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Abstract. Let S
(2)
n denote the iterated partial sums. That is, S(2)

n = S1 +S2 +· · ·+Sn, where Si = X1 +X2 +· · ·+Xi . Assuming
X1,X2, . . . ,Xn are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities

p
(2)
n := P

(
max

1≤i≤n
S

(2)
i

< 0
)

≤ c

√
E|Sn+1|

(n + 1)E|X1| ,

with c ≤ 6
√

30 (and c = 2 whenever X1 is symmetric). The converse inequality holds whenever the non-zero min(−X1,0) is

bounded or when it has only finite third moment and in addition X1 is squared integrable. Furthermore, p
(2)
n � n−1/4 for any non-

degenerate squared integrable, i.i.d., zero-mean Xi . In contrast, we show that for any 0 < γ < 1/4 there exist integrable, zero-mean

random variables for which the rate of decay of p
(2)
n is n−γ .

Résumé. Soit S
(2)
n la somme partielle itérée, c’est à dire S

(2)
n = S1 +S2 +· · ·+Sn, où Si = X1 +X2 +· · ·+Xi . Pour des variables

aléatoires X1,X2, . . . ,Xn i.i.d. intégrables et de moyenne nulle, nous montrons que les probabilités de persistance satisfont

p
(2)
n := P

(
max

1≤i≤n
S

(2)
i

< 0
)

≤ c

√
E|Sn+1|

(n + 1)E|X1| ,

avec c ≤ 6
√

30 (et c = 2 dès que X1 est symétrique). En outre, l’inégalité inverse est vraie quand P(−X1 > t) � e−αt pour un

α > 0 ou si P(−X1 > t)1/t → 0 quand t → ∞. Pour ces variables, on a donc p
(2)
n � n−1/4 si X1 admet un moment d’ordre 2. Par

contre nous montrons que pour tout 0 < γ < 1/4, il existe des variables intégrables de moyenne nulle pour lesquelles p
(2)
n décroît

comme n−γ .
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1. Introduction

The estimation of probabilities of rare events is one of the central themes of research in the theory of probability. Of
particular note are persistence probabilities, formulated as

qn = P

(
max

1≤k≤n
Yk < y

)
, (1.1)

where {Yk}nk=1 is a sequence of zero-mean random variables. For independent Yi the persistence probability is eas-
ily determined to be the product of P(Yk < y) and to a large extent this extends to the case of sufficiently weakly
dependent and similarly distributed Yi , where typically qn decays exponentially in n. In contrast, in the classical
case of partial sums, namely Yk = Sk = ∑k

i=1 Xi with {Xj } i.i.d. zero-mean random variables, it is well known that
qn = O(n−1/2) decays as a power law. This seems to be one of the very few cases in which a power law decay
for qn can be proved and its exponent is explicitly known. Indeed, within the large class of similar problems where
dependence between Yi is strong enough to rule out exponential decay, the behavior of qn is very sensitive to the
precise structure of dependence between the variables Yi and even merely determining its asymptotic rate can be very
challenging (for example, see [4] for recent results in case Yk = ∑n

i=1 Xi(1 − ck,n)
i are the values of a random Kac

polynomials evaluated at certain non-random {ck,n}).
We focus here on iterated sums of i.i.d. zero-mean, random variables {Xi}. That is, with Sn = ∑n

k=1 Xk and

S(2)
n =

n∑
k=1

Sk =
n∑

i=1

(n − i + 1)Xi, (1.2)

we are interested in the asymptotics as n → ∞ of the persistence probabilities

p(2)
n (y) := P

(
max

1≤k≤n
S

(2)
k < y

)
, p(2)

n (y) := P

(
max

1≤k≤n
S

(2)
k ≤ y

)
, (1.3)

where y ≥ 0 is independent of n. With y � n it immediately follows from Lindeberg’s CLT (when Xi are square
integrable), that p

(2)
n (y) → 0 as n → ∞ and our goal is thus to find a sharp rate for this decay to zero.

