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Abstract. Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a re-
sponse to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model
with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order N−2/3, N the size of the system,
the “critical” hysteresis loop becomes random.

Résumé. L’hystérésis dynamique est un phénomène qu’on observe dans les systèmes ferromagnétiques au-dessous de la tempera-
ture critique, en réponse à des variations adiabatiques du champ magnétique extérieur. Nous étudions le problème dans le contexte
du modéle d’Ising de champ moyen avec la dynamique de Glauber, en montrant que, pour des fréquences d’oscillations du champ
magnétique d’ordre de N−2/3, avec N la taille du système, la boucle d’hystérésis « critique » devient aléatoire.
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1. Introduction

Hysteresis appears when a time dependent magnetic field h = h(t) is applied to a ferromagnet whose temperature is
kept fixed below the critical value. The origin of the phenomenon lies in the fact that, at the equilibrium, at each value
of the external magnetic field h may not correspond a unique value of the magnetization m of the system. The value
of m(t) is, thus, not determined by h(t) alone but also by the previous history of the input.

The phenomenon has been widely studied and modelled. Most classical theories (see for example [5,6,22]) consider
hysteresis from a static point of view, by modelling it through integral operators not depending on the velocity of
variation of the external input.

A dynamical approach to the study of the phenomenon has been proposed for the first time by Rao et al. [20] in the
early nineties. The new theory aroused great interest and a number of experimental, numerical and theoretical works
appeared on the argument in the last twenty years, investigating the response of the system to adiabatic oscillations of
the magnetic field. They analyse, in particular, the dependence of shapes and areas of the hysteresis loops on amplitude
and frequency of the input oscillations. Most of these results are essentially numerical. Monte Carlo simulations have
widely been used to study the hysteretic response of a nearest-neighbor ferromagnetic Ising model (see for instance
[1,10,11,15–17,20,23]). On the other hand, several theoretical and numerical results are concerned with those known
as mean-field models (see [1,9,20,21]). In these models the dynamics is reduced to a single differential equation of
the order parameter (the uniform magnetization m(t)). These equations govern the dynamics of the magnetization in
stochastic spin models in the limit of infinite system volume. Therefore they neglect both thermal fluctuations and
finite system size effects. A first rigorous analysis of the effects of the stochastic fluctuations on the properties of
the hysteresis cycles has been carried out by B. Genz and N. Berglund in a series of papers of about ten years ago
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Fig. 1. The picture shows the dependence of the two equilibrium branches X±(h) (black lines) on the external magnetic field h. Adiabatic oscilla-
tions of the magnetic field of amplitude A > hc yield the typical hysteresis loop (blue line).

[2–4]. They model the thermal fluctuations by adding a stochastic noise to a mean-field type equation. They consider
a Langevin equation with a Ginzburg–Landau potential:

dx = (
F(x) + h

)
dt + N−1/2 dw(t), F (x) = x − x3, (1.1)

where w(t) is the standard Brownian motion. We give to N > 0 the physical interpretation of the total number of
spin sites in a ferromagnetic system. Then, in the large N regime, equation (1.1) can be thought of as a continuous
counterpart of our Ising spin dynamics (see Section 2).

In the present paper we shall study the problem for the Glauber process in the Curie–Weiss model, from which (1.1)
is inspired.

Let hc > 0 be the “coercive magnetic field” value, then for |h| ≤ hc the magnetization density of the ferromagnet
may have two equilibrium values, X+(h) and X−(h) (see Fig. 1). The upper branch X+(h) continues past hc while
it disappears for h < −hc; the opposite holds for the lower branch X−(h). Let us apply, now, a slowly oscillating
magnetic field h(t). We denote, respectively, by A and ω the amplitude and the frequency of the oscillations (we
choose, for instance, h(t) = −A cos(ωt)). Let m(t) be the magnetization observed at time t and choose initially
m(0) = X+(h(0)). In the adiabatic (quasi-static) regime, where ω is very small, the following is observed. If A ≤ hc

then m(t) ≈ X+(h(t)) for any t ≥ 0. If A > hc, m(t) traces out the so called hysteresis loop, in the sense that m(t) ∈
{X+(h(t)),X−(h(t))} (approximately), jumping from the upper to the lower branch when h(t) crosses −hc and the
opposite when h(t) crosses hc . A sharp statement (which avoids the above approximated statements) can be obtained
in “the adiabatic limit” where ω → 0.

The pediod of the magnetic field oscillations is of order ω−1, thus, in the adiabatic regime the natural time-scale
of the dynamics is very long. In long time intervals other phenomena may appear which in short time intervals are
negligible and which may invalidate the picture. In the context of (1.1) X±(h) are identified with the locally stable
solutions of the stationary equation F(x) = −h. If h is constant, say h ∈ (0, hc), then X−(h) is metastable and, on
a time interval which diverges exponentially with N (as N → ∞), there is tunneling from X−(h) to X+(h). Thus,
if ω is exponentially small with N , the oscillations period is exponentially long with N , and then stochastic jumps
between the two branches occur, essentially perturbing the hysteresis loop. We intend to consider a different regime
for the frequency ω, i.e. we take ω = N−κ , κ > 0. We shall concentrate here on the critical amplitude case A = hc .
In such a case the deterministic equation (i.e. (1.1) without the Brownian term) predicts that the magnetization m(t)

tracks always the upper branch X+(h(t)), where it was initially. [3] proves that, with the addition of the stochastic
effects, there exists a critical value for κ , κ = 2

3 . If κ < 2
3 the dynamics is still governed by the deterministic equation,
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i.e. the magnetization tracks the upper branch, in the adiabatic limit. Whereas, if κ > 2
3 there is hysteresis, thus the

magnetization jumps to the lower branch as soon as h = −hc and then back to the upper one when h = hc and so forth.
In the present work we will prove κ = 2

3 to be the critical value even in our Ising spin context. We shall concentrate
here on the critical case κ = 2

3 which is not covered by the analysis in [3,4]. We will see that for κ = 2
3 the hysteresis

loop becomes truly random. There is a positive and not one probability to leave the upper-lower branch at ±hc. Our
future aim is to extend our analysis to the Kac potential case by taking into account spatial effects.

2. Definitions and results

The mean field Ising model

The configuration space is {−1,1}N , N ∈ N; its elements are denoted by σ = {σ(i), i = 1, . . . ,N}, σ(i) the spin at
site i. By

mN = mN(σ) := 1

N

N∑
i=1

σ(i) (2.1)

we denote the magnetization density of the configuration σ , so that mN ∈ MN ,

MN := 1

N
{−N,−N + 2, . . . ,N − 2,N}.

The mean field Hamiltonian is

Hh,N(σ ) := N

(
−mN(σ)2

2
− hmN(σ)

)

and the mean field Gibbs measure at the inverse temperature β > 0 is the probability Gβ,h,N on {−1,1}N given by

Gβ,h,N (σ ) := e−βHh,N (σ )

Zβ,h,N

,

where the partition function Zβ,h,N is the normalization factor.
For an introduction to the mean field Ising model see Section 4.1 of [19].

The Glauber dynamics

A Glauber dynamics for the Ising system is the Markov process on {−1,1}N with generator

Lf (σ) :=
N∑

i=1

c(i, σ ;h)
(
f (σi) − f (σ )

)
, (2.2)

where σi(j) = σ(j) for i �= j and σi(i) = −σ(i); c(i, σ ;h) > 0, the spin flip intensity at i, is given by the formula

c(i, σ ;h) = e−β[Hh,N (σ (i))−Hh,N (σ )]

e−βHh,N (σ (i)) + e−βHh,N (σ )

with σ (i) the configuration obtained from σ by flipping the spin at i. For more details on the Glauber dynamics for
mean field Ising systems see Section 5.1 of [19].

h = h(t) is a smooth function of time, hence σ(t) is a time non-homogeneous Markov process. Since the Hamil-
tonian depends on σ via mN(σ), the process {mN(σt ), t ≥ 0} is itself Markov with state space MN and generator L
given by

Lhf (x) := c+(x,h)
[
f (x + 2/N) − f (x)

] + c−(x,h)
[
f (x − 2/N) − f (x)

]
(2.3)
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with

c±(x,h) = N

2
(1 ∓ x)ĉ±(x,h), ĉ±(x,h) = e±β[h+(x±1/N)]

e−β[h+(x±1/N)] + eβ[h+(x±1/N)] ,

for x ∈ MN . When h is time independent there is a unique invariant measure (see Section 5.1.2 of [19]) which is the
marginal μβ,h,N of Gβ,h,N on the magnetization density mN defined in (2.1). μβ,h,N is then the probability on MN

given by

μβ,h,N (x) := e−βNφβ,h,N (x)

Zβ,h,N

, x ∈ MN,

where

φβ,h,N (x) := −x2

2
− hx − SN(x)

β

and

eN SN(x) := card
(
σ ∈ {−1,1}N : mN(σ) = x

)
.

If xN ∈ MN , xN → x ∈ [−1,1] as N → ∞ then φβ,h,N (xN) → φβ,h(x) where

φβ,h(x) = −x2

2
− hx − S(x)

β

and

S(x) = −1 − x

2
log

1 − x

2
− 1 + x

2
log

1 + x

2
.

The mean field phase transitions

For any β ≤ 1 and any h ∈ R the mean field free energy density (see Section 4.1.2 of [19]) φβ,h(x) is a convex function
of x (absence of phase transitions). If instead β > 1 (see Fig. 2) there is hc > 0 such that, for any |h| < hc , φβ,h(x) is
a double well function of x with local minima at X+(h) > X−(h) and local maximum at X0(h) ∈ (X−(h),X+(h));
X±(h) and X0(h) are solutions of the mean field equation:

x = tanh
{
β(x + h)

}
,

X+(h) is the absolute minimum for h ≥ 0 and X−(h) for h ≤ 0, then only at h = 0 there are two absolute minima and
thus a phase transition; for h ∈ (0, hc), X+(h) is the only pure phase while X−(h) is a metastable state, the opposite
holds for negative fields. When h → −hc, X+(h)−X0(h) → 0 and the limit xc := X+(−hc) of X+(h) is an inflection
point for the function φβ,−hc (x). By symmetry the analogous picture describes X−(h) when h → hc .

The macroscopic mean field dynamics

The infinite volume dynamics is governed by the ODE

dx

dt
= F(x,h), F (x,h) := −x + tanh

{
β(x + h)

}
, (2.4)

in the following sense. Let mN(t) be the process of generator Lh(t) (see (2.3)), h(t) a smooth function of t , which
starts from m0

N ∈ MN . We suppose that m0
N → x0 ∈ [−1,1] as N → ∞ and denote by PN the law of mN(t), t ≥ 0.

We have the following result.
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Fig. 2. The picture shows some profiles of φβ,h(x) according to different values of h, for β > 1.

Theorem 2.1. With the above notation, for any δ > 0 and any T > 0,

lim
N→∞ PN

{
sup
t≤T

∣∣mN(t) − x(t)
∣∣ ≥ δ

}
= 0, (2.5)

where x(t) is the unique solution of

dx

dt
= F

(
x,h(t)

)
, x(0) = x0. (2.6)

The proof of Theorem 2.1 is omitted. The proof in the case of constant h can be found, for instance, in Section 5.1.5
of [19], the proof easily extends to the present case.

The adiabatic limit

Let

h(t) := −hc cos t (2.7)

we denote by xω(t) the solution of (2.6) with h = h(ωt) and initial condition xω(0) = X+(−hc). We omit the proof
that

Theorem 2.2. For any τ > 0

lim
ω→0

sup
t≤ω−1τ

∣∣xω(t) − X+
(
h(ωt)

)∣∣ = 0. (2.8)

Theorem 2.2 proves that, for oscillations of critical amplitude hc , in the adiabatic limit ω → 0 there is not hysteresis
(see Fig. 3). The relevant time scale is t = ω−1τ and the limit evolution is

lim
ω→0

xω

(
ω−1τ

) = X+
(
h(τ)

)
. (2.9)
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Fig. 3. The function xω(t) (blue line) for small values of ω tracks the positive branch X+(h(t)) (black line).

The main theorem

Theorem 2.1 asserts that the dynamics in the macroscopic limit N → ∞ on finite time intervals is described by the
deterministic mean field evolution equation (2.6). When ω is small with N , the period of the magnetic field oscillations
is large with N . Therefore the behavior exhibited by (2.9) in the adiabatic limit may not correspond to what the Glauber
process does for large but finite N . As it will turn out, it all depends on the way ω → 0 as N → ∞. As stated in the
Introduction, the critical case is ω = N−2/3 to which we restrict hereafter (the origin of the factor 2/3 will become
clear from the proofs but it will also be explained in Section 3 in a heuristic way).

