
(
ηl(2l + 1)

)}]
.

Since the measure is space homogeneous, the denominator is equal to ρl,k = k/|Λ̂l | which is bounded below by ε. In
the numerator, η(0) can be replaced by ηl(0). The numerator is then

Eμ
Λ̂l ,k

[{
ηl(0) − ρl,k

}{
H

(
ηl(0)

) − H
(
ηl(2l + 1)

)}] + ρl,kEμ
Λ̂l ,k

[
H

(
ηl(0)

) − H
(
ηl(2l + 1)

)]
.

The second term vanishes because the measure μ
Λ̂l,k

is space homogeneous. The first term, as H is bounded, is
absolutely dominated by 2‖H‖L∞Eμ

Λ̂l ,k
[|ηl(0) − ρl,k|]. By [7], Appendix II.1, Corollary 1.4, this expression is less

than or equal to

C0E
μ

Λ̂l
ρl,k

[∣∣ηl(0) − ρl,k

∣∣] ≤ C0σ(ρl,k)l
−1/2

for some constant C0 where σ(ρ) stands for the variance of ξ(0) under μρ . Since ε ≤ ρl,k ≤ B1, σ(ρl,k) is bounded.
Hence, this expression vanishes as l ↑ ∞.

Step 3. Suppose now k/|Λ̂l | ≥ B1. We shall prove that in this range both expectations are small because H(x)

vanishes as x ↑ ∞. Fix A > 0. Introducing the indicator of the set ηl(0) ≤ A and replacing the Palm measure ν
Λ̂l ,k

by
the homogeneous measure μ

Λ̂l,k
, we get that

Eν
Λ̂l ,k

[
H

(
ηl(0)

)] ≤ Eν
Λ̂l ,k

[
H

(
ηl(0)

)
1
{
ηl(0) ≤ A

}] + sup
x≥A

H(x)

= 1

ρl,k

Eμ
Λ̂l ,k

[
η(0)H

(
ηl(0)

)
1
{
ηl(0) ≤ A

}] + sup
x≥A

H(x)

because Eμ
Λ̂l ,k

[η(0)] = ρl,k . In the last expectation, we may replace η(0) by ηl(0) which is bounded by A. We may

also estimate H by ‖H‖L∞ and bound below the density ρl,k by B1. The previous expression is thus less than or equal
to

A‖H‖L∞

B1
+ sup

x≥A

H(x),

which can be made arbitrarily small if A is chosen large enough and then B1.
It remains to prove that the second expectation appearing in the statement of the lemma is small in this range of

densities. Introducing the indicator of the set {ηl(2l + 1) ≤ A} we get that

Eν
Λ̂l ,k

[
H

(
ηl(2l + 1)

)] ≤ ‖H‖L∞ν
Λ̂l,k

{
ηl(2l + 1) ≤ A

} + sup
x≥A

H(x).

Since the event {ηl(2l +1) ≤ A} is decreasing and k ≥ B1|Λ̂l |, by Lemma 6.4, we may bound the previous probability
by ν

Λ̂l,K
{ηl(2l + 1) ≤ A}, where K = B1|Λ̂l |. At this point, by the same reasons argued above, we obtain that

Eν
Λ̂l ,k

[
H

(
ηl(2l + 1)

)] ≤ ‖H‖L∞

B1
Eμ

Λ̂l ,K

[
ηl(0)1

{
ηl(2l + 1) ≤ A

}] + sup
x≥A

H(x).
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Note that ηl(0) ≤ B1|Λ̂l |/(2l + 1) = 2B1. Hence, by [7], Corollary 1.4, Appendix 2.1, the previous expectation is
bounded by

2‖H‖L∞μB1

{
ηl(2l + 1) ≤ A

} + C0

l

for some finite constant C0. This expression vanishes as l ↑ ∞ by the law of large numbers provided B1 > A. This
concludes the proof of the lemma. �

6.1. Proof of Lemma 6.2

Fix B > 4A. The proof is divided in three steps. Recall the notation developed in Step 5 of the proof of Lemma 6.1.
Step 1. The first integral in (6.5) can be rewritten as