Note that for any fixed y > 0 we have that p
(2)
n (y) � p

(2)
n (y) � p

(2)
n (0) up to a constant depending only on y, here

and throughout the paper, A � B means that there exist two positive constants C1 and C2, such that C1A ≤ B ≤ C2A.
Indeed, because EX−

1 > 0, clearly P(X1 < −ε) > 0 for ε = y/k and some integer k ≥ 1. Now, for any n ≥ 1 and
z ≥ 0,

p(2)
n (z) ≥ p(2)

n (z) ≥ P(X1 < −ε)p
(2)
n−1(z + ε) ≥ P(X1 < −ε)p(2)

n (z + ε)

and applying this inequality for z = iε, i = 0,1, . . . , k − 1 we conclude that

p(2)
n (0) ≥ [

P(X1 < −ε)
]k

p(2)
n (y). (1.4)

Of course, we also have the complementary trivial relations p
(2)
n (0) ≤ p

(2)
n (0) ≤ p

(2)
n (y) ≤ p

(2)
n (y), so it suffices to

consider only p
(2)
n (0) and p

(2)
n (0) which we denote hereafter by p

(2)
n and p

(2)
n , respectively. Obviously, p

(2)
n and p

(2)
n

have the same order (with p
(2)
n = p

(2)
n whenever X1 has a density), and we consider both only in order to draw the

reader’s attention to potential identities connecting the two sequences {p(2)
n } and {p(2)

n }.
Persistence probabilities such as p

(2)
n appear in many applications. For example, the precise problem we consider

here arises in the study of the so-called sticky particle systems (cf. [12] and the references therein). In case of standard
normal Xi it is also related to entropic repulsion for ∇2-Gaussian fields (cf. [3] and the references therein), though
here we consider the easiest version, namely a one dimensional ∇2-Gaussian field. In his 1992 seminal paper, Sinai
[11] proved that if P(X1 = 1) = P(X1 = −1) = 1/2, then p

(2)
n � n−1/4. However, his method relies on the fact that

for Bernoulli {Xk} all local minima of k 
→ S
(2)
k correspond to values of k where Sk = 0, and as such form a sequence

of regeneration times. For this reason, Sinai’s method can not be readily extended to most other distributions. Using
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a different approach, more recently Vysotsky [13] managed to extend Sinai’s result that p
(2)
n � n−1/4 to Xi which

are double-sided exponential, and a few other special types of random walks. At about the same time, Aurzada and
Dereich [2] used strong approximation techniques to prove the bounds n−1/4(logn)−4 � p

(2)
n � n−1/4(logn)4 for

zero-mean random variables {Xi} such that E[eβ|X1|] < ∞ for some β > 0. However, even for Xi which are standard
normal variables it was not known before the present results whether these logarithmic terms are needed, and if not,
how to get rid of them. Our main result, stated below, fully resolves this question, requiring only that EX2

1 is finite
and positive.

Theorem 1.1. For i.i.d. {Xk} of zero mean and 0 < E|X1| < ∞, let S
(2)
n = S1 +S2 +· · ·+Sn, where Si = X1 +X2 +

· · · + Xi . Then,

n∑
k=0

p
(2)
k p

(2)
n−k ≤ c2

1
E|Sn+1|
E|X1| , (1.5)

where c1 ≤ 6
√

30, and c1 = 2 if X1 is symmetric. The converse inequality

n∑
k=0

p
(2)
k p

(2)
n−k ≥ 1

c2

E|Sn+1|
E|X1| (1.6)

holds for some finite c2 whenever X−
1 is bounded, or with X−

1 only having finite third moment and X1 squared
integrable. Taken together, these bounds imply that

1

4c1c2

√
E|Sn+1|

(n + 1)E|X1| ≤ p(2)
n ≤ c1

√
E|Sn+1|

(n + 1)E|X1| . (1.7)

Furthermore, assuming only that EX1 = 0 and 0 < E(X2
1) < ∞, we have that

p(2)
n � n−1/4. (1.8)

Remark 1.2. In contrast to (1.8), for any 0 < γ < 1/4 there exists integrable, zero-mean variable X1 for which
p

(2)
n � n−γ . Indeed, considering P(Y1 > y) = y−α1y≥1 with 1 < α < 2, the bounds (1.7) hold for the bounded below,

zero-mean, integrable random variable X1 = Y1 −EY1. Setting an = n1/α , clearly nP(|X1| > anx) → x−α as n → ∞,
hence a−1

n Sn − bn converges in distribution to a zero-mean, one-sided Stableα variable Zα , and it is further easy to
check that bn = a−1

n nE[X11|X1|≤an ] → b∞ = −EY1. In fact, it is not hard to verify that {a−1
n Sn} is a uniformly

integrable sequence and consequently n−1/α
E|Sn| → E|Zα − EY1| finite and positive. From Theorem 1.1 we then

deduce that p
(2)
n � n−γ for γ = (1 − 1/α)/2. This rate matches with the corresponding one for integrated Lévy

α-stable process, cf. [10].