There are criticalities for values of the magnetic field in a neighborhood of ±hc. Since h is a periodic function of
time and the process is invariant under change of sign we shall restrict ourselves to study the behavior in a semi-period.
We consider t ∈ N2/3[−π

2 , π
2 ] and suppose h = hN(t), with

hN(t) := h
(
N−2/3t

) = −hc cos
(
N−2/3t

)
(2.10)

so that the critical time is set at t = 0. We shall denote by PN the law of the process mN(t), t ∈ N2/3[−π
2 , π

2 ] of
generator LhN (t), with mN(−N2/3 π

2 ) = m0
N . We choose such initial value in a neighborhood of size N−1/2+γ , γ > 0,

of the positive branch, i.e. |m0
N − X+(0)| ≤ N−1/2+γ (since hN(−N2/3 π

2 ) = 0). The main result is given by the
following theorem. It provides the probability, for large N , to find the magnetization in a neighborhood of one of the
two equilibrium branches X±(hN(t)), respectively, before and after the critical time t = 0.

Theorem 2.3 (Main theorem). Consider the events

H±
γ (I ) :=

{
sup
t∈I

∣∣mN(t) − X±
(
hN(t)

)∣∣ ≤ N−1/2+γ
}
, I ⊆ R, γ > 0. (2.11)

There is p− ∈ (0,1) so that for any γ,η > 0 and γ ′ > γ , if |m0
N − X+(0)| ≤ N−1/2+γ then

lim
N→∞ PN

{
H+

γ ′

(
N2/3

[
−π

2
,−η

])}
= 1, (2.12)

lim
N→∞ PN

{
H±

γ

(
N2/3

[
η,

π
2

])}
= p±, (2.13)
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where p+ = 1 − p−.

The critical interval is N2/3(−η,η), η > 0 arbitrarily small. Equation (2.12) shows that, in the limit as N → ∞,
the magnetization remains, almost surely, in a neighborhood of size N−1/2+γ ′

, γ ′ > γ , of the positive branch before
the criticality (i.e. for t < −ηN2/3). Equation (2.13) provides the behavior after the criticality (for t > ηN2/3), it states
that there exists a non-trivial probability to find the magnetization either in the positive or in the negative equilibrium
branches.

The result can be iterated, as the same arguments can be repeated every time the process runs into a criticality. The
macroscopic dynamics is no more deterministic since, at every step there is a positive probability for the magnetization
to jump or not, and the hysteresis loops observed become, in this sense, random.

3. Outline of proof

The proof of (2.12) is simple. Indeed, if we fix h > −hc + ε, for some ε > 0, and the magnetization is initially in
a neighborhood of X+(h), then mN(t) has a drift towards X+(h). Therefore, with large probability, it stays in a
neighborhood of size N−1/2+γ ′

(as N−1/2 is the strength of the noise) of the positive branch. Only after a longer
(exponential) time, tunneling to the negative branch will be observed. In our case h is not fixed but it is so slowly
varying that the above argument remains valid as long as h(t) > −hc + ε, for some ε > 0 (see Section 7). When h

approaches −hc the above picture is wrong because at −hc the value xc is stationary but not stable. Lack of stability
and slow changes of the frequency make the noise competitive with the drift (for the special choice ω = N−2/3) as we
are going to see.

Scalings

In order to understand the scalings let us go back to the stochastic ODE (1.1). Let the magnetic field oscillate as
h(ωt) = −hc cos(ωt), by expanding to leading orders F(x) + h (F(x) given in (2.4)) around xc,−hc (i.e. for x − xc

and ωt both small) we get approximately

dx =
{
hc

(ωt)2

2
+ F ′′(xc)

2
(x − xc)

2
}

dt + N−1/2 dw(t). (3.1)

We scale y = ωa(x − xc) and τ = ωbt , thus

ω−a dy =
{
ω−2b hcω

2τ 2

2
+ ω−2a F ′′(xc)y

2

2

}
ω−b dτ + N−1/2ω−b/2 dw(τ) (3.2)

which becomes independent of ω and N if

ωa−b/2N−1/2 = 1, 2 + a − 3b = 0, a + b = 0, (3.3)

which yields ω = N−2/3.
The same scalings apply to our case as we shall prove using extensively martingales techniques. In order to get rid

of constants in the final equation, it is convenient to introduce suitable coefficients in the scaling transformation (3.2),
we define, thus, the process

YN(t) = νN1/3(mN

(
μN1/3t

) − xc

)
(3.4)

with

μ =
(

2

βhcxc

)1/4

and ν = (βxc)
3/4

(
2

hc

)1/4

. (3.5)

We shall study the process YN(t) in a time interval which starts from time −T , letting T → +∞ after N → ∞.
The proof of (2.12) can be extended (see Section 7) till time −μT N1/3 (which is the microscopic time corresponding
to time −T for YN(·)) in the following sense:



314 G. Carinci

Theorem 3.1. There is c > 0 so that, for any T large enough, ε > 0 small enough,

lim sup
N→∞

PN

{∣∣YN(−T ) − T
∣∣ ≤ ε

} ≥ 1 − e−cε2T . (3.6)

One of the main points in the proof of (2.13) will be to show (see Sections 4 and 8) that the law of YN(t) converges,
as N → ∞, to the law of the stochastic ODE

dY(t) = [
t2 − Y 2(t)

]
dt + ξ dwt, ξ = 2

β
μν2, (3.7)

which is (modulo multiplicative coefficients) the same as (3.1) with parameters as in (3.3). Due to the quadratic
dependence on Y the solution can blow up in a finite time, therefore the process is defined with values on R ∪ {−∞},
with the convention that, if Y(t) = −∞, then Y(t ′) = −∞ for all t ′ ≥ t . The drift in (3.7) vanishes on the two straight
lines Y = ±t . It is negative for Y < −|t | and it points towards |t | for Y > −|t |. A more careful analysis shows that
there is a critical trajectory y∗(t) < 0 solution of the deterministic version (i.e. with ξ = 0) of (3.7) such that any
deterministic solution which starts above the critical curve is exponentially asymptotic to (t, t) as t → ∞.

We denote by P−T ,y the law on R∪ {−∞} of the solution Y(t), t > −T , of (3.7) starting from Y(−T ) = y, T > 0.
In Section 5 we prove the following theorem.

Theorem 3.2. Let P be the probability law with support on solutions Y(t) of (3.7) such that

lim
t→−∞

∣∣Y(t) + t
∣∣ = 0 P -a.s. (3.8)

then there exist p± ∈ (0,1), p+ = 1 − p−, such that

P
{
there is t : Y(t) = −∞} = p− and P

{
lim

t→∞
∣∣Y(t) − t

∣∣ = 0
}

= p+. (3.9)

For any ε > 0 small enough, for any bounded continuous function g(y) with compact support and any t ∈ R,

lim
T →∞ 1|y−T |≤εEP−T ,y

[
g
(
Y(t)

)] = EP
[
g
(
Y(t)

)]
. (3.10)

Moreover there exists c > 0 such that, for any T large enough, ε small enough,

P
{∣∣Y(−T ) − T

∣∣ ≤ ε
}

> 1 − e−cε2T . (3.11)

Thus with P probability one either Y(t) blows up in a finite time or it is asymptotic to t as t → ∞, both events
having non-zero probability. The next goal is to extend the above result to the finite N process YN(t). For T > 0 we
define the rectangle:

RT = {
(t, y) ∈ R

2: t ∈ [−T ,T ], |y| ≤ 2T
}

(3.12)

and, for ε ∈ (0,1),

∂R+
T := {T } × [T − ε,T + ε], ∂R−

T := [−T ,T ] × {−2T }, (3.13)

∂R±
T ⊆ ∂RT . For the processes Y(t) such that (−T ,Y (−T )) ∈ RT , we denote by τT the first exit time from RT

τT := inf
{
t ≥ −T : Y(t) /∈ RT

}
(3.14)

and define the sets

E ±
T = {

Y :
(
τT ,Y (τT )

) ∈ ∂R±
T

}
. (3.15)

We shall prove in Section 5
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Proposition 3.3. Let Y(t), t ≥ −T , be a solution of (3.7) starting at −T from y: |y − T | ≤ ε, ε > 0 small enough,
then

lim
T →∞ P−T ,y

{
Y ∈ E +

T ∪ E −
T

} = 1 (3.16)

moreover

lim
T →∞ P−T ,y

{
lim

t→∞
∣∣Y(t) − t

∣∣ = 0|Y ∈ E +
T

}
= 1 (3.17)

and

lim
T →∞ P−T ,y

{
there is t : Y(t) = −∞|Y ∈ E −

T

} = 1. (3.18)

The following corollary is a direct consequence of Theorem 3.2 and Proposition 3.3:

Corollary 3.4. For Y(t) as in the previous proposition we have

lim
T →∞

∣∣P−T ,y

{
Y ∈ E ±

T

} − p±
∣∣ = 0. (3.19)

Let PN,−T ,y be the law of YN(t) given YN(−T ) = y. Using martingale convergence theorems, in Section 8 we
prove the following result.

Proposition 3.5. For Y(t) solution of (3.7) starting at −T from y: |y − T | ≤ ε, ε small enough, we have

lim
N→∞ PN,−T ,y

{
YN ∈ E ±

T

} = P−T ,y

{
Y ∈ E ±

T

}
(3.20)

and

lim
N→∞ PN,−T ,y

{
YN ∈ E +

T ∪ E −
T

} = P−T ,y

{
Y ∈ E +

T ∪ E −
T

}
. (3.21)

Proposition 3.5 allows us to extend the results obtained for Y(t) to the finite N process YN(t). Finally in Section 8
we prove the following proposition that is the last ingredient to conclude the proof of Theorem 2.3.

Proposition 3.6. For any η, γ > 0,

lim
T →∞ lim

N→∞ PN

{
H±

γ

(
N2/3

[
η,

π
2

])∣∣∣YN ∈ E ±
T

}
= 1. (3.22)

4. Limit dynamics in the critical region

The study of the limit behavior as N → ∞ of the spin-flip evolution defined in Section 2 is based on some martingale
theorems. In our dynamics we have two natural martingales:

MN,T (t) = mN(t) − mN

(−μT N1/3) −
∫ t

−μT N1/3
FN

(
mN(s),hN(s)

)
ds, (4.1)

where FN(x,h) := Lhx, T > 1, and

M2
N,T (t) −

∫ t

−μT N1/3
GN

(
mN(s),hN(s)

)
ds (4.2)

with GN(x,h) := Lhx
2 − 2xLhx.

In the following lemma we prove that, for large N , the function FN(x,h) is well approximated by the infinite
volume drift F(x,h) = −x + tanh{β(x + h)} (see the infinite volume equation (2.4)).



316 G. Carinci

Lemma 4.1. There exists c > 0 such that, for any x ∈ [−1,1], |h| ≤ hc, N large enough,

∣∣FN(x,h) − F(x,h)
∣∣ ≤ c

N
(4.3)

and, for Λ(x,h) = 1 − x tanh{β(x + h)},
∣∣N GN(x,h) − 2Λ(x,h)

∣∣ ≤ c

N
. (4.4)

Proof. We have

FN(x,h) = 2

N

(
c+(x,h) − c−(x,h)

) = (
ĉ+(x,h) − ĉ−(x,h)

) − x
(
ĉ+(x,h) + ĉ−(x,h)

)

then there exists c > 0 such that
∣∣ĉ+(x,h) + ĉ−(x,h)

∣∣ ≤ c

N
and

∣∣(ĉ+(x,h) − ĉ−(x,h)
) − tanh

{
β(x + h)

}∣∣ ≤ c

N
(4.5)

for any N large enough, that yields (4.3). Now

GN(x,h) = 4

N2

[
c+(x,h) + c−(x,h)

]

thus

2 − N GN(x,h) = 2
[
1 − (

ĉ+(x,h) + ĉ−(x,h)
)] + 2x

[
ĉ+(x,h) − ĉ−(x,h)

]
then (4.4) follows from (4.5). �

Let Y(t), t ≥ −T , be the solution of (3.7) starting from Y(−T ) = y, and τT be the first exit time from the rectangle
RT (see (3.12) and (3.14)). We denote by P ∗−T ,y the law of the stopped process Y(t ∧ τT ) on D[−T ,T ]. We call
τN,T the corresponding stopping time for the finite N -process YN(t) (see (3.4)) and denote by P ∗

N,−T ,y the law of the
corresponding stopped process. We are going to prove (see Proposition 4.3) the convergence of P ∗

N,−T ,y to P ∗−T ,y for
suitable T ,y. Let D[−T ,T ] be the space of functions on [−T ,T ] that are right-continuous and have left-hand limits.
The convergence results in this section are meant in the sense of the Skorohod metric on D[−T ,T ]. For more details
on the space D[−T ,T ] and the weak convergence on D[−T ,T ] see Chapter 3 of [7].