∑
j,k

μρ,l(j)μρ,l(k)

∫ ∫
f (η, ζ )2μΛ−

l ,j (dη)μΛ+
l ,k(dζ ),

where the sum is performed over all indices j , k such that 0 ≤ j ≤ A(2l + 1), k ≥ 0, B(2l + 1) ≤ j + k ≤ θN,l :=
2C1(2l+1) logN , μρ,l(m) = μρ(

∑
x∈Λl

η(x) = m) and μΛ±
l ,m is the canonical measure on the cube Λ±

l concentrated
on configurations with m particles.

Fix two integers j, k ≥ 0 such that B(2l + 1) ≤ j + k ≤ θN,l . We claim that there exists a function WN(l) such that
WN(l) = o(N) for fixed l and

∫ ∫
f (η, ζ )2μΛ−

l ,j (dη)μΛ+
l ,k(dζ ) −

{∫ ∫
f (η, ζ )μΛ−

l ,j (dη)μΛ+
l ,k(dζ )

}2

≤ WN(l)

{
DΛ−

l
(μΛ∗

l ,j,k
, f ) + DΛ+

l
(μΛ∗

l ,j,k
, f )

}
, (6.6)

where μΛ∗
l ,j,k

represents the measure μΛ−
l ,jμΛ+

l ,k and DΛ±
l
(μΛ∗

l ,j,k
, f ) is the Dirichlet form defined in (6.3) with

the canonical measure μΛ∗
l ,j,k

in place of the grand canonical measure μ
Λ∗

l
ρ .

To prove the claim (6.6), recall that W(l, j) is the inverse of the spectral gap of the generator of the zero range
process in which j particles move on a cube of length 2l + 1. By definition of W(l, j), for each configuration ζ ,

∫
f (η, ζ )2μΛ−

l ,j (dη) −
{∫

f (η, ζ )μΛ−
l ,j (dη)

}2

≤ W(l, j)

l−1∑
x=−l

∫
g
(
η(x)

){
f
(
ηx,x+1, ζ

) − f (η, ζ )
}2

μΛ−
l ,j (dη).

Integrating with respect to μΛ+
l ,k(dζ ) we get that

∫
μΛ+

l ,k(dζ )

∫
f (η, ζ )2μΛ−

l ,j (dη)

≤
∫

μΛ+
l ,k(dζ )

{∫
f (η, ζ )μΛ−

l ,j (dη)

}2

+ W(l, j)DΛ−
l
(μΛ∗

l ,j,k
, f ).

Let

h(ζ ) =
∫

f (η, ζ )μΛ−
l ,j (dη).
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By definition of the spectral gap,

∫
h(ζ )2μΛ+

l ,k(dζ ) −
{∫

h(ζ )μΛ+
l ,k(dζ )

}2

≤ W(l, k)DΛ+
l
(μΛ+

l ,k, h).

By Schwarz inequality

DΛ+
l
(μΛ+

l ,k, h) ≤ DΛ+
l
(μΛ∗

l ,j,k
, f ).

This proves (6.6), applying the estimate on the spectral gap in Lemma 3.2 when g satisfies (B), or by assumption
when g satisfies (SL).

Multiplying both sides of (6.6) by μρ,l(j)μρ,l(k) and summing over j and k such that 0 ≤ j ≤ A(2l + 1), k ≥ 0,
B(2l + 1) ≤ j + k ≤ θN,l , we see that to prove the lemma it is enough to show that for every a > 0

∑
j,k

μρ,l(j)μρ,l(k)

{∫ ∫
f (η, ζ )μΛ−

l ,j (dη)μΛ+
l ,k(dζ )

}2

− a
〈
f, (−LN,κ,lf )

〉
μΛ∗

l
,ρ

(6.7)

vanishes as N ↑ ∞, κ ↓ 0, l ↑ ∞.
Step 2. To estimate (6.7), let

F(j, k) =
∫ ∫

f (η, ζ )μΛ−
l ,j (dη)μΛ+

l ,k(dζ ).