The sequences {Sk} and {S(2)
k } are special cases of the class of auto-regressive processes Yk = ∑L

�=1 a�Yk−� + Xk

with zero initial conditions, i.e. Yk ≡ 0 when k ≤ 0 (where Sk corresponds to L = a1 = 1 and S
(2)
k corresponds to

L = a1 = 2, a2 = −1). While for such stochastic processes (Yk, . . . , Yk−L+1) is a time-homogeneous Markov chain
of state space R

L and qn = P(τ > n) is merely the upper tail of the first hitting time τ of [y,∞) by the first coordinate
of the chain, the general theory of Markov chains does not provide the precise decay of qn, which even in case L = 1
ranges from exponential decay for a1 > 0 small enough (which can be proved by comparing with O-U process, cf.
[1]), via the O(n−1/2) decay for a = 1 to a constant n 
→ qn in the limit a1 ↑ ∞. While we do not pursue this here,
we believe that the approach we develop for proving Theorem 1.1 can potentially determine the asymptotic behavior
of qn for a large collection of auto-regressive processes. This is of much interest, since for example, as shown in [7],
the asymptotic tail probability that random Kac polynomials have no (or few) real roots is determined in terms of the
limit as r → ∞ of the power law tail decay exponents for the iterates S

(r)
k = ∑k

i=1 S
(r−1)
i , r ≥ 3.
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Our approach further suggests that there might be some identities connecting the sequences {p(2)
n } and {p(2)

n }. Note
that, if we denote

p(1)
n = P

(
max

1≤k≤n
Sk < 0

)
, p(1)

n = P

(
max

1≤k≤n
Sk ≤ 0

)
,

then as we show in the proof of the following proposition that there are indeed identities connecting the sequences
{p(1)

n } and {p(1)
n }.

Proposition 1.3. If Xi are mean zero i.i.d. symmetric random variables then for all n ≥ 1,

p(1)
n ≤ (2n − 1)!!

(2n)!! ≤ p(1)
n . (1.9)

In particular, if X1 also has a density, then

p(1)
n = (2n − 1)!!

(2n)!! . (1.10)

Remark 1.4. Proposition 1.3 is not new and can be found in [6], Section XII.8. In fact, it is shown there that for all
zero-mean random variables with bounded second moment (not necessary symmetric),

p(1)
n � n−1/2. (1.11)

The novel point is our elegant proof, which serves as the starting point of our approach to the study of p
(2)
n .

Remark 1.5. Let B(s) denote a Brownian motion starting at B(0) = 0 and consider the integrated Brownian motion
Y(t) = ∫ t

0 B(s)ds. Sinai [11] proved the existence of positive constants A1 and A2 such that for any T ≥ 1,

A1T
−1/4 ≤ P

(
sup

t∈[0,T ]
Y(t) ≤ 1

)
≤ A2T

−1/4. (1.12)

Upon setting ε = T −3/2 and t = uT , by Brownian motion scaling this is equivalent up to a constant to the following
result that can be derived from an implicit formula of McKean [8] (cf. [5]):

lim
ε→0+ ε−1/6

P

(
sup

u∈[0,1]
Y(u) ≤ ε

)
= 3Γ (5/4)

4π
√

2
√

2π
.

Since the iterated partial sums S
(2)
n corresponding to i.i.d. standard normal random variables {Xi}, forms a “dis-

cretization” of Y(t), the right-most inequality in (1.12) readily follows from Theorem 1.1. Indeed,
with E[Y(k)Y (m)] = k2(3m − k)/6 and E[S(2)

k S
(2)
m ] = k(k + 1)(3m − k + 1)/6 for m ≥ k, setting Z(k) =√

(1 + 1/k)(1 + 1/(2k)Y (k), results with E[(S(2)
k )2] = E[Z(k)2] and it is further not hard to show that f (m,k) :=

E[S(2)
m S

(2)
k ]/E[Z(m)Z(k)] ≥ 1 for all m �= k (as f (k + 1, k) ≥ 1 and df (m,k)/dm > 0 for any m ≥ k + 1). Thus, by

Slepian’s lemma, we have that for any y

P

(
max

1≤k≤n
Z(k) < y

)
≤ p(2)

n (y),

and setting n as the integer part of T ≥ 1 it follows that

P

(
sup

t∈[0,T ]
Y(t) ≤ 1

)
≤ P

(
max

1≤k≤n
Y (k) ≤ 1

)
≤ P

(
max

1≤k≤n
Z(k) < 2

)
≤ p(2)

n (2).