For the martingale M̂N,T (t) := νN1/3MN,T (μN1/3(t ∧ τN,T )),

M̂N,T (t) = YN(t ∧ τN,T ) − YN(−T ) − νμN2/3
∫ t∧τN,T

−T

FN

(
m

(
μsN1/3), hN

(
μsN1/3))ds

we have the following result

Proposition 4.2. Let w(t) be the standard Brownian motion and ξ := 2
β
μν2, then

M̂N,T (t)
D−→ ξw(T + t ∧ τT ) as N → ∞. (4.6)

Proof. By (4.2), the quadratic variation of M̂N,T (t) is given by

V̂N,T (t) := ν2μN

∫ t∧τN,T

−T

GN

(
mN

(
μsN1/3), hN

(
μsN1/3))ds

thus, for Λ(m,h) as in Lemma 4.1, by (4.4), there exists c > 0 such that

sup
t≥−T

∣∣∣∣V̂N,T (t) − 2ν2μ

∫ t∧τN,T

−T

Λ
(
mN

(
μsN1/3), hN

(
μsN1/3))ds

∣∣∣∣ ≤ cN−1
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for any N large enough. In a neighborhood of (xc,−hc),

Λ(x,h) = 1

β
+ O(h + hc) + O(x − xc)

moreover, for t < N2/3 there exists c > 0 such that |hN(t)+hc| ≤ c(tN−2/3)2 for any N large enough. We have, thus

sup
−T ≤s≤τN,T

∣∣∣∣Λ(
mN

(
μsN1/3), hN

(
μsN1/3)) − 1

β

∣∣∣∣ ≤ cN−1/3

for a suitable c > 0 then

sup
t≥−S

∣∣V̂N,T (t) − ξ(T + t ∧ τN,T )
∣∣ ≤ cN−1/3. (4.7)

We have τN,T
P→ τT , for N → ∞, hence, by (4.7),

V̂N,T (t)
P→ ξ(T + t ∧ τT ) as N → ∞

thus (4.6) follows since M̂N,T (−T ) = 0 and M̂N,T (t) has at most discontinuities of order N−2/3 (see [7] and [18]). �

Proposition 4.3. For any T ,y > 0 such that y < 2T , P ∗
N,−T ,y converges to P ∗−T ,y as N → ∞.

Proof. As usual with martingale problems, we first need to prove tightness and then to identify the limiting points by
proving that they satisfy a martingale equation which has unique solution. By Proposition 4.2 follows the tightness of
M̂N,T (t). It remains to prove the tightness of

ΓN,T (t) = νμN2/3
∫ t∧τN,T

−T

FN

(
mN

(
μsN1/3), hN

(
μsN1/3))ds.

We use the Chensov moment condition, indeed there exists c such that, for all t > s ≥ −T ,

EPN,−T ,y

[∣∣ΓN,T (t) − ΓN,T (s)
∣∣2] ≤ c|t − s|2, (4.8)

where (4.8) holds after using the Cauchy–Schwartz inequality, being the integrated function in L2. It follows that the
stopped process YN(t ∧ τN,T ) is tight and, consequently, its law PN,−T ,y converges by subsequences. Moreover, any
limiting point has support on C([−T ,T ],R), this follows from the fact that the jumps of YN are ±N−2/3.

By (4.3), we can approximate the term FN(x,h) in (4.1) with F(x,h) unless errors of order N−1. We perform the
Taylor expansion of F(x,h) in a neighborhood of (xc,−hc). Being F(xc,−hc) = ∂F/∂x(xc,−hc) = 0, the leading
terms are the first order in (h + hc) and the second order in (x − xc), we have

F(x,h) = (h + hc) − βxc(x − xc)
2 + O

(
(h + hc)(x − xc)

) + O
(
(h + hc)

2) + O
(
(x − xc)

3).
On the other hand, for tN−2/3 vanishingly small as N → ∞, hN(t) = −hc + hct

2N−4/3/2 + O((tN−2/3)4), thus
there exists c such that

sup
t∈μN1/3[−T ,τN,T ]

∣∣∣∣FN

(
mN(t), hN(t)

) −
{

hc

2
t2N−4/3 − βxc

(
mN(t) − xc

)2
}∣∣∣∣ ≤ cN−1 (4.9)

for N large enough, then, by (4.9),

sup
t≥−T

∣∣∣∣M̂N,T (t) − YN(t ∧ τN,T ) + YN(−T ) +
∫ t∧τN,T

−T

{
hc

2
νμ3s2 − βxcμν−1Y 2

N(s)

}
ds

∣∣∣∣ ≤ cN−1/3. (4.10)

For our choice of μ and ν (see (3.4)), the integrand in (4.10) becomes s2 − Y 2
N(s). From (4.10) and Proposition 4.2

we deduce that any limiting point satisfies a martingale relation that uniquely defines a process which is the law of the
solution of (3.7). �
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5. Behavior of the limit process

In this section we are going to investigate the behavior of a generic solution Y(t) of the SDE

dY(t) = [
t2 − Y 2(t)

]
dt + ξ dwt, ξ > 0. (5.1)

For any fixed t0 ∈ R ∪ {−∞}, y0 ∈ R, we denote by Pt0,y0 the probability law of the process Y(t), t ≥ t0, solution of
(5.1) starting from y0 at time t0. Moreover we denote by P the law of Y(t), t ∈ R, solution of (5.1) conditioned to
|Y(t) + t | → 0 as t → −∞.

Deterministic analysis

One of the preliminary steps for the study of (3.7) is the analysis of the related deterministic equation

y′(t) = t2 − y2(t). (5.2)

Proposition 5.1 is proved in Section 2.3 of [8], it concerns the asymptotic behavior for t → ∞ of a generic solution
y(t) of (5.2).

Proposition 5.1. There exists a decreasing solution y∗(t) of (5.2) such that −t > y∗(t) > −√
t2 + 1, for any t ≥ 0.

Let y(t) be the solution of (5.2) starting at time t0 ≥ 0 from y0 ∈ R,

• if y0 > y∗(t0), then, for any δ ∈ (0,1) there exists tδ ≥ t0 such that |y(t) − t | ≤ 1
2(1−δ)t

for any t ≥ tδ ;
• if y0 < y∗(t0), then y(t) is decreasing for t ≥ 0 and it explodes to −∞ in a finite time.

Asymptotic behavior of Y(t) for t → ∞

In this first part of the section we prove the following theorem.

Theorem 5.2. Consider the sets

E+ :=
{
Y : lim

t→∞
∣∣Y(t) − t

∣∣ = 0
}

and E− := {
Y : there is t : Y(t) = −∞}

(5.3)

then Pt0,y0{Y ∈ E+ ∪ E−} = 1 for any t0 ∈ R ∪ {−∞}, y0 ∈ R.

The proof of Theorem 5.2 consists of three parts. We define the stopping time

Π := inf
{
t : Y(t) = −∞}

then Π ∈ R ∪ {+∞}. We fix T > 0 large enough, suppose Π > T and study the behavior of Y(t) for t ≥ T . In
Proposition 5.3 we prove that if Y(t) is in a neighborhood of y∗(t) at time T then Y(t) escapes from it P -a.s. In
Propositions 5.5 and 5.7 we prove that the probability for the events Y ∈ E∓ to occur is close to the probability that
Y(t) leaves such a critical neighborhood, respectively, from below or from above. Unless further indications, in this
section we mean, by c, a positive constant not depending on T .

We will denote by y∗(t) the solution of the ODE (5.2) defined in Proposition 5.1, and define the process z∗(t) :=
Y(t) − y∗(t). z∗(t) verifies the equation

dz∗(t) = −z∗(t)
(
z∗(t)t + 2y∗(t)

)
dt + ξ dw(t). (5.4)

For any fixed δ > 0 small enough, we define the stopping time τ∗
T ,δ := inf{t ≥ T : |z∗(t)| ≥ δ}.

Proposition 5.3. For any T > 0, δ > 0 small enough,

1Π>T PT ,Y (T )

{
τ ∗
T ,δ < ∞} = 1. (5.5)
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Proof. Let us assume Π > T . We need to prove the assertion for the paths such that |z∗(T )| < δ. Suitably applying
the Ito’s formula to (5.4), we get

dz∗2(t) = [−2z∗2(t)
(
z∗2(t) + 2y∗(t)

) + ξ2]dt + 2ξz∗(t)dw(t), (5.6)

thus, for T ≤ t ≤ τ ∗
T ,δ

z∗2(t) ≥ z∗2(T ) + ξ2t + 2ξ

∫ t

T

z∗
s dws, (5.7)

the inequality descending since, for δ small enough, −2z∗2
t∧τ∗

T ,δ
(z∗

t∧τ∗
T ,δ

+ 2y∗
t∧τ∗

T ,δ
) ≥ 0.

The process 2ξ
∫ t∧τ∗

T ,δ

T z∗
s dws is a continuous martingale, thus its expected value is constantly zero and

E

[(
2ξ

∫ t∧τ∗
T ,δ

T

z∗
s dws

)2]
= 4ξ2

∫ t

T

E
[
z∗2
s 1s≤τ∗

T ,δ

]
ds ≤ 4ξ2δ2(t − T )

hence, by the Doob’s inequality, for any n ∈ N,

PT ,Y (T )

{
2ξ

∣∣∣∣
∫ (T +n4)∧τ∗

T ,δ

T

z∗
s dws

∣∣∣∣ ≥ n3
}

≤ 4ξ2δ2

n2

thus, from the Borel–Cantelli Lemma and (5.7), PT ,Y (T )-a.s., there exists ñ such that, for n ≥ ñ,

δ2 ≥ z∗2((T + n4) ∧ τ ∗
T ,δ

)
> −n3 + ξ2((T + n4) ∧ τ ∗

T ,δ

)

then τ ∗
T ,δ ≤ (T + n4) ∨ (δ2 + n3)/ξ2, thus, for any T > 0

PT ,Y (T )

{
τ ∗
T ,δ < ∞} ≥ PT ,Y (T )

{
lim inf
n→+∞

{
τ ∗
T ,δ ≤ (

T + n4)}} = 1

and (5.5) is proved. �

We omit the proof of the following lemma.

Lemma 5.4. Let t > s, for any γ > 0, we have

eγ t2

2γ t

[
1 − e−γ (t2−s2)/2] ≤

∫ t

s

eγ u2
du ≤ eγ t2

2γ t

(
2γ s2

2γ s2 − 1

)
(5.8)

for any s > 1√
2γ

, and

e−γ s2

2γ s

[
1 − t−1e−γ (t2−s2)/2]( 2γ s2

2γ s2 + 1

)
≤

∫ t

s

e−γ u2
du ≤ e−γ s2

2γ s
(5.9)

for any s > 0.

Proposition 5.5. There exists c > 0 such that, for any T large enough, δ > 0,

1Π>T 1τ∗
T ,δ<∞,z∗(τ∗

T ,δ)<−δ Pτ∗
T ,δ,Y (τ∗

T ,δ)

{
Y /∈ E−} ≤ e−cT . (5.10)
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Proof. Suppose τ ∗
T ,δ < ∞ and Π > T , thus, consequently, Π > τ∗

T ,δ . We denote by ŷ(t) the solution of the ODE
(5.2) starting at time τ ∗

T ,δ from y∗(τ ∗
T ,δ) − δ/2. From Proposition 5.1 we know that ŷ(t) explodes to −∞ in a finite

time. Consider ẑ(t) := Y(t) − ŷ(t), thus ẑ(t) verifies the SDE

dẑt = −ẑt

(
ẑt + 2ŷ(t)ẑt

)
dt + ξ dwt .