We now claim that there exists WN(l), where WN(l) = o(N) for fixed l, and a finite constant C0 such that∑
j,k

μρ,l(j)μρ,l(k)
[
F(j + 1, k − 1) − F(j, k)

]2

≤ WN(l)
{
DΛ−

l

(
μ

Λ∗
l

ρ , f
) + DΛ+

l

(
μ

Λ∗
l

ρ , f
)} + C0l

5D0
(
μ

Λ∗
l

ρ , f
)
, (6.8)

where the sum is over all j and k such that j ≥ 0, k ≥ 1, B(2l + 1) ≤ j + k ≤ θN,l .
To prove (6.8), note that since μΛ−

l ,j (dη) is the canonical measure,

F(j + 1, k − 1) =
∫

μΛ+
l ,k−1(dζ )

∫
f (η, ζ )

1

j + 1

∑
x∈Λ−

l

η(x)μΛ−
l ,j+1(dη).

Changing variables η′ = η − dx , the previous expression becomes

1

2l + 1

∑
x∈Λ−

l

∫
μΛ+

l ,k−1(dζ )

∫
f (η + dx, ζ )hl,j

(
η(x)

)
μΛ−

l ,j (dη),

where

hl,j

(
η(x)

) = 2l + 1

j + 1

ϕ(ρ)μρ,l(j)

μρ,l(j + 1)

1 + η(x)

g(1 + η(x))
.

Note that hl,j (η(x)) has mean equal to 1 with respect to μΛ−
l ,j (dη).

Changing variables ζ ′ = ζ + dy , the previous integral becomes

1

(2l + 1)2

∑
x∈Λ−

l

y∈Λ+
l

∫
μΛ+

l ,k(dζ )

∫
f (η + dx, ζ − dy)hl,j

(
η(x)

)
el,k

(
ζ(y)

)
μΛ−

l ,j (dη),
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where

el,k

(
ζ(y)

) = μρ,l(k)

μρ,l(k − 1)

g(ζ(y))

ϕ(ρ)

has mean 1 with respect to μΛ+
l ,k .

This identity permits to write F(j + 1, k − 1) − F(j, k) as the sum of two terms

1

(2l + 1)2

∑
x∈Λ−

l

y∈Λ+
l

∫
μΛ+

l ,k(dζ )

∫ {
f (η + dx, ζ − dy) − f (η, ζ )

}
hl,j

(
η(x)

)
el,k

(
ζ(y)

)
μΛ−

l ,j (dη)

+
∫

μΛ+
l ,k(dζ )

∫
f (η, ζ )

1

(2l + 1)2

∑
x∈Λ−

l

y∈Λ+
l

[
hl,j

(
η(x)

)
el,k

(
ζ(y)

) − 1
]
μΛ−

l ,j (dη). (6.9)

Since (a + b)2 ≤ 2a2 + 2b2, [F(j + 1, k − 1) − F(j, k)]2 is bounded above by the sum of two terms. One term,
corresponding to the last line of (6.9), is equal to

2

(〈
f ; 1

(2l + 1)2

∑
x∈Λ−

l

y∈Λ+
l

hl,j

(
η(x)

)
el,k

(
ζ(y)

)〉
l,j,k

)2

, (6.10)

where 〈F ;G〉l,j,k denotes the covariance of F and G with respect to μΛ+
l ,kμΛ−

l ,j .
Since

ϕ(ρ)μρ,l(r)

μρ,l(r + 1)
= Eμ

Λ
+
l

,r+1

[
g
(
η(1)

)]
, (6.11)

we have that

hl,j

(
η(x)

)
el,k

(
ζ(y)

) = 2l + 1

j + 1

ϕ(ρ)μρ,l(j)

μρ,l(j + 1)

1 + η(x)

g(1 + η(x))

μρ,l(k)g(ζ(y))

μρ,l(k − 1)ϕ(ρ)

= 2l + 1

j + 1

1 + η(x)

g(1 + η(x))
g(ζ(y))

Eμ
Λ

−
l

,j+1
[g(η(−1))]

Eμ
Λ

+
l

,k
[g(ζ(1))] .