Since p
(2)
n (2) ≤ cp

(2)
n for some finite constant c and all n, we conclude from Theorem 1.1 that

P

(
sup

t∈[0,T ]
Y(t) ≤ 1

)
≤ 2c(n + 1)−1/4 ≤ 2cT −1/4.
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2. Proof of Proposition 1.3

Setting S0 = 0 let Mn = max0≤j≤n Sj and consider the {0,1,2, . . . , n}-valued random variable

N = min{l ≥ 0: Sl = Mn}.

For each k = 1,2, . . . , n − 1 we have that

{N = k} = {Xk > 0,Xk + Xk−1 > 0, . . . ,Xk + Xk−1 + · · · + X1 > 0;
Xk+1 ≤ 0,Xk+1 + Xk+2 ≤ 0, . . . ,Xk+1 + Xk+2 + · · · + Xn ≤ 0}.

By the independence of {Xi}, the latter identity implies that

P(N = k) = P(Xk > 0,Xk + Xk−1 > 0, . . . ,Xk + Xk−1 + · · · + X1 > 0)

× P(Xk+1 ≤ 0,Xk+1 + Xk+2 ≤ 0, . . . ,Xk+1 + Xk+2 + · · · + Xn ≤ 0)

= p
(1)
k p

(1)
n−k,

where the last equality follows from our assumptions that Xi are i.i.d. symmetric random variables. Also note that
P(N = 0) = p

(1)
n and

P(N = n) = P(Xn > 0,Xn + Xn−1 > 0, . . . ,Xn + Xn−1 + · · · + X1 > 0) = p(1)
n .

Thus, setting p
(1)
0 = p

(1)
0 = 1 we arrive at the identity

n∑
k=0

p
(1)
k p

(1)
n−k =

n∑
k=0

P(N = k) = 1, (2.1)

holding for all n ≥ 0.
Fixing x ∈ [0,1), upon multiplying (2.1) by xn and summing over n ≥ 0, we arrive at P(x)P (x) = 1

1−x
, where

P(x) = ∑∞
k=0 p

(1)
k xk and P(x) = ∑∞

k=0 p
(1)
k xk . Now, if X1 also has a density then p

(1)
k = p

(1)
k for all k and so by the

preceding P(x) = P(x) = (1 − x)−1/2. Consequently, p
(1)
n is merely the coefficient of xn in the Taylor expansion at

x = 0 of the function (1 − x)−1/2, from which we immediately deduce the identity (1.10).
If X1 does not have a density, let {Yi} be i.i.d. standard normal random variables, independent of the sequence {Xi}

and denote by Sk and S̃k the partial sums of {Xi} and {Yi}, respectively. Note that for any ε > 0, each of the i.i.d.
variables Xi + εYi is symmetric and has a density, with the corresponding partial sums being Sk + εS̃k . Hence, for
any δ > 0 we have that

P

(
max

1≤k≤n
Sk < −δ

)
≤ P

(
max

1≤k≤n
(Sk + εS̃k) ≤ 0

)
+ P

(
max

1≤k≤n
εS̃k ≥ δ

)
= (2n − 1)!!

(2n)!! + P

(
max

1≤k≤n
εS̃k ≥ δ

)
.

Taking first ε ↓ 0 followed by δ ↓ 0, we conclude that

P

(
max

1≤k≤n
Sk < 0

)
≤ (2n − 1)!!

(2n)!! ,

and a similar argument works for the remaining inequality in (1.9).
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3. Proof of Theorem 1.1

By otherwise considering Xi/E|Xi |, we assume without loss of generality that E|X1| = 1. To adapt the method of
Section 2 for dealing with the iterated partial sums S

(2)
n , we introduce the parameter t ∈ R and consider the iterates

S
(2)
j (t) = S0(t) + · · · + Sj (t), j ≥ 0, of the translated partial sums Sk(t) = t + Sk , k ≥ 0. That is, S

(2)
j (t) = (j + 1)t +

S
(2)
j for each j ≥ 0.

Having fixed the value of t , we define the following {0,1,2, . . . , n}-valued random variable

Kt = min
{
l ≥ 0: S

(2)
l (t) = max

0≤j≤n
S

(2)
j (t)

}
.