We can assume ẑ(τ ∗
T ,δ) ≤ −δ/2 since 1z∗(τ∗

T ,δ)<−δ ≤ 1ẑ(τ∗
T ,δ)≤−δ/2. We have

ẑ(t) = ẑ
(
τ ∗
T ,δ

)
e
−2

∫ t
τ∗
T ,δ

ŷ(s)ds −
∫ t

τ∗
T ,δ

ẑ2(u)e−2
∫ t
u ŷ(s)ds du + ξχτ∗

T ,δ
(t) (5.11)

with

χ̂τ∗
T ,δ

(t) :=
∫ t

τ∗
T ,δ

e
2
∫ u
τ∗
T ,δ

ŷ(s)ds
dwu (5.12)

then

1ẑ(τ∗
T ,δ)≤−δ/2 Pτ∗

T ,δ,Y (τ∗
T ,δ)

{
ẑ(t) ≤ e

−2
∫ t
τ∗
T ,δ

ŷ(s)ds(
χ̂τ∗

T ,δ
(t) − δ/2

)
,∀t ≥ τ ∗

T ,δ

} = 1.

The probability law of χ̂τ∗
T ,δ

(t)|τ ∗
T ,δ , t ≥ τ ∗

T ,δ , is a centered Gaussian. Since ŷ(t) ≤ −t , t ≥ τ ∗
T ,δ , we have

E
[
χ̂2

τ∗
T ,δ

(t)|τ ∗
T ,δ

] =
∫ t

τ∗
T ,δ

e
4
∫ t
τ∗
T ,δ

ŷ(s)ds
du ≤ e2τ∗2

T ,δ

∫ t

τ∗
T ,δ

e−2u2
du ≤ 1

4T
, (5.13)

where the last inequality descends from (5.9), since τ ∗
T ,δ ≥ T . Hence there exists c > 0, such that

Pτ∗
T ,δ,Y (τ∗

T ,δ)

{
sup

t≥τ∗
T ,δ

ẑ(t) ≥ 0
}

≤ Pτ∗
T ,δ,Y (τ∗

T ,δ)

{
sup

t≥τ∗
T ,δ

χ̂τ∗
T ,δ

(t) ≥ δ

2

}
≤ e−cT (5.14)

for any T large enough, where the second inequality follows from (5.13) and (A.2). Then we get (5.10). �

We denote by y+(t) the solution of (5.2) conditioned to limt→−∞ |y+(t) + t | = 0 and define the process z+(t) :=
Y(t) − y+(t). z+(t) satisfies the SDE

dz+(t) = −z+(t)
(
z+(t)t + 2y+(t)

)
dt + ξ dw(t), (5.15)

thus, for any t0 ∈ R ∪ {−∞},

z+(t) = z+(t0)e
−2

∫ t
t0

y+(s)ds −
∫ t

t0

z+2(u)e−2
∫ t
u y+(s)ds du + ξχ+

t0
(t) (5.16)

with

χ+
t0

(t) :=
∫ t

t0

e−2
∫ t
u y+(s)ds dwu. (5.17)

We fix ε > 0 small enough and define the stopping time τ+
T ,ε := inf{t ≥ T : |z+(t)| ≤ ε}.

Lemma 5.6. For t0 ∈ R ∪ {−∞}, χ+
t0

(t) as in (5.17), y0 ∈ R, there exists c > 0 such that, for λ large enough,

Pt0,y0

{
sup
t≥t0

χ+
t0

(t)
(√|t | ∨ 1

)
> λ

}
≤ e−cλ2

. (5.18)
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Proof. χ+
t0

(t) is a centered Gaussian process of variance

E
[
χ+2

t0
(t)

] =
∫ t

t0

e−4
∫ t
u y+(s)ds du.

Let us suppose, at first, t0 < 0. We know that y+(t) ≥ −t for t < 0, thus, for t0 ≤ t < 0,

E
[
χ+2

t0
(t)

] ≤ e2t2
∫ |t0|

|t |
e−2u2

du ≤ 1

4|t | ∧ 1,

where the second inequality follows from (5.9). A similar estimate can be obtained for t ≥ 0 using (5.8), since
inft∈R y+(t) > 0 and y+(t) ≥ t − 1/t for t > 0 large enough. Therefore, for any t0 ∈ R ∪ {−∞}, there exists c > 0
such that, for t ≥ t0,

E
[
χ+2

t0
(t)

] ≤ c

(
1

|t | ∧ 1

)
,

thus (5.18) follows from inequality (A.2). �

Proposition 5.7. There exists c > 0 such that, for any T large enough, δ, ε > 0,

1Π>T 1τ∗
T ,δ<∞,z∗(τ∗

T ,δ)>δ Pτ∗
T ,δ,Y (τ∗

T ,δ)

{
τ+
T ,ε = +∞} ≤ e−cT . (5.19)

Proof. Suppose τ ∗
T ,δ < ∞ and Π > T , then Π > τ ∗

T ,δ . As in the proof of Proposition 5.3, we mainly make use of
comparison arguments. We compare, by means of Lemma A.1, the process z+(t) with suitable Gaussian processes.
Then use the inequality (A.2) to estimate the behavior of such Gaussian processes. We will avoid the details, let us
see. Suppose z∗(τ ∗

T ,δ) > δ and |z+(τ ∗
T ,δ)| > ε, we need to distinguish two cases: z+(τ ∗

T ,δ) > ε and z+(τ ∗
T ,δ) < −ε.

Consider the first case z+(τ ∗
T ,δ) > ε, from (5.16), we have

1z+(τ∗
T ,δ)>ε Pτ∗

T ,δ,Y (τ∗
T ,δ)

{
z+(t) ≤ z+(

τ ∗
T ,δ

)
e
−2

∫ t
τ∗
T ,δ

y+(s)ds + ξχ+
τ∗
T ,δ

(t)
} = 1,

thus

1z+(τ∗
T ,δ)>ε Pτ∗

T ,δ,Y (τ∗
T ,δ)

{
inf

t≥τ∗
T ,δ

z+(t) > ε
}

≤ 1z+(τ∗
T ,δ)>ε Pτ∗

T ,δ,Y (τ∗
T ,δ)

{
inf

t≥τ∗
T ,δ

(
z+(

τ ∗
T ,δ

)
e
−2

∫ t
τ∗
T ,δ

y+(s)ds + ξχ+
τ∗
T ,δ

(t)
)
> ε

}

≤ e−cT , (5.20)

where the last inequality is obtained by the use of Lemma 5.6.
We prove, now, the statement for the second case z+(τ ∗

T ,δ) < −ε, z∗(τ ∗
T ,δ) > δ. At first, we show that, with large

probability, z∗(t) reaches the line 3
2 t , i.e. that the stopping time τ ′

T := inf{t ≥ τ ∗
T : z∗(t) ≥ 3

2 t} is finite. We compare
z∗(t) with the process v+(t), solution of the linear problem

dv+(t) = t

2
v+(t)dt + ξ dw(t), v+(

τ ∗
T ,δ

) = z∗(τ ∗
T ,δ

)
, (5.21)

we have

v+(t) = v+(
τ ∗
T ,δ

)
e(1/4)(t2−τ∗2

T ,δ) + ξet2/4
∫ t

τ∗
T ,δ

e−u2/4 dwu. (5.22)
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Since −z(z + 2y∗
t ) > tz/2 for 0 ≤ z ≤ −3y∗

t /2, by Lemma A.1, z∗(t) ≥ v+(t), as long as 0 ≤ z∗(t) ≤ 3
2 t . It is

sufficient to apply the inequality (A.2) to v+(t) whose quadratic variation is easily estimable from (5.9) and (5.22) to
show that

1v+(τ∗
T ,δ)>δ Pτ∗

T ,δ,Y (τ∗
T ,δ)

{
inf

t≥τ∗
T ,δ

v+(t) ≤ 0
}

≤ e−cT

and

1v+(τ∗
T ,δ)>δ Pτ∗

T ,δ,Y (τ∗
T ,δ)

{
sup

t≥τ∗
T ,δ

2v+(t)

3t
< 1

}
≤ e−cT

hence

1τ∗
T ,δ<τ ′

T
Pτ∗

T ,δ,Y (τ∗
T ,δ)

{
τ ′
T = ∞} = 1τ∗

T ,δ<τ ′
T

Pτ∗
T ,δ,Y (τ∗

T ,δ)

{
sup

t≥τ∗
T ,δ

2z∗(t)
3t

< 1

}
≤ e−cT . (5.23)

For t large enough, y∗(t) ≥ t − 1/t , thus, from (5.23), with Pτ∗
T ,δ,Y (τ∗

T ,δ)
-probability greater than 1 − e−cT , there exists

τ ∗
T ≤ τ ′

T < ∞ such that z+(τ ′
T ) ≥ −τ ′

T /2 − 1/τ ′
T .

By an analogous comparison argument it is possible to prove that

1z+(τ∗
T )<−ε,τ ′

T <∞Pτ ′
T ,z+(τ ′

T )

{
sup
t≥τ∗

T

z+(t) < −ε
}

≤ e−cT . (5.24)

Equation (5.19) follows, then, from (5.20), (5.23) and (5.24). �

Proposition 5.8. There is c > 0 such that, for any ε > 0 small enough, T ,λ large enough, λ < ε
√

T ,

1τ+
T ,ε<∞Pτ+

T ,ε,Y (τ+
T ,ε)

{
inf

s≥τ+
T ,ε

sup
t≥s

∣∣Y(t) − y+(t)
∣∣√t > λ

}
≤ e−cλ2

. (5.25)

Proof. Let us suppose τ+
T ,ε < +∞, thus the relation (5.16) with τ+

T ,ε in place of t0 holds, for t ≥ τ+
T ,ε . We apply

Lemma 5.6 to the process χ+
τ+
T ,ε

(t), thus, by symmetry, we get

Pτ+
T ,ε,Y (τ+

T ,ε)

{
sup

t≥τ+
T ,ε

∣∣χ+
τ+
T ,ε

(t)
∣∣√t >

λ

2ξ

}
≤ e−cλ2

(5.26)

for any λ large enough. Let us define the stopping time τ ′′
T ,ε := inf{t ≥ τ+

T ,ε: |z+(t)| > 2ε}. We have

∫ t

τ+
T ,ε

e−2
∫ t
u y+(s)ds du ≤ t2e−t2

∫ t

τ+
T ,ε

eu2

u2
du ≤ c

t
∧ 1,

thus, with Pτ+
T ,ε,Y (τ+

T ,ε)
-probability greater than 1 − 2e−cλ2

we have

−εe
−2

∫ t

τ
+
T ,ε

y(s)ds −
(

c
ε2

t
∧ 1

)
− λ

2
√

t
≤ z+(t) ≤ εe

−2
∫ t

τ
+
T ,ε

y+(s)ds + λ

2
√

t
(5.27)

for τ+
T ,ε ≤ t ≤ τ ′′

T ,ε . Assume λ < ε
√

T , thus, since τ+
T ,ε ≥ T , from (5.27) it follows that

Pτ+
T ,ε,Y (τ+

T ,ε)

{
τ ′′
T ,ε < +∞} ≤ Pτ+

T ,ε,Y (τ+
T ,ε)

{
sup

τ+
T ,ε≤t≤τ ′′

T ,ε

∣∣z+(t)
∣∣ < 2ε

}
≤ e−cε2T (5.28)
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then, by (5.27) and (5.28), we have

Pτ+
T ,ε,Y (τ+

T ,ε)

{
inf

s≥τ+
T ,ε

sup
t≥s

∣∣z+(t)
∣∣√t > λ

}

≤ Pτ+
T ,ε,Y (τ+

T ,ε)

{
τ ′′
T ,ε < +∞} + Pτ+

T ,ε,Y (τ+
T ,ε)

{
inf

s≥τ+
T ,ε

sup
t≥s

∣∣z+(t)
∣∣√t > λ|τ ′′

T ,ε = ∞
}

≤ 2e−cλ2

hence (5.25) is proved. �

Proposition 5.9. There exists c > 0 such that, for any T large enough, δ, ε small enough,

1Π>T 1τ∗
T ,δ<∞,z∗(τ∗

T ,δ)>δ Pτ∗
T ,δ,Y (τ∗

T ,δ)

{
Y /∈ E+} ≤ e−cε2T . (5.29)

Proof. Assume Π > T , τ ∗
T ,δ < ∞ and z∗(τ ∗

T ,δ) > δ then, for any ε, δ > 0 small enough, T large enough,

Pτ∗
T ,δ,Y (τ∗

T ,δ)

{
Y /∈ E+} ≤ E

[
1τ+

T ,ε<∞Pτ+
T ,ε,Y (τ+

T ,ε)

{
Y /∈ E+}] + Pτ∗

T ,δ,Y (τ∗
T ,δ)

{
τ+
T ,ε = +∞}

thus (5.29) follows from Propositions 5.7 and 5.8. �

Conclusion of proof of Theorem 5.2. Let us suppose T > t0, thus, from the definition of Π and Proposition 5.3, we
have

Pt0,y0

{
Y /∈ E+ ∪ E−} = E

[
1Π>T PT ,Y (T )

{
Y /∈ E+ ∪ E−}]

= E
[
1τ∗

T ,δ<∞,Π>τ∗
T ,δ

Pτ∗
T ,δ,Y (τ∗

T ,δ)

{
Y /∈ E+ ∪ E−}]

. (5.30)

Equation (5.30) is bounded by

E
[
1Π>T 1τ∗

T ,δ<∞,z∗(τ∗
T ,δ)<−δ Pτ∗

T ,δ,Y (τ∗
T ,δ)

{
Y /∈ E−}] + E

[
1Π>T 1τ∗

T ,δ<∞,z∗(τ∗
T ,δ)>δ Pτ∗

T ,δ,Y (τ∗
T ,δ)

{
Y /∈ E+}]

≤ e−cε2T , (5.31)

where the inequality follows from Propositions 5.5 and 5.9, and holds for some c > 0, for any T large enough, δ, ε

small enough. The result follows from (5.31) by performing the limit for T → ∞. �

Behavior of Y(t) for t → −∞

In this part of the section we will provide some results for the behavior of Y(t) for negative t , |t | large enough.