We claim that under the measure μΛ+
l ,kμΛ−

l ,j ,

hl,j

(
η(x)

)
el,k

(
ζ(y)

) ≤ C0l
g(ζ(y))

Eμ
Λ

+
l

,k
[g(ζ(1))] (6.12)

for some finite constant C0 depending only on a0, a1. This bound is simple to derive when when g fulfills assumption
(B). On the other hand, under the assumptions (SL), since g is increasing, Eμ

Λ
−
l

,j+1
[g(η(−1))] ≤ g(j + 1), and since

g(k)/k is decreasing, under the measure μΛ−
l ,j , [1 + η(x)]/g(1 + η(x)) is less than or equal to (j + 1)/g(j + 1).

This proves (6.12). This is the only place where we use that g(k)/k is decreasing in k in the condition (SL).
Therefore, by Schwarz inequality, (6.10) is bounded above by

C0l〈f ;f 〉l,j,k
∑

y∈Λ+
l

Eμ
Λ

+
l

,k
[g(ζ(y))2]

Eμ
Λ

+
l

,k
[g(ζ(1))]2
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for some finite constant C0. In view of (6.11), the fact that g(m + 1) − g(m) ≤ a2, which follows from assumption
(B) or from assumption (SL2), and Lemma 6.3,

Eμ
Λ

+
l

,k

[
g
(
ζ(y)

)2] = Eμ
Λ

+
l

,k

[
g
(
ζ(y)

)]
Eμ

Λ
+
l

,k−1

[
g
(
ζ(y) + 1

)]
≤ Eμ

Λ
+
l

,k

[
g
(
ζ(y)

)]{
a2 + Eμ

Λ
+
l

,k−1

[
g
(
ζ(y)

)]}
≤ Eμ

Λ
+
l

,k

[
g
(
ζ(y)

)]{
a2 + Eμ

Λ
+
l

,k

[
g
(
ζ(y)

)]}
.

As g is increasing, by Lemma 6.3, Eμ
Λ

+
l

,1
[g(ζ(1))] ≤ Eμ

Λ
+
l

,k
[g(ζ(1))]. Hence, since a01{r ≥ 1} ≤ g(r), and since

Eμ
Λ

+
l

,1
[1{ζ(1) ≥ 1}] = Eμ

Λ
+
l

,1
[ζ(1)] = (2l + 1)−1, we have that

a0

2l + 1
= a0Eμ

Λ
+
l

,1

[
1
{
ζ(1) ≥ 1

}] ≤ Eμ
Λ

+
l

,k

[
g
(
ζ(1)

)]
. (6.13)

It follows from this estimate and from the previous bound that (6.10) is less than or equal to

C0l
3〈f ;f 〉l,j,k.

Multiply this expression by μρ,l(j)μρ,l(k), recall the bound (6.6), and sum over j and k such that j ≥ 0, k ≥ 1,
B(2l + 1) ≤ j + k ≤ θN,l , to get that (6.10) is bounded by

WN(l)
{
DΛ−

l

(
μ

Λ∗
l

ρ , f
) + DΛ+

l

(
μ

Λ∗
l

ρ , f
)}

,

where WN(l) = o(N) for fixed l.
We now estimate the first term in the decomposition (6.9). By Schwarz inequality and by the bounds (6.12), (6.13),

the square of this expression is less than or equal to

C0l
3

∑
x∈Λ−

l

y∈Λ+
l

∫
μΛ+

l ,k(dζ )

∫
g
(
ζ(y)

){
f (η + dx, ζ − dy) − f (η, ζ )

}2
μΛ−

l ,j (dη)

for some finite constant C0. The sum over j ≥ 0, k ≥ 1 of this expression, when multiplied by μρ,l(k)μρ,l(j), is
bounded by

C0l
3

∑
x∈Λ−

l

y∈Λ+
l

∫
μΛ+

l ,ρ(dζ )

∫
g
(
ζ(y)

){
f (η + dx, ζ − dy) − f (η, ζ )

}2
μΛ−

l ,ρ(dη).