Then, for each k = 2,3, . . . , n − 2, we have the identity

{Kt = k} = {
Sk(t) > 0, Sk(t) + Sk−1(t) > 0, . . . , Sk(t) + Sk−1(t) + · · · + S1(t) > 0;

Sk+1(t) ≤ 0, Sk+1(t) + Sk+2(t) ≤ 0, . . . , Sk+1(t) + Sk+2(t) + · · · + Sn(t) ≤ 0
}

= {
Sk(t) > 0;Xk < 2Sk(t), . . . , (k − 1)Xk + · · · + X2 < kSk(t)

} ∩ {
Sk+1(t) ≤ 0

}
∩ {

Xk+2 ≤ −2Sk+1(t), . . . , (n − k − 1)Xk+2 + · · · + Xn ≤ −(n − k)Sk+1(t)
}
.

Next, for 2 ≤ k ≤ n we define Yk,2 ∈ σ(X2, . . . ,Xk) and Yk,n ∈ σ(Xk, . . . ,Xn) such that

Yk,2 = max

{
Xk

2
,

2Xk + Xk−1

3
, . . . ,

(k − 1)Xk + · · · + X2

k

}
,

Yk,n = max

{
Xk

2
,

2Xk + Xk+1

3
, . . . ,

(n − k + 1)Xk + · · · + Xn

n − k + 2

}
.

It is then not hard to verify that the preceding identities translate into

{Kt = k} = {
Sk(t) > 0 ≥ Sk+1(t)

} ∩ {
Yk,2 < Sk(t)

} ∩ {
Yk+2,n ≤ −Sk+1(t)

}
(3.1)

= {−Sk + (Yk,2)
+ < t ≤ −Xk+1 − Sk − (Yk+2,n)

+}
(3.2)

holding for each k = 2, . . . , n − 2. Further, for k = 1 and k = n − 1 we have that

{Kt = 1} = {
S1(t) > 0

} ∩ {
S2(t) ≤ 0

} ∩ {
Y3,n ≤ −S2(t)

}
,

{Kt = n − 1} = {
Sn−1(t) > 0

} ∩ {
Yn−1,2 < Sn−1(t)

} ∩ {
Sn(t) ≤ 0

}
,

so upon setting Y1,2 = Yn+1,n = −∞, the identities (3.1) and (3.2) extend to all 1 ≤ k ≤ n − 1.
For the remaining cases, that is, for k = 0 and k = n, we have instead that

{Kt = 0} = {
t ≤ −X1 − (Y2,n)

+}
, (3.3)

{Kt = n} = {−Sn + (Yn,2)
+ < t

}
. (3.4)

In contrast with the proof of Proposition 1.3, here we have events {(Yk,2)
+ < Sk(t)} and {(Yk+2,n)

+ ≤ −Sk+1(t)}
that are linked through Sk(t) and consequently not independent of each other. Our goal is to unhook this relation and
in fact the parameter t was introduced precisely for this purpose.

3.1. Upper bound

For any integer n > 1, let

An = max
1≤k≤n

{−Sk+1}, Bn = − max
1≤k≤n

{Sk}.
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By definition An ≥ Bn. Further, for any 1 ≤ k ≤ n − 1, from (3.1) we have that the event {Kt = k} implies that
{Sk(t) > 0 ≥ Sk+1(t)} = {−Sk < t ≤ −Sk+1} and hence that {Bn−1 < t ≤ An−1}. From (3.2) we also see that for any
1 ≤ k ≤ n − 1,∫

R

1{Kt=k} dt ≥ (Xk+1)
−1{Yk,2<0}1{Yk+2,n≤0}

and consequently,

An−1 − Bn−1 =
∫

R

1{Bn−1<t≤An−1} dt ≥
n−1∑
k=1

∫
R

1{Kt=k} dt

≥
n−1∑
k=1

(Xk+1)
−1{Yk,2<0}1{Yk+2,n≤0}. (3.5)

Taking the expectation of both sides we deduce from the mutual independence of Yk,2, Xk+1 and Yk+2,n that

E[An−1 − Bn−1] ≥
n−1∑
k=1

E
[
(Xk+1)

−]
P(Yk,2 < 0)P(Yk+2,n ≤ 0).