Proposition 5.10. Let P be the probability law defined at the beginning of this section. There is c > 0 such that for
T ,λ large enough, λ <

√
T ,

P
{

sup
t≤−T

∣∣Y(t) − y+(t)
∣∣√|t | > λ

}
≤ e−cλ2

. (5.32)

Proof. z+(t) satisfies the equation (5.16) even in the limit as t0 → −∞. y+(t) → +∞ and z+(t) → 0 for t → −∞,
P -a.s., thus

z+(t) = −
∫ t

−∞
z+2(u)e−2

∫ t
u y+(s)ds du + ξχ+−∞(t). (5.33)

We use Lemma 5.6 with t0 = −∞ to estimate the behavior of χ+−∞(t), then the proof proceeds specularly to proof of
Proposition 5.8. �
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Proposition 5.11. There is c > 0 such that for T ,S,λ large enough, S < T , λ <
√

S,

1|Y(T )−T |<λ/(2
√

T )
P−T ,Y (T )

{
sup

−T ≤t≤−S

∣∣Y(t) − y+(t)
∣∣√|t | > λ

}
≤ e−cλ2

. (5.34)

Proof. The proof of (5.34) is almost the same of Proposition 5.10. �

Behavior of Y(t) in bounded intervals

In this part of the section we study the behavior of solutions Y(t) of (5.1) starting at time −T from y: |y − T | ≤ ε, ε

small enough. We recall that the stopping time τT ∈ [−T ,T ] is the first exit time of Y(t) from the rectangle RT (see
(3.12) and (3.14)). Notice that the condition |y − T | ≤ ε guaranties (−T ,Y (−T )) ∈ RT .

Lemma 5.12. There exists c > 0 such that, for any T large enough, ε small enough,

1|y−T |≤ε P−T ,y

{
Y(τT ) = 2T

} ≤ e−cT 2
.

Proof. We have y+(−T ) ≥ T , y ≤ T + ε, then z+(−T ) = y − y+(−T ) ≤ ε, hence, by (5.16),

1|y−T |≤ε P−T ,y

{
z+(t) ≤ ε + ξχ+

−T (t),∀t ≥ −T
} = 1,

thus, since sup−T ≤t≤T y+(t) < T , we have

1|y−T |≤ε P−T ,y

{
Y(τT ) = 2T

} ≤ 1|y−T |≤ε P−T ,y

{
sup

−T ≤t≤T

z+(t) ≥ T
}

≤ P−T ,y

{
sup

−T ≤t≤T

χ+
−T (t) ≥ T − ε

ξ

}
≤ e−cT 2

,

where the last inequality follows from (A.2) and Lemma 5.6. �

Lemma 5.13. There exists c > 0 such that, for any T large enough,

PτT ,−2T

{
Π ≥ τT + T −1} ≤ e−cT 3

. (5.35)

Proof. Consider the process ỹ(t), solution of the ODE (5.2) starting from − 3
2T at time τT . Let us consider, now,

z̃(t) := Y(t) − ỹ(t), thus z̃τT
(τT ) = −T

2 . Using exactly the same arguments used in proof of Proposition 5.5 to show
(5.14), it is possible to prove that

PτT ,−2T

{
sup
t≥τT

z̃(t) ≥ 0
}

≤ e−cT 3
. (5.36)

ỹ(t) lies below y∗(t), then, from Proposition 5.1, we know that it explodes to −∞. It is easy to show that ỹ(t) explodes
within τT + T −1 (see Lemma 2.3.15 in [8]), then (5.35) easily follows from (5.36). �

Proof of Proposition 3.3. Let Y(−T ) = y with y: |y − T | ≤ ε, then, from Theorem 5.2 we have

P−T ,y

{
Y /∈ E +

T ∪ E −
T

} = P−T ,y

{
Y /∈ E +

T ∪ E −
T ,Y ∈ E+ ∪ E−}

≤ P−T ,y

{
Y(T ) ∈ [−2T ,y+(T ) − ε

) ∪ (
y+(T ) + ε,2T

]
, Y ∈ E+}

(5.37)

+ P−T ,y

{
Y(τT ) = 2T

}
. (5.38)
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Lemma 5.12 provides a bound for the probability in (5.38) that assures its convergence to 0 as T → ∞. The term
(5.37) vanishes as T → ∞ since, by Theorem 5.2, for any ε > 0 small enough,

P−T ,y

{
inf
T ≥0

sup
t≥T

∣∣Y(t) − y+(t)
∣∣ > ε|Y ∈ E+}

= 1

hence (3.16) follows. From Proposition 5.8 and Lemma 5.13 it follows that

1(τT ,Y (τT ))∈∂R±
T

PτT ,Y (τT )

{
Y /∈ E±} ≤ e−cε2T (5.39)

for some c > 0, thus (3.17) follows from (5.39) and Theorem 5.2. �

Proof of Theorem 3.2

We consider two processes Y, Ȳ solutions of (5.1) starting from Y(−T ) = y and Ȳ (−T ) = ȳ, with y, ȳ such that
|y − T | ≤ ε, |ȳ − T | ≤ ε for some ε > 0 small enough. Without lost of generality, we can suppose ȳ > y. We denote
by Q−T ,y,ȳ the probability law of the coupled process (Y (t), Ȳ (t)) by taking the same noise for Y and Ȳ .

Let us fix S ∈ (1, T ) and ε > 0 small enough and define the sets

AS = AT ,S,ε :=
{
Y : sup

−T ≤t≤−S

∣∣Y(t) − y+(t)
∣∣ ≤ ε

}
(5.40)

and

BS = BS,ε :=
{
Y : sup

t≥S

∣∣Y(t) − y+(t)
∣∣ ≤ ε

}
. (5.41)

Let τS, τ̄S be the first exit times respectively for the processes Y(t) and Ȳ (t) from the rectangle RS defined in (3.12).
We call Π and Π̄ the times of explosion to −∞ of Y and Ȳ . Y(t) and Ȳ (t) are well defined, thus, respectively for
t ≤ Π and for t ≤ Π̄ . We agree with the convention to define Y(t) := −∞ for t ≥ Π , Ȳ (t) := −∞ for t ≥ Ȳ (t). We
have the following results.

Lemma 5.14. For any S ∈ (1, T ) and ε > 0 small enough

Q−T ,y,ȳ

{
lim

T →∞ sup
t≥−T

Ȳ (t) − Y(t) = 0|Y, Ȳ ∈ AS ∩ E +
S ∩ BS

}
= 1. (5.42)

Proof. Let us assume Y, Ȳ ∈ AS ∩ E +
S ∩ BS . We denote by v(t) the process Ȳ (t) − Y(t), then dv = −v(Y + Ȳ )dt ,

hence

v(t) = (ȳ − y)e− ∫ t
−T (Y (u)+Ȳ (u))du (5.43)

thus v(t) > 0 for any t ≥ −T .
Since Y, Ȳ ∈ AS and y+(t) ≥ −t for t < 0, from (5.43) we have

0 ≤ v(t) ≤ εe2
∫ t
−T (u+ε)du ≤ εe(S−ε)2

e−(T −ε)2
for − T ≤ t ≤ −S

thus

lim
T →∞ sup

−T ≤t≤−S

v(t) = 0. (5.44)

Y, Ȳ ∈ E +
S implies Ȳ (t), Y (t) ≥ −2S for any −S ≤ t ≤ S, then, by (5.43),

0 ≤ v(t) ≤ v(−S)e− ∫ t
−S(Y (u)+Ȳ (u))du ≤ v(−S)e8S2

for − S ≤ t ≤ S,
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thus, by (5.44),

lim
T →∞ sup

−S≤t≤S

v(t) = 0. (5.45)

Y, Ȳ ∈ BS thus Ȳ (t), Y (t) ≥ y+(t) − ε > 0, for t ≥ S, S large enough, then, from (5.43) we have

0 ≤ v(t) ≤ v(S)e− ∫ t
S (Y (u)+Ȳ (u))du ≤ v(S) for t ≥ S,

thus, from (5.45),

lim
T →∞ sup

t≥S

v(t) = 0 (5.46)

then the lemma is proved. �

Lemma 5.15. For any S ∈ (1, T ) and ε > 0 small enough

Q−T ,y,ȳ

{
lim

T →∞ sup
−T ≤t≤τS

∣∣Ȳ (t) − Y(t)
∣∣ = 0|Y ∈ AS ∩ E −

S , Ȳ ∈ AS

}
= 1. (5.47)

Proof. Let us assume Y ∈ AS ∩ E −
S and Ȳ ∈ AS . Consider the process v(t) defined in the proof of the previous lemma,

then, since Y, Ȳ ∈ AS , (5.44) holds also in the current case.
On the other hand Y ∈ E −

S implies Ȳ (t) ≥ Y(t) ≥ −2S, then, since |τS | ≤ S,

0 ≤ v(t) ≤ v(−S)e− ∫ t
−S(Y (u)+Ȳ (u))du ≤ v(−S)e8S2

for − S ≤ t ≤ τS,

thus, by (5.44), we have

lim
T →∞ sup

−S≤t≤τS

v(t) = 0 Q−T ,y,ȳ-a.s. (5.48)

hence (5.47) follows. �

Proposition 5.16. For any bounded continuous function g(y) with compact support and for any fixed ε > 0 small
enough, t ≥ −T , we have

lim
T →∞ 1|y−T |≤ε1|ȳ−T |≤ε

∣∣EP−T ,y

[
g
(
Y(t)

)] − EP−T ,ȳ

[
g
(
Ȳ (t)

)]∣∣ = 0. (5.49)

Proof. We define G(t) := |g(Y (t)) − g(Ȳ (t))| then we need to prove that

lim
T →∞ 1|y−T |≤ε1|ȳ−T |≤εEQ−T ,y,ȳ

[
G(t)

] = 0. (5.50)

Let us fix S ∈ (1, T ) large enough and ε > 0 small enough, y, ȳ: |y − T | ≤ ε, |ȳ − T | ≤ ε. For AS as in (5.40) we
have

∣∣EQ−T ,y,ȳ

[
G(t)

] − EQ−T ,y,ȳ

[
1Y,Ȳ∈AG(t)

]∣∣
≤ 2 sup |g|(P−T ,y{Y /∈ AS} + P−T ,ȳ{Ȳ /∈ AS})
≤ 4 sup |g|e−cε2S, (5.51)

where the last inequality follows from (5.34). We have
∣∣EQ−T ,y,ȳ

[
1Y,Ȳ∈AS

G(t)
] − EQ−T ,y,ȳ

[
1Y,Ȳ∈AS∩(E +

S ∪E −
S )G(t)

]∣∣
≤ 2 sup |g|(P−S,y

{
Y /∈ E +

S ∪ E −
S

} + P−S,ȳ

{
Ȳ /∈ E +

S ∪ E −
S

})
. (5.52)
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For BS as in (5.41) we have
∣∣EQ−T ,y,ȳ

[
1Y,Ȳ∈A∩E +

S
G(t)

] − EQ−T ,y,ȳ

[
1Y,Ȳ∈A∩BS∩E +

S
G(t)

]∣∣
≤ 2 sup |g|(1|y−y+(S)|≤ε PS,y{Y /∈ BS} + 1|ȳ−y+(S)|≤ε PS,ȳ{Ȳ /∈ BS})
≤ 4 sup |g|e−cε2S, (5.53)

where the last inequality follows from (5.25).
Since g is bounded, it follows from (3.16), (5.51), (5.52) and (5.53) that for any ζ > 0 there exists S0 such that, for

any T > S ≥ S0, for any t ≥ −T ,
∣∣EQ−T ,y,ȳ

[
G(t)