Changing variables ζ ′ = ζ − dy , adding and subtracting in the expression inside braces the terms f (η + d−1, ζ ),
f (η, ζ + d1), we estimate the previous expression by

C0l
5D0(μΛ∗

l ,ρ
, f ) + C0l

5{DΛ−
l
(μΛ∗

l ,ρ
, f ) + DΛ+

l
(μΛ∗

l ,ρ
, f )

}
for some constant C0. This proves claim (6.8).

Step 3. In view of (6.7) and of (6.8), to prove the lemma it is enough to show that for every a > 0

lim
l→∞ lim sup

κ→0
lim sup
N→∞

sup
F

{∑
j,k

F (j, k)2μρ,l(j)μρ,l(k)

− aκ−1
∑
j,k

[
F(j + 1, k − 1) − F(j, k)

]2
μρ,l(j)μρ,l(k)

}
= 0,
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where the first sum is carried over all 0 ≤ j ≤ A(2l + 1), k ≥ 0, B(2l + 1) ≤ j + k ≤ θN,l , the second sum is carried
over all j ≥ 0, k ≥ 1, B(2l +1) ≤ j +k ≤ θN,l and where the supremum is carried over all functions F : N0 ×N0 → R

such that
∑

j,k≥0 F(j, k)2μρ,l(j)μρ,l(k) = 1.
The expression inside braces can be bounded by

θN,l∑
M=B(2l+1)

μρ,Λ∗
l
(M)ZM(F)

{
A(2l+1)∑

j=0

G(j)2μΛ∗
l ,M

(j)

− aκ−1
B(2l+1)−1∑

j=0

[
G(j + 1) − G(j)

]2
μΛ∗

l ,M
(j)

}
, (6.14)

where

μρ,Λ∗
l
(M) =

B(2l+1)∑
j=0

μρ,l(j)μρ,l(M − j), μΛ∗
l ,M

(j) = μρ,l(j)μρ,l(M − j)

μρ,Λ∗
l
(M)

,

ZM(F) =
B(2l+1)∑

j=0

F(j,M − j)2μΛ∗
l ,M

(j), ZM(F)G(j)2 = F(j,M − j)2.

Note that we omitted the dependence on B of the variables μρ,Λ∗
l
(M), μΛ∗

l ,M
(j), ZM(F) and that

∑
0≤j≤B(2l+1)

G(j)2μΛ∗
l ,M

(j) = 1.

The expression inside braces in (6.14) can be interpreted in terms of a random walk on an interval of length
B(2l + 1) where the total number of particles M becomes a parameter. In fact, the second term in braces corresponds
to the Dirichlet form of a random walk on {0, . . . ,B(2l + 1)} which jumps from j to j + 1, 0 ≤ j ≤ B(2l + 1) − 1, at
rate 1 and from j + 1 to j at rate rM(j + 1, j) = μΛ∗

l ,M
(j)/μΛ∗

l ,M
(j + 1). By (6.11),

rM(j + 1, j) = μρ,l(j)

μρ,l(j + 1)

μρ,l(M − j)

μρ,l(M − j − 1)
=

Eμ
Λ

+
l

,j+1
[g(η(1))]

Eμ
Λ

+
l

,M−j
[g(η(1))] .

We claim that this random walk has a spectral gap

λ̂l,B which depends on B and l but is uniform over M. (6.15)

Assume first that g satisfies (B). In this case, by (6.13), the previous ratio is bounded above by a1a
−1
0 (2l + 1) and

below by a0a
−1
1 (2l + 1)−1. The jump rates are therefore bounded below and above by finite constants independent of

M , and claim (6.15) follows easily.
Assume now that g satisfies (SL). We claim that for l large enough,

lim
M→∞ max

0≤j≤B(2l+1)−1
rM(j + 1, j) = 0. (6.16)

Indeed, by Lemma 6.3, Eμ
Λ

+
l

,j+1
[g(η(1))] ≤ g(B(2l + 1)). On the other hand, for every D ≤ D′(2l + 1) ≤ M −

B(2l + 1) ≤ M − j

Eμ
Λ

+
l

,M−j

[
g
(
η(1)