Next, observe that since the sequence {Xi} has an exchangeable law,

P(Yk,2 < 0) = P
(
Xk < 0,2Xk + Xk−1 < 0, . . . , (k − 1)Xk + · · · + X2 < 0

)
= P

(
X1 < 0,2X1 + X2 < 0, . . . , (k − 1)X1 + · · · + Xk−1 < 0

) = p
(2)
k−1. (3.6)

Similarly, P(Yk+2,n ≤ 0) = p
(2)
n−1−k . With Xk+1 having zero mean, we have that E[(Xk+1)

−] = E[(Xk+1)
+] = 1/2

(by our assumption that E|Xk+1| = E|X1| = 1). Consequently, for any n > 2,

E[An−1 − Bn−1] ≥ 1

2

n−1∑
k=1

p
(2)
k−1p

(2)
n−1−k = 1

2

n−2∑
k=0

p
(2)
k p

(2)
n−2−k.

With E[Sn+1] = 0 and {Xk} exchangeable, we clearly have that

E[An − Bn] = E

[
max

1≤k≤n
{Sn+1 − Sk+1}

]
+ E

[
max

1≤k≤n
Sk

]
= 2E

[
max

1≤k≤n
Sk

]
. (3.7)

Recall Ottaviani’s maximal inequality that for a symmetric random walk P(maxn
k=1 Sk ≥ t) ≤ 2P(Sn ≥ t) for any

n, t ≥ 0, hence in this case

E

[
max

1≤k≤n
Sk

]
≤ 2

∫ ∞

0
P(Sn ≥ t)dt = E|Sn|.

To deal with the general case, we replace Ottaviani’s maximal inequality by Montgomery-Smith’s inequality

P

(
max

1≤k≤n
|Sk| ≥ t

)
≤ 3 max

1≤k≤n
P
(|Sk| ≥ t/3

) ≤ 9P
(|Sn| ≥ t/30

)
(see [9]), from which we deduce that

E

[
max

1≤k≤n
Sk

]
≤ 9

∫ ∞

0
P
(|Sn| ≥ t/30

)
dt = 270E|Sn| (3.8)

and thereby get (1.5). Finally, since n 
→ p
(2)
n is non-increasing and p

(2)
n ≤ p

(2)
n , the upper bound of (1.7) is an

immediate consequence of (1.5).
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3.2. Lower bound

Turning to obtain the lower bound, let

mn := −X1 − (Y2,n)
+, Mn := −Sn + (Yn,2)

+.

Note that for any n ≥ 2, by using the last term of the maxima in the definition of Yn,2 and Y2,n, we have

Yn,2 + Y2,n ≥ 1

n

[
(n − 1)Xn + · · · + X2

] + 1

n

[
(n − 1)X2 + · · · + Xn

] = Sn − X1,

and consequently,

Mn − mn ≥ X1 − Sn + (Y2,n + Yn,2)
+ ≥ (X1 − Sn)

+ = (X2 + · · · + Xn)
−. (3.9)

In particular, Mn ≥ mn. From (3.3) and (3.4) we know that if mn < t ≤ Mn then necessarily 1 ≤ Kt ≤ n−1. Therefore,

Mn − mn =
∫

R

1{mn<t≤Mn} dt ≤
n−1∑
k=1

∫
R

1{Kt=k} dt. (3.10)

In view of (3.2) we have that for any 1 ≤ k ≤ n − 1,

bk := E

[∫
R

1{Kt=k} dt

]
= E

[(
Xk+1 + (Yk,2)

+ + (Yk+2,n)
+)−]

.

By the mutual independence of the three variables on the right side, and since {Xk} have identical distribution, we find
that

bk =
∫ ∞

0
P
(
Xk+1 < −x, (Yk,2)

+ + (Yk+2,n)
+ < x

)
dx

≤
∫ ∞

0
P(−X1 > x)P(Yk,2 < x)P(Yk+2,n < x)dx. (3.11)

Next, setting T
(2)
i,k = T1,k + · · · + Ti,k for Ti,k = Xk + · · · + Xk+1−i , i ≥ 1 and T0,k := 0, observe that for any 0 ≤ j ≤

k − 1 and � ≥ 1,

T
(2)
j+�,k+� = T

(2)
�−1,k+� + (j + 1)T�,k+� + T

(2)
j,k .

Hence, with A�,k := {T (2)
i,k < 0, i = 1, . . . , � − 1}, just as we did in deriving the identity (3.6), we have that for any

� ≥ 1,

{Yk+�,2 < 0} = {
A�,k+�, T

(2)
�−1,k+� + (j + 1)T�,k+� + T

(2)
j,k < 0,0 ≤ j ≤ k − 1

}
,

{Yk,2 < x} = {
T

(2)
j,k < (j + 1)x,1 ≤ j ≤ k − 1

}
.

Consequently,

{Yk,2 < x} ∩ {T�,k+� < −x} ∩ A�,k+� ⊆ {Yk+�,2 < 0}.