] − EQ−T ,y,ȳ

[
(1Y,Ȳ∈AS∩E +

S ∩BS
+ 1Y,Ȳ∈AS∩E −

S
)G(t)

]∣∣ ≤ ζ. (5.54)

By the continuity of g and Lemma 5.14 it follows that

Q−T ,y,ȳ

{
lim

T →∞ sup
t≥−T

G(t) = 0|Y, Ȳ ∈ AS ∩ E +
S ∩ BS

}
= 1, (5.55)

thus

lim
T →∞ 1t≥−T EQ−T ,y,ȳ

[
1Y,Ȳ∈AS∩BS∩E +

S
G(t)

] = 0. (5.56)

On the other hand, by Lemma 5.15,

Q−T ,y,ȳ

{
lim

T →∞ sup
−T ≤t≤τS

G(t) = 0|Y ∈ AS ∩ E −
S Ȳ ∈ AS

}
= 1, (5.57)

thus

lim
T →∞EQ−T ,y,ȳ

[
1−T ≤t≤τS

1Y,Ȳ∈AS∩E −
S
G(t)

] = 0. (5.58)

We have

EQ−T ,y,ȳ

[
1τS≤t≤τS+S−1 1Y,Ȳ∈A∩E −

S
G(t)

] ≤ 2 sup |g|P−T ,y

{
t − S−1 ≤ τS ≤ t

}
(5.59)

with the right-hand side term vanishing as S → ∞.
Since Ȳ (t) ≥ Y(t), Π̄ ≥ Π , thus, for t ≥ Π̄ , Y(t) = Ȳ (t) = −∞, then G(t) = 0. It remains to estimate the term

for τS + S−1 ≤ t ≤ Π̄ . We have Y(τS) = −2S and Ȳ (τS) = −2S + v(τS), with, by Lemma 5.15, limT →∞ |v(τS)| = 0
for Y, Ȳ ∈ AS ∩ E −

S . Hence for any fixed ζ > 0 arbitrarily small there is T0 such that, for any T > T0

EQ−T ,y,ȳ

[
1τS+S−1≤t≤Π̄ 1Y,Ȳ∈AS∩E −

S
G(t)

]
≤ EQ−T ,y,ȳ

[
1τS+S−1≤Π̄ 1Ȳ (τS)≤−2S+ζ G(t)

]
≤ 2 sup |g|EQ−T ,y,ȳ

[
1Ȳ (τS)≤−2S+ζ PτS ,Ȳ (τS)

{
Π̄ ≥ τS + S−1}]

then, by Lemma 5.13, for any ζ ′ > 0 there exists S0 such that, for any T > S > S0,

EQ−T ,y,ȳ

[
1τS+S−1≤t≤Π̄ 1Y,Ȳ∈AS∩E −

S
G(t)

]
< ζ ′. (5.60)

From (5.59) and (5.60) it follows that

lim
T →∞EQ−T ,y,ȳ

[
1t≥τS

1Y,Ȳ∈AS∩E −
S
G(t)

] = 0, (5.61)

then (5.50) follows from (5.54), (5.56), (5.58) and (5.61). �
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Corollary 5.17. Let Y(t), Ŷ (t) be solutions of (5.1) starting from Y(−T ) = y, Ŷ (−S) = ŷ, T > S, then, for any
function g(y) as in the previous proposition,

lim
S→∞ lim

T →∞
∣∣EP−T ,y

[
g
(
Y(t)

)]
1|y−T |≤ε − EP−S,ŷ

[
g
(
Ŷ (t)

)]
1|ŷ−S|≤ε

∣∣ = 0. (5.62)

Proof. Suppose T > S, |y − T | ≤ ε, |ŷ − S| ≤ ε. We have

EP−T ,y

[
g
(
Y(t)

)] = EP−T ,y

[
EPS,Y (−S)

[
g
(
Y(t)

)]]
(5.63)

thus
∣∣EP−T ,y

[
g
(
Y(t)

)] − EP−T ,y

[
EP−S,Y (−S)

[
g
(
Y(t)

)]
1|Y(−S)−S|≤ε

]∣∣
≤ sup |g|P−T ,y

{∣∣Y(−S) − S
∣∣ > ε

} ≤ sup |g|e−cε2S, (5.64)

where the last inequality in (5.64) follows from (5.34). On the other hand, from Proposition 5.16, for any ζ > 0 there
exists S0 such that, for any T > S > S0,

∣∣EP−T ,y

[
EPS,Y (−S)

[
g
(
Y(t)

)]
1|Y(−S)−S|≤ε

] − EP−S,ŷ

[
g
(
Ŷ (t)

)]
1|ŷ−S|≤ε

∣∣ < ζ (5.65)

then (5.62) follows from (5.63), (5.64), (5.65) and the boundedness of g. �

Proposition 5.18. Let P be the probability law defined at the beginning of this section, then the probabilities p± :=
P {Y ∈ E±} are strictly positive.

Proof. Let us prove, at first, the statement for E−. By (5.33), z+(t) ≤ ξχ+−∞(t) P -a.s., thus, for γ := y+(0)−y∗(0) >

0, �(x) := 1√
2π

∫ +∞
x

e−z2/2 dz, we have

P
{
z∗(0) < 0

} = P
{
z+(0) < −γ

} ≥ P
{
χ+−∞(0) < −γ ξ−1} = �

(
γ ξ−1/

√
E

[
χ+2−∞(0)

]) ≥ c > 0 (5.66)

since, by Lemma 5.6, E[χ+2−∞(0)] is bounded by a constant. From (5.4) it is easy to verify that

z∗(t) ≤ z∗(0)e−2
∫ t

0 y∗(s)ds + ξχ∗
0 (t), χ∗

0 (t) :=
∫ t

0
e−2

∫ t
u y∗(s)ds dwu,

P -a.s. Let us suppose z∗(0) < 0, then z∗(t) ≤ ξχ∗
0 (t), thus

P
{
z∗(T ) < −δ

} ≥ P
{
χ∗

0 (T ) > −δξ−1} = �
(
δξ−1

√
E

[
χ∗2

0 (T )
]) ≥ c > 0 (5.67)

for any δ > 0, hence, from Proposition 5.5, (5.66) and (5.67) it follows that P {Y ∈ E−} > 0.
By the use of comparison arguments as in proof of Proposition 5.8 it is easily provable that there exist εmax, c > 0

such that, for any ε ≤ εmax, if |z+(−T )| < ε
2 , then

P−T ,Y (−T )

{
sup

−T ≤t≤T

∣∣z+(t)
∣∣ < ε

}
> e−c/ε2

. (5.68)

To prove (5.68) it is sufficient to use the small balls inequality (A.5). Thus the claim for E+ follows from Propositions
5.8 and 5.10 and (5.68). �

Conclusion of the proof of Theorem 3.2. The convergence result (3.10) is a direct consequence of Corollary 5.17.
Equation (3.11) easily follows from Proposition 5.10.

The convergence of the probabilities 1|y−T |≤ε P−T ,y{Y ∈ E±} is a direct consequence of (3.10); finally, from (3.17)
and Proposition 5.18 it follows that p− ∈ (0,1). �
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6. Escape from criticality

In this section we study our N -finite dynamics assuming YN ∈ E −
T , i.e. YN(τN,T ) = −2T or, equivalently,

mN(TN,T ) = xc − 2T

νN1/3
, TN,T := μτN,T N1/3 ∈ [−T ,T ]μN1/3, (6.1)

we recall the definition of H±
γ (I ) in (2.11) and prove the following result.

Proposition 6.1. For any μ′ > μ

lim
T →∞ lim

N→∞ PN

{
H−

0

({
μ′T N1/3})|YN ∈ E −

T

} = 1. (6.2)

We consider the stochastic process x∗
N(t) := x∗

N(TN,T )(t) defined as the solution of the ODE (2.6) with h =
hN(t) and random initial condition x∗

N(TN,T ) = mN(TN,T ). We prove that, for any μ′ > μ (μ as in (3.5)), x∗
N(t)

reaches X−(hN(t)) within the time TN,T +μ′T N1/3, then we show that, by tracking x∗
N(t), our magnetization mN(t)

approaches X−(hN(t)). We denote by P −
N,T the probability law of mN(t) given YN ∈ E −

T . All the computations are
done for N > T , N,T large enough. Unless further indications, we will denote by c a generic positive constant
independent of N,T . In order to lighten notation, in this section we will omit the index N for the magnetization and
simply write m(t) and x∗(t).

We define the stopping time

T̂N,T := inf
{
t ≥ TN,T :

∣∣m(t) − x∗(t)
∣∣ > N−1/6}

and recall that F(x) = −x + tanh{β(x + h)}, we have the following result

Lemma 6.2. Let τ, τ ′ be two stopping times for m(t) such that TN,T < τ < τ ′ < T̂N,T and N > τ ′ − τ P −
N,T -a.s.

There exists a function ψ(t), such that

sup
TN,T <t<T̂N,T

∣∣∣∣ψ(t) − ∂F

∂x

(
x∗(t), hN(t)

)∣∣∣∣ ≤ cN−1/6 (6.3)

and, for γ > 0 small enough,

P −
N,T

{
sup

τ≤t≤τ ′

[∣∣m(t) − x∗(t)
∣∣ − Θτ,τ ′(t)

] ≤ 0
}

≥ 1 − cN−γ (6.4)

with

Θτ,τ ′(t) := ∣∣m(τ) − x∗(τ )
∣∣e∫ t

τ ψ(u)du + 2(τ ′ − τ)1/2

N(1−γ )/2

(
1 + e

∫ t
τ ψ(u)du

∫ t

τ

∣∣ψ(s)
∣∣e− ∫ s

τ ψ(u)du ds

)
. (6.5)

Proof. Let us define the function f (x, t) := x − x∗(t), then the process

M(t) := f
(
m(t), t

) − f
(
m(TN,T ), TN,T

) −
∫ t

TN,T

[
Lh(s)f + ∂f

∂s

](
m(s), s

)
ds

is a martingale. For any τ as in the hypothesis, the process Mτ (t) := M(t) − M(t ∧ τ) is a martingale as well and

Vτ (t) :=
∫ t

t∧τ

[
Lh(s)f

2 − 2f Lh(s)f
](

m(s), s
)

ds

is its quadratic variation. For any t ≥ TN,T ,

E
[

M2
τ

(
t ∧ τ ′)|τ, τ ′] = E

[
Vτ

(
t ∧ τ ′)|τ, τ ′] ≤ cN−1(t ∧ τ ′ − t ∧ τ

) ≤ cN−1(τ ′ − τ
)
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thus, by the Doob’s inequality, for any γ ∈ (0,1),

P
{

sup
τ≤t≤τ ′

∣∣Mτ (t)
∣∣ ≥ (τ ′ − τ)1/2

N(1−γ )/2

∣∣∣τ, τ ′
}

≤ cN−γ

then

P −
N,T

{
sup

τ≤t≤τ ′

∣∣Mτ (t)
∣∣ ≥ (τ ′ − τ)1/2

N(1−γ )/2

}

= EP −
N,T

[
1τ<τ ′ P

{
sup

τ≤t≤τ ′

∣∣Mτ (t)
∣∣ ≥ (τ ′ − τ)1/2

N(1−γ )/2

∣∣∣τ, τ ′
}]

≤ cN−γ . (6.6)

Recall the initial condition (6.1), then there exists a function ψ(t) satisfying (6.3) and such that
∣∣∣∣
[

Lh(s)f + ∂f

∂s

](
m(s), s

) − ψ(s)
(
m(s) − x∗(s)

)∣∣∣∣ ≤ cN−1 (6.7)

for t ≥ TN,T . For τ ≤ t ≤ T̂N,T we define the process

Rτ (t) := f
(
m(t), t

) − f
(
m(τ), τ

) −
∫ t

τ

ψ(s)f
(
m(s), s

)
ds − Mτ (t), (6.8)

then, from (6.7),

sup
τ≤t≤T̂N,T

|Rτ (t)|
|t − τ | ≤ cN−1 P −

N,T -a.s. (6.9)

By treating (6.8) as an integral equation for f (m(t), t) we find

f
(
m(t), t

) = f
(
m(τ), τ

)
e
∫ t
τ ψ(u)du + [

Rτ (t) + Mτ (t)
]

+ e
∫ t
τ ψ(u)du

∫ t

τ

[
Rτ (s) + Mτ (s)

]
ψ(s)e− ∫ s

τ ψ(u)du ds, τ ≤ t ≤ T̂N,T .