)] ≥ Eμ
Λ

+
l

,M−j

[
g
(
η(1)

)
1
{
η(1) ≥ D

}]
≥ g(D)μΛ+

l ,D′(2l+1)

{
η(1) ≥ D

} ≥ g(D)
(
μD′

{
η(1) ≥ D

} − C0/l
)
,
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where the last inequality follows from the equivalence of ensembles [7], Appendix 2.1, Corollary 1.7 and C0 is a finite
constant. The right-side can be made arbitrarily large since limD′↑∞ μD′ {η(1) ≥ D} = 1 and limD↑∞ g(D) = ∞. This
proves claim (6.16).

Fix M0 and l large enough so that rM(j + 1, j) < 1 for all 0 ≤ j ≤ B(2l + 1) − 1 = Q, M ≥ M0. The stationary
probabilities for the corresponding birth–death chain on the interval can be expressed as

πj = (
∏j−1

s=0 rM(s + 1, s))−1

1 + ∑Q
t=1(

∏t−1
s=0 rM(s + 1, s))−1

,

where the empty product in the numerator is taken to be 1 when j = 0. We note by construction that πj ≤ πj+1. We
have the Poincaré inequality:

Varπ (f ) ≤
∑
x,y

πxπy

(
f (x) − f (y)

)2 ≤ 2Q
∑
y>x

πxπy

y−1∑
z=x

(
f (z) − f (z + 1)

)2

≤ 2Q
∑
y>x

πy

y−1∑
z=x

πz

(
f (z) − f (z + 1)

)2 ≤ 2Q2
Q−1∑
z=0

πz

(
f (z) − f (z + 1)

)2
.

Hence, for large M , the inverse of the spectral gap, λ̂−1
l,B , is bounded by C0l

2 for some constant C0 depending only
on B . For M ≤ M0, recalling (6.12), we may obtain a lower and an upper bound on rM(j + 1, j) which depend only
on a0, a1, a2, B , l and M0. It is easy to show that in this case the inverse gap, λ̂−1

l,B , is bounded by a constant which
depends only on B , l and M0. This concludes the proof of claim (6.15).

At this point, we may apply the Rayleigh bound ([7], Theorem A3.1.1) to estimate the expression in braces in
(6.14). Let V0 = 1{0, . . . ,A(2l + 1)} and let V̄0 = V0 − EμΛ∗

l
,M

[V0] so that

A(2l+1)∑
j=0

G(j)2μΛ∗
l ,M

(j) =
B(2l+1)∑

j=0

V0(j)G(j)2μΛ∗
l ,M

(j).

Since ‖V0‖L∞ ≤ 1, by the Rayleigh expansion and by the spectral gap, the display in braces in (6.14) is bounded by

A(2l+1)∑
j=0

μΛ∗
l ,M

(j) + a−1κλ̂−1
l,B

1 − 2a−1κλ̂−1
l,B

.

The second term vanishes as κ ↓ 0. To bound the first term, let αj = μρ,l(j)μρ,l(M − j), 0 ≤ j ≤ M . Since B > 2A,
the first term in the last formula is equal to∑A(2l+1)

j=0 αj∑B(2l+1)
j=0 αj

≤
∑A(2l+1)

j=0 αj∑2A(2l+1)
j=A(2l+1)

αj

≤ max
0≤j≤A(2l+1)

αj

αj+A(2l+1)

.

As above in calculating rM(j + 1, j), since g is increasing and M ≥ B(2l + 1), if R = A(2l + 1), S = (B −
2A)(2l + 1), by Lemma 6.3,

αj

αj+R

=
j+R−1∏

k=j

Eμ
Λ

+
l

,k+1
[g(η(1))]

Eμ
Λ

+
l

,M−k
[g(η(1))] ≤

{Eμ
Λ

+
l

,2R
[g(η(1))]

Eμ
Λ

+
l

,S
[g(η(1))]

}R

.