By exchangeability of {Xm} we have that for any k, �,

P(A�,k+�) = p
(2)
�−1 = P(Y�,2 < 0).
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Thus, applying Harris’s inequality for the non-increasing events A�,k+� and {T�,k+� < −x}, we get by the indepen-
dence of {Xm} that

p
(2)
k+�−1 = P(Yk+�,2 < 0) ≥ P(Yk,2 < x)P(T�,k+� < −x)p

(2)
�−1.

Since T�,k+� has the same law as S� we thus get the bound

P(Yk,2 < x) ≤ p
(2)
k+�−1

p
(2)
�−1P(S� < −x)

for any � ≥ 1. Similarly, we have that for any � ≥ 1,

P(Yk+2,n < x) ≤ p
(2)
n−k+�−1

p
(2)
�−1P(S� ≤ −x)

.

Clearly k 
→ p
(2)
k is non-increasing, so combining these bounds we find that

bk ≤ c2

2
p

(2)
k p

(2)
n−k, (3.12)

for c2 := 2
∫ ∞

0 P(−X1 > x)g(x)−2 dx, where

g(x) := sup
�≥1

{
p

(2)
�−1P(S� < −x)

}
. (3.13)

For (X1)
− bounded it clearly suffices to show that g(x) > 0 for each fixed x > 0, and this trivially holds by the

positivity of P(X1 < −r) for r > 0 small enough (hence, p
(2)
� ≥ P(X1 < −r)� also positive). Assuming instead that

X1 has finite (and positive) second moment, from (1.11) and the trivial bound p
(2)
�−1 ≥ p

(1)
� we have that for some

κ > 0 and all x,

g(x) ≥ κ sup
�≥1

{
1√
�
P(S� < −x)

}
.

Further, by the CLT there exists M < ∞ large enough such that η := infx>0 P(S�xM�2 < −x) is positive. Hence, setting
� = �xM�2, we deduce that in this case g(x) ≥ c/(1 + xM) for some c > 0 and all x ≥ 0. Consequently, c2 is then
finite provided

3M

∫ ∞

0
(1 + xM)2

P(−X1 > x)dx ≤ E
[(

1 + (X1)
−M

)3]
< ∞,

i.e. whenever (X1)
− has finite third moment. Next, considering the expectation of both sides of (3.10) we deduce that

under the above stated conditions, for any n > 2,

E(Mn − mn) ≤ c2

2

n−1∑
k=1

p
(2)
k−1p

(2)
n−k−1.

In view of (3.9) we also have that E(Mn − mn) ≥ E[(Sn−1)
−] = 1

2E|Sn−1|, from which we conclude that (1.6) holds
for all n ≥ 1.

Turning to lower bound p
(2)
n as in (1.7), recall that n 
→ p

(2)
n is non-increasing. Hence, applying (1.6) for n = 2m+1

and utilizing the previously derived upper bound of (1.7) we have that

1

c2
E|S2(m+1)| ≤ 2

m∑
k=0

p
(2)
k p(2)

m ≤ 2c1p
(2)
m

m∑
k=0

√
E|Sk+1|
k + 1

≤ 4c1p
(2)
m

√
(m + 1)E|Sm+1|, (3.14)



882 A. Dembo, J. Ding and F. Gao

where in the last inequality we use the fact that for independent, zero-mean {Xk}, the sequence |Sk| is a sub-martingle,
hence k 
→ E|Sk| is non-decreasing. This proves the lower bound of (1.7).

Our starting point for removing in (1.8) the finite third moment assumption on (X1)
− is the following lemma which

allows us to consider in the sequel only k = O(n).

Lemma 3.1. For some 0 < ε, δ < 1/2, all n ∈ N, m := �εn� and |t | ≤ ε
√

n,

P(m ≤ Kt ≤ n − m) ≥ δ.

Proof. First, observe that for |t | ≤ ε
√

n by the definition of Kt and S
(2)
j (t),

P(Kt < m) ≤ P

(
max

0≤j<m
S

(2)
j (t) ≥ 2m

√
n
)

+ P

(
max

0≤j≤n
S

(2)
j (t) ≤ 2m

√
n
)

≤ P

(
max

0≤j≤m
S

(2)
j ≥ ε−1/2m3/2

)
+ P

(
max

0≤j≤n
S

(2)
j ≤ 4εn3/2

)
.