From (6.6) and (6.9), assuming N > τ ′ − τ , we find

P −
N,T

{
sup

τ≤t≤τ ′

∣∣Rτ (t) + Mτ (t)
∣∣ ≤ 2(τ ′ − τ)1/2

N(1−γ )/2

}
≥ 1 − cN−γ (6.10)

thus (6.4) follows. �

Lemma 6.3. Let us fix δ > 0 small enough and consider the stopping time

T ′
N,T = T ′

N,T ,δ := inf
{
t ≥ TN,T : x∗(t) ≤ xc − δ

}

then, P −
N,T -a.s, there exists C0 > 0 such that T ′

N,T − TN,T ≤ C0T
−1N1/3 for any T ,N large enough, and

x∗(t) ≥ x̂(t) := xc − 2T

νN1/3 − 4βxcT (t + T μN1/3)
for TN,T ≤ t ≤ T ′

N,T . (6.11)

Proof. Recall the initial condition (6.1) for x∗, then, for TN,T ≤ t ≤ 2μT N1/3 we have −hc ≤ hN(t) ≤ −hc +
cT 2N−2/3, thus

0 ≤ F
(
x∗(t), hN(t)

) − F
(
x∗(t), hc

) ≤ cT 2N−2/3
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hence, for TN,T ≤ t ≤ T ′
N,T ∧ 2μT N1/3,

−βxc(1 + c0δ)
(
x∗(t) − xc

)2 ≤ F
(
x∗(t), hN(t)

) ≤ −βxc(1 − c0δ)
(
x∗(t) − xc

)2 + cT 2N−2/3

for a suitable c0 > 0 independent of δ, then x1(t) ≤ x∗(t) ≤ x2(t), x1,2(t) solutions of

x′
1(t) = −βxc(1 + c0δ)

(
x1(t) − xc

)2
, (6.12)

x′
2(t) = −βxc(1 − c0δ)

(
x2(t) − xc

)2 + cT 2N−2/3 (6.13)

with x1(TN,T ) = x2(TN,T ) = x∗(TN,T ) = xc − 2T/νN1/3. It is easy to check that

x1(t) = xc − 1

νN1/3(2T )−1 − βxc(1 + c0δ)(t − τ0)
. (6.14)

On the other hand m2(t) is a function blowing up at time

TN,T + C0
N1/3

T
� 2μT N1/3

for a suitable C0 possibly depending on δ. In particular we have T ′
N,T < 2μT N1/3, thus the result follows. �

Lemma 6.4. Let us fix δ > 0 small enough and define the stopping time

T ′′
N,T = T ′′

N,T ,δ := inf
{
t ≥ T ′

N,T : x∗(t) ≤ X−
(
hN(t)

) + δ
}

then, P −
N,T -a.s., there exists C1 > 0 such that T ′′

N,T − T ′
N,T ≤ C1 for any T ,N large enough, and

x∗(t) ≤ X−
(
hN(t)

) + δ for any t ≥ T ′′
N,T . (6.15)

Proof. Let x̄1(t) and x̄2(t) be the solutions of

x̄′
1(t) = F

(
x̄1(t), hc

)
and x̄′

2(t) = F
(
x̄2(t), hc

) + cT 2N−2/3 (6.16)

with x̄1(T ′
N,T ) = x̄2(T ′

N,T ) = x∗(T ′
N,T ) = xc − δ. From Lemma 6.3 we know that TN,T ≤ 2μT N1/3, P −

N,T -a.s., then

x̄1(t) ≤ X+(hN(t)) ≤ x̄2(t) for T ′
N,T ≤ t ≤ T ′

N,T + μT N1/3.

Consider the stopping time T̃ ′′
N,T := inf{t ≥ T ′

N,T : x̄1(t) ≤ X−(hN(t)) + δ/2}, then there exists C1 > 0 such that

T̃ ′′
N,T − T ′

N,T ≤ C1. We denote by �x̄(t) the non-negative function x̄2(t) − x̄1(t), thus

d

dt
�x̄(t) ≤ (β − 1)�x̄(t) + c

T 2

N2/3
, �x̄

(
T ′

N,T

) = 0,

hence �x̄(t) ≤ cT 2N−2/3 for any t ≤ T ′
N,T + μT N1/3, then, in particular, x∗(T̃ ′′

N,T ) ≤ x̄2(T̃ ′′
N,T ) ≤ x̄1(T̃ ′′

N,T ) +
cT 2N−2/3 ≤ X−(hN(T̃ ′′

N,T )) + δ for N large enough, then T ′′
N,T ≤ T̃ ′′

N,T ≤ T ′
N,T + C1. Equation (6.15) is thus

proved. �

Lemma 6.5. Consider the stopping time

T ′′′
N,T := inf

{
t ≥ T ′′

N,T : x∗(t) ≤ X−
(
hN(t)

) + N−1/2}

then, P −
N,T -a.s., there exists C2 > 0 such that T ′′′

N,T − T ′′
N,T ≤ C2 lnN for any T ,N large enough, and

∣∣x∗(t) − X−
(
hN(t)

)∣∣ ≤ N−1/2 for any T ′′′
N,T ≤ t ≤ π

2
N2/3. (6.17)
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Proof. There exists c > 0 such that

− ∂

∂x
F

(
X−

(
hN(t)

)
, hN(t)

) = β
[
X−

(
hN(t)

)2 − x2
c

] ≥ c

for T ′′
N,T ≤ t ≤ π

2 N2/3. We have δ ≥ x∗(t) − X−(hN(t)) ≥ 0 for t ≥ T ′′
N,T , then there exists c0 > 0 not depending on

δ such that

FN

(
x∗(t), hN(t)

) ≤ −c(1 − c0δ)
(
x∗(t) − X−

(
hN(t)

))
.

Let us call �x(t) := x∗(t) − X−(hN(t)) ≥ 0, then, being X−(hN(t)) a not decreasing function for 0 ≤ t ≤ π
2 N2/3,

there exists c > 0 such that

d

dt
�x(t) ≤ −c�x(t) − d

dt
X−

(
hN(t)

) ≤ −c�x(t), �x
(

T ′′
N,T

) = δ,

hence �x(t) ≤ δe−c(t−T ′′
N,T ) for any T ′′

N,T ≤ t ≤ π
2 N2/3, then follows the result. �

Proof of Proposition 6.1. The proof consists of three steps.
Step I. We prove, at first, that there exists c > 0 such that, for any γ > 0 small enough,

P −
N,T

{∣∣m(
T ′

N,T

) − x∗(T ′
N,T

)∣∣ ≤ N−1/3+γ /2} ≥ 1 − cN−γ . (6.18)

We have |x∗(t) − xc| ≤ δ for TN,T ≤ t ≤ T ′
N,T , then there exists c0 > 0 independent of δ such that

0 ≤ ∂

∂x
F

(
x∗(t), hN(t)

) ≤ βxc(1 + c0δ)
(
xc − x∗(t)

) + cT 2N−2/3

thus, in particular, there exists c > 0 such that, P −
N,T -a.s., for any TN,T ≤ t ≤ T ′

N,T ∧ T̂N,T ,

∣∣ψ(t)
∣∣ = ψ(t) ≤ c

[(
xc − x∗(t)

) + T 2N−2/3] ≤ c
[(

xc − x̂(t)
) + T 2N−2/3],

the last inequality descending from (6.11). For C0 as in Lemma 6.3, referring to (6.5) for the definition of
ΘTN,T ,T ′

N,T
(t), there exist c, c′ > 0 such that

ΘTN,T ,T ′
N,T

(t) ≤ cN−1/3+γ /2 exp

{∫ t

TN,T

ψ(u)du

}

≤ c
N−1/3+γ /2

√
T

exp

{
c′

∫ t

TN,T

[(
xc − x̂(s)

) + T 2

N2/3

]
ds

}
. (6.19)

Let us define ΥT := (ν/4βxcT − 2μT ), then, by the definition of x̂(t) in (6.11), the exponent in (6.19) is bounded
by

c′
∫ t

TN,T

(
1

ΥT N1/3 − t
+ T 2

N2/3

)
ds = c′ T 2

N2/3
(t − TN,T ) ln

|ΥT N1/3 − t |
|ΥT N1/3 − TN,T | .

Since, by Lemma 5.31, T ′
N,T < TN,T + C0N

1/3/T , P −
N,T -a.s., there exist c, c′, c′′ > 0 such that

sup
TN,T ≤t≤T ′

N,T ∧T̂N,T

ΘTN,T ,T ′
N,T

(t) ≤ cN−1/3+γ /2 t − ΥT N1/3

TN,T − ΥT N1/3
ec′T N−1/3

≤ c′′N−1/3+γ /2
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for T large enough, thus, by 6.4,

P −
N,T

{
sup

TN,T ≤t≤T ′
N,T ∧T̂N,T

∣∣m(t) − x∗(t)
∣∣ ≤ cN−1/3+γ /2

}
≥ 1 − cN−γ

in particular, with the same probability T ′
N,T < T̂N,T , thus (6.18) follows.

Step II. We prove, now, that there exists c > 0 such that, for any γ > 0 small enough,

P −
N,T

{∣∣m(
T ′′

N,T

) − x∗(T ′′
N,T

)∣∣ ≤ cN−1/3+γ /2} ≥ 1 − cN−γ . (6.20)

We have |∂F (x∗(t), hN(t))/∂x| ≤ max{1, β − 1} := cβ , thus, by (6.15), there exists c > 0 such that

sup
T ′

N,T ≤t≤T ′′
N,T ∧T̂N,T

∣∣∣∣
∫ t

T ′
N,T

ψ(u)du

∣∣∣∣ ≤ c.

We can use the same arguments of Step I, there exists c > 0 such that

sup
T ′

N,T ≤t≤T ′′
N,T ∧T̂N,T

ΘT ′
N,T ,T ′′

N,T
(t) ≤ c

(∣∣m(
T ′

N,T

) − x∗(T ′
N,T

)∣∣ + N−(1−γ )/2)

P −
N,T -a.s., thus, by (6.4) and (6.18), we have

P −
N,T

{
sup

T ′
N,T ≤t≤T ′′

N,T ∧T̂N,T

∣∣m(t) − x∗(t)
∣∣ ≤ cN−1/3+γ /2

}
≥ 1 − cN−γ

thus (6.20) follows since T ′′
N,T < T̂N,T with the same probability.

Step III. We conclude the proof of the proposition. We have |x∗(t)−X−(hN(t))| ≤ δ for t ≥ T ′′
N,T , thus, for small δ,

∂

∂x
F

(
x∗(t), hN(t)

) = (
1 + O(δ)

) ∂

∂x
F

(
X−

(
hN(t)

)
, hN(t)

)
.

On the other hand, there exists c > 0 such that ∂
∂x

F (X−(hN(t)), hN(t)) ≤ −c, for any T ′′
N,T ≤ t ≤ π

2 N2/3, hence there
exists c′ > 0 such that

sup
τ2≤t≤ π

2 N2/3∧τ̂

∣∣ψ(t)
∣∣ ≤ −c′.

Let us fix T ′′
N,T ≤ t∗ ≤ π

2 N2/3 ∧ T̂N,T , thus

ΘT ′′
N,T ,t∗(t) = ∣∣m(

T ′′
N,T

) − x∗(T ′′
N,T

)∣∣e
∫ t

T ′′
N,T

ψ(u)du + 4
√

tN−(1−γ )/2

then, by (6.20),

P −
N,T

{
ΘT ′′

N,T ,t∗(t) ≤ N−1/3+γ /2e−c′(t∗−T ′′
N,T ) + 4

√
t∗N−(1−γ )/2} ≥ 1 − cN−γ . (6.21)

Let us fix, now, μ′′ > μ′ > μ and choose t∗ = μ′′T N1/3, thus, by Lemmas 6.3 and 6.4, t∗ > T ′′
N,T , P −

N,T -a.s., hence,
by (6.4) and (6.21) we get

P −
N,T

{
sup

T ′′
N,T ≤t≤t∗∧T̂N,T

∣∣m(t) − x∗(t)
∣∣ ≤ T N−1/3+γ /2

}
≥ 1 − cN−γ (6.22)
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then, in particular, with the same probability T̂N,T > t∗. We have T ′′
N,T < μ′T N1/3 < t∗ P −

N,T -a.s., then

P −
N,T

{∣∣m(
μ′T N1/3) − x∗(μ′T N1/3)∣∣ ≤ T N−1/3+γ /2} ≥ 1 − cN−γ . (6.23)

On the other hand, by Lemma 6.5, T ′′
N,T < μ′T N1/3 P −

N,T -a.s., hence

P −
N,T

{∣∣m(
μ′T N1/3) − x∗(μ′T N1/3)∣∣ ≤ N−1/2} = 1 (6.24)

thus (6.2) follows from (6.23) and (6.24). �

7. Behavior far from criticalities

In this section we give some results concerning the dynamics in the stable region. Theorem 7.1 provides a law for
the behavior of mN(t) in N2/3[−π

2 ,−η] and N2/3[η, π
2 ], η > 0. Recall that PN is the probability law of mN(t) in

N2/3[−π
2 , π

2 ] given mN(−π
2 N2/3) = m0

N . For any fixed η ∈ [−π
2 , π

2 ], we denote by P η
N the law of mN(t) in N2/3[η, π

2 ]
given mN(ηN2/3) = m0

N . For H±
γ (I ), I ⊆ R, as in (2.11), we prove the following result.