Since B > 4A, by [7], Corollary 1.6, Appendix 2.1, for all large l, we have

Eμ
Λ

+
l

,2R

[
g
(
η(1)

)] ≤ ϕ(2A) + C0

l
< ϕ(B − 2A) − C0

l
≤ Eμ

Λ
+
l

,S

[
g
(
η(1)

)]
for some finite constant C0. Hence, the expression appearing in the previous displayed formula vanishes exponentially
fast as l ↑ ∞. This concludes the proof of the lemma.
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6.2. Proof of Theorem 2.6

Given Lemmas 5.1 and 6.1, the argument is similar to that in [6]. Recall H(ρ) = Eνρ [h], Hl(η) = H(ηl(0)), and
H̄l(ρ) = Eμρ [Hl]. Then, we have that

E
N

[∣∣∣∣∣
∫ t

0

{
h(ηs) − 1

εN

εN∑
x=1

H̄l

(
ηκN

s (x)
)}

ds

∣∣∣∣∣
]

≤ E
N

[∣∣∣∣
∫ t

0

{
h(ηs) − H

(
ηl

s(0)
)}

ds

∣∣∣∣
]

+ E
N

[∣∣∣∣∣
∫ t

0

{
H

(
ηl

s(0)
) − 1

εN

εN∑
x=1

H
(
ηl

s(x)
)}

ds

∣∣∣∣∣
]

+ E
N

[∣∣∣∣∣
∫ t

0

{
1

εN

εN∑
x=1

(
H

(
ηl

s(x)
) − H̄l

(
ηκN

s (x)
))}

ds

∣∣∣∣∣
]
.

As h and H are bounded, Lipschitz by Lemma 6.5, the first and second terms vanish by Lemmas 5.1 and 6.1. The
third term is recast as

E
N

[∣∣∣∣
∫ t

0

{
1

N

∑
x∈TN

ιε(x/N)
(
τxHl(ηs) − H̄l

(
ηκN

s (x)
))}

ds

∣∣∣∣
]
,

where ιε(·) = ε−11{(0, ε]}. It vanishes by Proposition 4.1 as N ↑ ∞, and κ ↓ 0.

Lemma 6.5. Let h : N → R+ be a nonnegative, Lipschitz function for which there is a constant C such that kh(k) ≤
Cg(k) for k ≥ 1. Then, H(ρ) = Eνρ [h(η(0))] is also nonnegative, bounded and Lipschitz, and vanishes at infinity.

Proof. It follows from the assumptions of the lemma that h is bounded, as g(k) ≤ a1k, and that h vanishes at infinity.
Hence, H , which is clearly nonnegative, is also bounded. We claim that H vanishes at infinity since

H(ρ) ≤ sup
x≥A

h(x) + 1

ρ
Eμρ

[
η(0)h

(
η(0)

)
1
{
η(0) ≤ A

}] ≤ sup
x≥A

h(x) + A‖h‖L∞

ρ
.

To show H is Lipschitz, it is enough to show H ′ is absolutely bounded. Compute

H ′(ρ) = ϕ′(ρ)

ρϕ(ρ)

〈
h
(
η(0)

)
η(0)2〉

μρ
−

{
1

ρ2
+ ϕ′(ρ)

ϕ(ρ)

}〈
h
(
η(0)

)
η(0)

〉
μρ

.

We first examine this expression for ρ large. The second term, by the assumption kh(k) ≤ Cg(k), is bounded by
C{ϕ(ρ)/ρ2 + ϕ′(ρ)}. A coupling argument shows that ϕ′(ρ) ≤ a2 where we recall that a2 is the Lipschitz constant of
the function g. On the other hand, ϕ(ρ)/ρ2 ≤ a1/ρ because g(k) ≤ a1k.

Since kh(k) ≤ Cg(k) and since Eμρ [g(η(0))η(0)] = ϕ(ρ)(1 +ρ), the first term is bounded by Ca2(1 +ρ)/ρ. This
proves that H ′ is absolutely bounded for ρ large.

It is also not difficult to see that H ′(ρ) is bounded for ρ close to 0. �
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