For b = EX2
1 finite and positive, by Donsker’s invariance principle, n−3/2 max0≤j≤n S

(2)
j converge in law as n → ∞

to
√

b supu∈[0,1] Y(u). Hence, by (1.12), we deduce that

lim
ε↓0

lim
n→∞ P(Kt < m) = 0 uniformly for all |t | ≤ ε

√
n. (3.15)

It remains to bound below P(Kt ≤ n − m). To this end, note that for 1 ≤ j ≤ m,

S
(2)
j+n−m(t) = S

(2)
n−m(t) + j t + jSn−m + S̃

(2)
j ,

where S̃
(2)
j = ∑j

i=1 S̃i and S̃i = ∑i
�=1 X�+n−m. Hence, for |t | ≤ ε

√
n,

P(Kt ≤ n − m) ≥ P(Kt ≤ n − m,Sn−m ≤ −2
√

n)

≥ P(Sn−m ≤ −2
√

n)P
(

max
1≤j≤m

{
S̃

(2)
j − j

√
n
}

< 0
)
.

Clearly, if S̃i <
√

n for all i then necessarily S̃
(2)
j < j

√
n, from which we deduce that for any m ≤ n/2,

P(Kt ≤ n − m) ≥ inf
k∈[n/2,n] P(Sk ≤ −2

√
n)P

(
max

1≤j≤n
{Sj } <

√
n
)
. (3.16)

Since n−1/2 max{Sj : 1 ≤ j ≤ n} converges in law to
√

b times the absolute value of a standard Gaussian variable, we
conclude that as n → ∞, the right side of (3.16) remains bounded away from zero, which in view of (3.15) yields our
thesis. �

By Lemma 3.1 we have that for m = �εn� and n ∈ N,

δ
√

ε
√

m ≤ 2δε
√

n ≤
n−m∑
k=m

E

[∫ ε
√

n

−ε
√

n

1{Kt=k} dt

]
≤

n−m∑
k=m

bk.

Further, the contribution to (3.11) from x ∈ [L,∞) is at most∫ ∞

L

P(−X1 > x)dx = E
[
(X1 + L)−

] ≤ L−1
E

[
X2

11{X−
1 ≥L}

]
.
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With M as in the preceding bound on c2, set L = L(m) = √
m/(2M), noting that the total contribution of these

integrals to
∑n−m

k=m bk is then at most

2M

ε

√
mE

[
X2

11{X−
1 ≥L(m)}

]
,

which for some m0 = m0(ε, δ,M) finite and all m ≥ m0 is further bounded above by (δ/2)
√

ε
√

m. Consequently,
setting

κm :=
∫ L(m)

0
P(−X1 > x)g(x)−2 dx,

we get by monotonicity of k 
→ p
(2)
k and the arguments leading to (3.12), that for m ≥ m0,

δ

2

√
ε
√

m ≤ κm

n−m∑
k=m

p
(2)
k p

(2)
n−k ≤ κm

m

ε

(
p(2)

m

)2
.

Setting now p
(2)
� := �−1/4ψ(�)−1/2, we deduce from the preceding that

κm ≥ δ

2
ε3/2ψ(m) ∀m ≥ m0. (3.17)

Now, by the same argument used for bounding c2, we have that

g(x) ≥ ηp
(2)

�Mx�2 ≥ η(1 + Mx)−1/2ψ
(�Mx�2)−1/2

.

Fixing y and increasing m0 as needed, for m ≥ m0 both y ≤ L(m) and �ML(m)�2 ≤ m. Hence, with I (y, z) :=∫ z

y
(1 + Mx)P(−X1 > x)dx and ψ�(r) := sup�≤r ψ(�), it follows that for m ≥ m0,

η2κm ≤
∫ L(m)

0
(1 + Mx)P(−X1 > x)ψ

(�Mx�2)dx

≤ C(y) + I (y,∞)ψ�(m),

where C(y) := ψ�((1 + My)2)I (0, y) is finite for any y finite. Considering this inequality and (3.17), we conclude
that for some c = c(δ, ε,M,η) positive, any y finite and all m ≥ m0 for which ψ(m) = ψ�(m),

cψ�(m) ≤ η2κm ≤ C(y) + I (y,∞)ψ�(m).

Finally, with E[(1 + MX−
1 )2] finite, clearly I (y,∞) → 0 as y → ∞, hence the preceding inequality implies that

m 
→ ψ(m) is bounded above. That is, p
(2)
m ≥ c3m

−1/4 for some c3 > 0 and all m ≥ 1, as claimed in (1.8).
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