Theorem 7.1. For any η, γ > 0 small enough and γ ′ > γ > 0, if |m0
N − X+(0)| ≤ N−1/2+γ then

lim
N→∞ PN

{
H+

γ ′

(
N2/3

[
−π

2
,−η

])}
= 1. (7.1)

For any η, γ > 0 small enough and γ ′ > γ > 0, if |m0
N − X+(hN(ηN2/3))| ≤ N−1/2+γ then

lim
N→∞ P η

N

{
H+

γ ′

(
N2/3

[
η,

π
2

])}
= 1. (7.2)

For any η ∈ [−π
2 , π

2 ), γ ′ > γ , if |m0
N − X−(hN(ηN2/3))| ≤ N−1/2+γ then

lim
N→∞ P η

N

{
H−

γ ′

(
N2/3

[
η,

π
2

])}
= 1. (7.3)

Theorem 7.2 provides a connection between the critical and the stable regions.

Theorem 7.2. There is c > 0 so that for any T large enough, γ,η, ε > 0

lim sup
N→∞

PN

{∣∣YN(−T ) − T
∣∣ ≥ ε|H+

γ

({−ηN2/3})} ≤ e−cε2T (7.4)

and

lim sup
N→∞

PN

{(
H+

γ

({
ηN2/3}))c|∣∣YN(T ) − T

∣∣ ≤ ε
} ≤ e−cε2T . (7.5)

For the proof of Theorems 7.1 and 7.2 see Section 2.5 in [8].

8. Conclusion of the proof of the main result

At this stage Theorem 2.3 is an almost direct consequence of Theorem 3.1, Propositions 3.5 and 3.6, that we are going
to prove.
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Proof of Theorem 3.1. Let us fix γ, ε > 0 small enough. Recalling that PN is the law of m(t) with m(−πN2/3/2) =
m0

N , suppose |m0
N − X+(hN(0))| ≤ N−1/2+γ , then, for any fixed η > 0,

PN

{∣∣Y(−T ) − T
∣∣ > ε

} ≤ PN

{(
H+

2γ

({−ηN2/3}))c} + PN

{∣∣Y(−T ) − T
∣∣ > ε|H+

2γ

({−ηN2/3})}

thus the result follows from (2.12) and (7.4). �

Proof of Proposition 3.5. For P ∗
N,−T ,y and P ∗−T ,y as defined in Section 4, PN,−T ,y{YN ∈ E ±

T } = P ∗
N,−T ,y{YN ∈ E ±

T }
and P−T ,y{Y ∈ E ±

T } = P ∗−T ,y{Y ∈ E ±
T }, thus Proposition 3.5 follows directly from Proposition 4.3. �

Proof of Proposition 3.6. For any η, γ > 0, H±
γ (I ), I ⊆ R, as in (2.11), we have

PN

{(
H+

γ

(
N2/3

[
η,

π
2

]))c∣∣∣YN ∈ E +
T

}

≤ PN

{(
H+

γ

(
N2/3

[
η,

π
2

]))c∣∣∣H+
γ /2

({
ηN2/3})}

+ PN

{(
H+

γ /2

({
ηN2/3}))c||YN(T ) − T | ≤ ε

}

then the plus case of (3.22) follows from (7.2) and (7.5). Analogously, for any η, γ,μ′ > μ independent of N , we
have

PN

{(
H−

γ

(
N2/3

[
η,

π
2

]))c∣∣∣YN ∈ E −
T

}

≤ PN

{(
H−

γ

(
N2/3

[
η,

π
2

]))c∣∣∣H−
γ /2

({
μ′T N1/3})}

+ PN

{(
H−

γ /2

({
μ′T N1/3}))c|YN ∈ E −

T

}

thus the minus case of (3.22) follows from (6.2) and (7.3), since μ′T N−1/3 � η for large N . �

Lemma 8.1. We have

lim
T →∞ lim

N→∞
∣∣PN

{
YN ∈ E ±

T

} − 1|y−T |≤ε PN,−T ,y

{
YN ∈ E ±

T

}∣∣ = 0 (8.1)

and

lim
T →∞ lim

N→∞
∣∣PN

{
YN ∈ E +

T ∪ E −
T

} − 1|y−T |≤ε PN,−T ,y

{
YN ∈ E +

T ∪ E −
T

}∣∣ = 0. (8.2)

Proof. We prove only (8.1). We show at first that, for any fixed y: |y − T | ≤ ε, ε > 0 small enough,

lim
T →∞ lim

N→∞
∣∣PN

{
YN ∈ E ±

T |∣∣YN(−T ) − T
∣∣ ≤ ε

} − PN,−T ,y

{
YN ∈ E ±

T

}∣∣ = 0. (8.3)

We have

inf|y−T |≤ε
PN,−T ,y

{
E ±

T

} ≤ PN

{
E ±

T |∣∣Y(−T ) − T
∣∣ ≤ ε

} ≤ sup
|y−T |≤ε

PN,−T ,y

{
E ±

T

}

thus, in order to prove (8.3), it is sufficient to show that, for any couple y, ȳ: |y − T |, |ȳ − T | ≤ ε,

lim
T →∞ lim

N→∞
∣∣PN,−T ,y

{
E ±

T

} − PN,−T ,ȳ

{
E ±

T

}∣∣ = 0. (8.4)
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Equation (8.4) follows since, for Y(t), Ȳ (t) solutions of (5.1) starting at −T respectively from y, ȳ, by Proposition 3.6
we have

lim
N→∞

∣∣PN,−T ,y

{
YN ∈ E ±

T

} − P−T ,y

{
Y ∈ E ±

T

}∣∣ = 0 (8.5)

and, by Proposition 5.16,

lim
T →∞

∣∣P−T ,y

{
Y ∈ E ±

T

} − P−T ,ȳ

{
Ȳ ∈ E ±

T

}∣∣ = 0 (8.6)

thus (8.4) follows from (8.5) and (8.6). We have, now

∣∣PN

{
YN ∈ E ±

T

} − PN

{
YN ∈ E ±

T |∣∣YN(−T ) − T
∣∣ ≤ ε

}∣∣ ≤ 2PN

{∣∣YN(−T ) − T
∣∣ > ε

}
. (8.7)

From Theorem 3.1 we know that the term in (8.7) is vanishingly small for large T , then (8.1) directly follows
from (8.3). �

Conclusion of the proof of Theorem 2.3. We just need to prove (2.13) since the proof of (2.12) has been proved in
Section 7 as a part of Theorem 7.1 (see (7.1)).

Let us suppose |m0
N − X+(0)| ≤ N1/2+γ . We have

∣∣∣∣PN

{
H±

γ

(
N2/3

[
η,

π
2

])}
− PN

{
YN ∈ E ±

T

}∣∣∣∣
≤ PN

{(
H±

γ

(
N2/3

[
η,

π
2

]))c∣∣∣YN ∈ E ±
T

}

+ PN

{(
H∓

γ

(
N2/3

[
η,

π
2

]))c∣∣∣YN ∈ E ∓
T

}
(8.8)

+ PN

{
YN /∈ E +

T ∪ E −
T

}
. (8.9)

From (3.16), (3.21) and (8.2) we have

lim
T →∞ lim

N→∞ PN

{
YN /∈ E +

T ∪ E −
T

} = 0.

From Proposition 3.6 we know that the terms in (8.8) and (8.9) are vanishingly small for large T and N , thus,
from (8.1) we have

lim
T →∞ lim

N→∞

∣∣∣∣PN

{
H±

γ

(
N2/3

[
η,

π
2

])}
− 1|y−T |≤ε PN,−T ,y

{
YN ∈ E ±

T

}∣∣∣∣ = 0. (8.10)

Suppose |y − T | ≤ ε, Y(t) as in Proposition 3.6, then

∣∣PN,−T ,y

{
YN ∈ E ±

T

} − p±
∣∣ ≤ ∣∣PN,−T ,y

{
YN ∈ E ±

T

} − P−T ,y

{
Y ∈ E ±

T

}∣∣ + ∣∣P−T ,y

{
Y ∈ E ±

T

} − p±
∣∣ (8.11)

then (2.13) follows from (3.19), (3.20), (8.10) and (8.11). �

Appendix

In this paper we mainly make use of techniques of comparison with Gaussian Processes. In this appendix we provide
some Gaussian Inequalities and a comparison lemma.



Random hysteresis loops 337

Marcus–Shepp inequality for Gaussian processes

There is a classical result of Landau and Shepp [12] and Marcus and Shepp [14] that gives an estimate on the prob-
ability for a general centered Gaussian process of escaping from a large ball. If G(t) is an a.s. bounded, centered
Gaussian process of variance σ 2(t), then

lim
λ→∞

1

λ2
ln P

{
sup
t∈I

G(t) ≥ λ
}

= − 1

2σ 2
I

with σ 2
I := sup

t∈I

σ 2(t). (A.1)

An almost immediate consequence of (A.1) is that for any λ large enough, δ small enough,

P
{

sup
t

|G(t)|
σ(t)

≥ λ

}
≤ 2e−λ2/2(1−δ). (A.2)

Small deviations for Gaussian Markov processes

We give a result of Li (see [13]) dealing with the probability, for a Gaussian Markov process, of escaping from a small
ball. Let G(t) be a continuous centered Gaussian Markov process of covariance σ(s, t) �= 0 for t0 < s < t < t1. We
can write σ(s, t) = G(s)H(t) with G,H > 0 and G/H non-decreasing on (t0, t1), then

lim
ε→0

ε2 ln P
{

sup
t0<t≤t1

∣∣G(t)
∣∣ < ε

}
= −π2

8

∫ t1

t0

(
G′H − H ′G

)
dt. (A.3)

We apply (A.3) to processes of the kind

G(t) =
∫ t

t0

e− ∫ t
u a(s)ds dwu, t0 ≤ t ≤ t1, (A.4)

we get

lim
ε→0

ε2 log P
{

sup
t0<t≤t1

∣∣G(t)
∣∣ < ε

}
= −π2

8

(
1 − e− ∫ t1

t0
a(s)ds)

. (A.5)

Comparison with Gaussian processes

In the thesis we repeatedly make use of a comparison argument comparing the solution of a linear SDE with the
solution of a more general SDE, let us see.

Let Gt be a solution of the problem

dGt = (
a(t)Gt + b(t)

)
dt + ξ dwt (A.6)

with a, b : R+ → R bounded on bounded intervals and ξ ∈ R, then G(t) is a Gaussian process of the form

G(t) = G(t0)e
∫ t
t0

a(s)ds +
∫ t

t0

b(s)e
∫ t
s a(u)du ds + ξ

∫ t

t0

e
∫ t
s a(u)du dws.

Consider, now, the processes v(t) solution of

dvt = c(vt , t)dt + ξ dwt

with the same noise of (A.6), c : R × R
+ → R globally Lipschitz.
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Lemma A.1. For G(t), v(t) as above we define δt := c(Gt , t) − [a(t)Gt + b(t)], �t := Gt − vt , and let τ ∈ R
+ be a

generic random variable. Suppose

sign(�τ ) = sign(δτ ) or �τ = 0,

then

sign(�t ) = sign(δt ) for any τ ≤ t ≤ inf{s ≥ τ : δs = 0} a.s.

Proof. We have

d�t = (
a(t)�t + δt

)
dt

thus, for any τ ≥ 0

�(t) = �(τ)e
∫ t
τ a(s)ds +

∫ t

τ

δ(s)e
∫ t
s a(u)du ds

then follows the result. �
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